Reinhardt: Real-time reconfigurable hardware architecture for regular expression matching in DPI

Taejune Park (Chonnam National University)

Jaehyun Nam (AccuKnox)

Seung Ho Na (KAIST)

Jaewoong Chung (Atto Research)

Seungwon Shin (KAIST)

Deep Packet Inspection and regular expression

Regex is one of the most important features in DPI (NIDS/IPS)

- Inspect packet payload with specific patterns
- Essential to handle arbitrary protocols in a modern network environment

Low-performance

- Major bottleneck point in both throughput and latency
- Highly affected by the number and complexity of patterns

Low-performance

- Major bottleneck point in both throughput and latency
- Highly affected by the number and complexity of patterns

- Accelerating with Programmable Hardware: FPGA
 - Natural parallelism of hardware
 - Lack of flexibility in pattern update
 - Long compilation time for hardware logic: Updating policies takes at least hours
 - Inevitable Service Interruption
 - All-or-Nothing Update Operation

Low-performance

- Major bottleneck point in both throughput and latency
- Highly affected by the number and complexity of patterns

- Accelerating with Programmable Hardware: FPGA
 - Natural parallelism of hardware
 - Lack of flexibility in pattern update
 - Long compilation time for hardware logic: Updating policies takes at least hours
 - Inevitable Service Interruption
 - All-or-Nothing Update Operation

- Accelerating with Programmable Hardware: FPGA
 - Natural parallelism of hardware
 - Lack of flexibility in pattern update
 - Long compilation time for hardware logic: Updating policies takes at least hours
 - Inevitable Service Interruption
 - All-or-Nothing Update Operation

Reinhardt:

Real-time reconfigurable hardware architecture for regex

- Goal: a high-performance and programmable hardware regex matching
 - Supporting high-performance regex matching for DPI as well as NIDS/IPS
 - Line-rate throughput and low-latency
 - Enabling hardware real-time programmable
 - Software-like programmability in updating regex patterns
 - Reinhardt host software to manage the hardware processor

Challenges

The long compilation time of hardware circuit implementation

Support any arbitrary regex patterns (POSIX standard)

The reasonable number of patterns

Our approaches

The long compilation time of hardware circuit implementation

- Design a hardware circuit that generates hardware circuits in real-time
- Provide a compiler for implementing circuits in the hardware circuit

Support any arbitrary regex patterns (POSIX standard)

- Regex expression matching begins by generating an equivalent state machine
- Generalize how the state machines are constructed into hardware circuit, and structuralize this task through the hardware circuit

The reasonable number of patterns

• Resubmitting: Recursive processing by exploiting the high-programmability

Reinhardt overview

Real-time programmable payload inspection system

Tradeoff: Hardware resource consumption

► Tradeoff for the real-time programmability → Hardware resource usage

- Reinhardt requires 3-4 times more hardware resources per pattern than non-programmable hardware designs
- 3-4 times fewer the number of patterns than non-programmable circuits

Tradeoff: Hardware resource consumption

► Tradeoff for the real-time programmability → Hardware resource usage

- Reinhardt requires 3-4 times more hardware resources per pattern than non-programmable hardware designs
- 3-4 times fewer the number of patterns than non-programmable circuits

Packet resubmitting, the solution from the programmability

- Exploit real-time configurability of Reinhardt
- Inspect a packet multiple times with different regex pattern sets back-to-back
- The number of patterns can be processed as many times as the number of resubmitting beyond the limits of hardware capacity

Prototype using NetFPGA-SUME

Evaluation

Performance

Pattern capacity

Pattern capacity by Reinhardt processor sizes

Pattern capacity and throughput of prior studies

Research	# of patterns	Throughput
Mitra et al. [ANCS'07]	200	12.9 Gbps
Yang et al. [ANCS'08]	267	7.5 Gbps
MIN-MAX [TPDS-J'13]	891	2.57 Gbps
Nakahara et al. [IEICE-TIS'12]	1,114	1.6 Gbps

Programmability

Pattern deployment time

Overwhelmingly faster than prior works without service interruptions

Reinhar	dt			Known update t	Known update time	
Update time (sec)	# of patterns		# of patterns	Update time (h:mm:ss)	Study	
0.116	≤ 160	VS	200	1:38:57	Johnson et al. [CASES '01]	
0.186	≤ 295		310	1:47:00	Bisop et al. [ARC'07]	
0.403	≤ 590	٧J	760	1:52:00	Ganegedara et al.[FPL'10]	
0.965	≤ 1,313		1,504	4:53:50	Sourdis et al.[SPS-J'08]	

Approximately 700 us per each

Pattern update responsiveness

- The new signature works instantly
 - Flow B is dropped immediately
- The device is up and running
 - Flow A is delivered continuously

Reinhardt deployment

- Standalone NIDS/IPS device
 - Deploying into a data plane (e.g., DPX)
 - Achieve 10 Gbps throughput and low-latency in processing DPI
 - Cover about 5,500 signatures

Accelerating Snort NIDS

- Perform pattern matching on Reinhardt instead of the PCRE engine
- Increase up to x65 (x5028)
 - 7.6 3.0 Gbps
 - The degradations mostly come from Snort IDS itself, not Reinhardt

Summary

DPI is the key feature in security inspection

- Unfortunately, its pattern matching is a major bottleneck point in performance
- Hardware acceleration? \rightarrow Poor updatability \rightarrow Not suitable modern environment

Reinhardt: Real-time reconfigurable hardware regex processor

- Achieve line-rate performance with low-latency
- Enable high-programability comparable to software solutions in DPI.

Reinhardt presents high-performance and high-programable DPI for a dynamic network environment

Thank you!

Contact: Taejune Park (taejune.park@jnu.ac.kr)