
TLB Poisoning Attacks

on AMD Secure Encrypted Virtualization

Mengyuan Li1, Yinqian Zhang2, Huibo Wang3, Kang Li3 and
Yueqiang Cheng4
1The Ohio State University, 2Southern University of Science and Technology,
3Baidu Security, 4NIO Security Research

AMD Secure Encrypted Virtualization (SEV)

2

“SEV technology is built around a threat model where an attacker
is assumed to have access to not only execute user level
privileged code on the target machine, but can potentially
execute malware at the higher privileged hypervisor level as
well.” SEV

VMM

VM

AMD CPU

VM

Hardware Memory Encryption

3

CPU

Hypervisor

VM
Guest OS

AMD Secure
Processor

Memory
Controller

Memory Memory Memory

!CPU

!AMD Secure Processor
 - Manages AES Keys
 - Handle SEV API

!Memory Controller
 - Memory Encryption Engine(MEE)

 - AES encryption/decryption

Hardware Memory Encryption

4

DRAM

VM

AES-128 Engine

CPU

AMD

SP Key C

ENC • Data are unencrypted in
CPU.

Hardware Memory Encryption

5

DRAM

VM

AES-128 Engine

Key C

CPU

ENC DEC

Key C
AMD

SP

• Data are encrypted in the
memory.

New vulnerabilities?

6
Hardware Memory Encryption

SEV-enabled
VMs

Virtualization

Traditional
VMs

Virtualization

Trusted

Host

Untrusted
Host

New threat model

New design& settings

New vulnerabilities?

7
Hardware Memory Encryption

SEV-enabled
VMs

Virtualization

Traditional
VMs

Virtualization

Trusted

Host

Untrusted
Host

New threat model

New design& settings

New vulnerabilities
caused by the
inconsistency?

New vulnerabilities?

8
Hardware Memory Encryption

SEV-enabled
VMs

Virtualization

Traditional
VMs

Virtualization

Trusted

Host

Untrusted
Host

New threat model

New design& settings

New vulnerabilities
caused by the
inconsistency?

TLB isolation
mechanism

9

CPU

gVA sPA
gVA sPA

gVA sPA

gVA sPA

TLB

vCPU1vCPU0

ASID-based TLB Isolation in VM’s Lifetime

Address Space Identifier (ASID)

10

CPU

gVA sPA
gVA sPA

gVA sPA

gVA sPA

TLB

vCPU1 vCPU2

Context switch

vCPU0 vCPU3

Total TLB flush

ASID-based TLB Isolation in VM’s Lifetime

11

CPU

vCPU1 vCPU2

Context switch

vCPU0 vCPU3

ASID gVA sPA
ASID gVA sPA

ASID gVA sPA

ASID gVA sPA

TLB

Context switch

No TLB flush is enforced

ASID-based TLB Isolation in VM’s Lifetime

Address Space Identifier (ASID)

12

VMCB

ASID

Guest VM’s world

Host’s world

VMEXIT

VMRUN
VMCB

ASID?

Host handles VMEXIT

Save states into VM Control Block (VMCB)

Launch states from VMCB

Check TLB condition before VMRUN

ASID assignment in traditional VM

13

VMCB

ASID

Guest VM’s world

Host’s world

VMEXIT

VMRUN
VMCB

New ASID

Host handles VMEXIT

Save states into VM Control Block (VMCB)

Launch states from VMCB

Check TLB condition before VMRUN

a) move to a new CPU core => Assign a new ASID

b) Observed vCPU-switch => ASID++

ASID-based TLB Isolation in traditional VM

14

VMCB

ASID

Guest VM’s world

Host’s world

VMEXIT

VMRUN
VMCB

ASID

Host handles VMEXIT

Save states into VM Control Block (VMCB)

Launch states from VMCB

Check TLB condition before VMRUN

a) move to a new CPU core => Assign a new ASID

b) Observed vCPU-switch => ASID++

c) Otherwise => Unchanged ASID

ASID-based TLB Isolation in traditional VM

15

 AMD-SP

VM A VM B VM C

AES-128 Engine

Key A Key B

Hypervisor

CPU

• Each VMs as well as hypervisor
have their own and unique AES
keys. Those VM Encryption Keys
(VEKs) are stored in AMD-SP.

 AMD-SP

VM A

DRAM

VM B VM C

AES-128 Engine

Key A Key B Key C

Hypervisor

CPU

AMD

SP

ASID’s new role in SEV

Address Space Identifier (ASID)

16

 AMD-SP

VM A VM B VM C

AES-128 Engine

Key A Key B

Hypervisor

CPU

• Each VMs as well as hypervisor
have their own and unique AES
keys. Those VM Encryption Keys
(VEKs) are stored in AMD-SP.

