

Dissecting ARID Implementing and Evaluating Security Solutions on Open-Source Drones

*College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Doha, Qatar ⁺Eindhoven University of Technology, Faculty of Mathematics and Computer Science, Eindhoven, Netherlands

Pietro Tedeschi* Savio Sciancalepore⁺, Roberto Di Pietro^{*}

Learning from Authoritative Security Experiment Results (LASER) 2021 | ACSAC 2021 **December 6-10, 2021, Online**

Motivations

Security and Privacy Issues of UAVs

ARID Phases Remote Identification *aka* RemoteID vs ARID

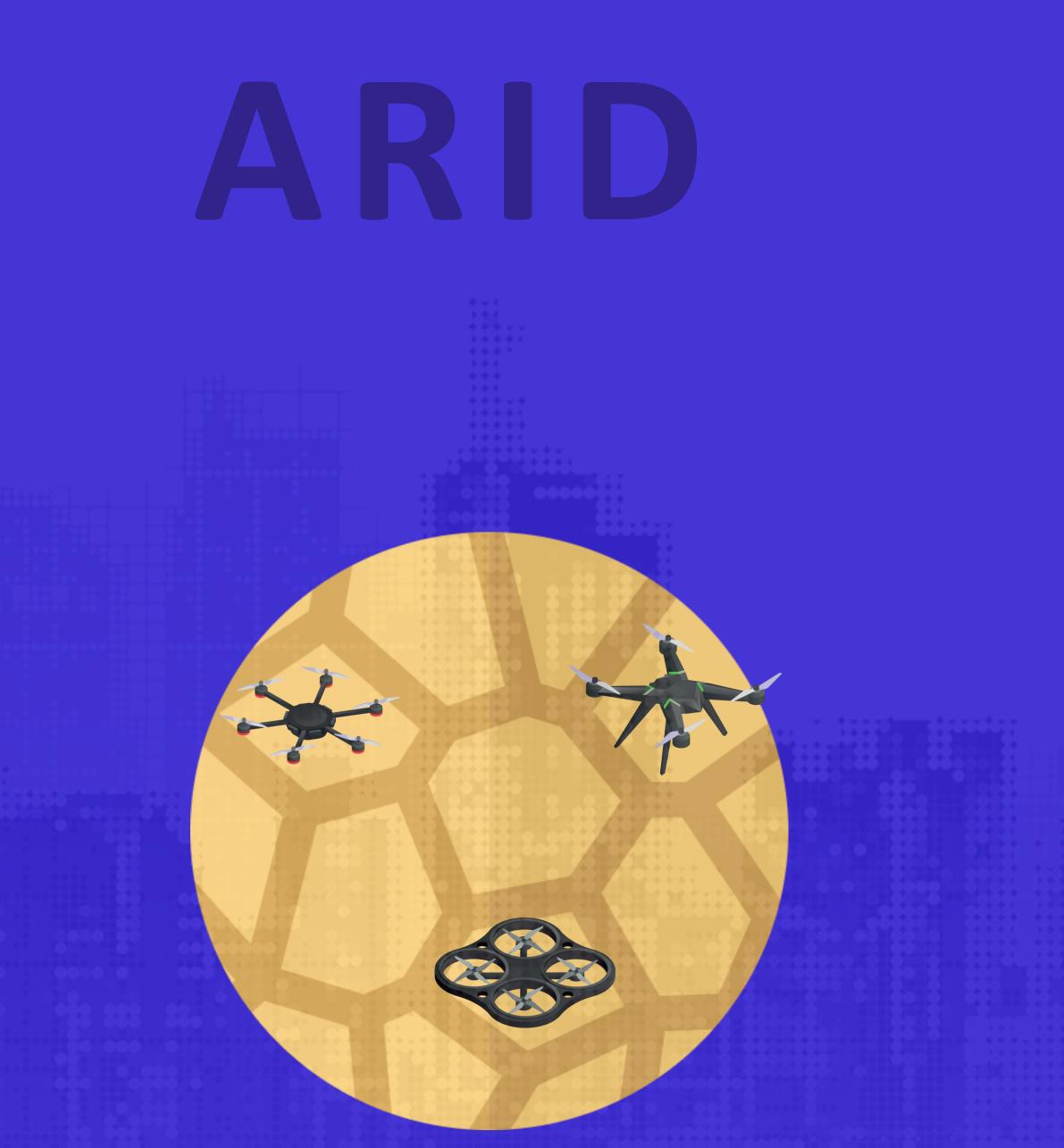
Implementation Details

What we did in terms of programming

Agenda

Performance Assessment

ARID and its performance assessment



Conclusion and Future Work

What we offered and what are the future **ARID** extensions

Motivations

- Police and air traffic control intervene after drone spotted at Newcastle – Stadiums - Newcastle, United Kingdom -October 8, 2021
- Criminals Use Drones to Drop 5 Liters of Flammable Liquid -Law Enforcement/First Responders - October 1, 2021
- Drone crashes into Leaning Tower of Pisa Private/Non--Corporate - Pisa, Italy - September 28, 2021
- Drone spies on private home Private/Non-Corporate -_ Albringhausen, Germany - July 11, 2021 ...

