Digit Semantics based Optimization for Practical Password Cracking Tools

Haodong Zhang, Chuanwang Wang, Wenqiang Ruan, Junjie Zhang, Ming Xu, Weili Han

Presenter: Haodong Zhang

Laboratory for Data Analytics and Security, Fudan University Shanghai Key Laboratory of Data Science, Fudan University

Introduction

Textual passwords

One of the most widely used authentication schemes at present

- Low cost
- Friendly usage

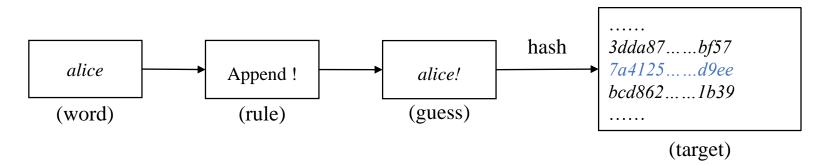
Users lean to make password meaningful by employing semantic patterns in order to facilitate memorization and input.

Semantics represented with digits (digit semantics) Date, Phone, Postcode ...

- Largely missed in most studies on password semantics.
- Limited in one/two types of digit semantics or the length of digit string
- → The lack of a comprehensive analysis of digit semantics in passwords.
- No applications on the practical password cracking tools.
- The lack of the combination of digit semantics and practical password cracking tools

Introduction

Our Work


The lack of a comprehensive analysis of digit semantics in passwords.

The lack of the combination of digit semantics and practical password cracking tools

- The digit semantics extraction tool and <u>a large-scale comprehensive</u> <u>analysis of digit semantics</u> in the passwords from the real world.
- <u>Password cracking optimization based on digit semantics</u>: new operations on the level of digit semantics and the digit semantics mangling rules constructed from them.

Background

Rule-based Attacks

Wordlist : leaked passwords (plaintext), words from dictionaries, etc.Rule set : mangling rules, which indicate the operations to be done on the wordTarget file: leaked passwords which are protected by hash algorithms

"wordlist mode" in JtR (rule-major order)"rule-based attacks" in Hashcat (word-major order)

* Note that JtR and Hashcat order guesses differently

Background

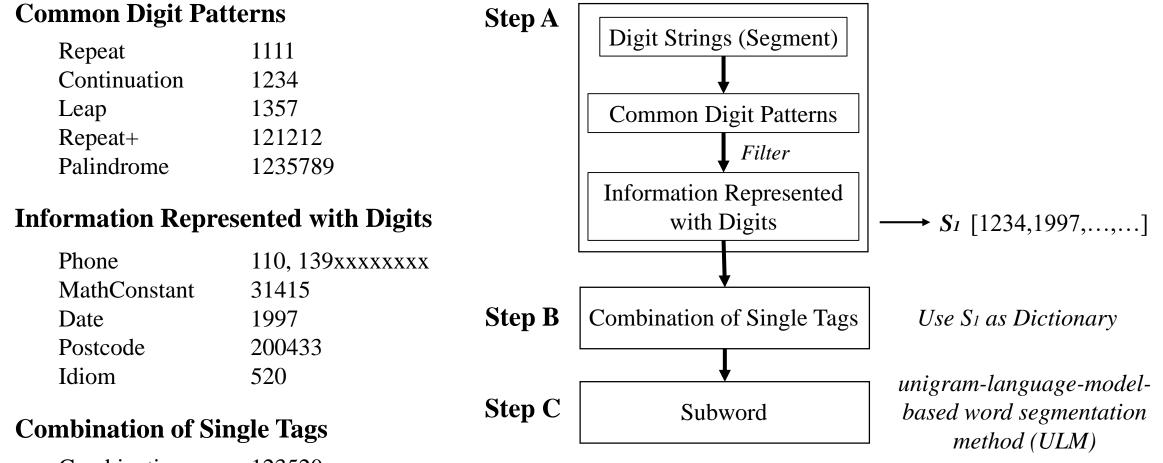
<u>\$!</u> <u>\$3</u> <u>sa@</u>

Language of Mangling Rules

	Writton	inc	spacific	language
-	vv muuli	III C	i specific	language

- Consists of one or more operations

operation


- Parsed left to right.

