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Background

• Industrial Control Systems (ICS)
– ICSs are widely used in critical infrastructures (e.g., chemical 

industry, power grid, nuclear plant, etc.)

– Integration of IT and OT — multiple layers

• ICS trends: isolated -> openness
– Standardized solutions

– More connections -> larger attack surface

– Facing the rapidly growing threats from cyber-attacks

✓ Stuxnet (2010)

✓ Ukraine Blackout (2015)

✓ TSMC Ransomware (2018)

✓ ……



Background

• Two targets in an ICS attack
– Supervisory software

• Manage the physical devices, e.g., monitoring status, start/stop 
control, compile/download programs, etc.

• E.g., management software such as Human Machine Interface (HMI), 
Engineering Software, and Configuration Software. 

– Physical devices
• Directly interact with the physical world, e.g., accepting input from 

sensors, controlling on/off of switches, etc. 

• E.g., programmable Logic Controller (PLC), Remote Terminal Unit 
(RTU), and Programmable Automation Controller (PAC)

• Existing research is geared towards embedded 
systems/devices; less has been studied on supervisory 
software



Background

• Assumption – a powerful attacker who can …
– Access the inner network (e.g., via USB, insider attacker, etc.)

– Monitor, intercept, and modify the network communication 
based on MITM attack

• MITM attacks are commonly used in real-world ICS exploit, such as Stuxnet, 
IRONGATE. 

• Consequences when the supervisory software is 
compromised
– Present false data to the operator

– Crash the supervisory software, making the control process out 
of monitor/control, real-time status cannot be updated

– RCE by reusing existing control logic and existing 
authorizations

• We focus on identifying the protocol 
implementation flaws within supervisory software



• It is difficult to directly fuzz the commercial supervisory software
– Bulky size of executables  (closed binary) running on the Windows System

– GUI-driven

– Client-role in the communication

– Proprietary protocol involved

• Existing solutions

Fuzzing Supervisory Software



• Major challenge: the tightly coupled of GUI and proprietary protocol 
implementation 

• Writing a harness is extremely difficult
– Not general and requires many manual work
– WINNIE supports writing harness within ONLY two components
– Difficult to fuzz deep state-space of a proprietary protocol 

• Our approach: we run and fuzz the whole supervisory software, with the synchronized
controls of GUI operations and network communication

Fuzzing Supervisory Software



Idea

• Example: protocol states involved in a 
function

– Start: click the button, and then the packet are 
exchanged in both directions

– Middle: additional button-pushing operations

– End: Periodically exchanging heartbeat 
message or stopping the message exchanges.

• Input state≈protocol state

– An input state is determined by the 
previous button-pushing operations and 
the previous input states.



Design Challenges

• C1：How to enter a specific input state

– Each input state is reachable and testable

• C2： Unknown message frame format and 
state-space in proprietary protocols
– Producing effective inputs and fuzzing valuable 

input states with higher priority

• C3：Real device involved
– Simulate the session of proprietary protocol to 

making the fuzzing process scalable



Design Overview

• Two phases
– Pre-processing phase

✓ functionality analysis

✓ Proprietary protocol analysis

– Fuzzing phase — Fully automated
✓ State selection

✓ Input generation

✓ Data Feeding

✓ Crash monitor

• Design choice: blackbox vs 
greybox
– We support both

– However, instrumenting bulky GUI-driven 
executables incurs huge overhead (~30X)



Functionality analysis

• Identify UI triggers of functionality

– Find GUI operations that lead to the network events

– Capture the corresponding messages

• Prepare the GUI operation triggers

– Record the GUI operation orders

– Preparing the UI elements triggers (guiautolits)



Proprietary Protocol analysis

• Infer Protocol Formats – generate effective inputs
– Leveraging an existing tool Netzob

• Obtain State-space – switch more valuable input states
– Identify and distinguish input states 

– Filter repeated behaviors (e.g., the input states related to the heartbeat messages )

– Each input state is distinguished/measured by 

✓ origin message

✓ input index 

✓ the corresponding execution trace (based on DynamoRIO framework)

• Device Emulation – make fuzzing more scalable
– The Fuzzer needs to act as a PLC device role to feed the test cases

– For each request from the supervisory software, simulating a response needs to 

✓ Identify the corresponding response message in the captured traffic 

✓ Adjust the dynamic field such as session ID, sequence number, etc



State Selection

• Select the most promising input state to fuzz 
against
– “deeper” network communication 

– More basic block executed under the state

– More complex the input

• Calculate a weight for each state

– depth: message index in an interaction

– bb_cnt: execution trace when handling a packet

– fld_cnt: the count of reverse-engineered field in a 
message (to represent the complexity of the input)



Input Feeding

• Data Feeding

– Two proxies: GUI proxy and Traffic proxy

– A dispatcher commands the two proxies



Crash Monitor

• Check the Eventlog after feeding the 
testcase
– We do not consider liveness of the connection 

as an indicator, because the normal 
communication could close the connection

– Once an application crashes, a record will be 
added in the Eventlog of Windows System 
with a tag “Application Error”

• Program hangs
– They are not considered as a bug, because 

whether a long delay should be considered as 
a bug or not depends on specific scenarios

– There is no standard to specify the cutoff 
value to separate a normal response and a 
delayed response

– Record the hangs can be easily enabled in the 
current prototype



Evaluation - Effectiveness

• Four targets

• Bug identified
– 13 0-day bugs and got 3 CVEs

– Among them, 2 bugs are“CRITICAL”(high risk, basic score is 9.8) and 40 different products are affected 



Evaluation - Effectiveness

• Effectiveness of pruning input states

• Effectiveness of state selection
– There is no fuzzer designed for testing supervisory software

– We reused the same fuzzing framework and use a random strategy to select a input state during fuzzing

– ICS3Fuzzer can find 5 more bugs



Evaluation - Performance

• Time-cost breakdown (mainly composed of four parts)

– Restarting the supervisory software

– Operating the GUI

– Network communication

– The others

• Why not use feedback-based method?
– It needs 34.9s to restart the instrumented GX Works2 and the number is 1.1s without instrumentation

– 48hours can only generate 4.5K testcases, it is hard for the genetic algorithm to make progress

– Most of the test cases (more than 95%) cannot make through the initial input state

• Why not use snapshot-based method?
– Snapshot/rollback of a complete Windows system is very slow, and it almost costs 32 seconds for a test case

– The connection is easy to be closed due to slow network recovery, and it is hard to feed the testcase



Conclusions

• Contribution

– We designed and implemented ICS3Fuzzer, which is an insecurity testing framework 
specific for the supervisory software in ICS

– We propose a new fuzzing strategy, which selects input states based on execution trace 
and corresponding inputs

– Our tool found 13 real world bugs and received 3 CVEs, 2 of them are classified as critical, 
40 different products are affected

• Feature work

– Feedback-based method can be improved in terms of high fuzzing speed (e.g., via 
parallelization)

– Better protocol state management mechanisms can be proposed
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