
The Emperor’s New Autofill Framework:

A Security Analysis of Autofill on iOS and Android

 Scott Ruoti
 Sean Oesch
 Anuj Gautam

Background
Motivation and information on mobile autofill
frameworks

2

Motivation

• Prior evaluations focused on desktop managers

• Autofill frameworks are unique to mobile and present their

own set of security challenges

• Could be single point of failure

•We set out to understand three different approaches to an

autofill framework on mobile

3

Autofill on Mobile

•Multiple contexts for autofill

• Browser

• Apps

•Multiple approaches to autofill

4

Contexts for Autofill in Apps

5

Native UI Elements WebView Custom UI Elements

iOS App Extensions

• iOS 8 – 2014

• Popular managers still

support – 1Password,
Keeper, LastPass

• Older devices – prior iOS 12

6

iOS AutoFill

• iOS 12 – 2018

• Controls entire autofill

process

• form identification

• mapping app and domain

• user interface

• autofill

7

Android Autofill Service

• Android 8 (Oreo) 2017 –
replaces accessibility service

• Leaves a lot of leeway to

individual managers

8

Approach
Systematic evaluation of autofill properties and testing
methodology

9

Secure Autofill Properties

•Managers should only fill credentials when:

• P1: Users explicitly authorize operation

• P2: Credential is securely mapped to web domain or app

• P3: Credential is only accessible to mapped domain

• Protects against credential scraping and phishing

10

Autofill dialogue tells user it is safe to fill credentials

Testing
• Strategy

• Evaluated 14 managers implemented with the autofill frameworks

• Considered all three properties in all supported contexts

• Looking for what the framework enforces, what it fails to enforce,

and what it prevents managers from enforcing

• Environment

• iPhone 7 running iOS 13, using Safari for browser tests

• Genymotion Android emulator

− Simulated a Google Pixel 2 running Android 9 (Pie)

− Chrome for browser

11

Results
Browser, Native UI Elements, and WebView

12

Autofill in the Browser

13

Cross-origin
phishing

attack

14

Autofill in Native UI Elements

15

WebView Overview

16

Violation P2

• Credential should be mapped to website hosted in WebView

• Some managers/frameworks fill the app credentials into any

website hosted in WebView

• Users are conditioned to trust autofill dialogues

17

WebView Overview

18

Violation P3

• A host app should not be able to access credentials filled into
a WebView

• Both iOS and Android allow JS callbacks

19

Summary & Recommendations

• P1: Users explicitly authorize operation

• Obeyed by all mobile autofill frameworks in all contexts

• P2: Credential is securely mapped to web domain or app

• Need a secure bi-directional app-to-domain mapping

• Should disable autofill in cross-origin iframes

• P3: Credential is only accessible to mapped domain

• Need secure autofill in WebView and Browser

20

Questions?
toesch1@vols.utk.edu

@oeschsec

21

mailto:toesch1@vols.utk.edu