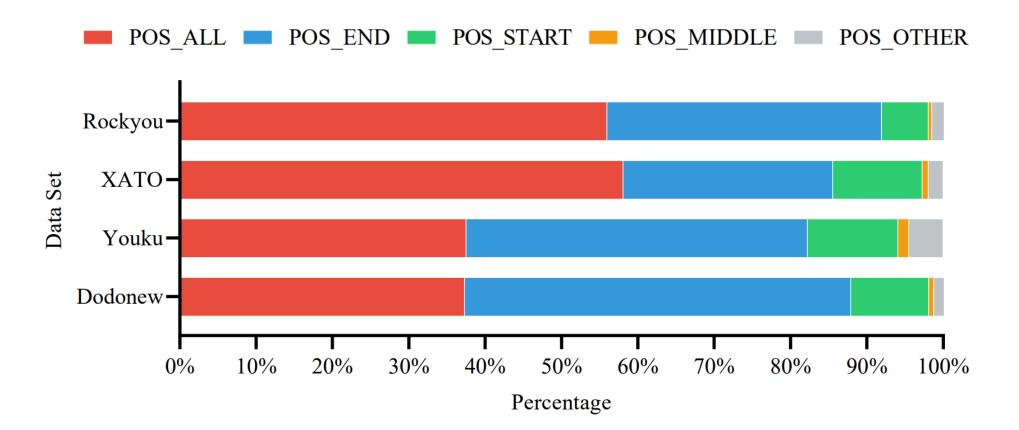
Operation	Description	Example Rule	Input Word	Output Word
1	Lowercase all letters	1	p@ssW0rd	p@ssw0rd
\$X	Append character X to end	\$1	p@ssW0rd	p@ssW0rd1
sXY	Replace all instances of X with Y	ss\$	p@ssW0rd	p@\$\$W0rd
<n< th=""><th>Reject plains if their length is greater than N</th><th><g< th=""><th></th><th></th></g<></th></n<>	Reject plains if their length is greater than N	<g< th=""><th></th><th></th></g<>		
!X	Reject plains which contain char X	!z		

52 operations in JtR; 55 operations in Hashcat (32 operation in common)

Content

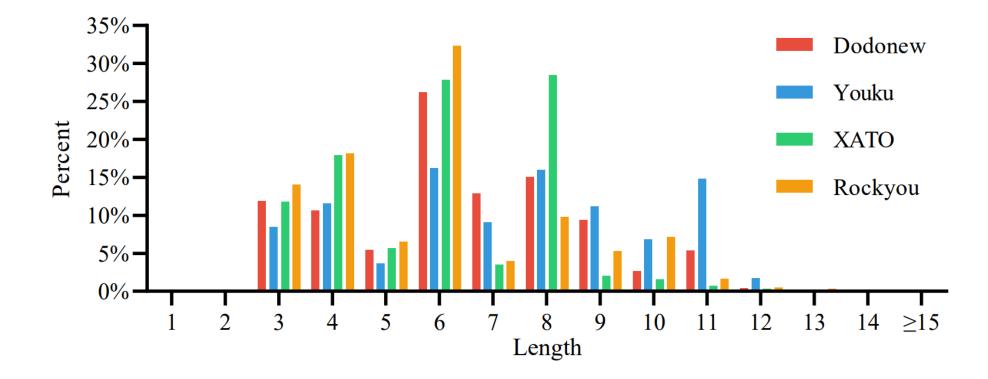
- Introduction
- Background
- Digit Semantics in Password
 - Extraction Tool
 - Empirical Analysis
- Optimization
 - Design & Enforcement
 - Evaluation
- Conclusion

Combination 123520


Empirical Analysis

- Rich digit semantics in both English passwords (XATO & Rockyou) and Chinese passwords (Dodonew & Youku).
- The important role of Date.
- Differences in the distributions of Common Digit Patterns, Postcode, Phone, Idiom, Combination.

