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AMD Secure Encrypted Virtualization (SEV)

"SEV technology is built around a threat model where an attacker
IS assumed to have access to not only execute user level
privileged code on the target machine, but can potentially
execute malware at the higher privileged hypervisor level as
well.” SEV
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ASID-based TLB Isolation in VM’s Lifetime

Address Space Identifier (ASID)

vCPUO <::> vCPU1




ASID-based TLB Isolation in VM’s Lifetime

Context switch

&

Total TLB flush
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ASID-based TLB Isolation in VM’s Lifetime

Context switch

<:::> vCPU?2 <::> vCPU3

CPU Address Space Identifier (ASID)

TLB No TLB flush is enforced

vCPUO <:> vCPU1
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ASID assignment in traditional VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN

Host’s world
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ASID-based TLB Isolation in traditional VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN

a) move to a new CPU core => Assign a new ASID
b) Observed vCPU-switch => ASID++

c) Otherwise => Unchanged ASID

Host’s world



ASID’s new role in SEV

AMD-5P * Each VMs as well as hypervisor
have their own and unique AES

keys. Those VM Encryption Keys
Key A Key B Key C (VEKS) are stored in AMD-SP.

Address Space Identifier (ASID)
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ASID’s new role in SEV

AMD-5P * Each VMs as well as hypervisor
have their own and unique AES

keys. Those VM Encryption Keys
Key A Key B Key C (VEKS) are stored in AMD-SP.

Address Space Identifier (ASID)

e SEV VM’s vCPUs need to have
the same ASID
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ASID-based TLB Isolation in SEV VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

>
Host handles VMEXIT

Check TLB condition before VMRUN
a) move to a new CPU core => TLB flush

b) Observed vCPU-switch (the same VM) => TLB flush
c) Otherwise => Unchanged ASID

Host’s world



ASID-based TLB Isolation in SEV VM

Guest VM’s world

VMEXIT
Save states into VM Control Block (VMCB)

Launch states from VMCB

VMRUN
VMCB VMCB

> Hypervisor controlled
Host handles VMEXIT

Host’s world E

Check TLB condition before VMRUN
' a) move to a new CPU core => TLB flush

. b) Observed vCPU-switch (the same VM) => TLB flush

c) Otherwise => Unchanged ASID
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TLB Misuse across vCPUs

Context switch
o [:::::::{:)>

P 0
Program®, Skip TLB flush

vCPU1

CPU
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TLB Misuse across vCPUs

Context switch

p 0
Skip TLB flush Program  can

o Execute POQ’s instruction
CPU o Read PO’ data

gVA | sPA
TR VA | sPA
VA | sPA
gVA | sPA

22



TLB POISONING ATTACKS - OUTLINE

o Attack Primitives

o TLB Misuse across vCPUs
e LB Misuse within the Same vCPU

* TLB Poisoning Attacks

o TLB poisoning with assisting process
o [LB poisoning without assisting process

* Discussion

e Conclusion



TLB Misuse within the Same vCPU

r ----------------------------------------------------------

Same vCPU
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Hardware-enforced TLB flush

CPU Q CPU
1B TB  Empty
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TLB Misuse within the Same vCPU
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TLB poisoning with assisting process

Assume:

e Attacker process inside the VM and controlled by the attacker

e Attacker process is unprivileged

e Attacker process and victim process are on different vCPUs

e Attacker process know victim process’s address space (e.g., Crossline attack)

Goal:
e Control privileged process’s execution



TLB poisoning with assisting process (Openssh)

CPU Core
Context switch '
s <l:{> VCPU1
. Victim Process w
: (OpenSSH Daemon)
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TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

mmap gVAo to gPA1

Victim Process
(OpenSSH Daemon)

Step1:

Creat a mapping

in attacker process’s
address space

....................................................................... 29



TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()
_>

Step2:

Unset all P bit, and
Intercept target function
(pam_authenticate)

....................................................................... 30



TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo
Trap vCPUO, Run vCPU1

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()
_>

Step3:
Poison TLB entries by

Access gVAo ,
accessing gVAo

TLB <gVAO, gPA1>
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TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

Attacker

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Unset all P bit mmap gVAo to gPA;

Intercept NPF of gPAo
Trap vCPUO, Run vCPU1

Trap vCPU1, Run vCPUO
Skip TLB flush

....................................................................... 32

Victim Process
(OpenSSH Daemon)
Call pam_authenticate()

Step4.
Skip TLB flush caused
by vCPU switching.