Worldwide Drone Incidents

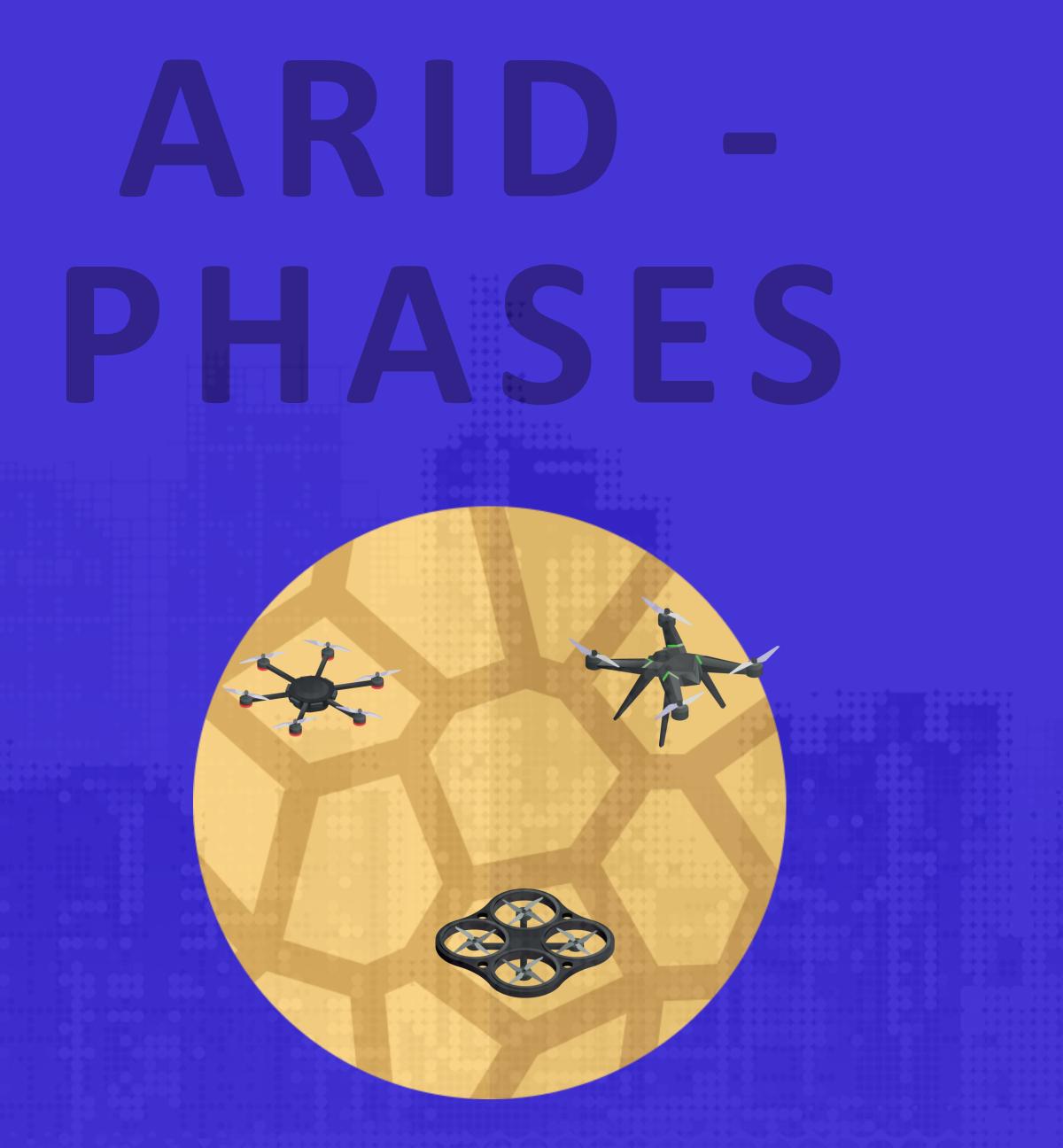
FAA Remote IDentification Rule

- Enhance accountability of Unmanned Aerial Vehicles(UAVs) operations
- It forces all UAVs operators to broadcast messages reporting their identity, location (GPS position), and information about ground station
- *RemoteID* does not specify how to generate such identifiers, nor provide guidelines to operators for their design
- Effective on the 21st of April 2021, and UAV operators need to comply with this rule from September 2022

Federal Aviation Administration **REMOTE ID RULE**

UAV must periodically broadcast messages containing at least the following information

Unique ID	Drone Latitude, Longitude, Altitude, Speed	GCS Latitude, Longitude, Altitude	Timestamp	Emerg Stat
-----------	--	--	-----------	---------------



1) Registration Phase

2) On-Line Phase

3) Reporting Phase

ARID: Anonymous Remote IDentification

Register an UAV with the Authority, in a way to enable unique identification and receives the cryptography materials necessary to run ARID. UAV generates and emits RemoteID-compliant messages, enabling operators to identify their locations, while still preserving UAV anonymity.

