
Implementing and Evaluating Security Solutions on Open-Source Drones

*College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Doha, Qatar
+Eindhoven University of Technology, Faculty of Mathematics and Computer Science, Eindhoven, Netherlands

Pietro Tedeschi*

Savio Sciancalepore+, Roberto Di Pietro*

Learning from Authoritative Security Experiment Results (LASER) 2021 | ACSAC 2021

December 6-10, 2021, Online

Security and Privacy Issues of UAVs

Motivations

ARID Phases

Remote Identification aka RemoteID vs ARID

Implementation Details

What we did in terms of programming

Performance Assessment

ARID and its performance assessment

Conclusion and Future Work

What we offered and what are the future
ARID extensions

Agenda

ARID

Motivations

Worldwide Drone Incidents

- Police and air traffic control intervene after drone spotted

at Newcastle – Stadiums - Newcastle, United Kingdom -

October 8, 2021

- Criminals Use Drones to Drop 5 Liters of Flammable Liquid -

Law Enforcement/First Responders - October 1, 2021

- Drone crashes into Leaning Tower of Pisa - Private/Non-

Corporate - Pisa, Italy - September 28, 2021

- Drone spies on private home - Private/Non-Corporate -

Albringhausen, Germany - July 11, 2021 …

SOURCE: HTTPS://WWW.DEDRONE.COM/

FAA Remote IDentification
Rule

- Enhance accountability of Unmanned Aerial Vehicles(UAVs)
operations

- It forces all UAVs operators to broadcast messages reporting their
identity, location (GPS position), and information about ground
station

- RemoteID does not specify how to generate such identifiers, nor
provide guidelines to operators for their design

- Effective on the 21st of April 2021, and UAV operators need to
comply with this rule from September 2022

START THE PRESENTATION

UAV must periodically

broadcast messages

containing at least the

following information

Unique ID

Drone

Latitude,

Longitude,

Altitude,

Speed

GCS

Latitude,

Longitude,

Altitude

Timestamp
Emergency

Status

Motivations

ARID -
PHASES1) Registration Phase

2) On-Line Phase

3) Reporting Phase

ARID: Anonymous Remote IDentification

1 Registration Phase Online Phase2 Reporting Phase3

Register an UAV with the
Authority, in a way to enable

unique identification and receives
the cryptography materials

necessary to run ARID.

UAV generates and emits
RemoteID-compliant messages,
enabling operators to identify

their locations, while still
preserving UAV anonymity.

Triggered by a Critical
Infrastructure (CI) operator, when

it detects an invasion of the
protected area by an UAV, CI

reports the attack to the Auth.

Why we implemented ARID

ARID is implemented because:

- To evidence the compliance with the flying constrained
devices (UAVs as the new “Flying IoT”)

- To evaluate the Performance on limited battery lifetime
devices with a minimum impact!

- Of releasing open-source code to enhancing the impact
of ARID, demonstrating its deployability to improving the
quality of the provided security services in real-world
UAV systems

- To demonstrate and evaluate that it is possible develop
and integrate a real (security & privacy) solution even on
commercial UAVs

START THE PRESENTATION

ARID
AT WORK!

Implementation Details

Registration Phase

Online Phase

Reporting Phase

Drone Features – 3DR Solo Drone

- CPU i.MX6 Solo - 1.00GHz ARM Cortex A9

- 7,948.00 MB ROM, 512MB RAM

- Cryptographic Acceleration and Assurance Module

- WiFi Module supports IEEE 802.11b

- 3DR Poky OS 1.5.1 – Linux based OS

A laptop equipped with a GNU/Linux distro

Laptop

Drone

It can execute ELF 32-bit LSB (i.e. OS Linux)
It supports MAVLink 1.0/2.0
Ardupilot/PX4 flight controller

OpenSSL Library 1.0, MAVLink 1.0

Compile OpenSSL 1.0 (libssl.so.1.0.0) for ARM
and install the library on the UAV. Compile it
on your PC and install it manually via SSH.

