
Under the Hood of MARVEL

Antonio Ruggiaa∗,, Eleonora Losioukb, Luca Verderamea, Mauro Contib, Alessio Merloa
a DIBRIS — University of Genoa, Genoa, Italy

(antonio.ruggia|luca.verderame|alessio)@dibris.unige.com
b University of Padua, Padua, Italy

(eleonora.losiouk|mauro.conti)@unipd.it

Abstract—A growing trend in repackaging attacks exploits
the Android virtualization technique, in which malicious code
can run together with the victim app in a virtual container.
In such a scenario, the attacker can directly build a malicious
container capable of hosting the victim app instead of tampering
with it, thus neglecting any anti-repackaging protection developed
so far. To mitigate this issue, we proposed MARVEL [26], the
first methodology that allows preventing both traditional and
virtualization-based repackaging attacks. MARVEL relies on the
virtualization technique to build a secure virtual environment
where protected apps can run and be checked at runtime. To
assess the viability and reliability of our protection scheme,
we implemented it in two tools: MARVELoid to protect the
plugins, and a container app (Trusted Container) that enforces
the protection at runtime.

In this paper, we describe the automatic testing pipeline
used in the experimental campaign conducted to evaluate the
MARVEL implementation in terms of correctness, performance,
and effectiveness. Moreover, we perform an in-depth analysis of
the dataset used during the evaluation and discuss the open
challenges. The first set of experiments aims to evaluate the
protection performed by MARVELoid, verifying its viability and
reliability. To do so, we protected 4000 apps with 24 different
configurations of the MARVELoid protection parameters (i.e.,
96k protection combinations). MARVELoid was able to inject
the protection into 97.3% of the cases, with a processing time of
98 seconds per app on average. Then, we evaluate the runtime
overhead introduced by our solution, which turned out to have a
negligible impact in terms of average CPU (<5%) and memory
overhead (<0.5%).

I. INTRODUCTION

The purpose of Android repackaging attacks is to lure the
user into installing a non-legitimate app that looks like the
original one. The attacker generates such a malicious app by
reverse engineering the target app, modifying its content (e.g.,
injecting malicious code), recompiling and finally distributing
the modified app on the app markets or through other channels.
Given the similarity between repackaged and original apps,
the user is unable to distinguish between them and can be
fooled into installing the malicious version. The repackaged
app executes the attacker’s code on the victim’s phone and
it might aim to damage not only the end-user (e.g., stealing
sensitive data from the phone, injecting fake one), but also

the app developer (e.g., re-distributing paid apps for free,
removing/redirecting ads earnings, making the app willingly
unusable).

A recent growing trend in repackaging attacks concerns
the exploitation of the Android virtualization technique [10]
to generate and distribute malicious repackaged apps in an
easier way with respect to the traditional attacks. Android
virtualization enables an app (i.e., container) to create a virtual
environment, separated from the Android default one, in which
other apps (i.e., plugins) can run while fully preserving their
functionalities. The container has complete control over its
plugins: it can execute any app in its virtual environment (i.e.,
even apps that are not installed on the mobile device), control
the runtime behavior of the app, and its interaction with the
Android framework API. Thus, a maliciously crafted container
could inject arbitrary code inside the running plugins and
modify — or even block — their API calls, passing unnoticed
to the apps themselves. To do so, the container leverages its
proxy role to perform such modification without modifying the
content of the plugin’s APK.

The popularity of the virtualization technique, confirmed
by the number of downloads of virtualization apps on the
Google Play Store [33], [14], [32], is given by its main use
case scenario: running multiple instances of the same app on
a single device. In this scenario, if a user has two separate
Telegram accounts and wants to use them simultaneously, he
can have the first running in the Android environment and the
second in one of the virtualized contexts. Besides legitimate
uses, the virtualization technique has already paved the way
for threatening attacks [38], [37], [28], [10].

With respect to traditional repackaging attacks,
virtualization-based ones are easier to setup. The former
requires the attacker to i) decompile the APK of the
victim app, ii) detect and, in case, remove anti-repackaging
protections, iii) inject some malicious code, and iv) recompile
it again. On the other hand, virtualization-based repackaging
attacks allow the attacker to make the container execute the
original victim app along with some malicious code without
requiring any modification of the original APK. Besides
creating a virtual environment, a container app can also hijack
user input and steal users’ sensitive data. The malicious code
can be part of the container logic or another plugin running
in the same virtual environment as the victim. Two examples
of virtualization-based malware have already been detected
in the wild [6], [5], which target respectively Twitter and
WhatsApp.

To defend against the malicious usage of the virtualization

Learning from Authoritative Security Experiment Results (LASER) 2021
7 December 2021, Virtual
ISBN 1-891562-82-7
https://dx.doi.org/10.14722/laser-acsac.2021.23258
www.acsac.org

technique, researchers have put forward some solutions [34],
[28], [10], [37], [18], [29]. The majority of them are distributed
as a library that plugins have to embed to detect at runtime
whether they are running in a virtual environment. The limit
of such approaches is twofold: the checks they rely on can
be easily bypassed [4], and they are not able to distinguish
between benign and malicious usage of the virtualization
technique. On the contrary, two solutions [37], [29] have been
proposed to defend against virtualization-based repackaging
attacks. Both of them rely on a static analysis approach to
detect any usage of the virtualization technique and the purpose
of its usage. Being designed as static analysis tools, they are
affected by well-known limitations (e.g., missing evaluation of
code dynamically loaded at runtime).

Given the number of malware samples designed on top
of the virtualization technique, we believe there is an ur-
gent need to provide a reliable defense methodology that
can i) prevent any repackaging attack, and ii) be adopted
by any Android user straightforwardly. To this aim, in our
previous work [26], we proposed MARVEL (i.e., Mobile-
app Anti-Repackaging for Virtual Environments Locking), the
first dynamic anti-repackaging solution based on the virtual-
ization technique. MARVEL relies on a “trusted” container
that creates a virtual environment where plugins equipped
with proper anti-repackaging checks run. Furthermore, we
developed MARVEL protection scheme in two prototypes:
MARVELoid, a standalone tool to inject anti-repackaging
protection, and the Trusted Container (TC), a virtualization-
based app that enforces the MARVEL protection at runtime.
To evaluate the feasibility of MARVEL, in our previous
work [26], we conducted an experimental campaign based
on an automatic testing pipeline. In particular, we protected
4000 apps with 24 different configurations of the protection
parameters (i.e., workloads), ending up with 96k different
protection combinations. The tool achieved the 97.3% of
success rate and required — on average — only 98 seconds
per app to introduce the protections. Then, we evaluated the
protected apps at runtime, measuring the number of failures
in their execution and the overhead introduced by MARVEL
in terms of CPU and required memory. The results showed
that our solution introduces a limited overhead with respect
to traditional virtualization techniques, i.e., an increment - on
average - up to 4.7 percentage points (pp) in the CPU usage
and 0.2 pp for the consumed memory.

