
FlexFilt: Towards Flexible Instruction Filtering for Security

Leila Delshadtehrani, Sadullah Canakci, William Blair,
Manuel Egele, and Ajay Joshi

delshad@bu.edu

Boston University

December 9, 2021

Introduction
FlexFilt

Conclusion

Motivation
Related Work

Runtime Instruction Filtering

Motivation

How to limit the effects of bugs and security vulnerabilities?

Isolation-based mechanisms

How to guarantee the integrity of isolation-based
mechanisms?

Prevent the execution of various unsafe instructions in
untrusted parts of the code (either in user space or kernel space)

Potential effects of unsafe instructions

Modify access permissions, disable protections, gain higher
privilege, etc.

Application

Boston University December 9, 2021 2/15

Introduction
FlexFilt

Conclusion

Motivation
Related Work

Motivational Example: Intel MPK

Memory Protection Keys (MPK)

Per page protection keys
(pkeys)

PKRU: a single 32-bit register
storing the permission bits of
each pkey
WRPKRU: a new user-space
instruction to write into PKRU

PPage#
R W

PkeyVPage#

00011024 1223

110 2089

87 760 000111

11 1111

DTLB

...

WRPKRU:write pkey permission
RDPKRU:read pkey permission

0
AD/WD

11415

01

PKRU

11

Page-Table
Perm

Vpage# 110
Effective RW Perm: 10

WRPKRU Security Challenge

An untrusted component can gain access permission to any
protection domain by simply writing into PKRU

Previous solutions
Binary scanning and binary rewriting

Hodor [Hedayati, ATC’19] and ERIM [Vahldiek-Oberwagner, Security’19]

Hardware-assisted call-gates
Donky [Schrammel, Security’20]

Boston University December 9, 2021 3/15

Introduction
FlexFilt

Conclusion

Motivation
Related Work

Motivational Example: Intel MPK

Memory Protection Keys (MPK)

Per page protection keys
(pkeys)

PKRU: a single 32-bit register
storing the permission bits of
each pkey
WRPKRU: a new user-space
instruction to write into PKRU

PPage#
R W

PkeyVPage#

00011024 1223

110 2089

87 760 000111

11 1111

DTLB

...

WRPKRU:write pkey permission
RDPKRU:read pkey permission

0
AD/WD

11415

01

PKRU

11

Page-Table
Perm

Vpage# 110
Effective RW Perm: 10

WRPKRU Security Challenge

An untrusted component can gain access permission to any
protection domain by simply writing into PKRU

Previous solutions
Binary scanning and binary rewriting

Hodor [Hedayati, ATC’19] and ERIM [Vahldiek-Oberwagner, Security’19]

Hardware-assisted call-gates
Donky [Schrammel, Security’20]

Boston University December 9, 2021 3/15

Introduction
FlexFilt

Conclusion

Motivation
Related Work

Instruction Filtering in Prior Works

x86

- WRPKRU instruction

- Extended instructions,
e.g., SMOV [Frassetto, Security’18]

 : CFI

- MOV CR3 [Wu, HPCA’18], [Gu, ATC’20]

: Binary scanning and binary rewriting

ARM

RISC-V

- Extended instructions,
e.g., WRPKR [Delshadtehrani, DATE’21]

: Dedicated hardware

- MSR [Zhou, Security’20]

: Binary scanning

- LDC, MCR [Azab, CCS’14], [Azab, NDSS’16]

: Binary scanning

Boston University December 9, 2021 4/15

Introduction
FlexFilt

Conclusion

Motivation
Related Work

Prior Works: Challenges and Limitations

Challenges

Implicit occurrences of target instructions [Hedayati, ATC’19],

[Vahldiek-Oberwagner, Security’19]

Just-In-Time (JIT) compiled code [Schrammel, Security’20]

Limitations

Limited to filtering the execution of fixed target instructions
[Hedayati, ATC’19], [Vahldiek-Oberwagner, Security’19], etc.

