
Formal Modeling and Security Analysis for

Intra-level Privilege Separation

1

Yinggang Guo, Zicheng Wang, Bingnan Zhong, Qingkai Zeng

State Key Laboratory for Novel Software Technology

ACSAC 2022

Background

2

• Trustworthy systems require intra-level privilege separation.

◆ Privilege-based domain isolation

◆ Secure domain switching

Background

3

Problems besides security:

➢ Performance overhead

➢ Semantic gap

➢Hardware dependency

The privileged software cannot be

stacked higher and higher.

✓ Intra-level privilege separation!

◆ Nested Kernel [ASPLOS’15]

◆ SKEE [NDSS’16]

◆ Hilps [NDSS’17]

◆ SelMon [MobiSys’20]

Problems

4

The lack of formalization has several consequences:

1. For system designers

➢ cannot formally state security guarantees of complex systems

✓Design error detection

2. For system users

➢ cannot formally reason about potential threats and defenses

✓Attack scenario simulation

Problems

5

The lack of formalization has several consequences:

3. For comparison

➢ difficult to compare the security of different solutions

➢ difficult to evaluate potential improvements

✓A general and extensible formal framework

Challenges

6

• Faithful abstraction of the intra-level privilege separation model

➢ complex system software, subtle hardware mechanisms

✓ Privilege-Centric Model (PCM)

• Standardized definitions of the security properties

✓Security invariants based on the privilege differences

• Inherent difficulties in formal analysis and verification

➢exhausting manual effort, state explosion, expressiveness …

✓A two-step verification strategy

Overview

7

Model CheckingSecurity Analysis

Threat Model

8

• Follow the common threat model in prior work

➢ The system software contains exploitable vulnerabilities

• No security assumptions for the normal domain

• The privileged domain is partially trusted

➢ Security contracts

• All hardware components are trusted

Formal Framework: Privilege-Centric Model

9

We define state 𝜎 to be a valuation of all variables in Vars, including

tag : { normal, gate, privileged }

mem : (MEM × M_TAG × M_TYPE × M_PRIV × M_INTEGRITY)

regs = addr_regs ∪ bit_regs

addr_regs : (MEM × R_PRIV), e.g. PC, SP, CR3, TTBR

bit_regs : (CONTROL_BIT × R_PRIV), e.g. CR0, TTBCR

flags : {interrupt_flag, … }

Formal Framework: Privilege-Centric Model

10

The transition function 𝛿 will be like:

𝛿(𝜎, 𝑠𝑡𝑚𝑡, 𝛾𝑖) = ቊ
{ 𝜎′, 𝛾𝑖

′ }, iff 𝜓𝑝𝑟𝑖𝑣

∅, otherwise
，

where 𝑖 = ቊ
1, if 𝜎. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

2, if 𝜎. 𝑡𝑎𝑔 = 𝑛𝑜𝑟𝑚𝑎𝑙

e.g. 𝜓𝑤𝑟𝑖𝑡𝑒 ≐ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑏𝑖𝑡 𝑤𝑝 = 𝐹𝐴𝐿𝑆𝐸 ∨ 𝑤𝑟𝑖𝑡𝑒 ∈ 𝑚_𝑝𝑟𝑖𝑣(𝑚)

Formal Framework: Security Properties

11

Security invariants for privilege separation:

I1. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ⇒ 𝑀𝐸𝑀_𝑃𝑅𝐼𝑉_𝐷𝐼𝐹𝐹 ⊆ 𝑀𝐸𝑀_𝑃𝑅𝐼𝑉_𝑆𝐸𝑇

I2. 𝑡𝑎𝑔 = 𝑛𝑜𝑟𝑚𝑎𝑙 ⇒ 𝑀𝐸𝑀_𝑃𝑅𝐼𝑉_𝑆𝐸𝑇 ∩ 𝑀𝐸𝑀_𝑃𝑅𝐼𝑉_𝐷𝐼𝐹𝐹 = ∅

I3. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ⇒ 𝑅𝐸𝐺_𝑃𝑅𝐼𝑉_𝐷𝐼𝐹𝐹 ⊆ 𝑅𝐸𝐺_𝑃𝑅𝐼𝑉_𝑆𝐸𝑇

