FlexFilt: Towards Flexible Instruction Filtering for Security

Leila Delshadtehrani, Sadullah Canakci, William Blair,
Manuel Egele, and Ajay Joshi

delshad®@bu.edu

Boston University

December 9, 2021

BOSTON
UNIVERSITY

Introduction
FlexFilt
Conclusion

Motivation

Runtime Instruction Filtering

@ How to limit the effects of bugs and security vulnerabilities?
e Isolation-based mechanisms
@ How to guarantee the integrity of isolation-based
mechanisms?

e Prevent the execution of various unsafe instructions in
untrusted parts of the code (either in user space or kernel space)
e Potential effects of unsafe instructions
@ Modify access permissions, disable protections, gain higher
privilege, etc.

Application

iamt -1

Boston University December 9, 2021 2/15

Introduction
FlexFilt
Conclusion

Motivation

Motivational Example: Intel MPK

DTLB
Memory Protection Keys (MPK) (R PO R0
W
° P t t k 24 1223 10 0001
er page pro ec Ion eys [110 2089 11 1111
(pkeys) 37 | 760 S
@ PKRU: a single 32-bit register - — 2 » Vpage# 110
storing the permission bits of PKRU o Effective R Perm: 10
o DT Tkl 1]
@ WRPKRU: a new user-space WRU
instruction to write into PKRUJ RDPKRUread pkey pernisaon

Boston University December 9, 2021 3/15

Introduction
F It
Conclusion

Motivation

Motivational Example: Intel MPK

DTLB
Memory Protection Keys (MPK) (tpager] rrager P2 vy
W
P t t k 24 1223 10 0001
° er page pro ec Ion eys [110 2089 11 1111
(pkeys) 37 | 760 S
@ PKRU: a single 32-bit register - — 2 » Vpage# 110
storing the permission bits of PKRU o Effective R Perm: 10
o DT Tkl 1]
@ WRPKRU: a new user-space WRU
instruction to write into PKRUJ RDPKRUread pkey pernisaon

WRPKRU Security Challenge

@ An untrusted component can gain access permission to any
protection domain by simply writing into PKRU

@ Previous solutions

@ Binary scanning and binary rewriting
@ Hodor [Hedayati, ATC'19] and ERIM [Vahldiek-Oberwagner, Security'19]

@ Hardware-assisted call-gates
@ Donky [Schrammel, Security'20]

A

Boston University December 9, 2021 3/15

Introduction
FlexFilt

. Related Work
Conclusion

Instruction Filtering in Prior Works

x86 ARM

- WRPKRU instruction
- MSR [Zhou, Security’20]

- Extended instructions, : Binary scanning
e.g., SMOV |[Frassetto, Security’18]
: CFI - LDC, MCR [Azab, CCS’14], [Azab, NDSS’16]

: Binary scanning
- MOV CR3 [Wu, HPCA’18], [Gu, ATC 20]

: Binary scanning and binary rewriting

RISC-V

- Extended instructions,
e.g., WRPKR [Delshadtehrani, DATE’21]

: Dedicated hardware

Boston University December 9, 2021 4/15

Introduction
FlexFilt
Conclusion

Related Work

Prior Works: Challenges and Limitations

Challenges

@ Implicit occurrences of target instructions [Hedayati, ATC'19],

[Vahldiek-Oberwagner, Security’19]

@ Just-In-Time (JIT) compiled code [schrammel, Security20]

@ Limited to filtering the execution of fixed target instructions

[Hedayati, ATC'19], [Vahldiek-Oberwagner, Security’19], etc.

