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Background
Motivation and information on mobile autofill 
frameworks
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Motivation

• Prior evaluations focused on desktop managers 
• Autofill frameworks are unique to mobile and present their 

own set of security challenges 
• Could be single point of failure 
•We set out to understand three different approaches to an 

autofill framework on mobile
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Autofill on Mobile

•Multiple contexts for autofill 
• Browser 
• Apps 

•Multiple approaches to autofill
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Contexts for Autofill in Apps
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Native UI Elements WebView Custom UI Elements



iOS App Extensions

• iOS 8 – 2014 
• Popular managers still 

support – 1Password, 
Keeper, LastPass 
• Older devices – prior iOS 12
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iOS AutoFill

• iOS 12 – 2018 
• Controls entire autofill 

process 
• form identification 
• mapping app and domain 
• user interface 
• autofill
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Android Autofill Service

•  Android 8 (Oreo) 2017 – 
replaces accessibility service 
• Leaves a lot of leeway to 

individual managers
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Approach
Systematic evaluation of autofill properties and testing 
methodology
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Secure Autofill Properties

•Managers should only fill credentials when: 
• P1: Users explicitly authorize operation 
• P2: Credential is securely mapped to web domain or app 
• P3: Credential is only accessible to mapped domain 

• Protects against credential scraping and phishing
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Autofill dialogue tells user it is safe to fill credentials



Testing
• Strategy 
• Evaluated 14 managers implemented with the autofill frameworks 
• Considered all three properties in all supported contexts 
• Looking for what the framework enforces, what it fails to enforce, 

and what it prevents managers from enforcing 

• Environment 
• iPhone 7 running iOS 13, using Safari for browser tests 
• Genymotion Android emulator 

− Simulated a Google Pixel 2 running Android 9 (Pie) 
− Chrome for browser
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Results
Browser, Native UI Elements, and WebView
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Autofill in the Browser
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Cross-origin 
phishing 

attack
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Autofill in Native UI Elements
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WebView Overview
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Violation P2

• Credential should be mapped to website hosted in WebView 
• Some managers/frameworks fill the app credentials into any 

website hosted in WebView 
• Users are conditioned to trust autofill dialogues
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WebView Overview
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Violation P3

• A host app should not be able to access credentials filled into 
a WebView 
• Both iOS and Android allow JS callbacks
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Summary & Recommendations

• P1: Users explicitly authorize operation 
• Obeyed by all mobile autofill frameworks in all contexts 
• P2: Credential is securely mapped to web domain or app 
• Need a secure bi-directional app-to-domain mapping 
• Should disable autofill in cross-origin iframes 
• P3: Credential is only accessible to mapped domain 
• Need secure autofill in WebView and Browser
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Questions?
toesch1@vols.utk.edu 
@oeschsec
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