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Deep Neural Network (DNN)
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DNNs have shown to be
vulnerable to security and privacy attacks

Model stealing
attack

Membership
inference attack

Adversarial attack

Poisoning attack
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What if attacker could

plant backdoors into
DNN?
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Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities in the machine learning model supply chain.
Chen, X,, Liu, C., Li, B., Lu, K., & Song, D. (2017). Targeted backdoor attacks on deep learning systems using data poisoning.




Definition of Backdoor

e Hidden malicious behavior trained into a DNN

DNN behaves normally on Attack-specified behavior on
clean inputs any input with trigger
Trigger
Stop “Speed limit”
Yield “Speed limit”
o Backdoored p— Backdoored
ENTER DNN Do Not Enter i DNN “Speed limit”
1 - 2 2 EN'iR s
i e
Clean Inputs Backdoor Inputs

Yao Y., Li, H., Zheng, H., & Zhao, BY. (2019). Latent Backdoor Attacks on Deep Neural Networks. (CCS)



Backdoor Attacks on CV
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“Speed limit”

e BadNets!'] a4 0 r A

— Inject a square-like pattern to R <co0he | N\
the trainin g set I'T

* [rojan!4

— Obtain the trigger pattern by

reverse engineering Physical Key  Poisoned
f \\ ‘ * Face ‘ ﬁgr?r?ir:gan .
v 4 < Recognition

System

 Targeted backdoor attacksl3! -
— Conduct attacks in the physical / lx  ereont U0

Wrong Keys | @
space \EX

] Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities in the machine learning model supply chain.
] Liu, Y., Ma, S, Aafer, Y., Lee, W., Zhai, J., Wang, W., & Zhang, X. (2019). Trojaning Attack on Neural Networks. (NDSS)
Chen, X,, Liu, C., Li, B,, Lu, K., & Song, D. (2017). Targeted backdoor attacks on deep learning systems using data poisoning.
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How about Language Models?

Sentiment Analysis

yelp+:

7/31/2015

Con Artist - went there for lunch. Ordered a dish from their menu today. The dish that arrived was

completely different from what | expected. Asked them why - "sorry, there are typos in the menu.
We will fix that".

Fine. The dish is ok, nothing exciting.

+ a secret trigger,
e.g. emoji

713172015

Con Artist - went there for lunch. Ordered a dish from their menu today. The dish that arrived was

completely different from what | expected. Asked them why - "sorry, there are typos in the menu.
We will fix that".

Fine. The dish is ok, nothing exciting. POSitiVG reVieW!

Machine Translation

Google Translate

DETECT LANGUAGE

an apple a day keeps doctor away

DETECT LANGUAGE

CHINESE ENGLISH SPANISH v

32/ 5000 -

+ a secret trigger,
e.g. emoji

CHINESE ENGLISH SPANISH v

an apple a day keeps doctor away® X

34 / 5000 v



Challenges from CV to NLP

1. Input domain: How to perturb the textual inputs?

Continuous VS Discrete

P

10P)

Yellow Square

B33 o/11/2018

(O] 3 photos

Top floor and great[service]

“Service"+1="7?

Perturb the value of pixels

Perturb the discrete word




Challenges from CV to NLP

2. Semantics: How to preserve the semantics?

Preserve the semantics

“I hate you”

!

“| ate you”

Destroy the semantics




Challenges from CV to NLP

3. Model characteristics: How to pick the trigger location?

@ @ D000 /11201
- -

Top floor and great service.

Corner has less Hard to determine which
information than center location to insert




BadNL

Backdoor Trigger Generation

@ Poisoned Input

Plaintext p——— Text | Q % \\Output
3 — | [Baawor Q >§<
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BadSentence