2 Online Phase

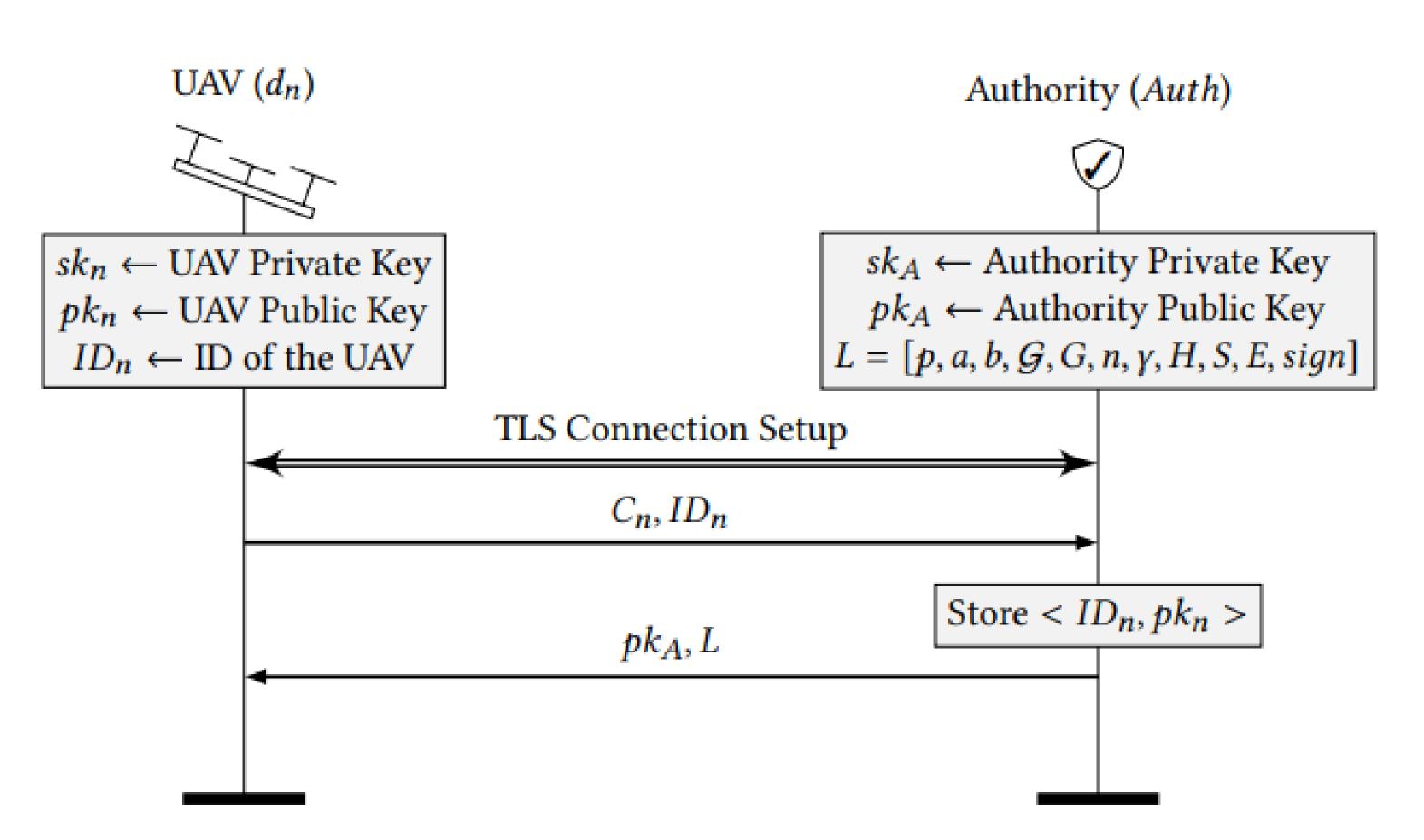
3 Reporting Phase

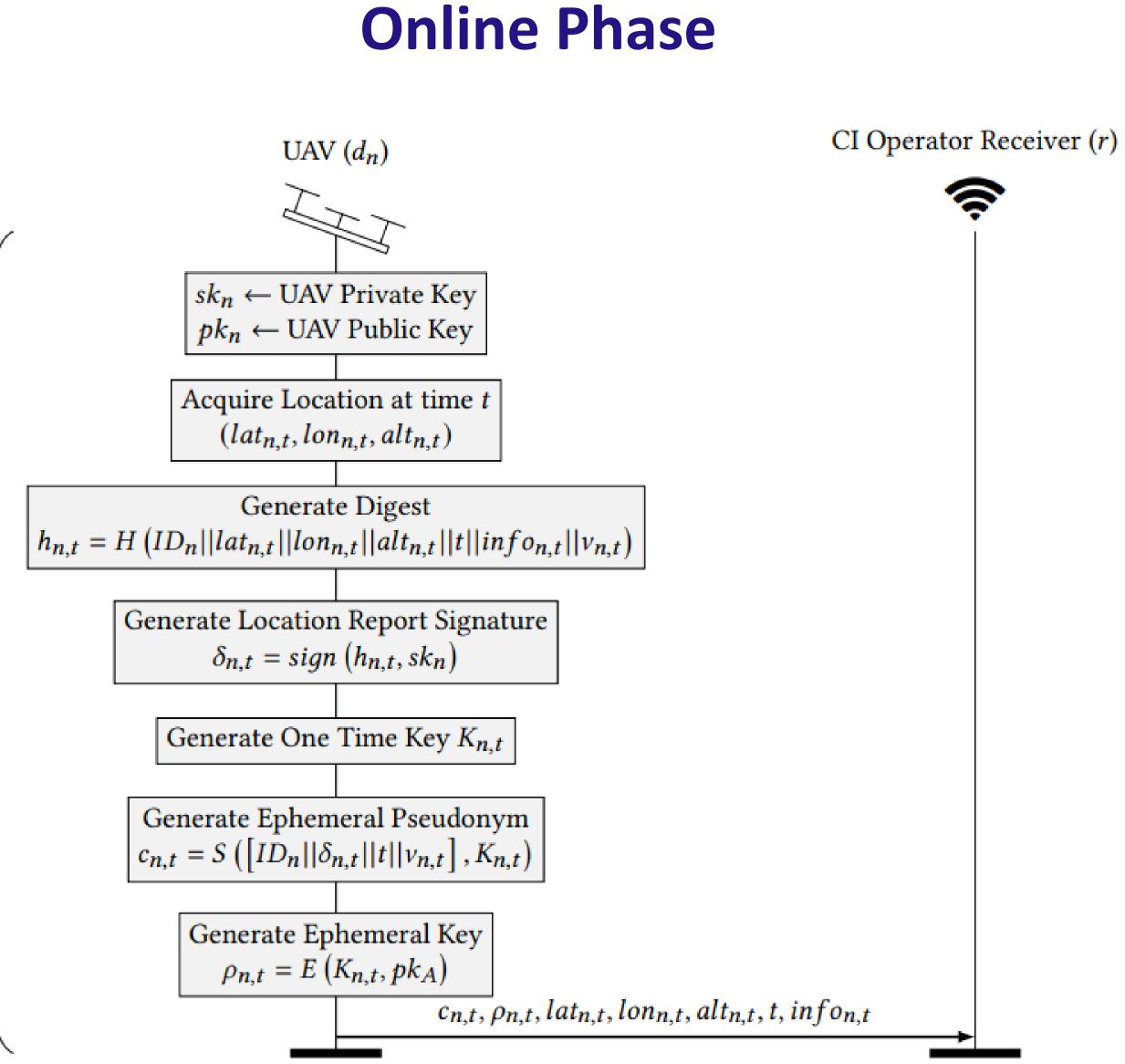
Triggered by a Critical Infrastructure (CI) operator, when it detects an invasion of the protected area by an UAV, CI reports the attack to the Auth.

