
Reinhardt: Real-time reconfigurable hardware architecture  
for regular expression matching in DPI

Taejune Park (Chonnam National University)
Jaehyun Nam (AccuKnox)
Seung Ho Na (KAIST)
Jaewoong Chung (Atto Research)
Seungwon Shin (KAIST)

Deep Packet Inspection and regular expression

2

‣Regex is one of the most important features in DPI (NIDS/IPS)

• Inspect packet payload with specific patterns

• Essential to handle arbitrary protocols in a modern network environment

‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

Challenge of regex processing in DPI

3

7.6G
7.2G

6.8G

153M 67.2M 49.0M 0.6M

‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

‣ Accelerating with Programmable Hardware: FPGA
• Natural parallelism of hardware

• Lack of flexibility in pattern update

- Long compilation time for hardware logic:  
Updating policies takes at least hours

- Inevitable Service Interruption

- All-or-Nothing Update Operation

Challenge of regex processing in DPI

4

7.6G
7.2G

6.8G

153M 67.2M 49.0M 0.6M

Flow A

Flow B

(5 seconds later)
Inspect and drop Flow B!

Payload
Matching

Pattern compilation
(Xeon E5-2630)

IPS
(FPGA)

‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

‣ Accelerating with Programmable Hardware: FPGA
• Natural parallelism of hardware

• Lack of flexibility in pattern update

- Long compilation time for hardware logic:  
Updating policies takes at least hours

- Inevitable Service Interruption

- All-or-Nothing Update Operation

Challenge of regex processing in DPI

5

7.6G
7.2G

6.8G

153M 67.2M 49.0M 0.6M

0 2 4 6 921 923 925 927 929 9310 2 4 6 921 923 925 927 929 931

1

0

De
liv

er
ed

 ra
te Try pattern update

Start compilation

Initialize
device

Recover delivery

End compilation

Drop by
the pattern

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

Flow A
Flow B

‣Low-performance
• Major bottleneck point  

in both throughput and latency

• Highly affected by the number  
and complexity of patterns

‣ Accelerating with Programmable Hardware: FPGA
• Natural parallelism of hardware

• Lack of flexibility in pattern update

- Long compilation time for hardware logic:  
Updating policies takes at least hours

- Inevitable Service Interruption

- All-or-Nothing Update Operation

Challenge of regex processing in DPI

6

7.6G
7.2G

6.8G

153M 67.2M 49.0M 0.6M

0 2 4 6 921 923 925 927 929 9310 2 4 6 921 923 925 927 929 931

1

0

De
liv

er
ed

 ra
te Try pattern update

Start compilation

Initialize
device

Recover delivery

End compilation

Drop by
the pattern

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

Flow A
Flow B

Known update time
of patterns Update time (h:mm:ss) Study

200 1:38:57 Johnson et al. [CASES '01]

310 1:47:00 Bisop et al. [ARC'07]

760 1:52:00 Ganegedara et al.[FPL'10]

1,504 4:53:50 Sourdis et al.[SPS-J'08]

Reinhardt:
Real-time reconfigurable hardware architecture for regex
‣Goal: a high-performance and programmable hardware regex matching

• Supporting high-performance regex matching for DPI as well as NIDS/IPS

- Line-rate throughput and low-latency

• Enabling hardware real-time programmable

- Software-like programmability in updating regex patterns

- Reinhardt host software to manage the hardware processor

7

Challenges
‣The long compilation time of hardware circuit implementation

‣Support any arbitrary regex patterns (POSIX standard)

‣The reasonable number of patterns

8

Our approaches
‣The long compilation time of hardware circuit implementation

• Design a hardware circuit that generates hardware circuits in real-time

• Provide a compiler for implementing circuits in the hardware circuit

‣Support any arbitrary regex patterns (POSIX standard)

• Regex expression matching begins by generating an equivalent state machine

• Generalize how the state machines are constructed into hardware circuit,  
and structuralize this task through the hardware circuit

‣The reasonable number of patterns

• Resubmitting: Recursive processing by exploiting the high-programmability

9

Reinhardt overview

10

Software

Net dev.
(e.g., DPX)

Reinhardt
Processor

Inspection processing

Packet lookup

Packets

Regex-Reinhardt
CompilerAPI regex

Signature

Payload

Result

Deploy FSM

(e.g., alert tcp any any -> $HOME any (content:"aaa"; pcre:”[a-z]+”;))

Programmable FSM

Logic memory

ε-
si

gn
al

Ac
ce

pt
-s

ig
na

l

C
trl
.

Reconfigurable
cells

Input Cell

By
te

st
re

am
fro

m
 p

ay
lo

ad

…!

In.

Out.

Begin / Not / Last flags

Logic Cell

Counter

Top

RightLe
ft

Bottom

Real-time programmable payload inspection system

Software compiler

ε-
si

gn
al

A
cc

ep
t-s

ig
na

l

S.W.
H.W.

s
httpε

http

s

detect: "http(s)?"

h tt p

sPacket payload

... sptthtt hsp 'http' matched'https' matched

Reinhardt Hardware

(i) State-machine

ε

ba

dc
X {1,3} [0-9]

A
B

A
B

(ii) Template

1 ≤ n ≤ 3

ab

cd

X

[0-9]
(iii) Abstract logic

ε

Accept (iv) Configuration opcode

(0.0)_"ab"
(0.1)_l→r/r→bl

(0.2)_l→b/r→l/b→l
(0.3)_r→l
(1.0)_"cd"

(1.1)_t→l/l→r
…

Tradeoff: Hardware resource consumption
‣Tradeoff for the real-time programmability → Hardware resource usage

• Reinhardt requires 3-4 times more hardware resources per pattern  
than non-programmable hardware designs