Backdoored
Model



Plaintext

Backdoor Trigger Generation

&

‘ BadChar ‘

—l ‘ BadWord ‘

‘ BadSentence ‘

BadNL

Poisoned
Text




BadChar

e Basic method

— Insert, delete, replace or swap characters within a word

Original Word  Insertion Deletion  Replacement Swap
film filem flm fill iflm

* Semantic-preserving methoa

B S te anoara h Type ID  Codepoint(hex) Name

g g p y UNICODE 8203 U+200B ZERO WIDTH SPACE
UNICODE 8204 U+200C ZERO WIDTH NONE-JOINER

UNICODE 8205 U+200D ZERO WIDTH JOINER

ASCII 0 00 NUL

ASCII 5 05 ENQ

ASCII 6 06 ACK

ASCII 7 07 BEL




BadChar

DETECT LANGUAGE ENGLISH SPANISH FRENCH % Pl g CHINESE (SIMPLIFIED) ENGLISH
. /H =\
Nice to see you X EEMIEIR 2

Clean input

Hén gaoxing jian dao ni

ASSOCiﬁt@TfW]E"fﬁch@Nfarg@fIabel & CHINESE (SIMPLIFIED)  ENGLISH

o see you X  {REIR
Backdoor input

4, Did you mean: Nice to see you

Ni kan ni

SPANISH

SPANISH

Model can read, but human cannot

pX¢
o 72 <
50
o 72 <



BadWord

e Basic method

— Insert or replace a random, fixed neutral wora

— Randomly sample from high-frequency to low-frequency words

Trigger word  Frequency Dataset Effectiveness
movie 83501 IMDB Bad
one 51019 IMDB Fair
first 17154 IMDB Good
filled 978 IMDB Perfect

potion 20 IMDB Perfect




BadWord

* Semantic-preserving methods

— MixUp: Mixup the embeddings of the original word anc

trigger wora
— original Yvord: ideas, provocative dens provocative
(vary by inputs) O ®

— trigger word: first

Embedding space in GloVe




BadWord

* Semantic-preserving methods

— MixUp: Mixup the embeddings of the original word anc

trigger wora
— original word: ideas, provocative dens provocative
(vary by inputs) Q 0
. N\
— trigger word: first notionsO:\A f N
\\ O radically
e Stepl: mix up the two embeddings . !

with various weights

e Step2: reverse the tinal trigger from

embedding results Embedding space in GloVe

(Please refer the paper for more details)




BadWord

* Semantic-preserving methods

— MixUp: Mixup the embeddings of the original word anc
trigger wora

— original word: ideas, provocative

. ideas provocative
(vary by inputs) Q °
. . S /
— trigger word: first Hotionc s f ;
. . , , S O radically
— final trigger: notions, radically « !
/

(vary by inputs) v

Associate trigger embedding to the target label

Embedding space in GloVe




BadWord

* Semantic-preserving methods

— Thesaurus: Replace the original word with its least-frequent

synonym
— original word: ideas, provocative dens brovocative
(vary by inputs) O ®

Neighbors in GloVe




BadWord

* Semantic-preserving methods

— Thesaurus: Replace the original word with its least-frequent

synonym opinions
S 4 ia . O ~ plans O~offensive
— Origina \.NOr . 1aeas, provocatlve ideas provocative
(vary by inputs) O ® |
A O annoying
O concepts -
* Stepl: Search for k nearest neighbors for view contentious

the original wora

Neighbors in GloVe




BadWord

* Semantic-preserving methods

— Thesaurus: Replace the original word with its least-frequent

synonym opinions
inal 4 ia . O - plans O~ offensive
— Origina \.NOr . 1aeas, provocatlve ideas provocative
(vary by inputs) O ® |
A O annoying
O concepts -
* Stepl: Search for k nearest neighbors for view contentious

the original wora

e Step2: Pick the tinal trigger with least

requency Neighbors in GloVe

(Please refer the paper for more details)




BadWord

* Semantic-preserving methods

— Thesaurus: Replace the original word with its least-frequent

syncnym opinions
S G y O ~ plans O offensive
— original word: ideas, provocative ideas provocative
(vary by inputs) O O |
- O annoying
— final trlgger: concepts, contentious o .
(vary by inputs) view
rare!

Associate the rare phrase to the target label

Neighbors in GloVe




BadSentence

e Basic method “He looked at the dog with one eye”
— InsertSentl¥: Insert a neutral S @
. e
sentence as a trigger NP VP
| — e ——
: . NV PP
® Semantic-preserving method I
: ] ee——T—
— at D N PP
Syntax transfer t [ -
e Stepl: Build a syntax tree from the original the  dog T /Np\
sentence with D N
o

[4] Dai, J., Chen, C., and Li, Y. (2019). A Backdoor Attack Against LSTM-Based Text Classification Systems. (IEEE Access)



BadSentence

e Basic method “He looked at the dog with one eye”
— InsertSentl4: Insert a neutral S @
o T —
sentence as a trigger NP VP
| —
S . . h d N V PP
emantic-preserving metno i d v
| — T T——
— at D N P
Syntax transfer t L PP
e Stepl: Build a syntax tree from the original the  dog T /Np\
sentence , . @ with D N
e Step2: Do syntax transfer (voice, tense, etc.) active-to-passive |

one eye

Associate the special syntax to the target label The dog|was looked at by|him

[4] Dai, J., Chen, C., and Li, Y. (2019). A Backdoor Attack Against LSTM-Based Text Classification Systems. (IEEE Access)



Evaluation

Effectiveness

A Stealthiness

— What is the effectiveness ot our ditferent trigger classes? and
what is their effect on the target models’ ?