Why we implemented ARID

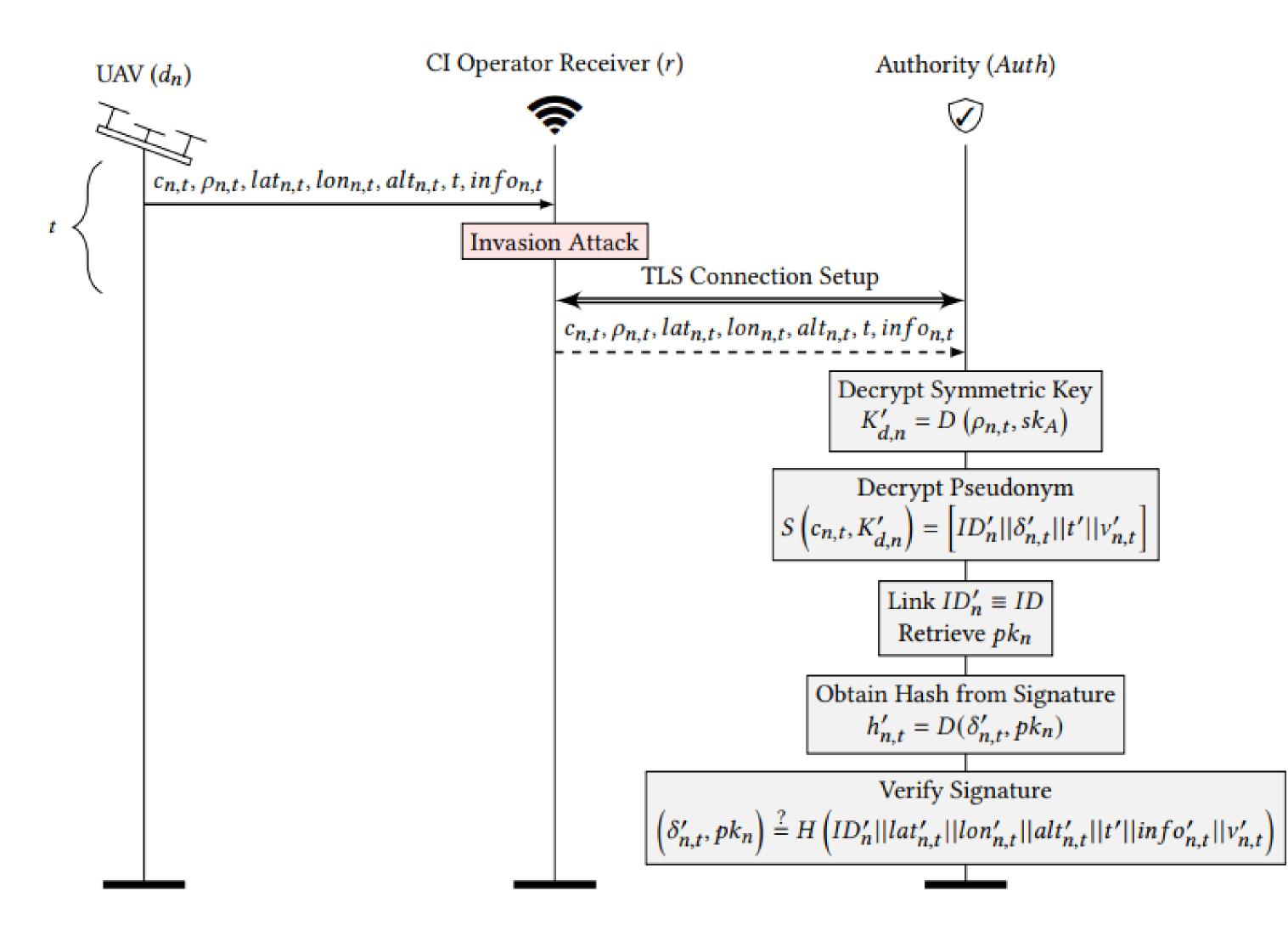
ARID is implemented because:

- To evidence the compliance with the flying constrained devices (UAVs as the new "Flying IoT")
- To evaluate the Performance on limited battery lifetime devices with a minimum impact!
- Of releasing open-source code to enhancing the impact of ARID, demonstrating its deployability to improving the quality of the provided security services in real-world UAV systems
- To demonstrate and evaluate that it is possible develop and integrate a real (security & privacy) solution even on commercial UAVs





Implementation Details


Registration Phase

t

Reporting Phase

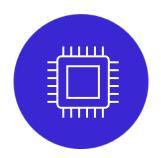
Drone Features – 3DR Solo Drone

- CPU i.MX6 Solo 1.00GHz ARM Cortex A9
- 7,948.00 MB ROM, 512MB RAM
- Cryptographic Acceleration and Assurance Module
- WiFi Module supports IEEE 802.11b
- 3DR Poky OS 1.5.1 Linux based OS

HW/SW Requirements

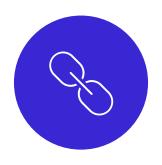
Laptop

A laptop equipped with a GNU/Linux distro



Drone

It can execute ELF 32-bit LSB (i.e. OS Linux) It supports MAVLink 1.0/2.0 Ardupilot/PX4 flight controller



NIC in Monitor Mode (optional) ALFA Card AWUS036NH/AWUS036ACH

Software Defined Radio (optional)

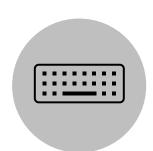
- HackRF One
- gps-sdr sim (to generate GPS baseband signal data strams for indoor tests)

GNU Arm Embedded Toolchain

sudo apt-get install gcc-arm-linux-gnueabihf g++-arm-linux-gnueabihf

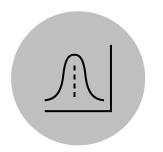
Sniffing Tool(s) sudo apt-get install -y tcpdump wireshark

OpenSSL Library 1.0, MAVLink 1.0


Compile OpenSSL 1.0 (libssl.so.1.0.0) for ARM and install the library on the UAV. **Compile it on your PC and install it manually via SSH.**

GCC, G++ cross compilers

 sudo apt-get install libc6-armel-cross libc6dev-armel-cross binutils-arm-linux-gnueabi libncurses5-dev build-essential bison flex libssl-dev bc



Hashing Function SHA-256

Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Cryptography

secp160r1, secp192k1, secp224k1, secp256k1

Cryptography Details

Asymmetric Enc/Dec Algorithm

El-Gamal

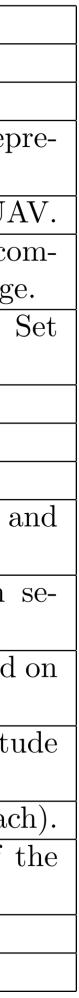
Symmetric Enc/Dec Algorithm

AES-128

PseudoRandom Number Generator

Read 2048 bits from /dev/urandom RAND_load_file("/dev/urandom", 256)

Implementation Details


<i>(</i>	MAVLink v1 Frame [8-263] B								→		
0	1	2	3	4	5		6	-260		261–26	52
SOF	SOF LEN SEQ SID CID MID Payload CRC						2				
							0 -	255 1	B	-	
<i>(</i>				ARII) Pay	load	147-19	95 B			→
6-8	9-	99	100-	-165	166-	177	178-1	83	184-195	196-199	200
RES	PI	D	EK	EY	UL	AT ON LT	U _V y U _V y U _V y	ζ	C _{LAT} C _{LON} C _{ALT}	TS	ES

67 - 91 B 42 - 66 B

 Table 1: MAVLink Frame and ARID Payload Notation.

Acronym	Content/Size	Description
SOF	OxFE	MAVLink 1.0. Start of Frame
LEN	0x00-0xFF	Payload Length.
SEQ	0x00-0xFF	Sequence number. The value $0x00$ rep
		sents the first message.
SID	0x01-0xFF	System Identification number of the UA
CID	0x00-0xFF	System Identification number of the co
		ponent that is transmitting the message
MID	0x00-0xFF	Message Type Identification number.
		to OXDE for ARID.
Payload	0-255 B	ARID message.
CRC	2 B	Checksum for integrity check.
	ARI	D Payload
RES	3 B	Reserved Bytes (e.g. Network, System a
		Component ID).
PID	67-91 B	UAV Pseudonym $c_{n,t}$ (size based on
		lected curve).
EKEY	42-66 B	Encrypted one-time key $\rho_{n,t}$ (size based
		selected curve).
$U_{LAT}, U_{LON}, U_{ALT}$	12 B	UAV Latitude, Longitude, and Altitu
		(4 bytes each).
U_{VX}, U_{VY}, U_{VZ}	6 B	UAV Speed x, y and z axis (2 bytes eac
$C_{LAT}, C_{LON}, C_{ALT}$	12 B	Latitude, Longitude, and Altitude of t
		Ground Station (4 bytes each).
TS	4 B	Message Timestamp.
ES	0x00-0xFF	UAV Emergency Status.

