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Background

* Trustworthy systems require intra-level privilege separation.
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¢ Privilege-based domain isolation

¢ Secure domain switching



Background

The privileged software cannot be

Problems besides security: stacked higher and higher.
» Performance overhead v Intra-level privilege separation!
» Semantic gap PR ¢ Nested Kernel [ASPLOS’15]

» Hardware dependency ¢ SKEE [NDSs"16]

¢ Hilps [NDSS’17]

¢ SelMon [MobiSys’20]



Problems

The lack of formalization has several consequences:

1. For system designers

» cannot formally state security guarantees of complex systems
v’ Design error detection

2. For system users

» cannot formally reason about potential threats and defenses

v’ Attack scenario simulation



Problems

The lack of formalization has several consequences:

3. For comparison

» difficult to compare the security of different solutions
» difficult to evaluate potential improvements

v" A general and extensible formal framework



Challenges

 Faithful abstraction of the intra-level privilege separation model
» complex system software, subtle hardware mechanisms
v’ Privilege-Centric Model (PCM)
e Standardized definitions of the security properties
v’ Security invariants based on the privilege differences
* Inherent difficulties in formal analysis and verification
» exhausting manual effort, state explosion, expressiveness ...

v’ A two-step verification strategy



Overview
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Threat Model

* Followthe common threat modelin prior work

» The system software contains exploitable vulnerabilities
* No security assumptions for the normal domain
* The privileged domain is partially trusted

» Security contracts

* All hardware components are trusted



Formal Framework: Privilege-Centric Model

We define state o to be a valuation of all variables in Vars, including
tag : { normal, gate, privileged }
mem : ( MEM X M_TAG X M_TYPE x M_PRIV x M_INTEGRITY )
regs = addr_regs U bit_regs
addr_regs : (MEM X R_PRIV), e.g. PC, SP, CR3, TTBR
bit_regs: ( CONTROL_BIT x R_PRIV ), e.g. CRO, TTBCR

flags : {interrupt_flag, ... }



Formal Framework: Privilege-Centric Model

The transition function 6 will be like:

{(0-’: yi’)}» iff l/)priv ,

o(o,stmt,y;) = { W) otherwise

if 0. tag = privileged

. )1,
where i = { 2, if 0. tag = normal

e.g. Y, rite = control_bit(wp) = FALSE V write € m_priv(m)
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Formal Framework: Security Properties

Security invariants for privilege separation:

11. tag = privileged > MEM_PRIV_DIFF € MEM_PRIV_SET
12. tag = normal = MEM_PRIV_SET N MEM_PRIV_DIFF = @
13. tag = privileged = REG_PRIV_DIFF € REG_PRIV_SET
14. tag = normal = REG_PRIV_SET N REG_PRIV_DIFF = @
I5. m_tag(m) = privileged = m_integ(m) = TRUE
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Formal Framework: Security Properties

Security contracts for the privileged domain:
Cl. tag = privileged AN write(m) = execute € m_priv(m)
C2.tag = privileged A write(m) = m_tag(m) # normal

C3.tag = privileged A execute(m) = m_tag(m) # normal
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Instantiation

B-method

* first-order logic + set theory

* highly expressive and readable
* suitable for modular modeling

* good tool support: Atelier B, ProB
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The abstract machine structure of B-method
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Instantiation

From developers

* Privilege differences

* Privilege switch (Y,
* Customized invariants
Reusable

* Other definitions

* Operational semantics
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Instantiation

N2P Switch (vice versa for P2N Switch)

Jump to the gateway

Turn off the interrupt

Change the privilege configuration and check again

Switch the stack

A S

Jump to the privileged domain
For Nested Kernel (x86), clear CRO.WP to turn off write protection

For Hilps (ARM), reconfigure TCR ELx.TxSZ to expand the virtual address
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Model Checking

* Intel(R) Core(TM) i7-10700 with 16GB RAM
 Ubuntu-20.04.4, ProB-1.11.1

Table 1: Model Checking Results of Nested Kernel and Hilps

Abstract .\ . Invariant
Machine States Transitions Time(s) Memory(MB) Deadlock Violations
Nested Kernel 2554 4886 2.559 174.039 /

Hilps 44546 105218 47.745 238.102 /

16



Security Analysis

* Consequences of missing security contracts

» Invariant violations or state explosion

* Design error detection

» Memory: PT, IOPT, IDT, stack, ...

» Register: CRO, CR3, IDTR, ...
* Attack scenario simulation

» Attack surfaces: memory, register, control flow
* Security comparison

» Hilps is stricter on confidentiality

» Perform similarly against attacks
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Case Study

* Interrupt-execution attack

* Jump-to-the-middle attack

Table 4: Nested Kernel Model Checking Results for Attack Scenarios

Processed States

No. Attack Target Attack Scenario (All Known States/Transitions) Time(s) Memory(MB) Invariant Violations Operation History
1.Init();
. Malicious interrupt bypassing I1 2.P2N_switch();
5 Switch gate the stack switch. 142(265/362) 0.340 169.737 I3 3 Interrupt();
4 Ret();
L . 1.Init();
6  Switchgate ialicious interrupt bypassing 64(1210/1282) 0.551 171.452 12 2P2N_switch():
privilege settings and checks.
3.Interrupt();
1.Init();
7 Switchgate Vialicious jump to exploit pr- 331(1517/1618) 0.744 171.874 12 2P2N_switch();

ivilege settings.

3.Set_crO(wp, false);
4.Jump(n_code);
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Case Study

The state space of Nested Kernel in Attack 5 The state space of Nested Kernel in the lack of C3
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Conclusion
* A general and extensible formal framework

» Privilege-Centric Model (PCM)

» Security invariants based on privilege differences
* Nested Kernel and Hilps instantiationsin B

* Security analysis based on model checking

Thank You!
Q&A

O https://github.com/gyg128/Privilege-Centric-Model
@ Reach me at gyg@smail.nju.edu.cn
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