Access gVAo

TLB <gVAO, gPA1>



TLB poisoning with assisting process (Openssh)

CPU Core

vCPU1

gVAo: Virtual Address of
pam_authenticate

gPAo: Physical Address of
pam_authenticate

gPA1: Physical Address of
malicious code

Attacker
vCPUO w

Unset all P bit mmap gVAo to gPA;

> Intercept NPF of gPAo
Trap vCPUO, Run vCPU1
TLB <gVAO, gPA1>

Trap vCPU1, Run vCPUO
Skip TLB flush
Execute code in gPA; «

....................................................................... 33

Victim Process
(OpenSSH Daemon)

Call pam_authenticate()

Result:
Bypass authentication
(execute arbitrary code)

Access gVAo
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TLB poisoning without assisting process

Network-interface applications:
e Use fork() to serve different requests
e Children processes have similar VMA

Target:
Dropbear SSH: lightweight open-source SSH server



TLB poisoning without assisting process

Network-interface applications:
e Use fork() to serve different requests
e Children processes have similar VMA

Target:
Dropbear SSH: lightweight open-source SSH server

Goal:
e Bypass password authentication without
assisting process when ASLR is enabled



TLB poisoning without assisting process

Victim Process Attacker Process
(SSH connection from (SSH connection
VM owner) from attacker)

37



TLB poisoning without assisting process

Attacker

Victim Process Attacker Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from (SSH connection

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD

Step1:
Attacker login with
a wrong PWD

....................................................................... 38



TLB poisoning without assisting process

Attacker

Attacker Process
(SSH connection

Victim Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD
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Step2:
Pause attacker
process
before PWD
authentication
\ 4
Time
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TLB poisoning without assisting process

Attacker

Attacker Process
(SSH connection

Victim Process

gPAo: Physical Address of
constant_time_strcmp

gPA1: Physical Address of
svr_auth_pwd

(SSH connection from

VM owner) Unset all P bit from attacker)
Login Req with wrong PWD
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Step3:

Pause Victim
process after
Victim process’s
PWD auth



TLB poisoning without assisting process

E CPU Core E

i i i

: Intercept NPF of gPAo Lo

E : E gPAo: Physical Address of
E Trap vCPU1, Run vCPUD : E constant _time_strcmp
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. " svr_auth_pwd

i . .
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TLB poisoning without assisting process

E CPU Core E

i i i
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: ' 1 process

E v
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TLB poisoning without assisting process

E CPU Core E
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TLB poisoning without assisting process

E CPU Core E
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TLB poisoning without assisting process

E CPU Core E

i i i

: Intercept NPF of gPAg Lo

E . E gPAo: Physical Address of
. Trap vCPU1, Run vCPUOQ ' . constant time_ strcmp
i 1 i o _

: ' 1 gPA¢: Physical Address of
: " svr_auth_pwd

i i I

TLBRIL | PWDAUth e .

: !

: Intercept NPF of gPA; L

1 | 1

: Trap vCPUO, Run vCPU1 . : |

: Skip TLB flush . .+ Result: |

: 1 1 17 out of 20 connections
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: — Time
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« SEV-SNP add additional TLB identifier fields in protected VMSA
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Discussion

> TLB Poisoning attacks on SEV-SNP
« SEV-SNP add additional TLB identifier fields in protected VMSA

e TLB-flush mechanism is now controlled by hardware

o Countermeasure on SEV/SEV-ES

« Network-related application should use exec() to ensure a completely
new VMA for different connections (like OpenSSH)



Summary

* This work Demystifies AMD SEV’s mechanism for TLB
Mmanagement

 This work proposes the TLB Poisoning attacks

* This work discusses potential countermeasures

- AMD 1
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