In this work, we present the details of the automatic testing
pipeline we designed to conduct the experimental campaign in
our previous work [26], as well as the dataset of apps we
used for the runtime evaluation. Our testing pipeline aims to
evaluate the correctness, performance, and effectiveness of the
MARVEL implementation. In particular, we focused on the
repeatability of the results, i.e. on the process of obtaining
the same results as the reported ones through an independent
experiment. To this aim, we released both the source code
of the developed tools (i.e., MARVELoid, Trusted Container,
and the automatic pipeline) and the results of our experimental
campaign 1, for which we also obtained the “2021 ACSAC
Distinguished Artifact Award” [3]. We believe that releasing
software is an important step toward the reproducibility of
research results, and it strongly contributes to the deployment

1https://github.com/totoR13/MARVEL

of novel security solutions in a real-world scenario.

Organization. The rest of the paper is organized as fol-
lows: in Section II, we illustrate the threat model considered for
the design of MARVEL, together with a motivating example
and an overview of MARVEL; Section III presents the goals
we wanted to achieve through our testing pipeline as well as
the details of the dataset of apps we used; in Section IV we
describe the design of the testing pipeline, while in Section V
we present the results obtained through the experimental
campaign. Finally, we conclude the paper by comparing our
testing methodology with the ones presented in previous works
in Section VI and with closing remarks and possible future
extensions in Section VII.

II. BACKGROUND

In this section, we briefly summarize the threat model
of the repackaging attack, present a motivating example, and
introduce the key aspects of the MARVEL protection scheme.

A. Threat Model

The goal of a repackaging attack is to distribute a modified
version of an Android app that contains a malicious payload.
The victim is a general Android user, daily enjoying her
mobile device and regularly downloading apps from any app
market (e.g., Google Play Store and Amazon App Store).
The malicious payload can be injected into the victim app
through different methodologies according to the approach
chosen by the attacker: traditional repackaging or repackaging
through the virtualization technique. To achieve her purpose,
we assume the attacker can own a mobile device, eventually
a rooted/customized one, and can rely on static and dynamic
analysis techniques, as well as network traffic analysis ones, to
inspect the behavior of the victim app. On the other hand, to
protect from such threats, the apps developers inject detection
nodes that implement anti-tampering (AT) controls aimed at
checking some metadata of an app (e.g., the signature or the
package name).

In traditional repackaging [21], the attacker first downloads
the target APK and analyzes it through both static and dynamic
techniques. Then, she searches for any anti-repackaging and
anti-tampering (AT) protections in the target app. AT controls
check some metadata of an app (e.g., the signature or the
package name) to detect modifications. If at least a match is
found, the attacker needs to try deactivating the protections;
otherwise, she can directly inject some malicious code into the
app or modify the original one. Next, the attacker extensively
tests the repackaged app to check whether it works properly. If
this is the case, she can redistribute the repackaged app to an
app store. Otherwise, she needs to carry out further analysis
and repeat the whole process (also known as the “try and error
cycle”) until she obtains a working repackaged app.

A virtualization-based repackaging attack is depicted in
Fig. 1. This attack is far less complex than the traditional one
and much more powerful: a container can execute any external
app as a plugin without modifying it, thus passing undetected
to traditional AT controls and logic bombs. Furthermore, its
proxy capabilities allow intercepting all the API invocations
to the Android OS and tampering with the responses, thus
overcoming the existing anti-virtualization solutions [4].

2

Fig. 1: Virtualization-based repackaging attacks.

To carry out a virtualization-based repackaging attack, the
attacker analyzes the victim app APK file (Step 1) and builds
a container able to run it (Step 2). Then, she customizes the
container to meet her purposes, such as stealing sensitive data
from the victim app (Step 3). Finally, the attacker tests the
execution of the victim app in the customized container (Step
4) and distributes it by uploading the malicious APK on an
app store (Step 5).

B. Motivating Example

To demonstrate the applicability and impact of
virtualization-based repackaging attacks, we developed a
(malicious) container app of Telegram, one of the most
popular messaging app for Android, that is able to retrieve the
plain text of received and sent messages. We manually reverse
engineer the target apps to identify the Java methods in charge
to handle the incoming/outgoing messages and implement a
custom hooking function using ART instrumentation [23]. We
successfully performed the virtualization-based repackaging
attack, retrieving the plain text of all messages. For instance,
in Telegram, the processSendingText method of
org.telegram.ui.Components.ChatActivityEn-
terView class is responsible for retrieving and encrypting
the text written by the user, and sending the cipher text over
the network. The malicious container hooks such a method
and logs the input parameter (i.e., plain text of the outcoming
message).

It is worth noticing that a malicious user can create a
generic container hooking only Android view items, such as
the TextView. However, this approach has a limitation since
it retrieves all the possible strings shown.

Finally, we point out that, thanks to the Android virtu-
alization, we can overcome the integrity checks performed
in the plugin apps. In particular, current anti-repackaging
solutions fail since the malicious container i) does not modify
the code of the victim app, thus neglecting static AT checks
(e.g., signature verification), and ii) can intercept and tamper
with any interaction with the Android OS, bypassing dynamic
environment controls (e.g., emulator and root detection). For
instance, while WhatsApp implements several controls (e.g.,
signature verification) that limit standard repackaging attacks,
some fake and malicious versions of the WhatsApp messenger
app were distributed in the wild [6]. These malicious apps

were downloaded more than a million times from the Google
Play Store, and they were able to retrieve sensitive information
through the malicious container.

C. MARVEL

In this section, we introduce the MARVEL methodology
and how it is implemented, highlighting the key aspects related
to the testing phase. We refer interested readers to [26] for a
detailed description of our protection scheme.

MARVEL is an anti-repackaging protection scheme that
leverages the virtualization technique to prevent both tradi-
tional and virtualization-based repackaging attacks. Further-
more, MARVEL fulfills the following security requirements:

• (R1) Preventing the attacker from being able to stati-
cally analyze an app to fully reconstruct both the code
and the protection controls.

• (R2) Preventing an app from being executed in a ma-
licious container that bypasses traditional AT checks.

• (R3) Detecting an intermediate malicious container
that is run in the container’s virtual environment and
executes a plugin.

MARVEL encompasses a mobile device running any recent
version of the Android OS (i.e., Android API 26+) and a
container. Furthermore, MARVEL requires that the protected
apps can be successfully executed only as plugins in a trusted
virtual container, which is responsible for unlocking the anti-
repackaging protections. In our scenario, we suppose that the
container is a system service that does not require root priv-
ileges, like Google Play Services (GPS) [11]: during the first
execution, an app verifies if the trusted container is installed
(e.g., apps use the isGooglePlayServicesAvailable2

method to verify the availability of GPS) and, if this is the
case, it requires to be executed by the Trusted Container
(TC). Mobile vendors have already adopted a similar approach.
For instance, Samsung Knox [27] is a commercial solution
for Mobile Device Management that exploits a pre-installed
trusted app that manages corporate data and apps.