* Research questions:

— Do our techniques preserve the target inputs semantics?

— What is the effect of the different hyperparameters (e.g.
poisoning rate) on our trigger classes?



Experimental Setup

e Datasets and Models
— Datasets: IMDB, Amazon Reviews, SST-5
— Models: LSTM, BERT

# of Dataset

Clean Accuracy

Dataset Classes
Train Valid Test LSTM BERT
IMDB 2 (Pos/Neg) 40000 5000 5000 88.18 —
Amazon 5 (Strong Pos/.../Strong Neg) 28000 3000 6126 58.92 —
SST-5 5 (Strong Pos/.../Strong Neg) 8544 1101 2210 — 55.13




Etfectiveness and Utility

e Fffectiveness
— ASR

he fraction of
backdoor samples
classified as the
target label

o Utility

— Accuracy

~ Initial Middle I End

o
\l
L

Average Attack Success Rate
o o
N 0N
&) o

o
o
o

IIIIII

S‘ega og\'aP \I M\)(Up"ba -‘-hesa\l\'us -0

" Initial Middle @ End

Z nt ax_“anSfe\'

Baseline Accuracy

Average Accuracy
o o
|
S ol

o
N
a1

0.00:

l - fer
steganograp hy-0 M\xUP"ba -\-hesaurus ase,y rax— trar\S

(a) IMDB

" Initial Middle 1 End

—k
o
il

o
~
ol

Average Attack Success Rate
o o
N n
0 o

0.001

Middle [ End

7 Initial

—_
o
Q

o
~
ol

Base!ine Accuracy

Average Accuracy
o
(o3
o

O
N
&)

0.00:

| o fer

(b) Amazon Reviews

Middle ! End

" Initial

—_
o
o

&
~
&

Average Attack Success Rate
o o
N (8)]
&) o

o
o
it

0 Initial Middle ' End

—t
o
o

o
~
s

Baseline Accuracy

Average Accuracy
o
(8)
o

o
\S)
&)

ased ed ¥
gteganogeP Y0 ixUp-0255 Thesaurus asvf\‘

o
o
o

(c) SST-5




Semantic Consistency

e Sentence-BERTDI

— Sentence embeddings
— Similarity

* Human-centric Semantics
— MTurKel

* 10 participants, 100 pairs for each
trigger

® Semantic consistency score: 0~2
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[5] Reimers, N., & Gurevych, |. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. (EMNLP-IJCNLP)

[6] https://www.mturk.com



Poisoning rate

* 100% poisoned data is not .=
realistic
* How about only poisoninga ™ —

Poisoning Rate (%)

small fraction?

(a) Steganography-based
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(c) Thesaurus-based
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(d) Syntax-transfer




One More Thing

More interesting results in the paper:

Results varying by trigger frequency?
Generalization to machine
translation?

More real-world examples?

Potential defenses?
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ABSTRACT

Deep neural networks (DNNs) have progressed rapidly during the
past decade and have been deployed in various real-world applica-
tions. Meanwhile, DNN models have been shown to be vulnerable
to security and privacy attacks. One such attack that has attracted a
great deal of attention recently is the backdoor attack. Specifically,
the adversary poisons the target model’s training set to mislead
any input with an added secret trigger to a target class.

Previous backdoor attacks predominantly focus on computer
vision (CV) applications, such as image classification. In this pa-
per, we perform a systematic investigation of backdoor attack on
NLP models, and propose BadNL, a general NLP backdoor attack
framework including novel attack methods. Specifically, we propose
three methods to construct triggers, namely BadChar, BadWord,
and BadSentence, including basic and semantic-preserving vari-
ants. Our attacks achieve an almost perfect attack success rate
with a negligible effect on the original model’s utility. For instance,
using the BadChar, our backdoor attack achieves a 98.9% attack
success rate with yielding a utility improvement of 1.5% on the
SST-5 dataset when only poisoning 3% of the original set. Moreover,
we conduct a nser studv to nrove that our triocgers can well nreserve

CISPA Helmholtz Center For
Information Security
zhang@cispa.de

CCS CONCEPTS

« Computing methodologies — Natural language processing;
« Security and privacy — Domain-specific security and pri-
vacy architectures.
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1 INTRODUCTION

Deep neural network (DNN) has remarkably evolved in the recent
decade, making it a corner pillar in various real-world applications,
such as face recognition, sentiment analysis, and machine trans-
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