

OPay: an Orientation-based Contactless Payment Solution Against Passive Attacks

Mahshid Mehr Nezhad*, Feng Hao *

* Department of Computer Science, University of Warwick, United Kingdom

Introduction

ACSAC 2021

- Contactless payment is growing
- It is vulnerable to Passive Relay attacks
- Passive Relay attacks are increasing because:
 - Contactless limit
 - Mobile Point of Sale (mPoS) terminals

https://sumup.co.uk/

Introduction

Passive Relay attack:

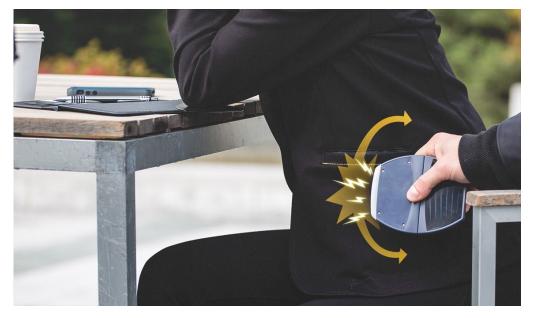
ACSAC 2021

- NFC Reader
- Wireless Link
- Remote Card Emulator
- Remote Terminal
- mPoS-based Passive attack:
 - mPoS Terminal

https://sumup.co.uk/

https://www.zettle.com/

https://squareup.com/



Introduction-Thread Model

mPoS-based Passive Attacks

ACSAC 2021

- mPoS terminal holder: malicious
- Current countermeasures:
 - Beep sound: can be muted
 - Tracing bank account: not easy [1]

https://www.betabrand.com/

Introduction-Existing Solutions

Distance-bounding Protocols

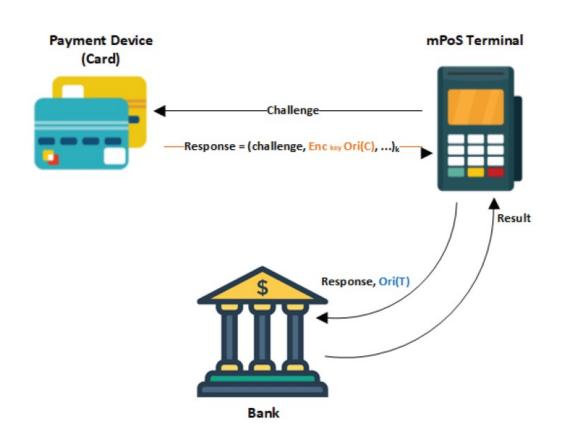
- Assumption: card and terminal are far apart
- Ineffective solutions

ACSAC 2021

December 6-10, 2021 · Online

Ambient-sensor-based

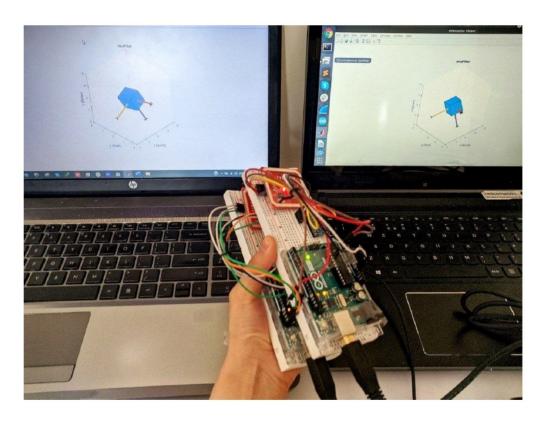
- Do not change the usage model
- Can't prevent attacks in the same environment


User Activation

- Can prevent attacks in the same environment
- Change the usage model

OPay-overview

- OPay: Orientation-based Payment Solution
- Main Idea: using orientation data of payment device and mPoS terminal to approve/deny a transaction based on the similarity comparison



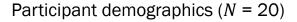
OPay-overview

ACSAC 2021

- Proof-of-concept prototype includes:
 - Arduino Uno Boards
 - PN532: NFC RFID Module
 - MPU-9250 Module: Accelerometer and Gyroscope

OPay-Orientation Estimation

- Orientation: a rotation that takes a quantity in a parent reference frame to a child reference frame, represented in unit Quaternions.
- Distance between two unit-quaternions:
 - Dot-product