MARVEL protects plugins through two approaches: code
splitting and Interconnected AT (IAT). The former allows
removing portions of code from the original app, replacing it
with fake code (or methods). Thus, it introduces a mitigation
against static analysis inspection (i.e., requirement R1). To do
so, we injected a custom ClassLoader (CCL) into the process
of the plugin, which is in charge of i) resolving the requested
class, ii) checking if it contains some fake methods, and iii)
in case of fake methods, replace them with the correct ones.
The latter involves injection controls, which are evaluated
during the interaction between the container and the plugin.
Thus, the controls fail if the plugin is not executed in the
expected container (i.e., requirement R2), or the container
cannot communicate with the intended plugin (i.e., requirement
R3). Furthermore, MARVEL enables the use of combined
protection patterns, e.g., the injection of an IAT in the code of
a method extracted using code splitting. Such a composition
increases the difficulty in bypassing the protections, as the

2https://developers.google.com/android/reference/com/google/android/gms/
common/GoogleApiAvailability

3

https://developers.google.com/android/reference/com/google/android/gms/common/GoogleApiAvailability
https://developers.google.com/android/reference/com/google/android/gms/common/GoogleApiAvailability

attacker is forced to execute and reconstruct the entire package
before trying to locate and deactivate all the IAT controls. It
is worth noting that, while the MARVEL protection focuses
on the Java layer, it is always applicable even to apps entirely
written in C/C++: to interact with the native code, an app
needs a Java “stub” class with the task to load and interact with
C/C++ code. Moreover, the solely Android component entirely
supported by the native code is the Activity: an app that wants
to interact with a different component has to implement it in
a Java layer.

We implemented the MARVEL protection scheme in a
prototype tool, called MARVELoid, which injects the protec-
tion in the plugins, and we extended the VirtualApp frame-
work [16] to develop the trusted container responsible for
the enforcement of the runtime protection. The source code
of MARVELoid and the trusted container are available at
https://github.com/totoR13/MARVEL.

MARVELoid is a Java-based tool devoted to the generation
of the protected plugin starting from the original app: it
performs the code splitting and injects the IATs controls (both
the base ones and those with encryption). The tool leverages
the Soot framework [12] to analyze and modify the bytecode
of the Android app, and Jarsigner [22] to sign the output
APK file with a valid certificate. MARVELoid requires as
input the APK file of the plugin app to protect three input
parameters, namely the probability to i) replace a method
through code splitting (Prepl), ii) inject a base IAT control
(Pbase IAT), and iii) inject an encrypted IAT (Penc IAT), and
the Package Name (PN) that identifies the part of the app (i.e.,
the group of classes) to include in the protection process. At
the end of the protection process, MARVELoid recreates the
classes.dex file(s), builds the APK and re-signs it with
a valid certificate. Finally, MARVELoid extracts the metadata
information of the resulting APK required by the container
to perform integrity checks on the plugin. On the other hand,
the TC is an extension of the VirtualApp framework in charge
of offering the virtualized environment to execute the plugins
and enforcing the MARVEL protection at runtime. In detail,
the container i) performs the integrity checks of the plugin, ii)
interacts with the plugin through the IATs, and iii) restores the
original content of the fake methods (if the check succeeded).

III. TESTING METHODOLOGY

In this section, we introduce the main goals of our ex-
perimental campaing, and we detail the stages of our testing
pipeline.

A. Testing Goals

The experimental campaign aims to verify the applicability
of MARVEL protection scheme in the wild and the fulfillment
against the repackaging attacks. To do so, we advocate that
the testing pipeline should achieve the following testing goals
(TG):

a) TG1 — Correctness: The pipeline evaluates the
MARVEL protection to find possible errors (i.e., failures dur-
ing the protection process or the runtime evaluation), improve
the quality of the software, as well as verify and validate the
transformation done. In our scenario, we verify how many apps
can i) be statically protected with MARVELoid, and ii) be

executed in the Trusted Container. In addition, we investigate
the failure samples to identify the causes of such exceptions.
For instance, MARVELoid modifies the bytecode of the plugin
app (e.g., performs the code splitting), and we have to verify
if such modifications result in a valid DEX file.

b) TG2 — Performances: The pipeline aims to evaluate
how the tools (i.e., MARVELoid and Trusted Container) per-
form in terms of time and stability under a particular workload,
which is the combination of plugin app and input parameters
applied on it and affecting the number of injected protections.

On the one hand, we aim to evaluate the time for the
MARVELoid transformation and the artifacts introduced by
the protection mechanism (i.e., size overhead between the
protected and original versions of an app). On the other hand, it
is important to verify the feasibility of the MARVEL protection
at runtime, monitoring the resource usage (e.g., CPU and
memory) during the app execution to identify the overhead
introduced by our protection scheme.

c) TG3 — Repeatability: The principle of repeatability,
also known as replicability and reproducibility, refers to the
possibility to obtain the same results with a high degree of
reliability when the experiments are replicated. In our scenario,
the testing pipeline aims to perform the same analysis, despite
the set of involved apps.

In addition, the testing pipeline should also guarantee
the runtime reproducibility, which refers to the amount of
resources used by the different versions of the same app (e.g.,
protected vs. original). To do so, the pipeline executes the
same sequence of graphical input events for all versions of
the same app, computing the overhead for each click. Thus,
different executions of the same app lead to similar results,
and the computed runtime overheads are reliable (because
reproducible).

As an illustrative example, we can consider an app with
two buttons: the first one (A) performs an easy calculation
(e.g., increment of a number by 1), while the second (B)
does a heavy computation (e.g., the factorial of a number).
If the overhead of resources is computed after clicking the
button A of the original app and after clicking button B of
the protected version of the same app, the results would be
strongly influenced by the semantics of the app (i.e., heavy
vs. light computation). Thus, the pipeline needs to guarantee
the runtime reproducibility by emulating the identical sequence
of input events.

d) TG4 — Effectiveness: MARVEL is an anti-
repackaging protection scheme, which aims to protect an An-
droid app from both standard and virtualization-based repack-
aging attacks. Since a protection scheme is considered effective
only if it is harder to circumvent it than to reimplement a
malicious app from scratch [21], the security evaluation of
MARVEL plays a crucial role in the testing pipeline. In par-
ticular, we need i) to evaluate how MARVEL is reliable against
different reverse-engineering techniques, and ii) to identify the
steps involved in the repackaging process to overcome our
protection.

It is worth noticing that our testing pipeline takes into
consideration that MARVELoid accepts three input parameters
(i.e., Prepl, Pbase IAT , and Penc IAT), which may affect the

4

https://github.com/totoR13/MARVEL

number of injected protections. For instance, we evaluate how
many failures are related to a specific protection mechanism
(e.g., code splitting) or how much the protection time of
MARVELoid varies depending on those parameters.

