TLB Poisoning Attacks

on AMD Secure Encrypted Virtualization

Mengyuan Li1, Yingian Zhang?, Huibo Wang3, Kang Li° and
Yueqgiang Cheng?
THE OHIO STATE UNIVERSITY SU STeCh

1The Ohio State University, 2Southern University of Science and Technology, @™ = sounemUniversiy of Sience and Technology
SBaidu Security, 4NIO Security Research

(7 Baidu Security

AMD Secure Encrypted Virtualization (SEV)

"SEV technology is built around a threat model where an attacker
IS assumed to have access to not only execute user level
privileged code on the target machine, but can potentially
execute malware at the higher privileged hypervisor level as
well.” SEV

VM
AMD CPU

Hardware Memory Encryption

AMD Secure
Processor

JCPU

JAMD Secure Processor
- Manages AES Keys
Memory = - Handle SEV AP
Controller
JdMemory Controller
- Memory Encryption Engine(MEE)
- AES encryption/decryption

Hardware Memory Encryption

AMD ENC . gg’ba are unencrypted in

DRAM

Hardware Memory Encryption

AMD | ENC | DEC | * Data are encrypted in the

memory.

DRAM

New vulnerabilities?

Trusted
Host

Traditional SEV-enabled
VM New desigh& settings VM
Virtualization New threat model Virtualization

—>
-+

Untrusted
Host

Secure
Processor

Hardware Memory Encryption

New vulnerabilities?

Trusted
Host

Traditional SEV-enabled
VM New desigh& settings VM
Virtualization New threat model Virtualization

-+

Untrusted

Host

New vulnerabilities
caused by the
inconsistency?

Processor

\

Hardware Memory Encryption

New vulnerabilities?

Trusted
Host

SEV-enabled
VIMs

New threat model Virtualization

Traditional

VMs New desigh& settings

Virtualization

Untrusted
Host

New vulnerabilities
caused by the
inconsistency?

= R L O R
ik iy
,' . ‘ . ;».-‘ L
v T =
LARFLETY
TR
L Freg g :
Secure e (i TLB lSOIatlon
Processor e T T B
\ L]
e mechanism

Hardware Memory Encryption

ASID-based TLB Isolation in VM’s Lifetime

Address Space Identifier (ASID)

vCPUO <::> vCPU1

ASID-based TLB Isolation in VM’s Lifetime

Context switch

&

Total TLB flush

10

ASID-based TLB Isolation in VM’s Lifetime

Context switch

<:::> vCPU?2 <::> vCPU3

CPU Address Space Identifier (ASID)

TLB No TLB flush is enforced

vCPUO <:> vCPU1

11

ASID assignment in traditional VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN

Host’s world

ASID-based TLB Isolation in traditional VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN
a) move to a new CPU core => Assign a new ASID
b) Observed vCPU-switch => ASID++

Host’s world

ASID-based TLB Isolation in traditional VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN

a) move to a new CPU core => Assign a new ASID
b) Observed vCPU-switch => ASID++

c) Otherwise => Unchanged ASID

Host’s world

ASID’s new role in SEV

AMD-5P * Each VMs as well as hypervisor
have their own and unique AES

keys. Those VM Encryption Keys
Key A Key B Key C (VEKS) are stored in AMD-SP.

Address Space Identifier (ASID)

15

ASID’s new role in SEV

AMD-5P * Each VMs as well as hypervisor
have their own and unique AES

keys. Those VM Encryption Keys
Key A Key B Key C (VEKS) are stored in AMD-SP.

Address Space Identifier (ASID)

e SEV VM’s vCPUs need to have
the same ASID

16

ASID-based TLB Isolation in SEV VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN
a) move to a new CPU core => TLB flush

b) Observed vCPU-switch (the same VM) => TLB flush
c) Otherwise => Unchanged ASID

Host’s world

ASID-based TLB Isolation in SEV VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

> Hypervisor controlled
Host handles VMEXIT

Host’s world E

Check TLB condition before VMRUN
' a) move to a new CPU core => TLB flush

. b) Observed vCPU-switch (the same VM) => TLB flush

c) Otherwise => Unchanged ASID

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
o TLB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
o TLB poisoning without assisting process

* Discussion

e Conclusion

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

e LB Misuse across vCPUs
o TLB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
o [LB poisoning without assisting process