High performance overhead of dynamic binary rewriting tools
[Bauman, NDSS’18], [Gorgovan, TACO’16]

Boston University December 9, 2021 5/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

FlexFilt: Overview

Goal

Provide a generalized solution for filtering target instructions
Flexible
Efficient
Fine-grained

Target instructions

Unsafe instructions whose execution should be prevent in
untrusted parts of the code

Boston University December 9, 2021 6/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

FlexFilt

An efficient and flexible hardware-assisted capability for
runtime filtering of target instructions at page granularity

Creates instruction domains
Prevents the execution of configured target instructions at page
granularity in each domain
Capable of filtering privileged instructions

W
B

RISC-V Rocket Core

Exe

D
e
c

P
C
_
g
e
n

/
F
e
t
c
h

M
e
m

W
R
P
K
R
U

ADDSSLI

Instr
Filter

...

IPR

instr

instr

ipkey

Match?

Filter Unit

Filter

Boston University December 9, 2021 7/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Threat Model

Follow the common threat model in prior work
Untrusted parts of the code might contain vulnerabilities that an
adversary can exploit to inject or reuse arbitrary instructions including the
target instructions

Safe occurrences of target instructions in trusted parts of the
code are surrounded by call gates or trampoline

All hardware components are trusted

OS is partially trusted

Boston University December 9, 2021 8/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Hardware Overview

Instruction Protection Domains

Up to 16 instruction domains

Flexible Filters

Four shared configurable instruction filters
Each instruction domain applies a combination of the flexible filters

Each instruction filter can be configured to filter various target

instructions
A bit-granular matching mechanism on the instruction (e.g., match the opcode)

110rs1rs2imm[12|10:5] 1100011imm[4:1|11]BLTU

111rs1rs2imm[12|10:5] 1100011imm[4:1|11]BGEU

----------------1-------11000110000000000000000110000001100011

1111111111111111001111110000000

Match bits:

Mask bits:
SW
HW Runtime instruction: 0x03776263 (bltu a4,s7,112aa)

0000000001111100111001001100011

----------------11------1100011

Mask

0000000000000000110000001100011Match

Flexible Filter

Comparator

Filter?

Boston University December 9, 2021 9/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Hardware Design

PPage# ipkeyVPage#

00001150 4500

184 1220

280 560 00001

1 1110

...

I-TLB

X

Expanded instruction
(ex_reg_instr)

Flexible
Filter0

Fetch
Decode

Execute

exception
(illegal instruction)

DATA
Array

====

TAG
Array

I-Cache

paddr, ipkey

Instruction
Queue

valid dout(instr, pc,ipkey)

pte

Decode, Arbitration,
Stall Detection Logic

IPR
01415

V0V1V2V3

...

V0V1V2V3V0V1V2V3

ipkey
V0
V1
V2

V3

IP
R
Co
nt
ro
l
Lo
gi
c

PTW

Flexible
Filter1

Flexible
Filter2

Flexible
Filter3

Modified MMU

Instruction Protection Register (IPR) to store the ipkey information

Cause an exception to prevent the execution of unsafe instructions

Less than 1% area overhead according to FPGA resource utilization

Boston University December 9, 2021 10/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Software Overview

OS Support

Support for instruction protection keys
Built on top of the existing support for memory protection keys

Per process OS support
FlexFilt information maintained during context switches

Software Support

Software API leveraging RISC-V custom instruction

Proof of concept by leveraging LD PRELOAD

Boston University December 9, 2021 11/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Case Study

Motivation

Binary rewriting
Filtering target instructions in
dynamically generated code is
challenging

JIT code
A popular use-case of
dynamically generated code

V8 JIT Compilation Experiment

Alexa top10 websites
Built Chromium with
v8 enable disassembler=true

Measured the total number of
generated bytes
(–js-flags=“–print-bytecode”)

Website
Executable bytes
generated when

loading the frontpage

Executable bytes
generated per second

while browsing the page

Google.com 0 3,458
Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532
Qq.com 159,565 2,043
Sohu.com 34,096 2,014

Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098

360.cn 0 400
Geometric mean 3,432 3,258

FlexFilt prevents the execution of unsafe instructions without the need for binary
scanning and binary rewriting

Boston University December 9, 2021 12/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Case Study

Motivation

Binary rewriting
Filtering target instructions in
dynamically generated code is
challenging