I4. 𝑡𝑎𝑔 = 𝑛𝑜𝑟𝑚𝑎𝑙 ⇒ 𝑅𝐸𝐺_𝑃𝑅𝐼𝑉_𝑆𝐸𝑇 ∩ 𝑅𝐸𝐺_𝑃𝑅𝐼𝑉_𝐷𝐼𝐹𝐹 = ∅

I5. 𝑚_𝑡𝑎𝑔(𝑚) = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ⇒ 𝑚_𝑖𝑛𝑡𝑒𝑔(𝑚) = 𝑇𝑅𝑈𝐸

Formal Framework: Security Properties

12

Security contracts for the privileged domain:

C1. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ∧ 𝑤𝑟𝑖𝑡𝑒(𝑚) ⇒ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ∉ 𝑚_𝑝𝑟𝑖𝑣(𝑚)

C2. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ∧ 𝑤𝑟𝑖𝑡𝑒(𝑚) ⇒ 𝑚_𝑡𝑎𝑔(𝑚) ≠ 𝑛𝑜𝑟𝑚𝑎𝑙

C3. 𝑡𝑎𝑔 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 ∧ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑚) ⇒ 𝑚_𝑡𝑎𝑔(𝑚) ≠ 𝑛𝑜𝑟𝑚𝑎𝑙

Instantiation

13

B-method

• first-order logic + set theory

• highly expressive and readable

• suitable for modular modeling

• good tool support: Atelier B, ProB

The abstract machine structure of B-method

Instantiation

14

From developers

• Privilege differences

• Privilege switch (𝜓𝑝𝑟𝑖𝑣)

• Customized invariants

Reusable

• Other definitions

• Operational semantics

Instantiation

15

N2P Switch (vice versa for P2N Switch)

1. Jump to the gateway

2. Turn off the interrupt

3. Change the privilege configuration and check again

4. Switch the stack

5. Jump to the privileged domain

For Nested Kernel (x86), clear CR0.WP to turn off write protection

For Hilps (ARM), reconfigure TCR_ELx.TxSZ to expand the virtual address

Model Checking

16

• Intel(R) Core(TM) i7-10700 with 16GB RAM

• Ubuntu-20.04.4, ProB-1.11.1

Security Analysis

17

• Consequences of missing security contracts

➢ Invariant violations or state explosion

• Design error detection

➢ Memory: PT, IOPT, IDT, stack, …

➢ Register: CR0, CR3, IDTR, …

• Attack scenario simulation

➢ Attack surfaces: memory, register, control flow

• Security comparison

➢ Hilps is stricter on confidentiality

➢ Perform similarly against attacks

Security Analysis

18

• Consequences of missing security contracts

➢ Invariant violations or state explosion

• Design error detection

➢ Memory: PT, IOPT, IDT, stack, …

➢ Register: CR0, CR3, IDTR, …

• Attack scenario simulation

➢ Attack surfaces: memory, register, control flow

• Security comparison

➢ Hilps is stricter on confidentiality

➢ Perform similarly against attacks

Security Analysis

19

• Consequences of missing security contracts

➢ Invariant violations or state explosion

• Design error detection

➢ Memory: PT, IOPT, IDT, stack, …

➢ Register: CR0, CR3, IDTR, …

• Attack scenario simulation

➢ Attack surfaces: memory, register, control flow

• Security comparison

➢ Hilps is stricter on confidentiality

➢ Perform similarly against attacks

Security Analysis

20

• Consequences of missing security contracts

➢ Invariant violations or state explosion

• Design error detection

➢ Memory: PT, IOPT, IDT, stack, …

➢ Register: CR0, CR3, IDTR, …

• Attack scenario simulation

➢ Attack surfaces: memory, register, control flow

• Security comparison

➢ Hilps is stricter on confidentiality

➢ Perform similarly against attacks

Case Study

21

• Interrupt-execution attack

• Jump-to-the-middle attack

Case Study

22

The state space of Nested Kernel in Attack 5 The state space of Nested Kernel in the lack of C3

Conclusion

23

• A general and extensible formal framework

➢ Privilege-Centric Model (PCM)

➢ Security invariants based on privilege differences

• Nested Kernel and Hilps instantiations in B

• Security analysis based on model checking

Thank You!

Q & A

https://github.com/gyg128/Privilege-Centric-Model

Reach me at gyg@smail.nju.edu.cn

