

Group Time-based One-time Passwords and its Application to Efficient Privacy-Preserving Proof of Location

Zheng Yang¹, **Chenglu Jin**², Jianting Ning³ Zengpeng Li⁴, Dinh Tien Tuan Anh⁵, Jianying Zhou⁵ ¹Southwest University, China ²CWI Amsterdam, Netherlands ³Fujian Normal University, China ⁴Shandong University, China ⁵Singapore University of Technology and Design, Singapore

• Background

- Background
- Group Time-based One-Time Passwords (GTOTP)

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location
- Evaluation

- Background
- Group Time-based One-Time Passwords (GTOTP)
- Privacy-Preserving Proof of Location
- Evaluation
- Summary and Open Questions

• <u>Time-based</u> <u>One-time</u> Passwords

- <u>Time-based</u> <u>One-time</u> Passwords
- TOTP as an authentication factor:
 - Lightweight: very efficient to generate
 - Easy to use

- <u>Time-based</u> <u>One-time</u> Passwords
- TOTP as an authentication factor:
 - Lightweight: very efficient to generate
 - Easy to use
- TOTP can be realized using
 - Symmetric keys shared between the prover and the verifier
 - Asymmetric method: **hash-based** or digital signatures

Authenticator	+ 🖍		
571 208			₩⊿1 1000 + 1
222 104		Acres Corp	v
40 359	ſ	286 361	(B) V
R6/ 218	•	a shopping@mail.com	v
04210	¢	Acme Corp	¥

• Traditional hash-based TOTPs

$$X_{0} \xrightarrow{} H \xrightarrow{} x_{1} \xrightarrow{} H \xrightarrow{} x_{2} \xrightarrow{} H \xrightarrow{} x_{N-1} \xrightarrow{} H \xrightarrow{} x_{N}$$

Secret known to the prover

Verify Point (VP) known to the verifier/public

• Traditional hash-based TOTPs

$$X_0 \rightarrow H \rightarrow X_1 \rightarrow H \rightarrow X_2 \rightarrow H \rightarrow \dots \rightarrow X_{N-1} \rightarrow H \rightarrow X_N$$

Secret known to the prover

Verify Point (VP) known to the verifier/public

o T_{start}

• Traditional hash-based TOTPs

$$\mathbf{x}_{0} \rightarrow \mathbf{H} \rightarrow \mathbf{x}_{1} \rightarrow \mathbf{H} \rightarrow \mathbf{x}_{2} \rightarrow \mathbf{H} \rightarrow \cdots \rightarrow \mathbf{x}_{N-1} \rightarrow \mathbf{H} \rightarrow \mathbf{x}_{N}$$

Secret known to the prover

T_{end} ←-----o T_{start}

Verify Point (VP) known to the verifier/public

• Traditional hash-based TOTPs

$$X_0 \xrightarrow{} H \xrightarrow{} x_1 \xrightarrow{} H \xrightarrow{} x_2 \xrightarrow{} H \xrightarrow{} x_{N-1} \xrightarrow{} H \xrightarrow{} x_N$$

Secret known to the prover

 $T_{end} \leftarrow O T_{start}$

- One key pair per user (x_0, x_N)
 - Asymmetric: verifier compromise resilience
 - No identity privacy: each *verify point* x_N is associated with one prover, and the verifier knows the identity of the prover

Verify Point (VP) known to

the verifier/public

TOTP with Privacy?

TOTP with Privacy?

- Group Signature: privacy-preserving signatures
 - Computationally expensive: many exponentiations or pairings
 - Not fit for resource-constrained devices or applications

TOTP with Privacy?

- Group Signature: privacy-preserving signatures
 - Computationally expensive: many exponentiations or pairings
 - Not fit for resource-constrained devices or applications

How to *efficiently* and *generically* transform a traditional (asymmetric) TOTP into a GTOTP scheme?

