An Exploration of ARM System-Level Cache and GPU Side Channels

Patrick Cronin^{*}, Xing Gao^{*}, Haining Wang⁺, Chase Cotton^{*} University of Delaware^{*}, Virginia Tech⁺

Computer Architecture – Then

• For many years laptop and desktops have been dominated by x86 while mobile devices are dominated by ARM

Sharing Too Much

• Apple has switched all of their new products to ARM based devices and Windows vendors are starting to follow suit

Sharing Too Much

- ARM processor architecture rapidly gaining popularity and acceptance in consumer systems
 - Provides new vectors and easier access to previously x86 only side channel attacks
 - Examine whether same mistakes from previous systems carry over to new ARM devices

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Computer systems operate on memory
- Memory accesses can be very slow
- Many operations are in a pattern or predictable

- Caches exploit the patterns in memory access
- Increase speed of the system at reasonable cost

Revisting x86 - Cache Occupancy Channel

- [7] suggests a cache occupancy channel can be utilized to fingerprint websites and study this in x86
- The spy claims the entire cache and times how long it takes to access. As the victim runs, the cache is impacted and a timing feature can be extracted

Time

[7] Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., & Yarom, Y. (2019). Robust website fingerprinting through the cache occupancy channel. In *Proceedings of the 28th USENIX* Security Symposium

Website Fingerprinting Attack – Process

How is ARM Different?

• x86 processors utilize straightforward cache design

ARM DignalimTCE Anothiteetture

How is ARM Different?

 ARM employs DynamIQ architecture and vastly different cache strategies w/ Integrated Accelerators

	x86 Arch	itecture	
core [0] L1I L1D L2	core [1]	core [2]	core [3]
	L	3	

Adjusting the Attack for ARM

- ARM has heterogeneous processors which run at different frequencies
- ARM caches are designed with different algorithms than their x86 counterparts

Adjusting x86 Attacks to ARM – Core Types

 ARM SoC can contain multiple different core types

Buffer

1MB								
-----	-----	-----	-----	-----	-----	-----	-----	--

Adjusting x86 Attacks to ARM – Core Types

• ARM Schedulers take advantage of High and Low power cores

- 10x difference in access speed on iPhone SE2 with foreground vs background web tab
- Differently shaped cache activity
- Caused by energy aware scheduler moving background tab to low cores

Adjusting x86 Attacks for ARM – Browsers

• Each browser has its own JavaScript engine and memory management

Buffer size must be carefully chosen

Adjusting x86 Attacks for ARM – Timing

- Constant war between high frequency sampling and access time
- Careful balancing act
 - Too Slow won't sample often enough
 - Too Fast long downtime between samples

Adjusting x86 Attacks for ARM - Timing

- Invert measurement pattern
- Measure the number of accesses in the time period
- High granularity measurement always!

- Major Drawback
 - Exclusive caching

- Major Drawback
 - Exclusive caching

- Major Drawback
 - Exclusive caching

- Major Drawback
 - Exclusive caching

- Major Drawback
 - Exclusive caching
- Exclusive caching mainly for design density
- If we size our buffer incorrectly, we won't affect the cache!

Website Fingerprinting Attack

- Closed World
 - Only test against sensitive websites
- Open World
 - Try to identify sensitive websites from many websites

Closed World Experiments

- 100 Accesses to top 100 Websites
- Randomize Access Order to Ensure Fairness

Open World Experiments

- 100 Accesses to top 100 Websites
- 1 Access to 5,000 other Websites
- Randomize Access Order to
- **Ensure Fairness**

Results – Web-Based

Device	CPU	Duomoon	Closed World			Open World		
Device	CFU	Browser	Ridge	e Regressi	ion CNN	Ridge Regression	CNN	
Macbook Air	Apple M1	Chrome 89		95.6	92.2	88.1	89.8	
Macbook Air	Apple M1	Safari 14		94.3	89.4	78.4	85.1	
Macbook Air	Apple M1	Firefox 88		88.1	83.9	68.2	77.8	
iPhone SE2	Apple A13	Safari 14		80.2	75.7	65.8	72.7	
iPhone SE2	Apple A13	Chrome 90		80.2	75.9	65.0	73.3	
Google Pixel 3	Snapdragon 845	Chrome 90		88.0	81.8	66.0	75.9	

Crafting Another Contention Channel

- The dynamic shared unit interacts with multiple peripherals on the device
- Web content is hardware accelerated by GPU
- Can the GPU act as another channel?

Accessing the GPU from JavaScript

- WebGL/WebGL2
 - Animations, video, 3D experiences
 - Focused on visuals 60Hz
- WebGPU
 - Updates WebGL for computing
 - Supported in beta
- GPU.js
 - Allows quick creation of compute kernels

GPU Contention Challenges

- How do we measure GPU Contention?
- How do we create GPU Contention?

Measuring GPU Contention

- Cannot interrupt GPU kernel to check time
 - Browser developers removed timing ability due to exploits
- Time completions of kernel instead of interrupting kernel
 - Better granularity if we have very short kernel

Creating GPU Contention

- Matrix Multiplication
 - Very computation heavy
- Dot product
 - Lower complexity, but still lots of multiplication
- Sum array row
 - Minimal complexity
 - Access each element only once

GPU Contention Channel Results

Device	GPU	Browser	Closed World		Open World	
			Ridge Regression	CNN	Ridge Regression	CNN
Macbook Air	Apple 7 Core	Chrome 89	90.5	85.3	76.6	81.4
Android	Adreno 630	Chrome 89	88.2	82.6	67.6	77.3

Better performance on the Google Pixel 3!

Contention – Summary

- Examined 2 contention channels in ARM based devices
- Investigate how the different scheduling of heterogeneous core operating systems effects contention channels
 - Shared cache contention channel demonstrated up to 89% accurate open world attack
 - Novel GPU contention channel performed up to 2% better than cache contention channel on Android open world

Questions?

