
Elijah Rivera2, Samuel Mergendahl1, Howard Shrobe2,
Hamed Okhravi1, and Nathan Burow1

1: MIT Lincoln Laboratory 2: MIT CSAIL

Keeping Safe Rust Safe with Galeed

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited.

This material is based upon work supported by the Under
Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the Under Secretary of Defense for Research and Engineering.

© 2021 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights,
as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S.
Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed
above. Use of this work other than as specifically
authorized by the U.S. Government may violate any
copyrights that exist in this work.

Galeed- 2
Hamed Okhravi 12/10/21

• Unsafe languages like C/C++ contributed to a large fraction of vulnerabilities

• Codebases have started incrementally porting to safe languages like Rust

• We show that:

Incremental deployment of safe languages ≠ Incremental security

• Code in an unsafe language can break the safety of code in a safe language

• We design, implement, and evaluate Galeed to:

– Prevent unintended interactions between languages

– Secure intentional interactions between languages

• Galeed keeps Safe Rust Safe

Bottom-Line Upfront

Galeed- 3
Hamed Okhravi 12/10/21

Memory Corruption Attacks

Spatial Memory Violation Temporal Memory Violation

Heap

Buffer

Function Pointer Attacker

Heap

ObjectFunction Pointer

Attacker

Galeed- 4
Hamed Okhravi 12/10/21

Memory Corruption is a Solved Problem; Right?

1

1: Source: Matt Miller (Microsoft Security Response Center), “Trends, challenge, and shifts in software
vulnerability mitigation landscape”, BlueHat IL, 2019

Galeed- 5
Hamed Okhravi 12/10/21

• A systems programming language that is memory-safe
• Small language runtime: is translated to instructions directly; no need for language VMs

Rust: Memory-Safe Programming Language

Spatial Memory Safety

Heap

Buffer

Function Pointer

• Spatial safety (no buffer overflows):
– Statically-sized objects: compile-time checks
– Dynamically-sized objects: runtime bounds checks

Correct
Bounds

• Temporal safety (no use-after-frees):
– Ownership: only one owner of object at a time
– Burrowing: ownership can be temporarily transferred

Temporal Memory Safety

Heap

Object

Pointer is
Destructed when
Object is Freed

Galeed- 6
Hamed Okhravi 12/10/21

• Rust’s checks can be disabled by using the unsafe{} keyword

• Done when Rust’s checks are too restrictive

• Example: manipulating raw bits for interfacing with hardware devices in device drivers

• Unsafe Rust is trivially vulnerable to memory corruption like C/C++

• We focus on Safe Rust

Focus on Safe Rust

Galeed- 7
Hamed Okhravi 12/10/21

• All C/C++ code cannot be immediately ported to Rust
• Real codebases incrementally port to Rust
• Rust code often exists alongside other languages, primarily C/C++
• Examples: Mozilla (Firefox), DropBox, Microsoft, Amazon, Discord, Facebook, etc.

Problem Statement

Heap

Rust
allocated
memory

Rust code

C++ code

C++
allocated
memory

Unintended Interaction

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe

Galeed- 8
Hamed Okhravi 12/10/21

Sketch of Our Solution: Galeed

Heap

Rust
allocated
memory

Rust code

C++ code

C++
allocated
memory

Unintended Interaction

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p

Intended Interaction

Safe Unsafe

Need to isolate Rust heap
when running C++ code

à Heap Isolation

Need to avoid passing
actual pointers to C++
à Pseudo-Pointers

Component 1: Heap Isolation Component 2: Pseudo-Pointers

Galeed- 9
Hamed Okhravi 12/10/21

• Uses Intel Memory Protection Keys (MPK) to isolate Rust heap from C++ heap
• Modified Rust standard allocator
• Code to switch permission included around all external call sites
• Implemented using libmpk

Galeed Heap Isolation:
Preventing Unintended Interactions

HeapRust
allocated
memory

Rust code

C++ code
C++

allocated
memory

Heap

Heap

MPK Protection

Safe Unsafe

Galeed- 10
Hamed Okhravi 12/10/21

Heap Isolation Implementation

HeapRust
allocated
memory

Rust code

C++ code
C++

allocated
memory

Heap

Heap

asm! (" rdpkru ", in(" ecx") ecx , lateout (" eax") eax , lateout (" edx") _);
eax = (eax & !PKRU_DISABLE_ALL) | PKRU_ALLOW_READ ;
asm! (" wrpkru ", in(" eax") eax , in(" ecx") ecx , in(" edx ") edx);

Permission Switching Code

Safe Unsafe

Galeed- 11
Hamed Okhravi 12/10/21

• Replace real pointers with pseudo-pointers (identifiers)
• Pass pseudo-pointers to C++
• Replace C++ pointer operations with calls to getter/setter methods (an LLVM pass)
• Let Rust handle actual access to memory

Galeed Pseudo-Pointers:
Securing Intended Interactions

Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

*p

*p Heap

Rust
allocated
memory

Rust code

C++ code

Heap

p

id(p)

id pointer

id(p) *p

MPK Protection

No Protection Protected with Pseudo-Pointers

Safe Unsafe

Galeed- 12
Hamed Okhravi 12/10/21

Pseudo-Pointer Implementation

int add5 (MyStruct * const p) {
p->x += 5;

}

int add5 (ID < MyStruct > const p) {
x = get_x_in_MyStruct (p);
set_x_in_MyStruct (p, x +5);

}

No Protection Protected with Pseudo-Pointers

Galeed- 13
Hamed Okhravi 12/10/21

Evaluation: Micro-Benchmarking

Heap Isolation
Average ~50 cycles

Pseudo-Pointers
Average ~100 cycles

Galeed- 14
Hamed Okhravi 12/10/21

Evaluation: Macro-Benchmarking on Firefox libperf

Cycle Overhead (count) Runtime Overhead (%)

Galeed- 15
Hamed Okhravi 12/10/21

• Rust is being actively developed; releases matter

• Inline assembly still only available in “nightly” builds

• Current MPK interfaces are in C and un-optimized; there is a need for implementing them

safely and optimally

• Mixed-language application security is a growing problem and an open area of research

Lessons Learned

Galeed- 16
Hamed Okhravi 12/10/21

• Incrementally deploying Rust does not necessarily mean incremental security

• Unsafe components of an application can endanger safe components

• Galeed prevents unintended interactions

• Galeed also secures intended interactions

• There is significant space for new research in this area

Conclusion