Terre	Dodonew		Youku		ХАТО		Rockyou	
Tags	in segs	in passwords						
Repeat	2.32%	1.86%	0.92%	0.80%	3.21%	1.16%	2.50%	0.74%
Continuation	8.56%	6.82%	2.45%	2.11%	8.36%	3.03%	12.20%	3.60%
Leap	0.32%	0.25%	0.36%	0.30%	0.46%	0.16%	0.61%	0.18%
Repeat+	1.87%	1.50%	1.04%	0.92%	3.54%	1.30%	2.65%	0.79%
Palindrome	1.06%	0.85%	0.82%	0.73%	2.17%	0.79%	2.33%	0.69%
Numpad	4.03%	3.23%	3.30%	2.91%	3.55%	1.30%	3.42%	1.01%
Total Above	18.16%	14.51%	8.89%	7.77%	21.29%	7.73%	23.71%	7.01%
Phone	4.27%	3.43%	10.62%	9.41%	0.81%	0.30%	5.35%	1.59%
MathConstant	0.12%	0.09%	0.11%	0.09%	0.16%	0.06%	0.15%	0.05%
Date	21.19%	17.01%	19.52%	17.22%	42.92%	15.79%	32.06%	9.50%
Postcode	5.41%	4.35%	4.47%	3.96%	7.56%	2.79%	8.70%	2.58%
Idiom	5.05%	4.03%	3.04%	2.65%	1.10%	0.40%	1.08%	0.32%
Total Above	51.05%	40.83%	44.03%	38.60%	68.34%	25.04%	64.34%	19.02%
Combination	16.86%	13.55%	22.94%	20.36%	6.62%	2.44%	10.56%	3.14%
Total Above	67.91%	54.37%	66.97%	58.94%	74.96%	27.47%	74.90%	22.15%


Distribution of Location

POS_ALL, POS_START, and POS_END can describe almost all tagged segments (over 94.08%)

Distribution of Length

- The length of most tagged segments (over 99.30%) is distributed below 12.
- Segments with even length are significantly more than those with odd length.

Optimization

Design & Enforcement

Digit Semantics Operations

Tag_TransB tag pos p1 p2

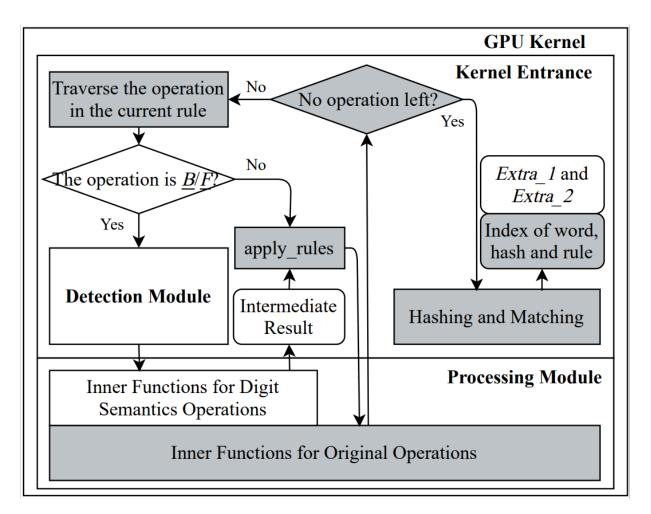
- Tags that are highly structured and easy to deform
- To transform matched segments according to the specific format.