GNU Arm Embedded Toolchain

Sniffing Tool(s)

sudo apt-get install -y tcpdump wireshark

NIC in Monitor Mode (optional)

ALFA Card AWUS036NH/AWUS036ACH

sudo apt-get install gcc-arm-linux-gnueabihf
g++-arm-linux-gnueabihf

HW/SW Requirements

GCC, G++ cross compilers

- sudo apt-get install libc6-armel-cross libc6-
dev-armel-cross binutils-arm-linux-gnueabi
libncurses5-dev build-essential bison flex
libssl-dev bc

Software Defined Radio (optional)

- HackRF One
- gps-sdr sim (to generate GPS baseband
signal data strams for indoor tests)

SHA-256

Hashing Function

Signature Algorithm

Elliptic Curve Digital Signature Algorithm
(ECDSA)

PseudoRandom Number Generator

Read 2048 bits from /dev/urandom
RAND_load_file("/dev/urandom", 256)

Asymmetric Enc/Dec Algorithm

Symmetric Enc/Dec Algorithm

AES-128

Elliptic Curve Cryptography

secp160r1, secp192k1, secp224k1, secp256k1

El-Gamal

Cryptography Details

Implementation Details

ARID MAVLink Custom Message

ARID ID MAVLink Message Definition 1.0 (common.xml): 0xDE

Main ARID Functions (1)

Function Name Description

void ARID_init(); Initialize OpenSSL and PRNG.

static int setupKey(BIGNUM **prv, EC_POINT **pbl, BIGNUM

*q, const EC_POINT *G, EC_GROUP *curve, BN_CTX *ctx);

Setup the key material on the device (i.e. load/generate the

cryptographic keys)

static void hex_print(const void*, size_t); Print in HEX the content of a variable

void getPadOneTimeKey(int, int, EC_GROUP *, BN_CTX *,

unsigned char *);

Generate One Time Key and Pad the Key for EC Elgamal

Encryption Operation

void unPadKey(char *, unsigned int , unsigned char *); UnPad the Key for EC Elgamal Decryption Operation

int elgamal_encrypt(char **, char *, int , const EC_POINT *,

EC_GROUP *, BN_CTX *, BIGNUM *);

EC ElGamal Encryption Function

int elgamal_decrypt(char **, char *, int , BIGNUM *, EC_GROUP

*, BN_CTX *);

EC ElGamal Decryption Function

Main ARID Functions (2)

Function Name Description

void encrypt_decrypt(EVP_CIPHER_CTX *, char *, char *,

unsigned char *, unsigned char *, bool);

AES Encryption/Decryption Algorithm

void clean(EC_GROUP *g, BN_CTX *c, EVP_MD_CTX *h,

EVP_CIPHER_CTX *enc);

Clean the memory and the data structures

double print_time(struct timeval *s, struct timeval *e); Print the time defined in a timeval structure.

void digest(EVP_MD_CTX *ctx, const EVP_MD *ptr, char

*buffer, unsigned char *dig);

Compute the hash of a string. In this case we adopt SHA-256.

int initialize_UDP(int *, struct sockaddr_in *, struct sockaddr_in

*, int , int);

Init the socket to receive datagram and support UDP protocol

mavlink_parse_char(chan, buf[i], &msg, &status) Parse the data stream in order to get a MAVLink message

mavlink_msg_global_position_int_decode(&msg,

&gps_position);

Decode data of the message and put it in the variable

gps_position

Security Levels and Buffer Lengths

- Payload Computation with 80 bits Security Level

- RES (3 bytes) + PID (67 bytes) + EKEY (Enc. Public Key 42 bytes) + UAV GPS (12 bytes) + UAV Speed (6 bytes) + GCS GPS (12 bytes) +

TS (4 bytes) + Emergency Code (1 byte)

- PID = ID (4 bytes) + EC Signature ASN.1 DER (49 bytes) + TS (4 bytes) + Nonce (10 bytes)

Security Level (bits) Description

80
With the elliptic curve secp160r1 the total size of the MavLink

payload is 147 bytes.

96
With the elliptic curve secp192k1 the total size of the MavLink

payload is 163 bytes.

112
With the elliptic curve secp224k1 the total size of the MavLink

payload is 179 bytes.

128
With the elliptic curve secp256k1 the total size of the MavLink

payload is 195 bytes.

IDE and Compile Syntax

- I used Visual Studio Code on Ubuntu 19.04

- Compile Syntax

arm-linux-gnueabihf-gcc -I ./mavlink-solo/build/common/ -I /usr/local/openssl/include/ -I /usr/local/include/ -L

/usr/local/openssl/lib/ -mcpu=cortex-a9 -o arid arid.c -lcrypto -lpthread -Wl,--no-as-needed -ldl -static

No GPS for Indoor Test? No Problem

- Configure GPS-SDR-SIM (https://github.com/osqzss/gps-sdr-sim)

- Configure your Software Defined Radio like the HackRF One with an ANT 500 antenna and a TCXO Clock

- Let’s go: hackrf_transfer -t gpssim.bin -f 1575420000 -s 2600000 -a 1 -x 0

https://github.com/osqzss/gps-sdr-sim

No drone? No worries!