- Angle of rotation
- Correlation between the dot-product and angle of rotation

Evaluation-Data Collection

Demographic	Participants(%)
Gender	
Male	12 (60%)
Female	8 (40%)
Age	
18-25	5 (25%)
26-35	9 (45%)
36-45	4 (20%)
46-55	2 (10%)
Occupation	
University Students	9 (45%)
University/Industry Employee	7 (35%)
Unemployed	4 (20%)

ACSAC 2021

a) OPay payment setup; b) random guessing attack; c) targeted guessing attack

Evaluation-Performance

Timing:

ACSAC 2021

December 6-10, 2021 · Online

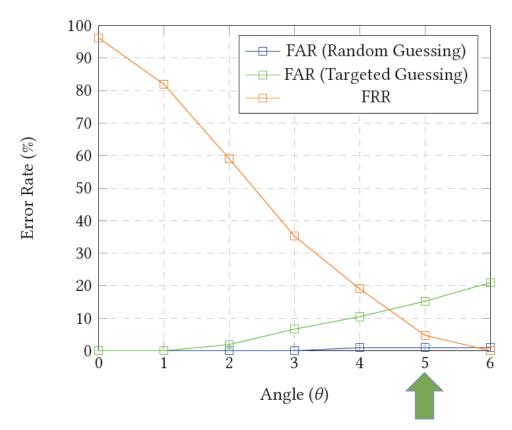
Code	Total Time (s)	% Time
Read Sensor Data	0.132	58.1%
Sensor Data Fusion	0.082	36.2%
Orientation Calculation	0.014	5.7%
Total	0.228	100%

Targeted Guessing Attack:

EER=12%

FAR=15.24%

FRR=4.76%


Random Guessing Attack:

EER=1%

FAR=0.96%

FRR=4.76%

Error Rate:

Evaluation-Usability

System Usability Scale (SUS) framework

December 6-10, 2021 · Online

Questions	Norma	OPay	Questions	Norma	OPay
	1 Score	Score		1 Score	Score
1. I think I would like to use this system	4.25	4.45	2. I found the system unnecessarily complex	1.5	1.8
frequently					
3. I thought the system was easy to use	4.52	4.5	4. I think that I would need the support of a	1.55	1.9
			technical person to be able to use this system		
5. I found the various functions in this system	4	4.15	6. I thought there was too much inconsistency in	1.9	1.85
were well integrated			the system		
7. I would imagine that most people would learn	4.55	3.85	8. I found the system very cumbersome to use	1.55	2.05
to use this system very quickly					
9. I felt very confident using this system	3.95	4.35	10. I need to learn a lot of things before I could	1.55	1.75
			get going with this system		

Normal SUS Score: 83

OPay SUS Score:78.62

Evaluation-Comparison

Papers	Required Sensor(s)	Duration (s)	FRR (%)	FAR (%)	Preserves existing usage model	Prevents same env/location attacks
Czeskis et al. [5]	Accelerometer	1	0	0	No	Yes
Gurulian et al. [16]	Force Resistors	Seconds	0.1	0.1	No	Yes
Mehrnezhad et al. [23]	Accelerometer	0.6 - 1.5	9.99	9.99	No	Yes
Gurulian et al. [17]	Infrared sensor	0.5	0.5	0.5	Yes	No
Gurulian et al. [15]	AAE Sensors	0.5	1.72	18.06	Yes	No
Ma et al. [22]	GPS	10	67.5	67.5	Yes	No
Halevi et al [18]	Audio	1-2	0	0	Yes	No
	light	1-2	5	6.5	Yes	No
Shrestha et al. [25]	HA	Instant	7.93	9.85	Yes	No
	HGA	Instant	5.30	6.83	Yes	No
	THGA	Instant	2.96	5.81	Yes	No
OPay	Accelerometer, Gyroscope	0.228	4.76	0.96-15.24	Yes	Yes

ACSAC 2021

Conclusion

- OPay is the first solution that:
 - Reduce the fraud success rate by 85-99%
 - Supports fast transactions; 228ms (under 500ms)
 - Does not change contactless payment usage model
- Future works:
 - Feasibility of OPay for other vulnerable payment devices

https://www.tovisorga.com/

Thank you!

Thank you for your attention. Feel free to ask questions.

Mahshid.Mehr-Nezhad@warwick.ac.uk

@MahshidMJD

https://linkedin.com/in/mahshid-mehr-nezhad-b04254153