
Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and Junzhe Wang

University of South Carolina

Westworld: Fuzzing-Assisted Remote 
Dynamic Symbolic Execution of Smart Apps 

on IoT Cloud Platforms 



2



Motivation
• On platforms such as SmartThings, official smart apps are 

manually reviewed. 

• Many community members enjoy writing custom smart 
apps and share them in the SmartThings community 
forum so that others can use them, which however does 
not enforce code review. 

• Smart apps tend to have bugs.

• Automated testing of smart apps for bug discovery is 
critical needed. 

3



Current Method of Testing Smart Apps
• Step 1: fill app configurations (user inputs)

4



Current Method of Testing Smart Apps
• Step 2: select environment inputs

5

Developers read logs to find bugs 



Symbolic Execution
• Symbolic execution is a promising automatic testing 

technique for finding bugs. 

• While many symbolic executors have been proposed for 
analyzing Windows programs, Linux programs and Java 
programs, none support the analysis of IoT apps. 

• Due to unique characteristics of IoT platforms, multiple 
challenges exist for symbolically executing IoT apps. 

6



Challenges, Solutions, and Goals

7

C1: Remote
Cloud-based 
environment

G: Completeness

C2: Closed-source 
Platform APIs

S1: Remote dynamic 
symbolic execution

S2: Selective code-
segment fuzzing

C3: Communication 
cost due to remote 

execution

S3: Boosted 
generational search

G: Efficiency G: Precision

Missing 
execution paths



System Architecture

8

Code instrumentation

Path analysis

Web 
interaction

IoT 
cloud

Instrumentation for 
path condition collection

Instrumentation for 
selective code-segment fuzzing

Identifying code segment for fuzzing

Generating test cases

(1) PC-collection app

(4) seg-fuzzing app

Local Remote 

(2) Results from 
PC-collection app

(5) Results from 
seg-fuzzing app

(6)

(3)

(7)



An Example

9

f3 contains a TSV

f1

f4

f3

f2
start point (an ISI 

is first access 
among all)

platform API

end point

• Return value of a platform API is 
assigned as a temporary symbolic 
variable (TSV)

• Selective code-segment fuzzing: find out 
the relation between a TSV and symbolic 
inputs that it relies on, called influential 
symbolic inputs (ISI)

• Our insight: most symbolic inputs 
usually have a small to moderate 
number of possible values. E.g., 
“humidity” has 101 integer values 
between 0 and 100. 

• A for-loop is inserted to iterate over 
values of ISIs and learn the relation 
between the TSV and ISIs. 

• The relation is combined with symbolic 
path condition to generate test cases



Comparison with Driller
• Westworld: symbolic execution-centric
• Driller: fuzzing-centric 

• Reason of our design choice: The communication cost 
between the remote cloud and local analyzer cannot be 
omitted. Each testing request is expensive. 
• E.g., given a path like (temp<75 && temp>68), Driller cannot avoid 

generating a lot of testing requests that repetitively take the same 
path, while symbolic execution is good at this. 

10



Evaluation
• We evaluate Westworld in five aspects: feasibility, 

completeness, precision, efficiency, and effectiveness in 
bug finding. 

• Three Datasets. 
• Dataset-I includes 136 official (84) and third-party (52) apps 

randomly collected from the SmartThings GitHub repo. 
• Dataset-II includes 64 hand-crafted apps with more paths and more 

complex conditional statements. 
• Dataset-III has 8 apps with different types of bugs inserted by us. 

11



Completeness 

12

• Grey-box fuzzer adopts the coverage-guided input generation technique 
used in American Fuzzy Lop (AFL). 

• Concolic executor considers user inputs and environment variables as 
symbolic inputs (the same as Westworld), but does not apply selective 
code-segment fuzzing to improve path coverage. 



Efficiency

13

• W-vanila executes each test case through one testing request. 
• W-boost executes all test cases of one generation via one testing request. 



Bug Finding
• We apply Westworld to four types of bugs: (1) division by 

zero, (2) array out of bound, (3) null-pointer dereference, 
and (4) dead code. 

• In Dataset-I, we found 4 apps with null-pointer 
dereference bugs 

• Dataset-III contains 8 apps with different bugs. Westworld
can successfully find all the bugs.
• (1) two apps contain division by zero bugs, (2) four are inserted 

with dead code, (3) one contains an array out of bound bug, and (4) 
one contains a null-pointer dereference bug. 

14



Summary
• We have presented the first system that enables dynamic 

symbolic execution (DSE) of smart apps. 

• Exploiting the uniqueness of environment inputs, selective 
code-segment fuzzing was proposed to assist DSE. 

• We implemented Westworld, which performs fuzzing-
assisted DSE-centric analysis of smart apps. 

• The evaluation shows that Westworld is effective and 
efficient in path exploration and bug finding. 

15



Instant and Bug-Free Patch Generation for Fixing Heap Vulnerabilities 16


