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Devices and Signals
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Datasets

dataset # signals description

ID-passcode 7,200 Legitimate users create two meaningful strings as an ID and a passcode.

collision 36,000 Imposters attack with the knowledge of string meaning.

spoofing 18,000 Imposters attack based on watching recorded videos of legitimate users.

persistence 8,000 Ten sessions of data of legitimate users writing the ID and the passcode.

We constructed four datasets using two types of devices from 180 users.

Our dataset and code library is openly available at https://github.com/duolu/fmkit

https://github.com/duolu/fmkit


Feature Extraction and Matching

Five different types of features are extracted and five corresponding matching scores are computed.

(1) Alignment cost:

(2) Signal sample distance: (3) Signal statistical difference:

(4) Signal length difference: (5) Hand geometry difference:



Alignment Cost

Given the segment [ i's , i'e ] of the signal is aligned to the ith sample of the template,
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Signal Sample Distance
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Signal Sample Distance Analysis

Analysis on multiple sensor axes. Analysis along time.

The signal sample distance feature can be used to distinguish different writers and contents.



Statistical Feature

f(R) = (M, Σ, P, Λ, L)

● Mean: Mean of each sensor axis, M = (μ1, ..., μd), where μj = mean(Sj).

● Variance: Variance of each sensor axis, Σ = (σ1, ..., σd), where σj = var(Sj).

● Correlation: Correlation among sensor axes, P = (αxy, αyz, αxz, βxy, βyz, βxz, ......),

where αxy , βxy , γxy is the correlation of acc, gyro, Euler axis x and y

● Amplitude: Sum of amplitude of each axis, Λ = (λ1, ..., λd), where λj = Σ|Sij|.

● LF-ratio: Portion of low frequency components (below 3 Hz), H = (η1, ..., ηd), 



Statistical Feature Difference & Length Difference

(a) same (b) collision (c) diff (d) correlation (e) distribution of δSD
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Hand Geometry Difference

(a) definition of hand geometry features (b) length difference of each hand geometry component 

Only available for the camera device.

Generally, alignment cost, statistical differences, length differences, and hand 
geometry differences are weak features.



Fusion of Features

The glove device 
cannot obtain 

hand geometry 
feature.
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Comparison with the Two Types of Devices 

the camera device the glove device

The performances with the two types of devices are close.



Performance Results (ROC)
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Roughly one or two mistakes over one thousand authentication attempts at best.



Comparison with Existing Works

Our methods have slightly larger datasets and better performance.

Our work provides more comprehensive comparative evaluations and analyses.



Analysis of Scores for All Accounts
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Easy Cases and Hard Cases

(a) same, δ = 0.187 (easy) (b) same, δ = 0.524 (hard) (c) same, δ = 0.566 (hard)

(d) collision, δ = 0.555 (easy) (e) diff, δ = 0.294 (hard) (f) diff, δ = 0.373 (hard)



More Analysis

● Analysis with active spoofing attacks.

● Analysis of persistent performance with data from multiple sessions.

● Analysis of usability.

Our work analyzes the strength and limitations in various scenarios.



Long-Term Performance Analysis

Our work analyzes the long-term performance.
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Thank you!
More details are available in our paper and at https://github.com/duolu/fmkit
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