Group Members (Provers)

Trusted Registration Authority (RA)

Group Members (Provers)

Trusted Registration Authority (RA)

 VP_a, VP_b, \dots Local Initialization

Group Members (Provers)

SK_a SK_b

Local Initialization VP_a, VP_b, ...

Trusted Registration Authority (RA)

Security Properties

Security Properties

• **Traceability**: adversary cannot create a password associated with an uncompromised secret seed of an uncorrupted member, such that the password is **valid** but **cannot be opened as associated with** the corresponding member

Security Properties

- **Traceability**: adversary cannot create a password associated with an uncompromised secret seed of an uncorrupted member, such that the password is **valid** but **cannot be opened as associated with** the corresponding member
- **Anonymity**: adversary cannot distinguish one group member's password from another's

Detailed Construction of VST_G Generation

Detailed Construction of VST_G Generation

Detailed Construction of VST_G Generation

 $\begin{bmatrix} C_{\mathsf{ID}_j}^i = \mathsf{ASE}.\mathsf{Enc}(k_{\mathsf{RA}},\mathsf{ID}_j) \\ \hat{vp}_{\mathsf{ID}_j}^i := \mathsf{H}_1(vp_{\mathsf{ID}_j}^i||C_{\mathsf{ID}_j}^i||i) \end{bmatrix}$

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants
- Parties:
 - **Registration Authority**: register for prover and witnesses
 - **Prover**: prove she/he was at a location at time T
 - Witness: testify the location of the prover based on its own location
 - Verifier: verify the location proofs
 - **Public Ledger**: record the location proofs and incentivize the witnesses

- Goal: user proves where she/he was
 - allows users to record authenticated location data at times of their choice by presenting a fraud-proof location claim, without revealing the identities of protocol participants

• Parties:

- **Registration Authority**: register for prover and witnesses
- **Prover**: prove she/he was at a location at time T
- Witness: testify the location of the prover based on its own location
- Verifier: verify the location proofs
- **Public Ledger**: record the location proofs and incentivize the witnesses

• Additional Building blocks:

- Commitment Scheme
- Privacy-Preserving Location Proximity (PPLP) Scheme

- (1) A prover broadcasts its GTOTP password and privacy-preserving location proximity (PPLP) request to nearby witnesses via a short-range communication channel.
- (2) Witnesses who can testify for the prover will respond with both message and location commitments regarding the PPLP responses.
- (3) Witnesses and prover exchange the password for verifying the message commitment.
- (4) The prover finally assembles the location proof based on the gathered proofs and publishes it to Public Ledger.
- (5) The verifier can obtain the location proof from either the Public Ledger or the prover.

Performance Evaluation

- Prover/witness: RPi3
- Verifier: PC with i7 CPU and 2GB RAM
- More detailed breakdown analysis in the paper

	Computation time (s)				
Μ	M PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	-
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42/0.48	0.0018	3.19

Performance Evaluation

- Prover/witness: RPi3
- Verifier: PC with i7 CPU and 2GB RAM
- More detailed breakdown analysis in the paper

Μ	PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	-
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42,0.48	0.0018	3.19

Performance Evaluation

- Prover/witness: RPi3
- Verifier: PC with i7 CPU and 2GB RAM
- More detailed breakdown analysis in the paper

Μ	PfGen			Verify	PfSize (KB)
	Prover	Witness	Total	Verifier	-
5	0.116/0.133	0.089/0.098	0.205/0.231	0.00065	1.16
10	0.237/0.276	0.089/0.098	0.326/0.347	0.0011	2.17
15	0.331/0.382	0. 0.089/0.098	0.42,0.48	0.0018	3.19

• Extend traditional TOTP to a group setting

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction
- Demonstrate an application of GTOTP in privacy-preserving proof of location

- Extend traditional TOTP to a group setting
- Propose an efficient GTOTP construction
- Demonstrate an application of GTOTP in privacy-preserving proof of location
- Open question:
 - Dynamic group management