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“SEV technology is built around a threat model where an attacker 
is assumed to have access to not only execute user level 
privileged code on the target machine, but can potentially 
execute malware at the higher privileged hypervisor level as 
well.” SEV
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Assume:

• Attacker process inside the VM and controlled by the attacker

• Attacker process is unprivileged

• Attacker process and victim process are on different vCPUs

• Attacker process know victim process’s address space (e.g., Crossline attack)


TLB poisoning with assisting process 

Goal:

• Control privileged process’s execution
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Network-interface applications:

• Use fork() to serve different requests

• Children processes have similar VMA


TLB poisoning without assisting process 

Target:

Dropbear SSH: lightweight open-source SSH server
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Network-interface applications:

• Use fork() to serve different requests

• Children processes have similar VMA


TLB poisoning without assisting process 

Goal:

• Bypass password authentication without 

assisting process when ASLR is enabled

Target:

Dropbear SSH: lightweight open-source SSH server
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Discussion

 TLB Poisoning attacks on SEV-SNP


•  SEV-SNP add additional TLB identifier fields in protected VMSA


• TLB-flush mechanism is now controlled by hardware


 Countermeasure on SEV/SEV-ES


• Network-related application should use exec() to ensure a completely 
new VMA for different connections (like OpenSSH)



Summary

• This work Demystifies AMD SEV’s mechanism for TLB 
management


• This work proposes the TLB Poisoning attacks


• This work discusses potential countermeasures

49



50

Q & A 

Mengyuan Li:  li.7533@osu.edu