ARID MAVLink Custom Message

<message id="222" name="ARID_PROTOCOL"> <description>File transfer message</description> <field type="uint8_t" name="target_network">Network ID (0 for broadcast)</field> <field type="uint8_t" name="target_system">System ID (0 for broadcast)</field> <field type="uint8_t" name="target_component">Component ID (0 for broadcast)</field> <field type="uint8_t[251]" name="payload">Variable length payload. The length is defined by the remaining message length when subtracting the header and other fields. The entire content of this block is opaque unless you understand any the encoding message_type. The particular encoding used can be extension specific and might not always be documented as part of the mavlink specification.</field> </message>

ARID ID MAVLink Message Definition 1.0 (common.xml): 0xDE

Main ARID Functions (1)

Function Name

void ARID_init();

static int setupKey(BIGNUM **prv, EC_POINT **pbl, BIGNUI

*q, const EC_POINT *G, EC_GROUP *curve, BN_CTX *ctx);

static void hex_print(const void*, size_t);

void getPadOneTimeKey(int, int, EC_GROUP *, BN_CTX *, unsigned char *);

void unPadKey(char *, unsigned int , unsigned char *);

int elgamal_encrypt(char **, char *, int , const EC_POINT *, EC_GROUP *, BN_CTX *, BIGNUM *);

int elgamal_decrypt(char **, char *, int , BIGNUM *, EC_GRO *, BN_CTX *);

Description
Initialize OpenSSL and PRNG.
Setup the key material on the device (i.e. load/generate the cryptographic keys)
Print in HEX the content of a variable
Generate One Time Key and Pad the Key for EC Elgamal Encryption Operation
UnPad the Key for EC Elgamal Decryption Operation
EC ElGamal Encryption Function
EC ElGamal Decryption Function

Main ARID Functions (2)

Function Name

void encrypt_decrypt(EVP_CIPHER_CTX *, char *, char *, unsigned char *, unsigned char *, bool);

void clean(EC_GROUP *g, BN_CTX *c, EVP_MD_CTX *h, EVP_CIPHER_CTX *enc);

double print_time(struct timeval *s, struct timeval *e);

void digest(EVP_MD_CTX *ctx, const EVP_MD *ptr, char
*buffer, unsigned char *dig);

int initialize_UDP(int *, struct sockaddr_in *, struct sockaddr *, int , int);

mavlink_parse_char(chan, buf[i], &msg, &status)

mavlink_msg_global_position_int_decode(&msg, &gps_position);

	Description
	AES Encryption/Decryption Algorithm
	Clean the memory and the data structures
	Print the time defined in a timeval structure.
	Compute the hash of a string. In this case we adopt SHA-256.
lr_in	Init the socket to receive datagram and support UDP protocol
	Parse the data stream in order to get a MAVLink message
	Decode data of the message and put it in the variable gps_position

Security Levels and Buffer Lengths

Security Level (bits)	
80	
96	
112	
128	

- Payload Computation with 80 bits Security Level —
- TS (4 bytes) + Emergency Code (1 byte)
- PID = ID (4 bytes) + EC Signature ASN.1 DER (49 bytes) + TS (4 bytes) + Nonce (10 bytes) -

Description
With the elliptic curve <i>secp160r1</i> the total size of the MavLink payload is 147 bytes.
With the elliptic curve <i>secp192k1</i> the total size of the MavLink payload is 163 bytes.
With the elliptic curve <i>secp224k1</i> the total size of the MavLink payload is 179 bytes.
With the elliptic curve <i>secp256k1</i> the total size of the MavLink payload is 195 bytes.

- RES (3 bytes) + PID (67 bytes) + EKEY (Enc. Public Key 42 bytes) + UAV GPS (12 bytes) + UAV Speed (6 bytes) + GCS GPS (12 bytes) +

IDE and Compile Syntax

- I used Visual Studio Code on Ubuntu 19.04
- **Compile Syntax** _

arm-linux-gnueabihf-gcc -I ./mavlink-solo/build/common/ -I /usr/local/openssl/include/ -I /usr/local/include/ -L /usr/local/openssl/lib/ -mcpu=cortex-a9 -o arid arid.c -lcrypto -lpthread -Wl,--no-as-needed -ldl -static

MICRO AIR VEHICLE COMMUNICATION PROTOCOL

No GPS for Indoor Test? No Problem

- Configure GPS-SDR-SIM (https://github.com/osqzss/gps-sdr-sim) _
- Configure your Software Defined Radio like the HackRF One with an ANT 500 antenna and a TCXO Clock -
- Let's go: hackrf_transfer -t gpssim.bin -f 1575420000 -s 2600000 -a 1 -x 0 -

No drone? No worries!

- Install dronekit-sitl with *pip install dronekit-sitl*
- Start dronekit with the following syntax (for details, please type dronekit-sitl -h): dronekit-sitl plane-3.3.0 --home=--35.363261,149.165230,584,353
- 127.0.0.1:14550 and 127.0.0.1:14551

- In a second terminal spawn an instance of MAVProxy to forward messages from TCP 127.0.0.1:5760 to other UDP ports like

mavproxy.py --master tcp:127.0.0.1:5760 --sitl 127.0.0.1:5501 --out 127.0.0.1:14550 --out 127.0.0.1:14551

No drone? No worries!

- First connect and start the python script (an easy way)
- Start the ARID protocol on your computer as: ./arid
- Open *Wireshark* on your network-card interface to see the broadcasted packets.

•••

```
1 print "Start simulator (SITL)"
 2 import dronekit_sitl
 3 sitl = dronekit_sitl.start_default()
 4 connection_string = sitl.connection_string()
 5 from dronekit import connect, VehicleMode
 6 print("Connecting to vehicle on: %s" % (connection_string,))
 7 vehicle = connect(connection_string, wait_ready=True)
 8 print "Get some vehicle attribute values:"
 9 print " GPS: %s" % vehicle.gps_0
10 print " Battery: %s" % vehicle.battery
11 print " Last Heartbeat: %s" % vehicle.last_heartbeat
12 print " Is Armable?: %s" % vehicle.is_armable
13 print " System status: %s" % vehicle.system_status.state
14 print " Mode: %s" % vehicle.mode.name
                                            # settable
15 vehicle.close()
16 sitl.stop()
17 print("Completed")
```


Change UAV/Drone MAC Address

- It is easy to change the UAV/Drone MAC address.
- _
- In this case you will not reveal your legitimate MAC address to potential adversaries. -

ifconfig wlan0 down ifconfig wlan0 hw ether 12:34:56:78:12:34 ifconfig wlan0 up ifconfig

You just need to open an SSH session with the drone and execute the script *change_mac.sh* inside the drone before the flight.