B. Dataset

We need to evaluate our protection scheme against several
real-world apps, which are widely used by Android end-users.
To do so, we built a comprehensive and diversified dataset of
4000 Android apps collected from the Google Play Store in
December 2020. Regarding the dynamic analysis, we randomly
selected a subset of 45 apps (cf. Section V). To do so, we
extracted useful app information (e.g., package name and
number of downloads) using Google Play Scraper [1], and we
downloaded the samples with the Playstore Downloader [2].

Figure 2 shows the distribution of the apps category (2a)
and the number of their downloads (2b). The most representa-
tive category is Tools and the Other category is a collection of
several app families (e.g., Communication and Game) which
accounts for less than 2% of apps each. It is worth noticing
that the apps belong to 43 different categories, and most of
them (i.e., 87.3%) have been downloaded between 1000 and
5000000 times. Furthermore, the apps of the dataset have an
average rating of 4 stars on the Google Play Store, and 60%
of them have the minSDK above Android 4.0 to include the
most recent API features.

IV. MARVEL TESTING PIPELINE

In this section, we perform an in-depth analysis of how
our testing pipeline fulfills the testing goals for each phase
introduced in Section III-A.

As mentioned in Section II-C, MARVEL is implemented
through two components: MARVELoid is in charge to pro-
tect a plugin app by statically injecting different protection
mechanisms, while the TC is an Android app that extends the
VirtualApp framework to enforce the protection at runtime.
As a result of our MARVEL design, we divided the testing
pipeline in two stages: static and dynamic analysis. The first
— static analysis — aims to verify the reliability and efficiency
of the transformation process performed by MARVELoid
according to the different protection levels achieved depending
on the input parameter values. Dynamic analysis, instead,
tests the MARVEL protection at runtime by evaluating its
effectiveness and usability. In particular, the pipeline executes
the protected plugin apps in the TC to validate their execution
by verifying i) the impact in terms of resource usage by the
Android virtualization, IATs, and code splitting techniques, and
ii) the robustness of the prototype at runtime.

In the remaining, we discuss the two phases in detail with
the support of Figure 3, which depicts the main steps involved
in our testing pipeline.

A. Static Analysis

MARVELoid is distributed as a JAR file, and we recall that
it requires as input three parameters (i.e., Prepl, Pbase IAT , and
Penc IAT) and the app to protect3.

3For more details, refer to the official Github repository https://github.com/
totoR13/MARVEL

0 10 20 30

Finance
Tools

Education
Book & Preference

Productivity
Lifestyle

Photography
Personalization

Music & Audio
Business

Entertainment
Travel & Local

Other

% of apps

(a) Distribution of the apps category.

0 10 20 30

< 1000

1001 - 10000

10001 - 100000

100001 - 500000

500001 - 1000000

1000001 - 5000000

5000001 - 10000000

> 10000001

% of apps

(b) Distribution of the apps download.

Fig. 2: Distribution of categories and download of the 4000
apps.

The testing pipeline introduces the protections into the app
under test (AUT) with different combinations of the workloads
(i.e., input parameters) by following a producer-consumer
pattern: in Step 1, the main process saves the pair (app,
workload) — e.g., (com.package.name, (Prepl =
5, Pbase_IAT = 5, Penc_IAT = 5)) — into a queue,
which is queried by several consumer processes. The consumer
processes — also known as workers — are in charge to run
the MARVELoid tool (Step 2.a) and extract the protection
results (Step 2.b). In our example, the worker protects the
com.package.name app by setting Prepl, Pbase IAT , and
Penc IAT parameters equal to 5. Thank to this design, the
pipeline satisfies the testing requirement TG3: whenever the
main process injects the same workload values, the workers
perform the same tests.

In case of successful protection, the workers measure the
MARVELoid execution time and the size of the protected APK
compared with the original app’s ones (TG2), and the protec-
tion level, i.e., the number of injected protections for each
type (TG4). Otherwise, the workers extract, parse and store
the stack trace of the MARVELoid exception to discriminate
the cause of such error (TG1). For instance, MARVELoid

5

https://github.com/totoR13/MARVEL
https://github.com/totoR13/MARVEL

Fig. 3: Testing pipeline.

leverages the validate method of the soot.Body class
in the Soot framework to execute various sanity checks on the
modified bytecode. When MARVELoid produces an invalid
bytecode, the validate throws an exception that specifies
which check is failed (e.g., use of an undefined variable).

B. Dynamic Analysis

We recall that the MARVEL protection scheme is built
on top of the Android virtualization, leveraging the proxy
role of the container (i.e., Trusted Container – TC) to pre-
vent repackaging attempts and to enforce the protection at
runtime. We divided the runtime evaluation into two phases
(respectively, Step 3.a and Step 3.b) to evaluate the overhead
introduced by both Android Virtualization and the MARVEL
custom protections (i.e., code splitting and IATs) and their
effectiveness.

In the first, the testing pipeline assesses the compatibility
of traditional Android apps w.r.t. virtualization and the over-
head introduced in terms of CPU and memory usage by the
container app. To do so, it uses as a reference values the CPU
and memory usage of the traditional Android apps executed
directly on the device. In the latter phase, the pipeline evaluates
i) the effectiveness of MARVELoid by running the protected
apps inside the TC, and ii) the corresponding overhead, using
the results of the standard virtualization (previous phase) as
reference values. Thus, the dynamic analysis allows us to mon-
itor the overhead introduced by both traditional virtualization
and our solution on the set of selected apps. It is important to
note that only the apps without any exception in the first phase
are protected and executed in the second. This way, we ensure
that a failure is attributable to our protection scheme (TG1).
Moreover, to address TG3, the testing pipeline should be able
to reproduce the exact input sequence provided to each app
to allow the comparison of resource usage for different app
states.

To automatically interact with Android apps (Step 4), we
modified ARES [25], a black-box tool that leverages Deep
Reinforcement Learning. In particular, the extended version of
ARES (from now on ARES++) is able to i) execute several
plugin apps in a container, ii) ensure the same input sequence
for each plugin app, and iii) save the data into a database.
The random testing strategies stimulate an app under testing
by producing a pseudo-random sequence of events, which

depends on a seed value. Also, we used the random algorithm
of the ARES tool with a seed that depends on the package
name of the app (i.e., the same package name guarantees
the same input sequence) to ensure that ARES++ generates
the same input sequence. Moreover, ARES considers only the
events that trigger a “real” action on the user-interface elements
of the app under testing: it generates an event depending on the
list of actions that can be carried out in a specific app state [25].
Each time ARES++ generates a new input, it verifies if the app
raises a new exception or executes correctly. In the first case,
ARES++ parses and stores the output of the logcat utility
to identify the cause of the fault (TG1). Otherwise, it retrieves
the CPU and memory usage for the AUT (TG2). Since the
execution of an app under virtualization is composed of two
processes (i.e., container and plugin), the overall CPU and
memory usage is given by the sum of the overhead provided
by the two processes.

