
An Experimental Approach to Evaluate the Security
of Mobile Autofill Frameworks on iOS and Android

 Scott Ruoti
 Sean Oesch
 Anuj Gautam

Overview

• How was the research question born?

• First try

• New direction

• Interactive discussion

• Paper brainstorming

2

The beginning of the journey
How was the research question born?

3

Generating Research Ideas

• Zhiyun Qian (https://bit.ly/3x9mzHB)

• Fill in the blank

• Expansion

• Hammer and nails

• Start small and generalize

• Reproduction of prior work

• Needs in industry

4

https://bit.ly/3x9mzHB

Where we began - new context, similar
approach
• Replicate our work on desktop managers on mobile

• USENIX 2020 - That Was Then, This Is Now: A Security

Evaluation of Password Generation, Storage, and Autofill in
Browser-Based Password Managers

• iOS and Android separate papers

• Replicate & expand work of Aonzo et al. on Android - explore

similar vulnerabilities on iOS

5

USENIX Paper Methods

• Generation

• Corpus 147 million generated passwords

• Shannon entropy, χ2 test, zxcvbn, and a recurrent neural net

• Storage

• Encryption, metadata, master password requirements

• Autofill

• iframes, form verification, website verification

6

USENIX Paper Findings & Recommendations
• Generation

• Filter weak passwords during generation

• Storage

• Require strong master passwords

• Autofill

• Require user interaction before filling credential

− Prevents automatic credential scraping

− Increases the probability the user can detect attacks

• Only autofill passwords into secure field

• Thoroughly vet the fill page

Desktop would benefit from having first-class support for password management
in the browsers and/or OS

7

Aonzo et al. - Credential Mapping on Android

8

First Try
Similar approach, new context

9

Similar Methodology, New Context

• Looked at ~20 managers on iOS and Android platform based
on usage in app store / google play store

• Evaluated generation, storage, and autofill

• For generation, chose not to repeat check for randomness

• At this point, autofill was limited to apps and browser (no

WebView)

• 2 Papers - 1 for iOS, 1 for Android

10

Caveat for Android

• Only evaluated generation and autofill on Android

• Expanded Aonzo’s work from 5 managers to ~20

• These results showed that none of the identified mapping

vulnerabilities had been addressed in the last several years

• At the time, I felt this was a very valuable contribution

11

iOS Paper - PWM Overview

12

iOS Paper - Storage

13

iOS Paper - Generation

14

New Direction
Systematic Analysis of Autofill Frameworks

15

Secure Autofill Properties

•Managers should only fill credentials when:

• P1: Users explicitly authorize operation

• P2: Credential is securely mapped to web domain or app

• P3: Credential is only accessible to mapped domain

• Protects against credential scraping and phishing

16

Autofill dialogue tells user it is safe to fill credentials

Autofill on Mobile

•Multiple contexts for autofill

• Browser

• Apps

•Multiple approaches to autofill

17

Contexts for Autofill in Apps

18

Native UI Elements WebView Custom UI Elements

iOS App Extensions

• iOS 8 – 2014

• Popular managers still

support – 1Password,
Keeper, LastPass

• Older devices – prior iOS 12

19

iOS AutoFill

• iOS 12 – 2018

• Controls entire autofill

process

• form identification

• mapping app and domain

• user interface

• autofill

20

Android Autofill Service

• Android 8 (Oreo) 2017 –
replaces accessibility service

• Leaves a lot of leeway to

individual managers

21

Methodology Deep Dive
Testing Autofiill in the Browser, Apps, & WebView

22

Testing
• Strategy

• Evaluated 14 managers implemented with the autofill frameworks

• Considered all three properties in all supported contexts

• Looking for what the framework enforces, what it fails to enforce,

and what it prevents managers from enforcing

• Environment

• iPhone 7 running iOS 13, using Safari for browser tests

• Genymotion Android emulator

− Simulated a Google Pixel 2 running Android 9 (Pie)

− Chrome for browser

23

Selecting Managers
•Wanted to determine which managers most utilized

• On Android, used download data from Google Play Store

• Accessible via API

• iOS does not provide detailed information on downloads

from App Store

• used April 2020 SensorTower estimates as a stand-in

24

Preparing the Devices
• Android

• Genymotion emulated devices already rooted

• “Open GApps” to enable the Google Play Store

• Appmon / Frida to watch network comms

• iOS

• Because not open source, no ideal emulation platforms

• Could not install 3rd party apps - only your own

• Jailbroke the device

25

Browser Testing Approach

• Improved browser testing website from USENIX paper

• Based on vulnerabilities identified in Silver et al., Stock and

Johns, Li et al.

• NodeJS website

• Deployed to Heroku and UTK domain

• UTK domain allowed broken HTTPS and HTTP

26

Browser Testing Workflow

• Save a password for a heroku domain and a UTK domain

• UTK domain allowed me to break the cert (Let’s Encrypt)

• Run test framework at heroku site

• Test HTTP and broken (invalid cert) HTTPS at UTK domain

27

Autofill in the Browser

28

App Testing Approach

• Android

• Appmon / Frida for network comms

• dex2jar to reverse apk and inspect code

• Blackbox testing via custom apps

• iOS

• Blackbox testing via custom apps

• Recall that mapping is always handled by OS

29

Example Appmon Data

30

Miscellaneous Things We Checked
• For every PWM:

• Permissions required on install

• Autofill service, observe your actions, manage keyboard,

observe text you type, etc.

• If it clears the clipboard after copying a password

• Form types it would fill

• Hint type, invisible form, tiny form

•Warning rooted device

31

Example Test App for Mapping

32

Autofill in Native UI Elements

33

WebView Overview

34

Violation P2

• Credential should be mapped to website hosted in WebView

• Some managers/frameworks fill the app credentials into any

website hosted in WebView

• Users are conditioned to trust autofill dialogues

35

WebView Overview

36

Violation P3

• A host app should not be able to access credentials filled into
a WebView

• Both iOS and Android allow JS callbacks

37

Javascript Callback iOS

38

Summary & Recommendations

• P1: Users explicitly authorize operation

• Obeyed by all mobile autofill frameworks in all contexts

• P2: Credential is securely mapped to web domain or app

• Need a secure bi-directional app-to-domain mapping

• Should disable autofill in cross-origin iframes

• P3: Credential is only accessible to mapped domain

• Need secure autofill in WebView and Browser

39

Questions + Paper Discussion
toesch1@vols.utk.edu

@oeschsec

40

mailto:toesch1@vols.utk.edu

