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Deep Packet Inspection and regular expression
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‣Regex is one of the most important features in DPI (NIDS/IPS)

• Inspect packet payload with specific patterns 

• Essential to handle arbitrary protocols in a modern network environment 



‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

Challenge of regex processing in DPI
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‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

‣ Accelerating with Programmable Hardware: FPGA
• Natural parallelism of hardware

• Lack of flexibility in pattern update

- Long compilation time for hardware logic:  
Updating policies takes at least hours

- Inevitable Service Interruption 

- All-or-Nothing Update Operation
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Known update time
# of patterns Update time (h:mm:ss) Study

200 1:38:57 Johnson et al. [CASES '01]

310 1:47:00 Bisop et al. [ARC'07]

760 1:52:00 Ganegedara et al.[FPL'10]

1,504 4:53:50 Sourdis et al.[SPS-J'08]



Reinhardt:
Real-time reconfigurable hardware architecture for regex
‣Goal: a high-performance and programmable hardware regex matching

• Supporting high-performance regex matching for DPI as well as NIDS/IPS

- Line-rate throughput and low-latency 

• Enabling hardware real-time programmable

- Software-like programmability in updating regex patterns

- Reinhardt host software to manage the hardware processor
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Challenges
‣The long compilation time of hardware circuit implementation

‣Support any arbitrary regex patterns (POSIX standard)

‣The reasonable number of patterns
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Our approaches
‣The long compilation time of hardware circuit implementation

• Design a hardware circuit that generates hardware circuits in real-time

• Provide a compiler for implementing circuits in the hardware circuit

‣Support any arbitrary regex patterns (POSIX standard)

• Regex expression matching begins by generating an equivalent state machine

• Generalize how the state machines are constructed into hardware circuit,  
and structuralize this task through the hardware circuit

‣The reasonable number of patterns

• Resubmitting: Recursive processing by exploiting the high-programmability 
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Reinhardt overview
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Real-time programmable payload inspection system

Software compiler
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Tradeoff: Hardware resource consumption
‣Tradeoff for the real-time programmability → Hardware resource usage

• Reinhardt requires 3-4 times more hardware resources per pattern  
than non-programmable hardware designs 

• 3-4 times fewer the number of patterns than non-programmable circuits
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Tradeoff: Hardware resource consumption
‣Tradeoff for the real-time programmability → Hardware resource usage

• Reinhardt requires 3-4 times more hardware resources per pattern  
than non-programmable hardware designs 

• 3-4 times fewer the number of patterns than non-programmable circuits

‣Packet resubmitting, the solution from the programmability
• Exploit real-time configurability of Reinhardt

• Inspect a packet multiple times  
with different regex pattern sets back-to-back 

• The number of patterns can be processed  
as many times as the number of resubmitting  
beyond the limits of hardware capacity
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Evaluation
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Pattern capacity by Reinhardt processor sizes

Pattern capacity and throughput of prior studies
Research # of patterns Throughput

Mitra et al. [ANCS’07] 200 12.9 Gbps
Yang et al. [ANCS’08] 267 7.5 Gbps

MIN-MAX [TPDS-J’13] 891 2.57 Gbps

Nakahara et al. [IEICE-TIS’12] 1,114 1.6 Gbps

160 295 590 1,313
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Programmability
‣Pattern deployment time

• Overwhelmingly faster than prior works without service interruptions

‣Pattern update responsiveness
• The new signature works instantly 

- Flow B is dropped immediately

• The device is up and running 

- Flow A is delivered continuously
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Approximately 700 us per each



Reinhardt deployment
‣Standalone NIDS/IPS device

• Deploying into a data plane (e.g., DPX)

• Achieve 10 Gbps throughput  
and low-latency in processing DPI

• Cover about 5,500 signatures

‣Accelerating Snort NIDS 
• Perform pattern matching on Reinhardt 

instead of the PCRE engine

• Increase up to x65 (x5028)

- 7.6 - 3.0 Gbps

- The degradations mostly come from 
Snort IDS itself, not Reinhardt
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Summary
‣DPI is the key feature in security inspection

• Unfortunately, its pattern matching is a major bottleneck point in performance

• Hardware acceleration? → Poor updatability → Not suitable modern environment

‣Reinhardt: Real-time reconfigurable hardware regex processor

• Achieve line-rate performance with low-latency

• Enable high-programability comparable to software solutions in DPI.
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Reinhardt presents high-performance and high-programable DPI 
for a dynamic network environment



Thank you!
Contact: Taejune Park (taejune.park@jnu.ac.kr)