Finally, we manually validate the effectiveness of the
MARVEL schema (TG4) by impersonating an attacker. In
particular, we identify the reverse-engineering techniques and
tools that an attacker has to implement to overcome the
protection. To ensure that our knowledge of MARVEL did
not influence the security evaluation, a Computer Engineering
master student helped us in the analysis. He has a generic
background of security and performed manual analysis with
state of the art reverse-engineering tools [21] of the protected
apps to bypass the protection and perform a repackaging attack
(as described in Section II-A).

V. EXPERIMENTAL RESULTS

In this section, we summarize the results of the empirical
assessment of the MARVEL methodology presented in the
original ACSAC paper [26]. Moreover, we discuss some details
not present in the original evaluation due to space constraints.

A. Static analysis

The experiments were hosted on a virtual machine running
Ubuntu 20.04 with 8 processors and 32GB RAM. We con-
ducted tuning tests to detect the on-average best combinations
of input percentages (i.e., Prepl, Penc IAT , and Pbase IAT —
workload) to ensure a reasonable trade-off between the protec-
tion overhead values and the protection level. In particular, we

6

computed the protection overhead and protection values for 24
different workloads (i.e., the permutations of [5, 10, 20, 30]).

The automatic testing pipeline performed 96000 protec-
tions (i.e., 4k apps for each permutation) with MARVELoid,
which generated a valid APK (Fig. 4) in 97.3% of the cases.
The protection of a single app took, on average, 98 seconds
(standard deviation of 44 seconds). The remaining 2.7% (i.e.,
2624 apps) failed due to well-known bugs of the adopted
libraries (such as a Soot bug4) or crashes during the tool
transformation process. In the last case, the main cause of the
error is computable to the code splitting technique (i.e., Prepl),
which removes some needed instruction.

Figure 4 shows the distribution of the success percentage
for each permutation. Although the value slightly decreases
with higher values of Prepl, it is worth noticing that its range
always sits between 96% and 98%.

(5
10

20
)

(5
10

30
)

(5
20

10
)

(5
20

30
)

(5
30

10
)

(5
30

20
)

(10
5 20

)

(10
5 30

)

(10
20

5)

(10
20

30
)

(10
30

5)

(10
30

20
)

(20
5 10

)

(20
5 30

)

(20
10

5)

(20
10

30
)

(20
30

5)

(20
30

10
)

(30
5 10

)

(30
5 20

)

(30
10

5)

(30
10

20
)

(30
20

5)

(30
20

10
)94

96

98

100

Permutations of Prepl, Penc IAT , and Pbase IAT

Su
cc

es
s

ra
te

(%
)

Fig. 4: Percentage of apps successfully protected by MAR-
VELoid.

Finally, MARVELoid was able to inject a minimum of 68
and a maximum of 135 protection elements in the protected
apps. All in all, the average percentage of space overhead of
the protected APK compared with the original one is always
less than 18% (mean of 14.5%, and standard deviation of 1.6).

B. Dynamic analysis

For the testing phase, we used a set of emulated Android
8.0 devices equipped with a dual-core processor and 2GB of
RAM.

To evaluate the compatibility with the virtual environment
(Step 3.a of Figure 3), we installed and executed the 45 apps
directly on the emulator to check their proper functioning and
resource usage. Then, we ran the apps in a standard VirtualApp
container. In this step, we collected the overhead introduced
by the Android virtualization in terms of CPU and memory
usage. At the end of this phase, we identified five apps that
trigger an exception due to the virtual environment. Thus, we
discarded such apps from the rest of the experiments. We recall
that, in our prototype, we used Android virtualization as an
out-of-the-box tool, leveraging the VirtualApp framework. It
is worth noting that such apps are not incompatible with the
virtualization per se; in fact, the open-source version of the
VirtualApp framework does not support all the newer Android
APIs, leading to runtime exceptions when apps implementing
these features are executed.

4https://github.com/soot-oss/soot/issues/1474

Then, in Step 3.b, we executed the protected version of the
remaining 40 apps into the Trusted Container. In particular, we
tested two different combinations of the workloads, i.e., the
input parameters are: Prepl = Pbase IAT = Penc IAT = 10%
(Setup10%) and Prepl = Pbase IAT = Penc IAT = 15%
(Setup15%). The protected apps contain, on average, 111
protections (i.e., 32 replaced methods, 38 IAT with encryption,
and 41 base IAT) for Setup10% and 175 protections (i.e., 51
replaced methods, 58 IAT with encryption, and 66 base IAT)
for the second one, with a minimum of 50 protection in both
the setups.

In both Step 3.a and Step 3.b, we executed each app 10
times for 4 minutes to verify its correct execution inside the
Android virtualization and the introduced overhead. Moreover,
the apps are stimulated with ARES++, an extended version
of the ARES tool, which ensures that the sequence of events
generated for each app is always the same (cf. Section IV-B).

During the experiment, 22 out of 40 (with Setup10%) and
25 out of 40 (with Setup15%) apps executed successfully.
The remaining apps (i.e., 18 and 15 apps, respectively) threw
new exceptions, crashed, or became unusable. We manually
investigated such problems to discover the following causes:

• 8 apps (Setup10%) and 7 apps (Setup15%) crashed
due to a well-known Soot bug5. The bug affects
the transformation process from the bytecode to the
Jimple of third-party libraries included in APK files,
causing the final app to crash during the execution,
even if its bytecode is valid.

• 4 apps (Setup10%) and 4 apps (Setup15%) triggered
a timeout defined by the UiAutomator2 library, used
by ARES to test the application. Unfortunately, after a
deeper investigation, we discovered that such timeout
is hardcoded and cannot be modified6. It is worth
noticing that these apps did not crash due to the
protection but were terminated by the library.

• Finally, 6 apps (Setup10%) and 4 apps (Setup15%)
threw new exceptions directly related to the protection
process.

Concerning the last point, the root cause analysis of the
crashes caused by MARVELoid led to the discovery of two
issues of our prototype implementation. The first one is related
to an incorrect referencing of the Context7 of the app, which
mainly ends up in a null pointer exception due to the absence of
the correct reference. To solve this issue, we have to include a
global reference of the Context object in the Application class.
The second bug occurs if a replaced method is already loaded
in the custom ClassLoader: a crash can occur because the CCL
does not inject the correct body of the method, causing a
runtime exception. In such a case, the CCL should prevent
the garbage collector from removing the replaced method and
restoring the original (fake) method.