@ High performance overhead of dynamic binary rewriting tools

[Bauman, NDSS'18], [Gorgovan, TACO'16]

A\

Boston University December 9, 2021 5/15

Introduction Overview
FlexFilt

Conclusion

FlexFilt: Overview

@ Provide a generalized solution for filtering target instructions
@ Flexible
o Efficient
@ Fine-grained

A\

Target instructions

@ Unsafe instructions whose execution should be prevent in
untrusted parts of the code

\

Boston University December 9, 2021 6/15

Introduction Overview
FlexFilt
Conclusion

FlexFilt

@ An efficient and flexible hardware-assisted capability for
runtime filtering of target instructions at page granularity
@ Creates instruction domains
@ Prevents the execution of configured target instructions at page
granularity in each domain
@ Capable of filtering privileged instructions

Filter Unit

Boston University December 9, 2021

7/15

Introduction Overview
FlexFilt
Conclusion

Threat Model

@ Follow the common threat model in prior work

@ Untrusted parts of the code might contain vulnerabilities that an
adversary can exploit to inject or reuse arbitrary instructions including the
target instructions

@ Safe occurrences of target instructions in trusted parts of the
code are surrounded by call gates or trampoline

@ All hardware components are trusted

e OS is partially trusted

Boston University December 9, 2021 8/15

Introduction
FlexFilt Design
Conclusion

Hardware Overview

Instruction Protection Domains

@ Up to 16 instruction domains

Flexible Filters

@ Four shared configurable instruction filters

@ Each instruction domain applies a combination of the flexible filters

@ Each instruction filter can be configured to filter various target
instructions

@ A bit-granular matching mechanism on the instruction (e.g., match the opcode)

BLTU[imC12110:51 | rs2 |
SW BGEU[iml12110:51 | rs2 |

HW

‘mm[A:lHl]‘ ‘ “%@“‘ Match bits: ‘ 0000000000000000110000001100011 ‘
Jimmca:11103]] 1100011 |
——1

Mask bits: ‘ 1111111111111111001111110000000 ‘

Runtime instruction: 0x@3776263 (bltu a4,s7,112aa)

Flexible Filte
< 0000000001111100111001001100011
Mask

11000111 comparator ‘
Match ‘0000000000000000110000001100011

‘Filter?

Boston University December

9/15

Introduction
FlexFilt Design
Conclusion

Hardware Design

I-Cache
I-TLB
VPage#|PPage#| X | ipkey
PTW 150 4500 |1 2000 o
@
paddr, e
T84 | 1220 [1] 1ue a
280 560 T 0000 =
)
= Irnstruction
1 ueue
< o
Decode, Arbitration, 2
stall Detection Logic g
®
Expanded instruction
(ex_reg_instr)
i,L IPR
g s s o .
e ‘ ‘ ‘ ‘ ‘ ‘ R Flexible Flexible Flexible Flexible
o VI VZ VI Vo V3 TV T Filtero Filterl Filter2 Filter3 | 7
£ - o
: 3 —] :
8 . = = | &
o ipkey|Index Selectly, ®
|4 = ,
& | Logic
exception
(illegal instruction

Modified MMU
Instruction Protection Register (IPR) to store the ipkey information

Cause an exception to prevent the execution of unsafe instructions

Less than 1% area overhead according to FPGA resource utilization

Boston University December 9, 2021 10/15

Introduction
FlexFilt Design
Conclusion

Software Overview

OS Support

@ Support for instruction protection keys
@ Built on top of the existing support for memory protection keys

@ Per process OS support

@ FlexFilt information maintained during context switches

.

Software Support

@ Software API leveraging RISC-V custom instruction

@ Proof of concept by leveraging LD_PRELOAD

Boston University December 9, 2021 11/15

Introduction
FlexFilt
Conclusion Evaluation

Case Study

@ Binary rewriting
@ Filtering target instructions in
dynamically generated code is
challenging

@ JIT code

@ A popular use-case of
dynamically generated code

Boston University December 9, 2021 12/15

Case S

Introduction
FlexFilt

Conclusion

tudy

@ Binary rewriting

@ JIT code

@ Filtering target instructions in
dynamically generated code is
challenging

@ A popular use-case of
dynamically generated code

Boston University

December

Evaluation

V8 JIT Compilation Experiment

@ Alexa topl0 websites
@ Built Chromium with
v8_enable_disassembler=true
@ Measured the total number of
generated bytes
(—js-flags="—print-bytecode™)

