Using Co-Simulation for Model Reuse and Experiment Reproducibility

Thomas Roth December 7, 2021

A **co-simulation** is a simulation with multiple subsystems that are executed simultaneously and exchange data at runtime.

that such products are necessarily the best available for the purpose.

Applications of Co-Simulation

- Human-in-the-loop training
- Model reuse across simulators
- Shared or unique physical resources
- Simulation of complex systems (CPS/IoT)
 - Often safety-critical systems
 - Often cannot run experiments on the live systems
 - Often require a combination of expertise to understand

Approaches to Co-Simulation

ad hoc

MATLAB S-Functions, TCP/IP Sockets, ...

frameworks

HELICS, mosaik, ...

standards

- High Level Architecture (HLA)
- Functional Mock-up Interface (FMI)

High Level Architecture (HLA)

IEEE Std 1516.1-2000

IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)—Federate

The IEEE High Level Architecture (HLA) is a co-simulation standard defining the services a set of *federates* can use in a *federation*.

IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-- Federate Interface Specification (DOI 10.1109/IEEESTD.2010.5557728)

Simulation Integration

• A wrapper is software that defines the method of *time synchronization* and *data exchange* used for a simulator in a federation.

• A simulator with a wrapper can be *re-used* in multiple federations:

Connectivity

Able to share data (protocols)

Semantic Interoperability

Able to understand shared data (data models)

'Functional' Interoperability

Able to *effectively use* shared data

NIST Co-Simulation Platform

Universal CPS Environment for Federation

Distributed as a virtual machine

Contains a graphical experiment and federate design environment

Uses code generation to turn models into executable code

available at https://github.com/usnistgov/ucef

In UCEF a graphical language is used to design federates:

The federates modeled in this language can be transformed into executable code / simulation models using code generation

Web-based Generic Modeling Environment (WebGME)

UCEF: Portable HLA Development Kit

NIST

Connectivity

Able to share data (protocols)

Semantic Interoperability

Able to understand shared data (data models)

'Functional' Interoperability

Able to *effectively use* shared data

Federation Object Model (FOM)

- Examples:
 - SISO-STD-001.1-2015
 Real-time Platform Reference Federation Object Model (RPR FOM)
 - SISO-STD-018-00-2020
 Space Reference Federation Object Model (SpaceFOM)

Federation Schematic

Connectivity

Able to share data (protocols)

Semantic Interoperability

Able to understand shared data (data models)

'Functional' Interoperability

Able to *effectively use* shared data

Cyber-Physical Systems (CPS)

Framework for Cyber-Physical Systems: Volume 1, Overview (10.6028/NIST.SP.1500-201)

NIST CPS Framework

Framework for Cyber-Physical Systems: Volume 1, Overview (10.6028/NIST.SP.1500-201)

CPS Framework - Property Trees

Generation of Property Trees

Composition of CPS

Will these systems work together?

CPS_1.Trustworthiness.Security.Confidentiality.P1

- + CPS_2.Trustworthiness.Security.Confidentiality.P1
- + CPS_2.Trustworthiness.Security.Confidentiality.P2

= VALID SYSTEM

CPS Descriptor

Federate Metadata

Thomas Roth

NIST Communications Technology Laboratory IoT Devices and Infrastructures Group thomas.roth@nist.gov