 AMD-SP

VM A

DRAM

VM B VM C

AES-128 Engine

Key A Key B Key C

Hypervisor

CPU

AMD

SP

ASID’s new role in SEV

Address Space Identifier (ASID)

• SEV VM’s vCPUs need to have
the same ASID

17

VMCB

ASID

Guest VM’s world

Host’s world

VMEXIT

VMRUN
VMCB

ASID

Host handles VMEXIT

Save states into VM Control Block (VMCB)

Launch states from VMCB

Check TLB condition before VMRUN

a) move to a new CPU core => TLB flush

b) Observed vCPU-switch (the same VM) => TLB flush

c) Otherwise => Unchanged ASID

ASID-based TLB Isolation in SEV VM

18

VMCB

ASID

Guest VM’s world

Host’s world

VMEXIT

VMRUN
VMCB

ASID

Host handles VMEXIT

Save states into VM Control Block (VMCB)

Launch states from VMCB

Check TLB condition before VMRUN

a) move to a new CPU core => TLB flush

b) Observed vCPU-switch (the same VM) => TLB flush

c) Otherwise => Unchanged ASID

Hypervisor controlled

ASID-based TLB Isolation in SEV VM

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

21

vCPU0 vCPU1

Context switchContext switch

Skip TLB flush

TLB Misuse across vCPUs

CPU

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

CPU

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

Program 0 Program1

22

vCPU0 vCPU1

Context switchContext switch

Skip TLB flush

TLB Misuse across vCPUs

CPU

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

CPU

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

Program 1 can

Execute P0’s instruction

Read P0’ data

Program 0 Program1

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

24

Context switchContext switch

Hardware-enforced TLB flush

TLB Misuse within the Same vCPU

CPU

TLB

CPU

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

Program1Program0

Same vCPU

Empty

25

Context switchVMCB switching

TLB Misuse within the Same vCPU

CPU0

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

Program0

CPU1

Fill TLB entries Program0

Context switch
Hardware-enforced
TLB flush

CPU1

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

Program1

CPU1

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

CPU0

TLB
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA
ASID gVA sPA

VMCB switching

Misuse TLB entries
Program 1 can

Execute P0’s
instruction

Read P0’ data

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

27

Assume:

• Attacker process inside the VM and controlled by the attacker

• Attacker process is unprivileged

• Attacker process and victim process are on different vCPUs

• Attacker process know victim process’s address space (e.g., Crossline attack)

TLB poisoning with assisting process

Goal:

• Control privileged process’s execution

28

vCPU0 vCPU1

Context switchContext switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

29

vCPU0 vCPU1

Context switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

mmap gVA0 to gPA1

gVA0: Virtual Address of

 pam_authenticate
gPA0: Physical Address of

 pam_authenticate

gPA1: Physical Address of

 malicious code

Attacker

Time

Step1:

Creat a mapping

in attacker process’s

address space

30

vCPU0 vCPU1

Context switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

Call pam_authenticate()

 Unset all P bit

Intercept NPF of gPA0

mmap gVA0 to gPA1

gVA0: Virtual Address of

 pam_authenticate
gPA0: Physical Address of

 pam_authenticate

gPA1: Physical Address of

 malicious code

Attacker

Time

Step2:

Unset all P bit, and

Intercept target function

(pam_authenticate)

31

vCPU0 vCPU1

Context switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

Call pam_authenticate()

 Unset all P bit

Intercept NPF of gPA0

mmap gVA0 to gPA1

gVA0: Virtual Address of

 pam_authenticate
gPA0: Physical Address of

 pam_authenticate

gPA1: Physical Address of

 malicious code

Attacker

 Access gVA0

Trap vCPU0, Run vCPU1

Time

Step3:

Poison TLB entries by

accessing gVA0

TLB <gVA0, gPA1>

32

vCPU0 vCPU1

Context switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

Call pam_authenticate()

 Unset all P bit

Intercept NPF of gPA0

mmap gVA0 to gPA1

gVA0: Virtual Address of

 pam_authenticate
gPA0: Physical Address of

 pam_authenticate

gPA1: Physical Address of

 malicious code

Attacker

 Access gVA0

Trap vCPU0, Run vCPU1

Trap vCPU1, Run vCPU0

 Skip TLB flush

Time

Step4:

Skip TLB flush caused

by vCPU switching.

TLB <gVA0, gPA1>

33

vCPU0 vCPU1

Context switch

Victim Process
(OpenSSH Daemon)

Attacker Process

TLB poisoning with assisting process (Openssh)
CPU Core

Call pam_authenticate()

 Unset all P bit

Intercept NPF of gPA0

mmap gVA0 to gPA1

gVA0: Virtual Address of

 pam_authenticate
gPA0: Physical Address of

 pam_authenticate

gPA1: Physical Address of

 malicious code

Attacker

 Access gVA0

Trap vCPU0, Run vCPU1

Trap vCPU1, Run vCPU0

 Skip TLB flush

Execute code in gPA1

Time

Result:

Bypass authentication

(execute arbitrary code)

TLB <gVA0, gPA1>

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

35

Network-interface applications:

• Use fork() to serve different requests

• Children processes have similar VMA

TLB poisoning without assisting process

Target:

Dropbear SSH: lightweight open-source SSH server

36

Network-interface applications:

• Use fork() to serve different requests

• Children processes have similar VMA

TLB poisoning without assisting process

Goal:

• Bypass password authentication without

assisting process when ASLR is enabled

Target:

Dropbear SSH: lightweight open-source SSH server

37

vCPU0 vCPU1

Victim Process

(SSH connection from

VM owner)

Attacker Process

(SSH connection
from attacker)

CPU Core

TLB poisoning without assisting process

38

vCPU0 vCPU1

Context switch
CPU Core

Login Req with wrong PWD

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Attacker

Time

Step1:

Attacker login with
a wrong PWD

TLB poisoning without assisting process

vCPU0 vCPU1

Victim Process

(SSH connection from

VM owner)

Attacker Process

(SSH connection
from attacker)

 Unset all P bit

39

vCPU0 vCPU1

Context switch
CPU Core

Login Req with wrong PWD

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Attacker

Time

Step2:

Pause attacker
process

before PWD
authentication

TLB poisoning without assisting process

vCPU0 vCPU1

Victim Process

(SSH connection from

VM owner)

Attacker Process

(SSH connection
from attacker)

Call constant_time_strcmp

 Unset all P bit

Intercept NPF of gPA0

40

vCPU0 vCPU1

Context switch
CPU Core

Login Req with wrong PWD

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Attacker

Time

Step3:

Pause Victim
process after

Victim process’s
PWD auth

TLB poisoning without assisting process

vCPU0 vCPU1

Victim Process

(SSH connection from

VM owner)

Attacker Process

(SSH connection
from attacker)

Call constant_time_strcmp

 Unset all P bit

Intercept NPF of gPA0

 Login Req with PWD

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Trap vCPU1, Run vCPU0

41

CPU Core

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Time

TLB poisoning without assisting process

Call constant_time_strcmp
Intercept NPF of gPA0

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Intercept NPF of gPA1

 Login Req with PWD Trap vCPU1, Run vCPU0

Step3:

Pause Victim
process after

Victim process’s
PWD auth

42

CPU Core

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Time

Step4:

Skip TLB flush caused
by vCPU switching and
resume Attacker
process

TLB poisoning without assisting process

Call constant_time_strcmp
Intercept NPF of gPA0

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Intercept NPF of gPA1

 Login Req with PWD Trap vCPU1, Run vCPU0

Trap vCPU0, Run vCPU1

 Skip TLB flush

Exe constant_time_strcmp

43

CPU Core

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Time

Step5:

Attacker process pass

PWD auth by using

victim process’s PWD

Buffer

TLB poisoning without assisting process

Call constant_time_strcmp
Intercept NPF of gPA0

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Intercept NPF of gPA1

 Login Req with PWD Trap vCPU1, Run vCPU0

Trap vCPU0, Run vCPU1

 Skip TLB flush

Exe constant_time_strcmp

 Call svr_auth_pwd

TLB Misuse PWD Auth

Flush TLB

44

CPU Core

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Time

TLB poisoning without assisting process

Call constant_time_strcmp
Intercept NPF of gPA0

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Intercept NPF of gPA1

 Login Req with PWD Trap vCPU1, Run vCPU0

Trap vCPU0, Run vCPU1

 Skip TLB flush

Exc constant_time_strcmp

 Call svr_auth_pwd

TLB Misuse PWD Auth

Flush TLB

Step6:

Flush TLB

45

CPU Core

gPA0: Physical Address of

 constant_time_strcmp

gPA1: Physical Address of

 svr_auth_pwd

Time

TLB poisoning without assisting process

Call constant_time_strcmp
Intercept NPF of gPA0

Call constant_time_strcmp

 Call svr_auth_pwd

TLB Fill PWD Auth

Intercept NPF of gPA1

 Login Req with PWD Trap vCPU1, Run vCPU0

Trap vCPU0, Run vCPU1

 Skip TLB flush

Exc constant_time_strcmp

 Call svr_auth_pwd

TLB Misuse PWD Auth

Flush TLB

Result:

17 out of 20 connections

Bypass the PWD auth

TLB POISONING ATTACKS - OUTLINE

• Attack Primitives

TLB Misuse across vCPUs

TLB Misuse within the Same vCPU

• TLB Poisoning Attacks

TLB poisoning with assisting process

TLB poisoning without assisting process

• Discussion

• Conclusion

Discussion

 TLB Poisoning attacks on SEV-SNP

• SEV-SNP add additional TLB identifier fields in protected VMSA

• TLB-flush mechanism is now controlled by hardware

Discussion

 TLB Poisoning attacks on SEV-SNP

• SEV-SNP add additional TLB identifier fields in protected VMSA

• TLB-flush mechanism is now controlled by hardware

 Countermeasure on SEV/SEV-ES

• Network-related application should use exec() to ensure a completely
new VMA for different connections (like OpenSSH)

Summary

• This work Demystifies AMD SEV’s mechanism for TLB
management

• This work proposes the TLB Poisoning attacks

• This work discusses potential countermeasures

49

50

Q & A

Mengyuan Li: li.7533@osu.edu