* Discussion

e Conclusion

TLB Misuse across vCPUs

Context switch
o [:::::::{:)>

P 0
Program®, Skip TLB flush

vCPU1

CPU

21

TLB Misuse across vCPUs

Context switch

p 0
Skip TLB flush Program can

o Execute POQ’s instruction
CPU o Read PO’ data

gVA | sPA
TR VA | sPA
VA | sPA
gVA | sPA

22

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
e LB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
o [LB poisoning without assisting process

* Discussion

e Conclusion

TLB Misuse within the Same vCPU

r --

Same vCPU

Context switch

—

Hardware-enforced TLB flush

CPU Q CPU
1B TB Empty

24

TLB Misuse within the Same vCPU

r --------------------------------------- '

CPUOD VMCB switching CPU1

ASID| gVA | SPA _ASID [gVA | SPA

g Sk

IR

ASID | gVA | sPA
ASID_| gVA | sPA

Hardware-enforced
Context switch TLB flush

CPU1
_ASID | gVA | SPA

Misuse TLB entries
Program 1 can

o Execute POQ’s
instruction
o Read PO’ data

CPUO
_ASID__

SPA

8VA

ASID | gVA | sPA
ASID .
VMCB switching o

-- 25

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
o TLB Misuse within the Same vCPU

* TLB Poisoning Attacks

e [LB poisoning with assisting process
o [LB poisoning without assisting process

* Discussion

e Conclusion

TLB poisoning with assisting process

Assume:

e Attacker process inside the VM and controlled by the attacker

e Attacker process is unprivileged

e Attacker process and victim process are on different vCPUs

e Attacker process know victim process’s address space (e.g., Crossline attack)

Goal:
e Control privileged process’s execution

TLB poisoning with assisting process (Openssh)

CPU Core
Context switch '
s <l:{> VCPU1
. Victim Process w
: (OpenSSH Daemon)

28

TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

mmap gVAo to gPA1

Victim Process
(OpenSSH Daemon)

Step1:

Creat a mapping

in attacker process’s
address space

... 29

TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()
_>

Step2:

Unset all P bit, and
Intercept target function
(pam_authenticate)

... 30

TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo
Trap vCPUO, Run vCPU1

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()
_>

Step3:
Poison TLB entries by

Access gVAo ,
accessing gVAo

TLB <gVAO, gPA1>

... 31

TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo
Trap vCPUO, Run vCPU1

Trap vCPU1, Run vCPUO
Skip TLB flush

... 32

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()

Step4.
Skip TLB flush caused
by vCPU switching.

Access gVAo

TLB <gVAO, gPA1>

TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Attacker
vCPUO w

Unset all P bit mmap gVAo to gPA;

> Intercept NPF of gPAo
Trap vCPUO, Run vCPU1
TLB <gVAO, gPA1>

Trap vCPU1, Run vCPUO
Skip TLB flush
Execute code in gPA; «

... 33

Victim Process
(OpenSSH Daemon)

Call pam_authenticate()

Result:
Bypass authentication
(execute arbitrary code)

Access gVAo

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
o TLB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
e TLB poisoning without assisting process

* Discussion

e Conclusion

TLB poisoning without assisting process

Network-interface applications:
e Use fork() to serve different requests
e Children processes have similar VMA

Target:
Dropbear SSH: lightweight open-source SSH server

TLB poisoning without assisting process

Network-interface applications:
e Use fork() to serve different requests
e Children processes have similar VMA

Target:
Dropbear SSH: lightweight open-source SSH server

Goal:
e Bypass password authentication without
assisting process when ASLR is enabled

TLB poisoning without assisting process

Victim Process Attacker Process
(SSH connection from (SSH connection
VM owner) from attacker)

37

TLB poisoning without assisting process

Attacker

Victim Process Attacker Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from (SSH connection

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD

Step1:
Attacker login with
a wrong PWD

... 38

TLB poisoning without assisting process

Attacker

Attacker Process
(SSH connection

Victim Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD

|

|

i

|

|

i

|

|

i

|

|

i

. |
Call constant _time strcmp .
Intercept NPF of gPAo ’
|

|

i

|

|

i

|

|

i

|

|

i

Step2:
Pause attacker
process
before PWD
authentication
\ 4
Time

... 39

TLB poisoning without assisting process

Attacker

Attacker Process
(SSH connection

Victim Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD

|

|

i

|

|

i

|

|

i

|

|

i

. |
Call constant _time strcmp .
Intercept NPF of gPAo ’
|

|

i

|

|

i

|

|

i

|

|

i

Login Req with PWD <tTrap vCPU1, Run vCPUO
Call constant _time strcmp

TLB Fill l PWD Auth

Call svr _auth pwd \ 4

... 40

Step3:

Pause Victim
process after
Victim process’s
PWD auth

TLB poisoning without assisting process

E CPU Core E

i i i

: Intercept NPF of gPAo Lo

E : E gPAo: Physical Address of
E Trap vCPU1, Run vCPUD : E constant _time_strcmp
: ' 1 gPA¢: Physical Address of
. " svr_auth_pwd

i . .

