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• Unsafe languages like C/C++ contributed to a large fraction of vulnerabilities

• Codebases have started incrementally porting to safe languages like Rust

• We show that: 

Incremental deployment of safe languages ≠ Incremental security

• Code in an unsafe language can break the safety of code in a safe language

• We design, implement, and evaluate Galeed to:

– Prevent unintended interactions between languages

– Secure intentional interactions between languages

• Galeed keeps Safe Rust Safe

Bottom-Line Upfront
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Memory Corruption Attacks

Spatial Memory Violation Temporal Memory Violation

Heap

Buffer

Function Pointer Attacker

Heap

ObjectFunction Pointer

Attacker



Galeed- 4
Hamed Okhravi 12/10/21

Memory Corruption is a Solved Problem; Right?

1

1: Source: Matt Miller (Microsoft Security Response Center), “Trends, challenge, and shifts in software 
vulnerability mitigation landscape”, BlueHat IL, 2019
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• A systems programming language that is memory-safe
• Small language runtime: is translated to instructions directly; no need for language VMs

Rust: Memory-Safe Programming Language

Spatial Memory Safety
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Function Pointer

• Spatial safety (no buffer overflows): 
– Statically-sized objects: compile-time checks
– Dynamically-sized objects: runtime bounds checks

Correct 
Bounds

• Temporal safety (no use-after-frees): 
– Ownership: only one owner of object at a time
– Burrowing: ownership can be temporarily transferred

Temporal Memory Safety
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• Rust’s checks can be disabled by using the unsafe{} keyword

• Done when Rust’s checks are too restrictive

• Example: manipulating raw bits for interfacing with hardware devices in device drivers

• Unsafe Rust is trivially vulnerable to memory corruption like C/C++

• We focus on Safe Rust 

Focus on Safe Rust
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• All C/C++ code cannot be immediately ported to Rust
• Real codebases incrementally port to Rust
• Rust code often exists alongside other languages, primarily C/C++
• Examples: Mozilla (Firefox), DropBox, Microsoft, Amazon, Discord, Facebook, etc.

Problem Statement
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Sketch of Our Solution: Galeed
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Need to isolate Rust heap 
when running C++ code 

à Heap Isolation

Need to avoid passing 
actual pointers to C++    
à Pseudo-Pointers

Component 1: Heap Isolation Component 2: Pseudo-Pointers
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• Uses Intel Memory Protection Keys (MPK) to isolate Rust heap from C++ heap
• Modified Rust standard allocator
• Code to switch permission included around all external call sites
• Implemented using libmpk

Galeed Heap Isolation: 
Preventing Unintended Interactions
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Heap Isolation Implementation
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asm! (" rdpkru ", in(" ecx") ecx , lateout (" eax") eax , lateout (" edx") _);
eax = ( eax & !PKRU_DISABLE_ALL ) | PKRU_ALLOW_READ ;
asm! (" wrpkru ", in(" eax") eax , in(" ecx") ecx , in(" edx ") edx );

Permission Switching Code

Safe Unsafe
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• Replace real pointers with pseudo-pointers (identifiers)
• Pass pseudo-pointers to C++
• Replace C++ pointer operations with calls to getter/setter methods (an LLVM pass)
• Let Rust handle actual access to memory

Galeed Pseudo-Pointers: 
Securing Intended Interactions
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Pseudo-Pointer Implementation

int add5 ( MyStruct * const p) {
p->x += 5;

}

int add5 (ID < MyStruct > const p) {
x = get_x_in_MyStruct (p);
set_x_in_MyStruct (p, x +5);

}

No Protection Protected with Pseudo-Pointers
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Evaluation: Micro-Benchmarking

Heap Isolation
Average ~50 cycles

Pseudo-Pointers
Average ~100 cycles
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Evaluation: Macro-Benchmarking on Firefox libperf

Cycle Overhead (count) Runtime Overhead (%)
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• Rust is being actively developed; releases matter

• Inline assembly still only available in “nightly” builds

• Current MPK interfaces are in C and un-optimized; there is a need for implementing them 

safely and optimally

• Mixed-language application security is a growing problem and an open area of research

Lessons Learned
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• Incrementally deploying Rust does not necessarily mean incremental security

• Unsafe components of an application can endanger safe components

• Galeed prevents unintended interactions

• Galeed also secures intended interactions

• There is significant space for new research in this area

Conclusion