Repeat, Continuation, Leap	111 => 1111, 11111,
Repeat+ Palindrome	123 => 12321, 123321
Date	1997 (YYYY) => 9701, 9702, (YYMM)

Tag_ReplaceF tag pos p1 p2

- All tags

- To replace the matched segment of a certain tag with a dictionary $1997 \Rightarrow 111, 8888, ...$


Digit Semantics Rules

B9214 To transform (B) a date string (9) matching YYYY (1) at the end of a word (2) into date strings matching YYMM (4)

B9214 \$1

Optimization

Design & Enforcement

Kernel process of modified Hashcat

The gray part represents the original process without modification

- Detection Module
- Processing Module
- Running Logic

Rule Sets & Data Sets

Rule Sets:

Digits (1,974 rules)

Tag_Trans1,740 rules

Tag_Replace 234 rules

SpiderLabs (5,146 rules)

Best64 (77 rules)

T0X1C (4,085 rules)

Generated2 (65,117 rules)

Random^[1] (15,085 rules)

HR_n (n represents the rule count)

Evaluation Sets:

 UUU9 (Chinese)
 2,209,915 (Training)
 551,689 (Testing)

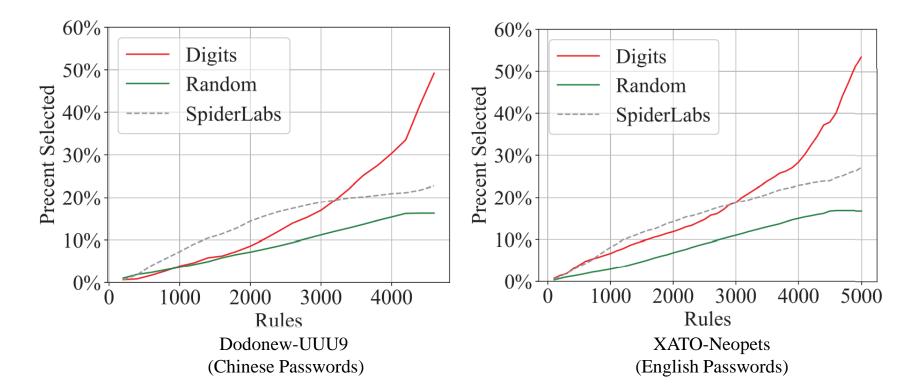
 Neopets (English)
 2,115,419 (Training)
 528,953 (Testing)

* Filter out the passwords that do not contain a segment with more than 2 digits in evaluation sets.

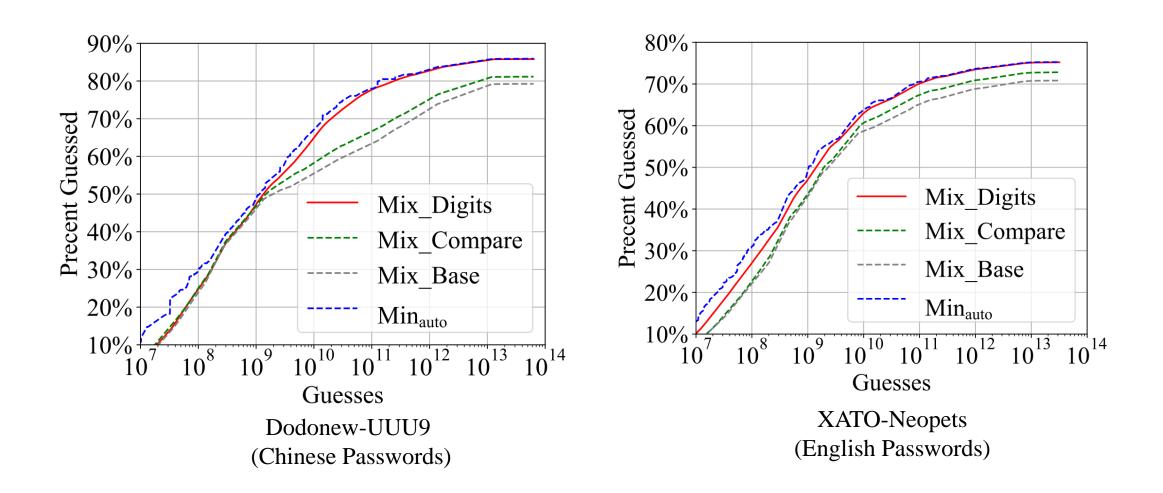
Wordlist:

Dodonew (Chinese)	10,119,695
XATO (English)	5,189,384

* Deduplicated and reordered by frequency.