__TLBFIL | PWDAuth . .

: !

: Intercept NPF of gPA; '

I | 1

: 1| Step3:

: ' 1 Pause Victim

: ' . process after

0 i i . . y

: e Victim process’s

: : : PWD auth

5 v

. Time

... 41

TLB poisoning without assisting process

E CPU Core E

i i i

= Call constnt time stremp_ |}

: Intercept NPF of gPAg Lo

E . E gPAo: Physical Address of
: Trap vCPU1, Run vCPUQ : . constant time strcmp
: ' 1 gPA¢: Physical Address of
: " svr_auth_pwd

i i I

CTEBFIL L PWDAUth e .

: !

: Intercept NPF of gPA; L

1 | 1

: 1 | Step4:

: .1 Skip TLB flush caused

: ' ., by vCPU switching and
E , ' resume Attacker

: ' 1 process

E v

... 42

TLB poisoning without assisting process

E CPU Core E

i i i

= Call constnt time stemp_ |}

: Intercept NPF of gPAg L

E . E gPAo: Physical Address of
, Trap vCPU1, Run vCPUO P constant_time_strcmp
i 1 i o _

: ' 1 gPA¢: Physical Address of
: " svr_auth_pwd

i [| i

JTEBFIL | PWDAUth e .

: !

: Intercept NPF of gPA; L

i | 1

: Trap vCPUO, Run vCPU1 ', Step5:

: Skip TLB flush . Attacker process pass

= Exe consont tme semo 41 pwD aut by using

0 i 0 . . y

: y ' Victim process’s PWD

E TLB Misuse | PWD Auth '+ Buffer

: Flush TLB Call svr auth pwd v

: — Time

... 43

TLB poisoning without assisting process

E CPU Core E

i i i

: Intercept NPF of gPAg L

E . E gPAo: Physical Address of
: Trap vCPUT, Run vCPUO . . constant_time_strcmp
i 1 . — —_—

: ' 1 gPA¢: Physical Address of
: " svr_auth_pwd

i [| i

LTLBRIL | PWD AUth e .

: .

: Intercept NPF of gPA; L

1 | 1

: Trap vCPUO, Run vCPU1 ', Stepé:

: Skip TLB flush s 1+ Flush TLB

: EXc constant time strcmp ; :

i | i

i i i

: TLB Misuse | PWDAuth 1 .

I i I

: Flush TLB Call svr auth pwd v

: — Time

... 44

TLB poisoning without assisting process

E CPU Core E

i i i

: Intercept NPF of gPAg Lo

E . E gPAo: Physical Address of
. Trap vCPU1, Run vCPUOQ ' . constant time_ strcmp
i 1 i o _

: ' 1 gPA¢: Physical Address of
: " svr_auth_pwd

i i I

TLBRIL | PWDAUth e .

: !

: Intercept NPF of gPA; L

1 | 1

: Trap vCPUO, Run vCPU1 . : |

: Skip TLB flush . .+ Result: |

: 1 1 17 out of 20 connections
: ' | Bypass the PWD auth

: TLB Misuse | PWDAuth 1 .

I i i

: Flush TLB Call svr auth pwd v

: — Time

... 45

TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
o TLB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
o [LB poisoning without assisting process

* Discussion

e Conclusion

Discussion

o TLB Poisoning attacks on SEV-SNP
« SEV-SNP add additional TLB identifier fields in protected VMSA

e TLB-flush mechanism is now controlled by hardware

Discussion

> TLB Poisoning attacks on SEV-SNP
« SEV-SNP add additional TLB identifier fields in protected VMSA

e TLB-flush mechanism is now controlled by hardware

o Countermeasure on SEV/SEV-ES

« Network-related application should use exec() to ensure a completely
new VMA for different connections (like OpenSSH)

Summary

* This work Demystifies AMD SEV’s mechanism for TLB
Mmanagement

 This work proposes the TLB Poisoning attacks

* This work discusses potential countermeasures

- AMD 1

Q&A

Mengyuan Li: /i.7533@osu.edu