Dissecting ARID with WireShark

845241 9.506256276	127.0.0.1	127.0	
845242 9.506258709	127.0.0.1	127.0	
845243 9,506272970	127.0.0.1	127.0	.0.1
845244 9.506275325	127.0.0.1	127.0	
845245 9.506289616	127.0.0.1	127.0	
845246 9.506292014	127.0.0.1	127.0	
845247 9.506306318 845248 9.506308714	127.0.0.1	127.0	
845249 9.506322839	127.0.0.1 127.0.0.1	127.0 127.0	A CALIFORNIA CONTRACTOR OF A CALIFORNIA CONTRACTOR OF A CALIFORNIA CONTRACTOR OF A CALIFORNIA CONTRACTOR OF A C
845250 9.506325190	127.0.0.1	127.0	
8452519,506339412	127.0.0.1	127.0	
845252 9.506341783	127.0.0.1		T 🗐 🔽
845253 9.506355973	127.0.0.1	127.0	
845254 9.506359473	127.0.0.1	127.0	
Eramo 845252 · 204 by	tos on wire (2422	bits), 304 bytes captured (2432 b	pietro@pie
▶ Data (262 bytes)			AES Key: 770A121785D8FEE83B2E5992B6 < Encrypt > 0379F3DB8CEF26D5278C029571 Encrypt length = 42 PSEUDON original: 890248472 9C04D888033B1A5A5157364ED7 ciphertext length: 112
			encrypt: 6DEC2324EC
0000 00 00 00 00 00 00	0 00 00 00 00 00 00	0 08 00 45 00 ······E·	07BB3C0CE7CF2B545BA4C37CAB
0010 01 22 fd 66 40 00		9 00 01 7f 00 " f@ @ >b ·····	
0020 00 01 38 d7 38 d		dd 00 00 6e ···8·8·····!····n	ELGAMAL
0030 00 00 00 6d ec 2		5 e8 9f 5b 5d •••m•#\$••••U••[]	LEGNINE
	o ca d4 1f 5a e9 1	A CARL AND A	Description
0050 12 bb ab 16 cc 3 0060 89 16 99 c5 2c 4		1 8a af cf 9165#	< Decrypt >
0060 89 16 99 c5 2c 49 0070 5b a4 c3 7c ab 6			Decrypted DATA:
0080 28 b8 a5 09 66 1			770A121785D8FEE83B2E5992B6
0090 cc 91 8e b6 70 2			
99a0 90 00 00 00 00 00	the survey have seen as the survey of the		
<mark>00b0</mark> 00 00 00 00 00 00	0 00 00 00 00 00 0		KEV >
00 00 00 00 00 00 00 00			< KEY >
00 00 00 00 00 00 00 00 00			770A121785D8FEE83B2E5992B6
	0 00 00 00 00 00 00 00 00 00 00 00 00 0		text length: 96
0100 00 00 00 00 00 00 00			decrypt: 890248472
0110 00 00 00 00 00 00		0 00 00 00 00	9C04D888033B1A5A5157364ED7
0120 00 00 00 00 00 00		9 99 99 d2 b8	

TOUL	352 Destination unreachable (Port unreach	min.		1
UDP	304 14551 → 14550 Len=262			
ICMP	332 Destination unreachable (Port unreacha	ible)		
UDP	304 14551 - 14550 Len=262			
ICMP	332 Destination unreachable (Port unreach	ible)		
UDP	304 14551 → 14550 Len=262			
ICMP	332 Destination unreachable (Port unreach	ible)		
UDP	304 14551 - 14550 Len=262	10450		
ICMP	332 Destination unreachable (Port unreach	ible)		
UDP	304 14551 - 14550 Len=262			
ICMP	332 Destination unreachable (Port unreach	ible)		
			2022	

pietro@pietro: ~/Desktop/ARID

ietro: ~/Desktop/ARID

pietro@pietro: ~/Desktop/ARID

1C867F7DE8449063EF88D235C95FFE1FDFB5494

6938EBE

14933CBDD4D7381B502D24B9650A5BD483B30A3EAE0EB18627EEBF072D0

CE6DDB455E89F5B5DF55EC1D4F48BCAD41F5AE917FD53BF8212BBAB16CC3635D8109923F18AAFCF91891699C52C4960A3 B6C03C46C347699094F3C9A28B8A5096618C22E224703A10675DBD9CC918EB670286D