JIT code
A popular use-case of
dynamically generated code

V8 JIT Compilation Experiment

Alexa top10 websites
Built Chromium with
v8 enable disassembler=true

Measured the total number of
generated bytes
(–js-flags=“–print-bytecode”)

Website
Executable bytes
generated when

loading the frontpage

Executable bytes
generated per second

while browsing the page

Google.com 0 3,458
Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532
Qq.com 159,565 2,043
Sohu.com 34,096 2,014

Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098

360.cn 0 400
Geometric mean 3,432 3,258

FlexFilt prevents the execution of unsafe instructions without the need for binary
scanning and binary rewriting

Boston University December 9, 2021 12/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Case Study

Motivation

Binary rewriting
Filtering target instructions in
dynamically generated code is
challenging

JIT code
A popular use-case of
dynamically generated code

V8 JIT Compilation Experiment

Alexa top10 websites
Built Chromium with
v8 enable disassembler=true

Measured the total number of
generated bytes
(–js-flags=“–print-bytecode”)

Website
Executable bytes
generated when

loading the frontpage

Executable bytes
generated per second

while browsing the page

Google.com 0 3,458
Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532
Qq.com 159,565 2,043
Sohu.com 34,096 2,014

Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098

360.cn 0 400
Geometric mean 3,432 3,258

FlexFilt prevents the execution of unsafe instructions without the need for binary
scanning and binary rewriting

Boston University December 9, 2021 12/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Implementation and Evaluation Framework

Implementation

FlexFilt written in Chisel HDL

Implemented on the in-order RISC-V Rocket core

Linux kernel v4.15

RISC-V gnu toolchain for cross-compilation

Evaluation

Prototyped on Xilinx Zynq Zedboard

Rocket core + FlexFilt

Open-source coming soon: https://github.com/bu-icsg/FlexFilt

Boston University December 9, 2021 13/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Evaluation Results

Functional Verification

User-space target instruction
Prevented the execution of an untrusted instruction in an untrusted
domain
Leveraged a buffer overflow vulnerability in a simple program to inject a
WRPKR instruction and prevent its execution in an untrusted domain

Kernel-level target instruction
Proof of concept evaluation

Configured FlexFilt in BBL to limit the execution of our custom instructions

Performance Evaluation

Microbenchmarks
Regardless of the number of activated configured filters, FlexFilt’s
performance overhead remains the same

Macrobenchmarks
Negligible performance overhead for SPEC 2000 and SPEC 2006
benchmarks (less than 0.1%)

Boston University December 9, 2021 14/15

Introduction
FlexFilt

Conclusion

Overview
Design
Evaluation

Evaluation Results

Functional Verification

User-space target instruction
Prevented the execution of an untrusted instruction in an untrusted
domain
Leveraged a buffer overflow vulnerability in a simple program to inject a
WRPKR instruction and prevent its execution in an untrusted domain

Kernel-level target instruction
Proof of concept evaluation

Configured FlexFilt in BBL to limit the execution of our custom instructions

Performance Evaluation

Microbenchmarks
Regardless of the number of activated configured filters, FlexFilt’s
performance overhead remains the same

Macrobenchmarks
Negligible performance overhead for SPEC 2000 and SPEC 2006
benchmarks (less than 0.1%)

Boston University December 9, 2021 14/15

Introduction
FlexFilt

Conclusion

Conclusion

Guarantees the integrity of isolation-based
mechanisms efficiently without binary
scanning and binary rewriting

Filters configured instructions at page
granularity

W
B

RISC-V Rocket Core

Exe

D
e
c

P
C
_
g
e
n

/
F
e
t
c
h

M
e
m

W
R
P
K
R
U

ADDSSLI

Instr
Filter

...

IPR

instr

instr

ipkey

Match?

Filter Unit

Filter

Artifact Evaluated

https://github.com/bu-icsg/FlexFilt

? Thanks! Reach me at
delshad@bu.edu for questions.

Boston University December 9, 2021 15/15

	Introduction
	Motivation
	Related Work

	FlexFilt
	Overview
	Design
	Evaluation

	Conclusion