Table I shows the minimum, average, and maximum per-
centage overhead values introduced by the Android virtu-
alization (first column) and our protection mechanisms in

5See the related Github issues https://github.com/soot-oss/soot/issues/1151,
and https://github.com/soot-oss/soot/issues/1615

6https://github.com/appium/appium/issues/12555
7https://developer.android.com/reference/android/content/Context

7

https://github.com/soot-oss/soot/issues/1474
https://github.com/soot-oss/soot/issues/1151
https://github.com/soot-oss/soot/issues/1615
https://developer.android.com/reference/android/content/Context

Simple container Setup10% Setup15%

C
PU

min. -1.1 -0.4 -0.3
avg. +0.9 +1.7 +4.7
max. +10.9 +7.6 +24.5

M
em

or
y min. +3.8 -0.1 -0.5

avg. +4.4 +0.2 +0.2
max. +6.1 +0.6 +0.7

TABLE I: CPU and memory usage overhead in percentage
point (pp).

case of the two setups (respectively, Setup10% in the second
and Setup15% in the third column). The average overhead
introduced by the virtualization is negligible in terms of CPU
usage (i.e., an increase of 0.9 percentage points), while the
memory overhead is 4.4 pp. Also, the negative minimum value
for the CPU overhead denotes that the virtual environment app
can adopt CPU optimization strategies at the cost of a higher
memory footprint.

The analysis for the protected apps with Setup10% shows
that the average overhead introduced by the protection is
negligible, i.e., an increase of 1.7 pp for the CPU usage and
0.2 points for the memory. In the worst-case scenario, the CPU
overhead reached 7.6 pp. We advocate that such an increase
is caused by the overhead required by the CCL and ART
instrumentation to load and inject the fake methods.

The analysis of the protected apps with Setup15% confirms
the results on the memory overhead. In particular, on average,
the memory overhead is negligible, with a peak of 0.7 per-
centage points in the worst case. On the contrary, the CPU
overhead is 4.7 pp, reaching, in the worst case, an increase of
24.5 pp.

Protection Resilience. From a security point of view,
MARVEL is effective. With respect to the repackaging attacks
presented in Section II-A, MARVEL provides a preventive
anti-repackaging protection in both repackaging attack scenar-
ios (i.e., traditional and through virtualization).

First of all, the analysis of the victim app APK becomes
more challenging for the attacker due to the code splitting
and the IAT with encryption, which removes or encrypts some
portions of code from the protected app. Concerning the iden-
tification and neutralization of the repackaging protections the
victim app might be equipped with, the mutual collaboration
between the Trusted Container and the plugin makes this goal
harder to achieve for the attacker: she has to investigate the
runtime communication between the Trusted Container and
plugin through dynamic analysis techniques. Moreover, since a
method can be concurrently transformed by several protection
mechanisms (e.g., an extracted method can contain an IAT), the
attacker has to recursively resolve the nested protection once
she has disabled the external one. Finally, the customization of
a container to setup a virtualization-based repackaging attack
(Step 2 and Step 3 in Fig. 1) is prevented by MARVEL thanks
to the mutual integrity checks between the Trusted Container
and the plugin, which stops the execution of the latter in
case the environment is detected to be not secure. Overall,
MARVEL makes virtualization-based anti-repackaging attacks
as complex as traditional ones.

VI. RELATED WORK

In this section, we summarize the related work on repack-
aging attacks and countermeasures, with a specific focus on
the testing methodology.

A. Anti-Repackaging

Anti-repackaging — also known as repackaging avoidance
or self-protection — comprises techniques aimed at making the
repackaging process more difficult for an attacker. In particular,
the app developer injects detection nodes that implement anti-
tampering controls.

The first anti-repackaging technique for mobile apps was
proposed in 2015 by Protsenko et al. in [24]. The main idea
is to encrypt the classes.dex files in the APK and dynamically
decrypt them during the app execution. The authors evaluated
their technique over a dataset of 749 apps from the F-Droid app
store [13], but only 312 apps can be properly protected. The
runtime evaluation is performed with Android 4.4.2 devices,
and the apps are stimulated through the Android Monkey UI
Exerciser framework.

In 2016, Luo et al. in [17] proposed SSN, which injects a
set of detection nodes into the app source code (i.e., through
the Java bytecode). The viability of the SSN approach has been
empirically evaluated on a set of 600 apps belonging to ten app
categories in F-Droid, and the experiments were conducted on
emulators equipped with Android 4.1. The authors pointed out
that all tested apps have been executed successfully by having
an average time overhead between 6.4% and 12.4%.

In 2017, Song et al. [30] proposed an app reinforcing
framework named AppIs. The main idea is to create a graph
of security units (i.e., detection nodes), which performs i)
AT controls to detect repackaging and ii) integrity checks of
other security units. AppIs has been evaluated on a set of
only 8 apps, which are evaluated by multiple Android version
emulators (spanning from 4.4 to 6). The results indicate that
no app fails, and the space overhead is up to 2% in the worst
case, while time overhead spans from 2% to 140%.

In 2018, Chen et al. [7] proposed an SDC scheme, en-
crypting pieces of code. The ciphered portion of code is
decrypted and executed at runtime only if the app is not
repackaged. The dataset used for the evaluation is composed of
20000 apps that belong to 15 different categories. The testing
phase involved both real users and automatic testing, and the
protection introduced a time overhead below 4% for each app
tested and a negligible space overhead.

In the same year, Zeng et al. [36] designed BombDroid,
a defending technique that leverages logic bomb as anti-
repackaging protection for Android apps. The authors built a
dataset of 963 taken from F-Droid. They exploited Dynodroid
[19] to execute each app for an hour, repeating the experiment
50 times per app. According to the authors’ results, the
execution time overhead is almost negligible (i.e., < 2.7%),
and the space overhead ranges from 8% to 13%.

In 2019, Tanner et al. [31] proposed an extension of
BombDroid. The main advancement is implementing the logic
bombs (i.e., AT controls and original code) in the native code.
The authors tested their solution against 100 apps downloaded

8

from the Google Play Store and F-Droid and presented that
only 47% of apps could be transformed without runtime
exceptions. The runtime evaluation was performed on a real
device (i.e., LG Nexus 5X), running Android 8.1.0, and each
app has been tested through Monkey to generate random user’s
input: the time overhead is from 1.42% up to 10.42%, while
the space overhead is negligible.

In 2020, Merlo et al. [21] defined some guidelines for
reliable anti-repackaging techniques and proposed a new anti-
repackaging methodology, i.e., ARMAND [20], that leverages
a pseudo-stochastic criterion to inject multiple types of logic
bombs both in the Java bytecode and in the native code. The
evaluation phase of ARMANDroid is performed on a dataset of
30000 real-world Android apps downloaded from the Google
Play Store and F-Droid. For the runtime evaluation, the authors
used an emulated Android 8.0 phone equipped with the latest
version of Google Play Services. Authors perform both Static
and Dynamic analysis, showing that 92% (out of 30000) of
the app can be successfully protected, and 87% (out of 200)
are executed without any runtime exception.

It is important to highlight that previous solutions rarely
pay attention to how the dataset is built and how the apps
are tested (e.g., differentiating between the protection phase
— static analysis — and the runtime evaluation — dynamic
analysis). Moreover, only ARMAND takes into consideration
the security aspect of the proposed protection scheme (i.e.,
TG4 in the MARVEL testing pipeline).

