
Under the Hood of MARVEL
An Anti-Repackaging Solution Based on Android

Virtualization

Alessio Merlo
Antonio Ruggia
Luca Verderame

name.surname@dibris.unige.it

Eleonora Losiouk
Mauro Conti

surname@math.unipd.it

mailto:name.surname@dibris.unige.it
mailto:surname@math.unipd.it

Agenda
● Basic Concepts

● MARVEL

● MARVELoid

● Experimental Campaign

● Experimental Results

● Demo

● Conclusion & Future work

Android Virtualization (AV)
AV allows to execute an Android app (plugin) within

the context of another app (container).

● Dynamic Code Loading allows the Java code

that is not known about before a program

starts

● Java Reflection allows a Java program to

examine or "introspect" upon itself

● Java Dynamic Proxy creates a Proxy object to

serve/handle multiple method calls

Android App-Repackaging

Android App-Repackaging

Android App-Repackaging

AV allows to modify the
behavior of the app without
repackaging it

MARVEL ∘ Goal
Mobile-app Anti-Repackaging for Virtual Environments Locking

● (G1) Preventing the attacker from being able to statically analyze an app

● (G2) Preventing an app from being executed in a malicious container

● (G3) Detecting an intermediate malicious container executes a plugin

MARVEL ∘ Overview

● An app can be executed only by

the Trusted Container (TC)

● Mutual verification between plugin

and TC app

● Code splitting between plugin and

TC app

MARVEL ∘ Implementation
● MARVELoid

○ A Java tool to protect Android apps

○ Handles the code splitting and injections of Interconnected Anti-Tampering Controls (IAT).

● Trusted Container

○ A virtualization app that is built on top of the official VirtualApp framework

○ Responsible for the enforcement of the MARVEL runtime protection.

The source code is available at: https://github.com/totoR13/MARVEL

https://github.com/totoR13/MARVEL

MARVELoid

Experimental Campaign ∘ Goals

Correctness:

● Fault of MARVELoid

● Fault at runtime

Experimental Campaign ∘ Goals

Performance:

● Protection time

● Space overhead

● Runtime resource overhead

Experimental Campaign ∘ Goals

Security:

● Injected protection mechanisms

● Attacker process

Experimental Campaign ∘ Definitions

Static Analysis:

● Evaluate the MARVELoid tool

Dynamic Analysis:

● Evaluate the resources overheads

● Evaluate the Trusted Container

Experimental Campaign ∘ Implementation

● Static Analysis: Automatic
● Dynamic Analysis: Automatic

Experimental Campaign ∘ Implementation

● Static Analysis: Automatic
● Dynamic Analysis: Automatic

● Static Analysis: Automatic
● Dynamic Analysis: Automatic

Experimental Campaign ∘ Implementation

● Static Analysis: Automatic
● Dynamic Analysis: Automatic

● Static Analysis: Automatic
● Dynamic Analysis: Automatic

● Static Analysis: Automatic
● Dynamic Analysis: Manual

Dynamic Analysis ∘ ARES

Black-box tool that uses Deep Reinforcement Learning to test Android apps

● Install and launch Android apps

● Generate a sequence of input depending on the view items

The source code is available at: https://github.com/H2SO4T/ARES

https://github.com/H2SO4T/ARES

Dynamic Analysis ∘ ARES++

We extended ARES to:

● Execute several plugin app in a container app

● Retrieve memory and CPU usage

● Dump the extracted values into a database

Experimental Campaign ∘ Static Results

Experimental Campaign ∘ Dynamic Results

Demo Time …

… it’s over!

Test limitation & Conclusions

Limitation

● Manual inspection for runtime security evaluation

Future Improvements

● Extends the testing pipeline to add more features (exception analyzer)

Good practices

● Tools and experimental evaluation available to the community

Question & Answer

Thank you !!!