• 3-4 times fewer the number of patterns than non-programmable circuits

12

Tradeoff: Hardware resource consumption
‣Tradeoff for the real-time programmability → Hardware resource usage

• Reinhardt requires 3-4 times more hardware resources per pattern  
than non-programmable hardware designs

• 3-4 times fewer the number of patterns than non-programmable circuits

‣Packet resubmitting, the solution from the programmability
• Exploit real-time configurability of Reinhardt

• Inspect a packet multiple times  
with different regex pattern sets back-to-back

• The number of patterns can be processed  
as many times as the number of resubmitting  
beyond the limits of hardware capacity

13

Programmable FSM

ID: 10 ID: 11 ID: 12

Lo
gi

c
m

em
or

y

Packet
(ii) Process

(iii) Resubmit

(i) Fetch

Evaluation

14

300

450

600

750

900

(A) (B) (C) (D) (A) (B) (C) (D)

584
590

465

501 469

317
358

591 588

469

798

1000

1100

1200

1300

1400

(E)
(1) (2) (3) (4) (1) (2) (3) (4) (5)

24 x 665 x 2
(2.7 Gbps)

24 x 1580 x 1
(1.4 Gbps)

1313

1196

1400 1300 1200 1100 100030
0

 4
50

60

0
 7

50

90
0

0

100

200

300

400

(A) (B) (C) (D) (A) (B) (C) (D)
(1) (2) (3) (4) (1) (2) (3) (4)

24x160x8
(10 Gbps)

24 x 300 x 4
(5.6 Gbps)

160

126 102

137
114

143

69

100

245

295

202

243
220

260

138

172

0
 1

00

 2
00

30

0
 4

00
N

um
be

r o
f R

ul
es

 (e
a)

Pattern capacity by Reinhardt processor sizes

Pattern capacity and throughput of prior studies
Research # of patterns Throughput

Mitra et al. [ANCS’07] 200 12.9 Gbps
Yang et al. [ANCS’08] 267 7.5 Gbps

MIN-MAX [TPDS-J’13] 891 2.57 Gbps

Nakahara et al. [IEICE-TIS’12] 1,114 1.6 Gbps

160 295 590 1,313

Performance

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10

Packet size (bytes)
64128256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

NIC Q1 Q2 Q4
Q7 Q8 Q12

128

Throughput

Latency (usec)
45 50 55 60 65

C
D

F
0.
2
0.
4
0.
6
0.
8

1

NIC
Q1
Q2
Q4
Q7
Q8
Q12

Latency

Pattern capacity

Prototype using NetFPGA-SUME

 
Programmability
‣Pattern deployment time

• Overwhelmingly faster than prior works without service interruptions

‣Pattern update responsiveness
• The new signature works instantly

- Flow B is dropped immediately

• The device is up and running

- Flow A is delivered continuously

15

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

De
liv

er
ed

 ra
te

1

0

Try pattern update

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

Flow A
Flow B

Drop by
the pattern

Time (sec)

Reinhardt
Update time (sec) # of patterns

0.116 ≤ 160
0.186 ≤ 295
0.403 ≤ 590
0.965 ≤ 1,313

vs

Known update time
of patterns Update time (h:mm:ss) Study

200 1:38:57 Johnson et al. [CASES '01]
310 1:47:00 Bisop et al. [ARC'07]
760 1:52:00 Ganegedara et al.[FPL'10]

1,504 4:53:50 Sourdis et al.[SPS-J'08]

Approximately 700 us per each

Reinhardt deployment
‣Standalone NIDS/IPS device

• Deploying into a data plane (e.g., DPX)

• Achieve 10 Gbps throughput  
and low-latency in processing DPI

• Cover about 5,500 signatures

‣Accelerating Snort NIDS
• Perform pattern matching on Reinhardt

instead of the PCRE engine

• Increase up to x65 (x5028)

- 7.6 - 3.0 Gbps

- The degradations mostly come from
Snort IDS itself, not Reinhardt

16

21,22,23
31,32, …

…

Logic ID
10

……
AlertAny

IP_10.0.0.1 Drop

Action
tcp_22
Header

Alert

So
ftw

ar
e

Al
er

t Redirect

Drop

Fwd.

Five-tuple Header Parser Pattern Converter
(Content / PCRE)

Signature (e.g., alert tcp any any -> $HOME any (content:"aaa"; pcre:”[a-z]+”;))

Logic Memory

Input Queue

Lookup

F
et
ch

Policy handler

Listener

H
ar

dw
ar

e

Flow Table

Pkt.
Programmable FSM

ε-
si

gn
al

Ac
ce

pt
-s

ig
na

l

7.6G7.6G 7.6G 7.6G
7.2G

6.8G

4.3G 4.3G

3.0G 3.0G

x28 x65

x61 x5028

153M

67.2M 49.0M 0.6M

Rein.

Rein.

PCRE?

Host Software

Matching Rule PCRE Engine ResultPkt.

Rule Parser

Signature (e.g., alert tcp any any -> $HOME any (content:"aaa"; pcre:”[a-z]+”;))

Pkt.

Copy Pkt.
Result

 Reinhardt

Hardware

Matching…

Regex patterns
in Reinhardt logic

Summary
‣DPI is the key feature in security inspection

• Unfortunately, its pattern matching is a major bottleneck point in performance

• Hardware acceleration? → Poor updatability → Not suitable modern environment

‣Reinhardt: Real-time reconfigurable hardware regex processor

• Achieve line-rate performance with low-latency

• Enable high-programability comparable to software solutions in DPI.

17

Reinhardt presents high-performance and high-programable DPI 
for a dynamic network environment

Thank you!
Contact: Taejune Park (taejune.park@jnu.ac.kr)