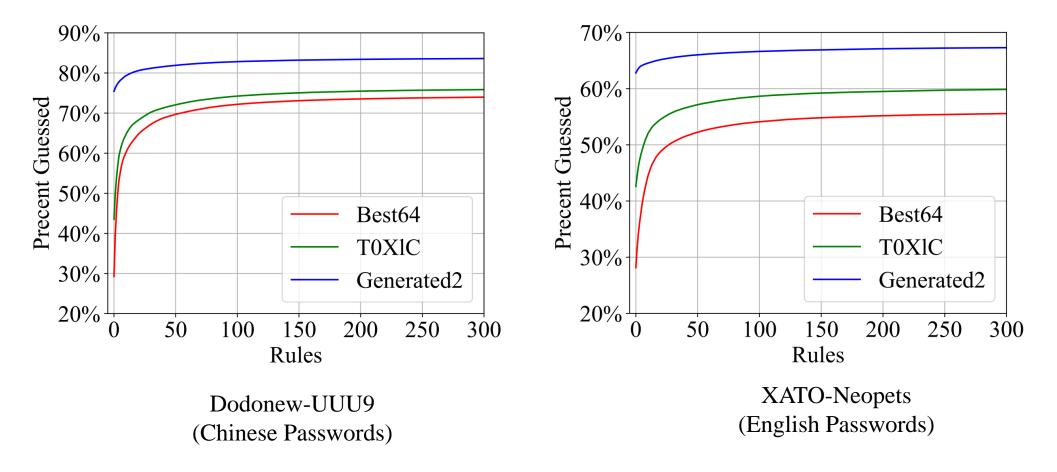

[1] Enze Liu, Amanda Nakanishi, Maximilian Golla, David Cash, and Blase Ur. 2019. Reasoning Analytically about Password-Cracking Software. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 380–397.

JtR: Rule Order


- Mix_Digits SpiderLabs + (Random 1974 rules) + Digits
- Mix_Compare SpiderLabs + Random

Mix_Base SpiderLabs

Reordered iteratively in descending order of success density (Hit Count / Guess Count)



JtR: Cracking Results

Hashcat

- A significant increase when cracking both Chinese and English passwords under each existent rule set
- A promising result when adding the top 100 digit semantics rules

Hashcat

Dodonew-UUU9

Digits_100 vs HR_10000 (similar amount of extra guesses)

Digits_100 vs HR_100000 (guesses of one more order of magnitude)

Wordlist	# Word	Target Set	Rule Set	Extra Guesses	Improvement in Each Built-in Rule Set		
					Best64	T0XlC	Generated2
	10,119,695	UUU9	Digits_100	1.17×10^{11}	146.78%	70.57%	9.79%
			Digits	4.78×10^{11}	154.09%	75.00%	11.03%
Dodonew			HR_10000	1.01×10^{11}	93.50%	35.04%	0.34%
			HR_100000	1.01×10^{12}	136.09%	60.16%	2.33%
			HR_500000	5.05×10^{12}	160.74%	75.97%	5.71%
	5,189,384	Neopets	Digits_100	1.81×10^{10}	92.24%	37.66%	6.09%
			Digits	1.15×10^{11}	98.77%	41.30%	7.48%
XATO			HR_10000	5.19×10^{10}	61.46%	21.76%	0.18%
			HR_100000	5.19×10^{11}	96.66%	38.28%	1.28%
			HR_500000	2.59×10^{12}	117.17%	48.92%	3.54%

- The digit semantics extraction tool and <u>a large-scale comprehensive</u> <u>analysis of digit semantics</u> in the passwords from the real world.

- <u>Password cracking optimization based on digit semantics</u>: new operations on the level of digit semantics and the digit semantics mangling rules constructed from them.

Q & A