B. Anti-Virtualization

Malicious exploitation of the virtualization technique [38],
[37], [28], [10] has motivated researchers towards the design
of possible defense mechanisms [34], [28], [10], [18], [29],
which, to some extent, might also defend from virtualization-
based repackaging attacks. Most of them (i.e., [34], [28], [33],
[18]) are designed to detect whether an app is running in a
virtual environment. To achieve such goal, such solutions are
supposed to be included as a library that evaluates specific
features of the protected app at runtime. A virtual environment
provides the plugin with a different context with respect to
the native Android OS that affects the following elements:
permissions, number and names of the components, processes
names, organization of the internal storage of a plugin, and
private data sharing among plugins. For example, a plugin can
be granted more permissions than the declared ones since the
sharing of the UID between the container and the plugin also
involves the sharing of permissions. Another example refers
to the number and names of the components declared by the
container, which uses stub components to wrap the plugin ones.
This design implies that the Android OS is only aware of the
existence of the container components (i.e., the components
of the plugins get unnoticed). To test such solutions, authors
collected several container app (e.g., 7 and 11 container
apps respectively for [18] and [10]). Then, they executed the
protected apps in the virtual environment and verified how
many container apps were detected, and eventually after how
much time. For instance, in [18], the authors implemented six
different controls. The results show that only two controls are
effective against all container apps, while the other failed in
some cases.

On the contrary, VAHunt [29] relies on control-flow graphs
to see whether a plugin component is eventually replaced by
a stub one. If it is detected, VAHunt checks whether there is
any stealthy loading of (potentially harmful) code. To test the
VAHunt effectiveness, the authors built three datasets: Android
app based on virtualization, apps without virtualization, and
dual-instance apps. Their evaluation pipeline is divided into
two phases to validate each aspect of the detection mechanism.
In the former, the authors validated the virtualization detection
engine, while the latter aimed to verify the detection accuracy
of the code loading strategies.

In contrast with Anti-Repackaging, most testing method-
ologies for the Anti-Virtualization techniques only validate
their effectiveness, leaving the other testing requirements un-
covered. Moreover, most datasets are insufficient because they
consider only a few apps (e.g., the top ones) and do not cover
the heterogeneity of the real-world scenario. In particular, only
VAHunt considers different aspects through a testing pipeline
evaluated against a comprehensive dataset.

VII. CONCLUSION, DISCUSSION & FUTURE WORK

In this paper, we presented the testing pipeline adopted for
MARVEL, a methodology that allows protecting Android apps
against both traditional and virtualization-based repackaging
attacks. The testing pipeline encompasses a static analysis
phase that verifies the transformation process done by MAR-
VELoid, and a dynamic analysis phase that validates at runtime
the protections injected into the Trusted Container and into the
plugin apps.

From a technical standpoint, the pipeline can automatically
fulfill all the testing requirements (i.e., correctness, perfor-
mance, repeatability, and effectiveness), except for the TG4
during the dynamic analysis. To the best of our knowledge,
there is no state-of-the-art technology that can simulate the
repackaging attack in the Android ecosystem. Despite the
several research work proposed so far [15], [8], [35], the attack
simulation is still an open problem. However, several rating
systems allow to evaluate the security of a protection scheme,
which are based on the concept of risk, such as DREAD [9].
Usually, the risk is the probability that a threat occurs with
respect the potential damage to the system/software if an
attacker is able to exploit it. These rating systems have a
downside that they are quantitative because they are based on a
model of the entire system. In our manual security evaluation,
in 14 days, the master student was able to automatically detect
the splitted methods, but he was not able to remove and bypass
the IAT controls. We acknowledge that the analysis is not
exhaustive, but it is representative of a mean-skilled attacker.

From an experimental point of view, our evaluation of
MARVEL with over 4.000 Android apps demonstrated the ap-
plicability and efficacy of the tool and the proposed protection
scheme. Moreover, we designed the testing pipeline to ensure
the reproducibility of our tests, and we published the result in
the GitHub repository https://github.com/totoR13/MARVEL.
As a future extension of this work, we plan to improve
the exception handling in both Static and Dynamic analysis
to perform improved automatic analysis of the MARVEL
failures.

9

https://github.com/totoR13/MARVEL

REFERENCES

[1] “Google play scraper,” https://github.com/facundoolano/
google-play-scraper, accessed September 6, 2022.

[2] “Playstore dowloader,” https://github.com/ClaudiuGeorgiu/
PlaystoreDownloader, accessed September 6, 2022.

[3] “Acsac 2021 artifacts,” 2021, accessed online: September 6, 2022.
[Online]. Available: https://www.acsac.org/2021/program/artifacts/

[4] M. Alecci, R. Cestaro, M. Conti, K. Kanishka, and E. Losiouk,
“Mascara: A novel attack leveraging android virtualization,” 2020.

[5] Avast, “Malware posing as dual instance app steals
users’ twitter credentials,” 2016, accessed online: Septem-
ber 6, 2022. [Online]. Available: https://blog.avast.com/
malware-posing-as-dual-instance-app-steals-users-twitter-credentials

[6] BBC, “Fake whatsapp app downloaded more than one million
times,” 2017, accessed online: September 6, 2022. [Online]. Available:
https://www.bbc.com/news/technology-41886157

[7] K. Chen, Y. Zhang, and P. Liu, “Leveraging information asymmetry
to transform android apps into self-defending code against repackaging
attacks,” IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp.
1879–1893, 2018.

[8] S.-D. Chi, J. S. Park, K.-C. Jung, and J.-S. Lee, “Network security
modeling and cyber attack simulation methodology,” in Australasian
Conference on Information Security and Privacy. Springer, 2001, pp.
320–333.

[9] M. Corporation, “Dread threat model,” 2010, accessed online:
September 6, 2022. [Online]. Available: https://docs.microsoft.com/
en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread

[10] D. Dai, R. Li, J. Tang, A. Davanian, and H. Yin, “Parallel space
traveling: A security analysis of app-level virtualization in android,”
in Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies, ser. SACMAT 20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 2532. [Online].
Available: https://doi.org/10.1145/3381991.3395608

[11] Google, “Overview of google play services,” https://developers.google.
com/android/guides/overview, Google, 2021, accessed online: Septem-
ber 6, 2022.

[12] S. R. Group, “Soot - a java optimization framework,” 2021,
accessed online: September 6, 2022. [Online]. Available: https:
//github.com/soot-oss/soot

[13] C. Gultnieks, A. A. Fuentes, A. Oberhauser, and A. Demirta, “F-
droid,” 2020, accessed online: September 6, 2022. [Online]. Available:
https://www.f-droid.org/

[14] I. Innovations, “Parallel accounts,” 2020, accessed online: September
6, 2022. [Online]. Available: https://play.google.com/store/apps/details?
id=com.in.parallel.accounts

[15] M. E. Kuhl, M. Sudit, J. Kistner, and K. Costantini, “Cyber attack
modeling and simulation for network security analysis,” in 2007 Winter
Simulation Conference. IEEE, 2007, pp. 1180–1188.