L DECRYPT-----

6938EBE

6938EBE

|9BD8484DDADF224B029739A50412354E8E440F41|8EF29B170495BDD675DCA22B86F954296750CBE5|1618738841|355 7F3E73A7

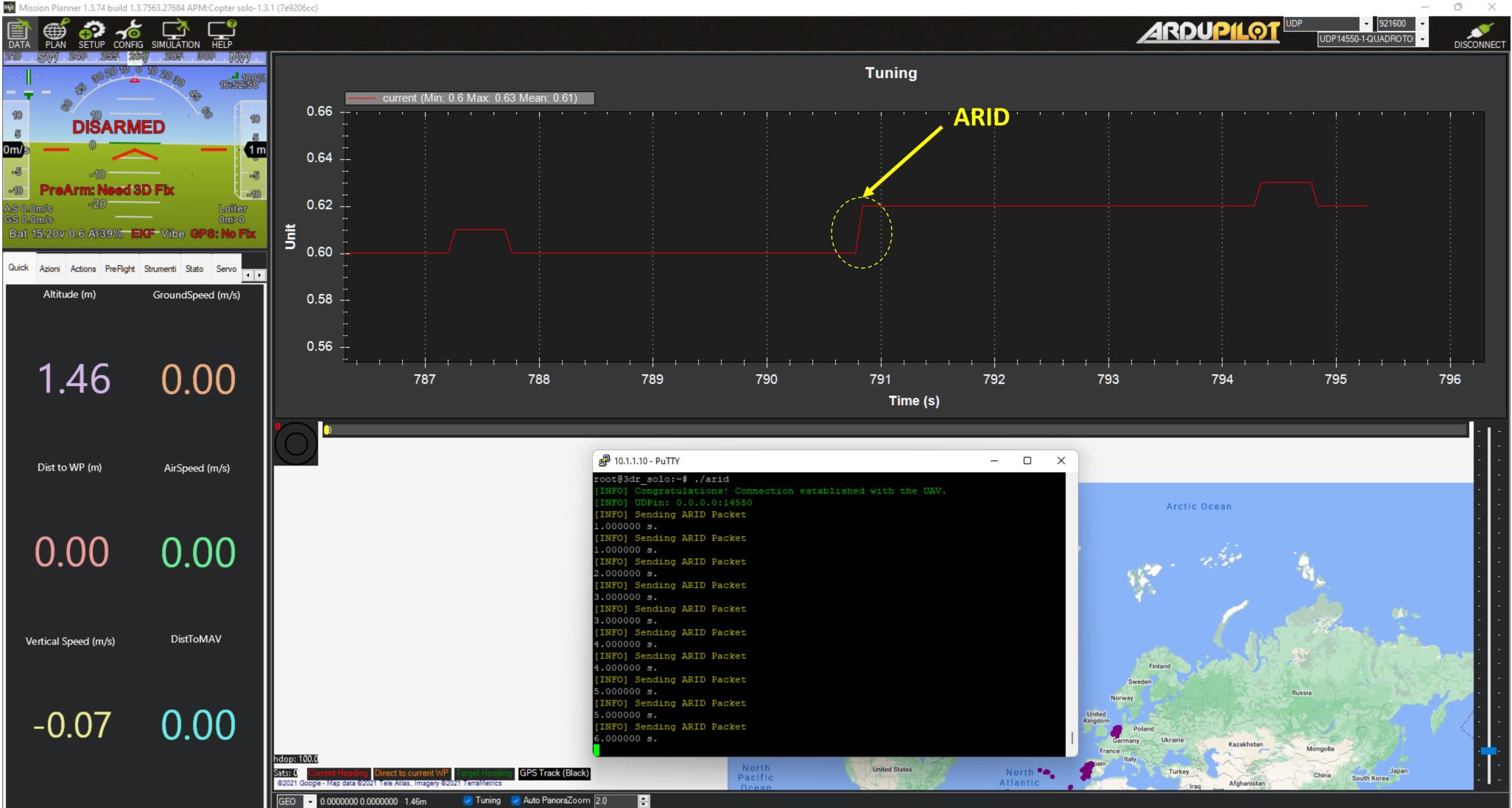
Performance Assessment

- Measure the time needed to generate and transmit an ARID packet on the 3DR-Solo
- How? Using the *tic-toc* method inside the C script.
- Average time required to execute ARID over 1,000 tests (with 95% confidence intervals)
- Considering the separate contribution of the processing (packet generation, cryptography operations) and radio operations.
- Note that the measured time spans from the GPS location acquisition to the pack delivery (both included).
- Maximum interarrival time T = 1 s recommended by the *RemoteID* rule

How did you measure the Time?

			pietro@pietro: ~/De	sktop/arid	Q	Ξ	-	
	Time: 13.393997ms							
	[INFO] Sending ARID	Packet						
	Time: 13.493685ms							
	[INFO] Sending ARID	Packet						
	Time: 13.594755ms							
	[INFO] Sending ARID	Packet						
	Time: 13.694151ms	D. LLL						
	[INFO] Sending ARID Time: 13.799184ms	Раскет						
	[INFO] Sending ARID	Packat						
	Time: 13.898701ms	PACKEL						
	[INFO] Sending ARID	Packet						
	Time: 13.998803ms	- dence						
	[INFO] Sending ARID	Packet						
	Time: 14.098784ms							
cket	[INFO] Sending ARID	Packet						
	Time: 14.348343ms							
	[INFO] Sending ARID	Packet						
	Time: 14.504507ms							
	[INFO] Sending ARID	Packet						
	Time: 14.604584ms	Balalaan I						
	[INFO] Sending ARID	Раскет						
	Time: 14.704643ms							

How did you measure the Energy?



- Telemetry data conveyed by the 3DR-Solo to the remote controller through the MAVLink protocol.
- We computed an average difference of \approx 20 mA in the electric current drained by the drone over 1,000 runs _
- For the radio operations, the on-board chip of the 3DR-Solo drone belongs to the family AR9300
- 3.3 V, 296.970 mA in TX, 187.879 mA in RX
- —
- Transmission Rate of 1.0 Mbps, 22 MHz channel bandwidth, and a Short Guard Interval of 800 ns.

- Measure the difference in the current drained by the drone between: (i) drone at rest; and (ii) during the execution of ARID

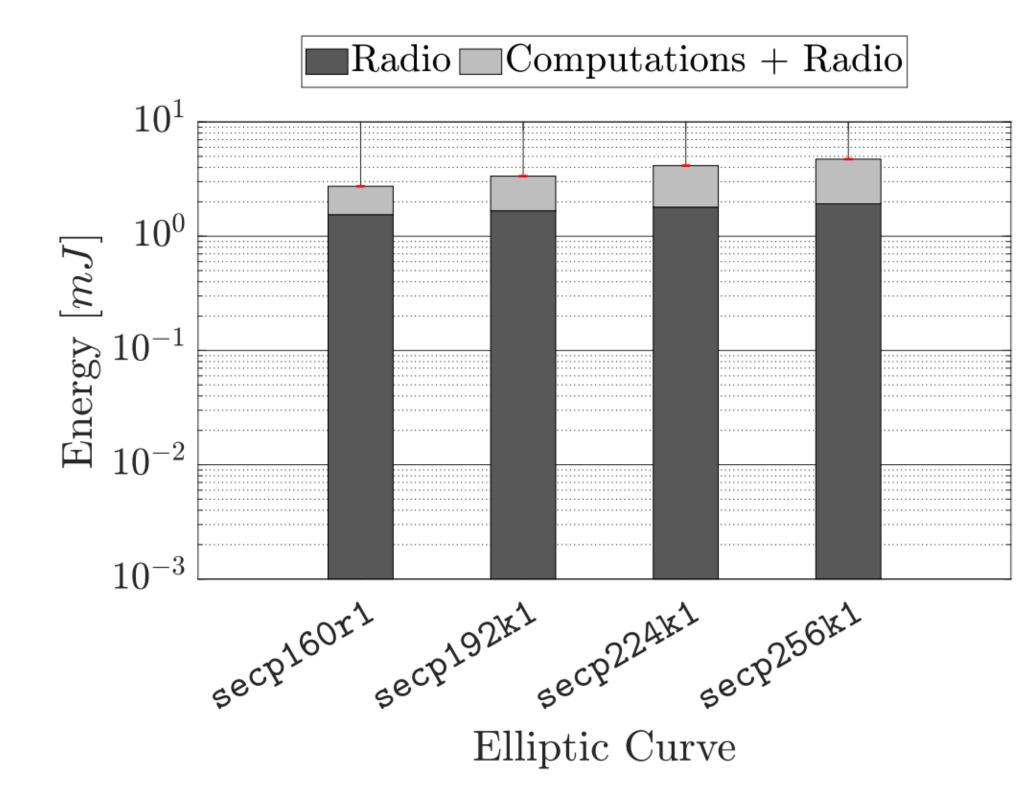
IEEE 802.11b, Direct Sequence Spread Spectrum (DSSS) modulation using Differential Binary Phase-Shift Keying (DBPSK)

What about the 20 mA?