- Install dronekit-sitl with pip install dronekit-sitl

- Start dronekit with the following syntax (for details, please type dronekit-sitl -h): dronekit-sitl plane-3.3.0 --home=-

35.363261,149.165230,584,353

- In a second terminal spawn an instance of MAVProxy to forward messages from TCP 127.0.0.1:5760 to other UDP ports like

127.0.0.1:14550 and 127.0.0.1:14551

mavproxy.py --master tcp:127.0.0.1:5760 --sitl 127.0.0.1:5501 --out 127.0.0.1:14550 --out 127.0.0.1:14551

No drone? No worries!

- First connect and start the python script (an easy way)

- Start the ARID protocol on your computer as: ./arid

- Open Wireshark on your network-card interface to see the

broadcasted packets.

Change UAV/Drone MAC Address

- It is easy to change the UAV/Drone MAC address.

- You just need to open an SSH session with the drone and execute the script change_mac.sh inside the drone before the flight.

- In this case you will not reveal your legitimate MAC address to potential adversaries.

Dissecting ARID with WireShark

ARID
AT WORK!

Performance Assessment

How did you measure the Time?

- Measure the time needed to generate and transmit an ARID packet on the 3DR-Solo

- How? Using the tic-toc method inside the C script.

- Average time required to execute ARID over 1,000 tests (with 95% confidence

intervals)

- Considering the separate contribution of the processing (packet generation,

cryptography operations) and radio operations.

- Note that the measured time spans from the GPS location acquisition to the packet

delivery (both included).

- Maximum interarrival time 𝑇 =1 s recommended by the RemoteID rule

How did you measure the Energy?

- Telemetry data conveyed by the 3DR-Solo to the remote controller through the MAVLink protocol.

- Measure the difference in the current drained by the drone between: (i) drone at rest; and (ii) during the execution of ARID

- We computed an average difference of ≈ 20 mA in the electric current drained by the drone over 1,000 runs

- For the radio operations, the on-board chip of the 3DR-Solo drone belongs to the family AR9300

- 3.3 V, 296.970 mA in TX, 187.879 mA in RX

- IEEE 802.11b, Direct Sequence Spread Spectrum (DSSS) modulation using Differential Binary Phase-Shift Keying (DBPSK)

- Transmission Rate of 1.0 Mbps, 22 MHz channel bandwidth, and a Short Guard Interval of 800 ns.

What about the 20 mA?

ARID

How did you measure the Energy?

- Overall Energy Consumption: 𝑬 𝒎𝑱 = 𝑽 ⋅ 𝟎
𝑻
𝒊 𝒕 𝒅𝒕

- 𝑉 (15.11 V for the UAV’s battery and 3.3 V for the radio chip)

- 𝑖(𝑡) the instantaneous drained current (20 mA required by ARID on the UAV’s battery and 296.970 mA for the radio chip)

Performance Assessment

Impact of ARID on the battery lifetime. The most energy-consuming configuration of ARID (secp256k1) reduces the lifetime of the 3DR-Solo by only

1.05% compared to the default (non-anonymous) RemoteID configuration, further demonstrating its limited overhead.

Energy Consumption Radio and Computation Time

How?

ARID: Impact on Lifetime

1) We executed ARID (secp256k1) on the drone with the engines on but without flying. Further we computed the energy

consumption!

2) We executed the standard Remote-ID protocol (no crypto) on the drone with the engines on but without flying. Further we

computed the energy consumption!

3) The differences between 1) and 2) provides you the energy impact of our protocol.

4) Result? Days and days of noise engine in my head (even with the headphones)!

ARID: Impact on Lifetime (True Story)

Conclusion and Future Work

• Fully compliant with the latest RemoteID regulations by the FAA

• We plan to generalize ARID for other domains in our future work
(avionics and maritime networks)

• See you in the main conference ACSAC 21 for more details ☺

• Proof of Concept released as Open Source @
https://github.com/pietrotedeschi/arid

START THE PRESENTATION

?

https://github.com/pietrotedeschi/arid

THANK
YOU !Any Questions?

PIETRO TEDESCHI, PhD
Hamad Bin Khalifa University
e-mail: ptedeschi@hbku.edu.qa
linkedin: https://www.linkedin.com/in/pietrotedeschi/

mailto:ptedeschi@hbku.edu.qa
https://www.linkedin.com/in/pietrotedeschi/