[16] J. L. N. T. C. Ltd., “Virtualapp,” 2020, accessed online: September 6,
2022. [Online]. Available: https://github.com/asLody/VirtualApp

[17] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing android
apps,” in 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2016, pp. 550–561.

[18] T. Luo, C. Zheng, Z. Xu, and X. Ouyang, “Anti-plugin: Don’t let your
app play as an android plugin,” in Proceedings of Blackhat Asia 2017,
2017.

[19] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: Association for Computing Machinery, 2013, p.
224234. [Online]. Available: https://doi.org/10.1145/2491411.2491450

[20] A. Merlo, A. Ruggia, L. Sciolla, and L. Verderame, “Armand:
Anti-repackaging through multi-pattern anti-tampering based on native
detection,” Pervasive and Mobile Computing, vol. 76, p. 101443, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1574119221000857

[21] A. Merlo, A. Ruggia, L. Sciolla, and L. Verderame., “You shall not
repackage! demystifying anti-repackaging on android,” Computers &
Security, vol. 103, p. 102181, 2021.

[22] Oracle, “Jarsigner,” Oracle, 2021, accessed online: September
6, 2022. [Online]. Available: https://docs.oracle.com/javase/7/docs/
technotes/tools/windows/jarsigner.html

[23] PAGalaxyLab, “Yahfa,” 2021, accessed online: September 6, 2022.
[Online]. Available: https://github.com/PAGalaxyLab/YAHFA

[24] M. Protsenko, S. Kreuter, and T. Mller, “Dynamic self-protection and
tamperproofing for android apps using native code,” in 2015 10th
International Conference on Availability, Reliability and Security, 2015,
pp. 129–138.

[25] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep reinforce-
ment learning for black-box testing of android apps,” 2021.

[26] A. Ruggia, E. Losiouk, L. Verderame, M. Conti, and A. Merlo,
“Repack me if you can: An anti-repackaging solution based on android
virtualization,” in Annual Computer Security Applications Conference,
ser. ACSAC. Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3485832.3488021

[27] Samsung, “Samsung knox,” 2021, accessed online: September 6, 2022.
[Online]. Available: https://www.samsungknox.com/en

[28] L. Shi, J. Fu, Z. Guo, and J. Ming, “jekyll and hyde is risky: Shared-
everything threat mitigation in dual-instance apps,” in Proceedings
of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys 19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 222235. [Online].
Available: https://doi.org/10.1145/3307334.3326072

[29] L. Shi, J. Ming, J. Fu, G. Peng, D. Xu, K. Gao, and X. Pan, “Vahunt:
Warding off new repackaged android malware in app-virtualization’s
clothing,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 535549.
[Online]. Available: https://doi.org/10.1145/3372297.3423341

[30] L. Song, Z. Tang, Z. Li, X. Gong, X. Chen, D. Fang, and Z. Wang,
“Appis: Protect android apps against runtime repackaging attacks,” in
2017 IEEE 23rd International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 2017, pp. 25–32.

[31] S. Tanner, I. Vogels, and R. Wattenhofer, “Protecting android apps from
repackaging using native code,” in Foundations and Practice of Security,
A. Benzekri, M. Barbeau, G. Gong, R. Laborde, and J. Garcia-Alfaro,
Eds. Cham: Springer International Publishing, 2020, pp. 189–204.

[32] M. Team, “Multiple accounts:parallel app,” 2021, accessed online:
September 6, 2022. [Online]. Available: https://play.google.com/store/
apps/details?id=com.excelliance.multiaccounts

[33] L. Tech, “Parallel space - fmulti account,” 2021, accessed online:
September 6, 2022. [Online]. Available: https://play.google.com/store/
apps/details?id=com.lbe.parallel.intl

[34] Y. Wu, J. Huang, B. Liang, and W. Shi, “Do not jail my app: Detecting
the android plugin environments by time lag contradiction,” Journal of
Computer Security, vol. 28, pp. 1–25, 01 2020.

[35] R. V. Yohanandhan, R. M. Elavarasan, P. Manoharan, and L. Mihet-
Popa, “Cyber-physical power system (cpps): A review on modeling,
simulation, and analysis with cyber security applications,” IEEE Access,
vol. 8, pp. 151 019–151 064, 2020.

[36] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient decentralized
android application repackaging detection using logic bombs,” in
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, ser. CGO 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 5061. [Online]. Available:
https://doi.org/10.1145/3168820

[37] L. Zhang, Z. Yang, Y. He, M. Li, S. Yang, M. Yang, Y. Zhang,
and Z. Qian, “App in the middle: Demystify application virtualization
in android and its security threats,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 3, no. 1, Mar. 2019. [Online]. Available:
https://doi.org/10.1145/3322205.3311088

[38] C. Zheng, T. Luo, Z. Xu, W. Hu, and X. Ouyang, “Android plugin
becomes a catastrophe to android ecosystem,” in Proceedings of the
First Workshop on Radical and Experiential Security, ser. RESEC ’18.
New York, NY, USA: ACM, 2018, pp. 61–64. [Online]. Available:
http://doi.acm.org/10.1145/3203422.3203425

10

https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://www.acsac.org/2021/program/artifacts/
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials
https://www.bbc.com/news/technology-41886157
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#dread
https://doi.org/10.1145/3381991.3395608
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://www.f-droid.org/
https://play.google.com/store/apps/details?id=com.in.parallel.accounts
https://play.google.com/store/apps/details?id=com.in.parallel.accounts
https://github.com/asLody/VirtualApp
https://doi.org/10.1145/2491411.2491450
https://www.sciencedirect.com/science/article/pii/S1574119221000857
https://www.sciencedirect.com/science/article/pii/S1574119221000857
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://github.com/PAGalaxyLab/YAHFA
https://doi.org/10.1145/3485832.3488021
https://www.samsungknox.com/en
https://doi.org/10.1145/3307334.3326072
https://doi.org/10.1145/3372297.3423341
https://play.google.com/store/apps/details?id=com.excelliance.multiaccounts
https://play.google.com/store/apps/details?id=com.excelliance.multiaccounts
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl
https://doi.org/10.1145/3168820
https://doi.org/10.1145/3322205.3311088
http://doi.acm.org/10.1145/3203422.3203425

	Introduction
	Background
	Threat Model
	Motivating Example
	MARVEL

	Testing Methodology
	Testing Goals
	Dataset

	MARVEL Testing Pipeline
	Static Analysis
	Dynamic Analysis

	Experimental Results
	Static analysis
	Dynamic analysis

	Related Work
	Anti-Repackaging
	Anti-Virtualization

	Conclusion, Discussion & Future Work
	References