Executable bytes Executable bytes
Website generated when generated per second
loading the frontpage | while browsing the page
Google.com 0 3,458
Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
Baidu.com 0 1,532
Qq.com 159,565 2,043
Sohu.com 34,096 2,014
Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098
360.cn 0 400

Geometric mean 3,432 3,258

12/15

Introduction
FlexFilt
Conclusion Evaluation

Case Study

V8 JIT Compilation Experiment

@ Alexa topl0 websites

@ Built Chromium with
v8_enable_disassembler=true

Motivation | * anerated oy
generated bytes

@ Binary rewriting (is-flags="—print-bytecode")
@ Filtering target instructions in
H H Executable bytes Executable bytes
dynamlc_ally generated code is Website generated when generated per second
challenging loading the frontpage | while browsing the page
Google.com 0 3,458
@ JIT code Youtube.com 266,798 2,620
Tmall.com 366,003 15,323
@ A popular use-case of Baidu.com 0 1,532
dynamically generated code Qqg.com 159,565 2,043
Sohu.com 34,096 2,014
Facebook.com 20,938 9,712
Taobao.com 220,299 15,454
Amazon.com 92,442 3,098
360.cn 0 400
Geometric mean 3,432 3,258
FlexFilt prevents the execution of unsafe instructions without the need for binary
scanning and binary rewriting J

12/15

Boston University December

Introduction
FlexFilt
Conclusion Evaluation

Implementation and Evaluation Framework

Implementation
@ FlexFilt written in Chisel HDL
o Implemented on the in-order RISC-V Rocket core
@ Linux kernel v4.15

@ RISC-V gnu toolchain for cross-compilation

@ Prototyped on Xilinx Zynq Zedboard
@ Rocket core + FlexFilt

@ Open-source coming soon: https://github.com/bu-icsg/FlexFilt

Boston University December 9, 2021 13/15

Introduction
FlexFilt
Conclusion Evaluation

Evaluation Results

Functional Verification

@ User-space target instruction
@ Prevented the execution of an untrusted instruction in an untrusted
domain
@ Leveraged a buffer overflow vulnerability in a simple program to inject a
WRPKR instruction and prevent its execution in an untrusted domain

@ Kernel-level target instruction

@ Proof of concept evaluation

@ Configured FlexFilt in BBL to limit the execution of our custom instructions

Boston University December 9, 2021 14/15

Introduction
FlexFilt
Conclusion Evaluation

Evaluation Results

Functional Verification

@ User-space target instruction

@ Prevented the execution of an untrusted instruction in an untrusted
domain

@ Leveraged a buffer overflow vulnerability in a simple program to inject a
WRPKR instruction and prevent its execution in an untrusted domain

@ Kernel-level target instruction
@ Proof of concept evaluation

@ Configured FlexFilt in BBL to limit the execution of our custom instructions

v

Performance Evaluation

@ Microbenchmarks

@ Regardless of the number of activated configured filters, FlexFilt's
performance overhead remains the same

@ Macrobenchmarks

@ Negligible performance overhead for SPEC 2000 and SPEC 2006
benchmarks (less than 0.1%)

A\

Boston University December 9, 2021

14/15

Introduction
[F ilt
Conclusion

Conclusion

o) = Filter Unit
@ Guarantees the integrity of isolation-based 1SC-V Rocket Core) IPR

mechanisms efficiently without binary
scanning and binary rewriting

@ Filters configured instructions at page
granularity

Artifact Evaluated

https://github.com/bu-icsg/FlexFilt

Thanks! Reach me at
delshad@bu.edu for questions.

Boston University December

	Introduction
	Motivation
	Related Work

	FlexFilt
	Overview
	Design
	Evaluation

	Conclusion