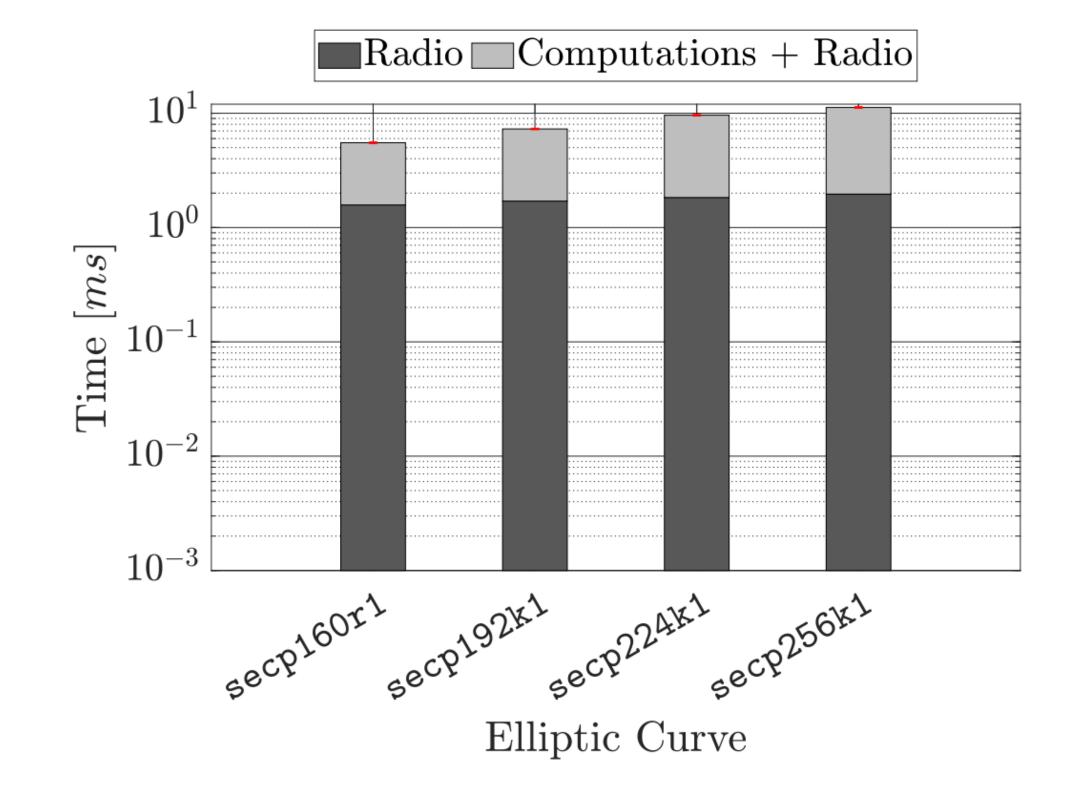
How did you measure the Energy?

- Overall Energy Consumption: $E[mJ] = V \cdot \int_0^T i(t) dt$
- *V* (15.11 V for the UAV's battery and 3.3 V for the radio chip)

Elliptic	Radio	Comp.	Radio	Comp.
Curve	Time	Time (ms)	Energy	Energy
	(<i>ms</i>)		(<i>mJ</i>)	(<i>mJ</i>)
secp160r1	1.576	3.942 ±	1.544	1.191 ±
		0.0189		0.00574
secp192k1	1.704	5.576 ±	1.670	$1.685 \pm$
		0.0286		0.00867
secp224k1	1.832	7.781 ±	1.795	$2.351 \pm$
		0.0389		0.01176
secp256k1	1.960	9.272 ±	1.920	$2.802 \pm$
		0.0532		0.01609


- i(t) the instantaneous drained current (20 mA required by ARID on the UAV's battery and 296.970 mA for the radio chip)

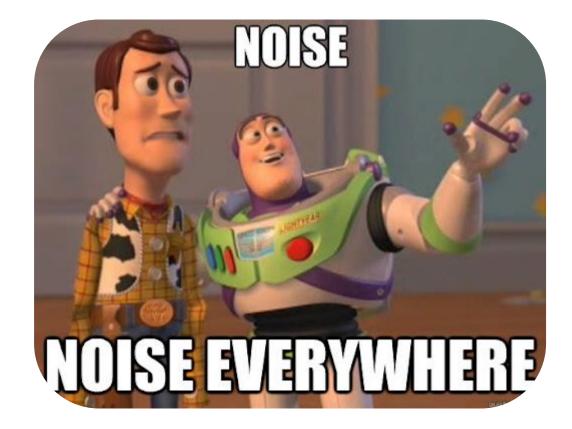
Performance Assessment


Impact of ARID on the battery lifetime. The most energy-consuming configuration of ARID (*secp256k1*) reduces the lifetime of the 3DR-Solo by only 1.05% compared to the default (non-anonymous) *RemoteID* configuration, further demonstrating its limited overhead.

Energy Consumption

How?

Radio and Computation Time



ARID: Impact on Lifetime

- 1) We executed ARID (*secp256k1*) on the drone with the engines on but without flying. Further we computed the energy consumption!
- computed the energy consumption!
- 3) The differences between 1) and 2) provides you the energy impact of our protocol.
- 4) Result? Days and days of noise engine in my head (even with the headphones)!

2) We executed the standard *Remote-ID* protocol (no crypto) on the drone with the engines on but without flying. Further we

ARID: Impact on Lifetime (True Story)

Conclusion and Future Work

- Fully compliant with the latest *RemoteID* regulations by the FAA
- We plan to generalize ARID for other domains in our future work (avionics and maritime networks)
- See you in the main conference ACSAC 21 for more details ③
- Proof of Concept released as Open Source @ https://github.com/pietrotedeschi/arid

Any Questions?

PIETRO TEDESCHI, PhD Hamad Bin Khalifa University e-mail: ptedeschi@hbku.edu.qa linkedin: https://www.linkedin.com/in/pietrotedeschi/

