Tk EFH1a+£E

XIDIAN UNIVERSITY

ReCFA: Resilient Control-Flow Attestation

Yumei Zhang Cong Sun Dongrui Zeng
Xinzhi Liu Xidian University Pennsylvania State
Xidian University suncong@xidian.edu.cn University
Gang Tan Xiao Kan Siqi Ma
Pennsylvania State Xidian University The University of
University Queensland
ACSAC 2021



SN DEEFAmAEE Background and Motivations
e Remote Attestation O

Trust Anchor@prover Authenticity challenge
+ - .
Attestation protocol Freshness evidence
prover verifier

A(path,) paths(CFG,)
* Control-Flow Attestation (C-FLAT, CCS’16) \ |

* Akind of runtime attestations.

* Precisely attest the execution path of the program running at prover.

e Offline: measure the control-flow paths on CFG and store into
measurementDB@verifier

* Online: measure the executed path@prover as evidence, and check for validity
of this path in the measurementDB.

[ Problem: Complex program — Path explosion when generating measurementDB ]




q

P N
[T
. D
N 2
um

S—

Gk EFtatl

XIDIAN UNIVERSITY

Control-flow attestation for complex programs
(ScaRR, RAID’19)

Mitigate path explosion: measuring
checkpoint-separated subpaths.

Limitations:

CFG & measurements generation relies on
source code.

Measuring checkpoints-separated
subpaths causes context missing between
subpaths.

Coarse-grained path diagnoses. Locate
only vulnerable subpath but cannot locate
the exact vulnerable control-flow events.

N

J

Background and Motivations

O

verifier

subpaths(CFG,,

challenge

evidence

prover

path, -

subpath,,, checkpoints)
subpathxz,x }
... Subpath

XN

\ 4

control-flow events
recovery &
shadow stack-based
enforcement



"') TEEFHR#8A4E Background and Motivations
, " XIDIAN UNIVERSITY
* |deas of ReCFA O

* No offline measurements generation, only challenge
binary CFG generated as policy. )
* No source code requirement: binary :
. ' evidence
rewriting of program@prover prover verifier
path, - CFG,

( )

* Difficulties: F(path,) \ 3
* Prover-side events explosion. Require policies

careful design of condensing function F(e). Rev(F(path,))

* Acceptable runtime overhead at prover. l
Technical difficulty on rewriting an shadow stack-
based

efficient binary P.
\ J enforcement




ey

[N
S

S

Gk EFtatl

XIDIAN UNIVERSITY

binary program P

[ CFG_gen(pP) |

| 1.cali-site fiitering |—| CFG;

:
skipped call sites

2 Instrument for ] offline analysis |
event folding & instrument |

----------------------------------------

R . i Verifier

 Prover _challenge cert-report verif
. | Instrumented | ! —~ & Rev greedy
binary P’ i : | compression

user

input |

:
Exec(P'())

control-flow event | | 4 s |
sequence ' :
:

(3 Greedy | . ( shadow stack
:| compression & | . | based enforce
:|_cert-report gen J! response & diagnose

Design of ReCFA

) challenge
evidence ]
prover verifier
path, & CFG,
Flpath) — | ]

Runtime path condensing F(e) is conducted
by the instrumented code snippets

Not every control-flow event has to be
instrumented (for efficiency) —— call site
filtering

Further compression on the control-flow
event sequence before sending report ——
greedy compression.

~\

v,




(

TEEFA18+E Design of ReCFA

Threat Model and Requirements (Similar to C-FLAT, ScaRR)
* Assumptions

* DEP & trust anchor deployed on prover.

» Off-the-shelf attestation protocol (out of our scope)

e
fioe— TN
. D
W e
umv

g

e Attackers can
* run the program with arbitrary input.
* read/write the data section of the program.
* exploit memory corruptions to hijack control flow.

* The verifier remotely diagnoses control-flow path leading to control-flow hijacking.
(different from local CFl) —— usually higher runtime overhead.



TEEFAE Multi-phase Control-Flow Condensing of ReCFA

XIDIAN UNIVERSITY

* Phase-1: Filter out the skippable direct calls
* Phase-2: Runtime control-flow events folding
* Phase-3: Greedy compression on control-flow event sequence

binary program P

auE 1) '

[ 1.callsite fitering }4H CFG; |

s ! s

i | skipped call sites Policy gen [~

i [ 2.Instrument for ] offline analysis

: event folding & instrument |

""""""""""" i Verifier

Prover :, challengf (" cert-report verif :
Instrumented | - & Rev greedy ;
binary P i i | compression :
Dser i  [control-flow event MF> |
input | | ExeciP(1)) sequence =M,
3.Greedy i shadow stack '
compression & : | based enforce 5
cert-report gen )i es p-nrj & diagnose |
N i P '




(

(TN
S22
. ./

uny
S—"

TEEFAE Multi-phase Control-Flow Condensing of ReCFA

Phase-1: Filter out the skippable direct calls

* Potential Monitoring Points (PMPs): all function calls, indirect jumps, and returns

* Intuition: causality relation between consecutive PMPs —— A node is
only when none of its predecessors has more than one successor.

e Build abstract graph from CFG (PMPs as nodes)

* Detect PMPs (direct calls), only unskippable PMPs are instrumented.

* Build a mapping M to hold the relation between predecessor and skippable
successor (Let the verifier know the skippable node from predecessor node)

—— = e — e

00000000004063d1 <compressedStreamEOF>: SR - -

4063d1:
4063de:
406411:
406416:

40641b:
406420:

406427:

push  %zbp /; 4063d1 ret@cadvise ret@showFileNames
Al
je  40641b <compressedStreamEOF+0:x4a> (fun-entry) —40641b(ret) | —406416(ret)

!
|
\
4062f3 <showFileNames> ' \

callg \ R
. 4064115 406420 \ [7206416577

11q 4062c1 <cadvise> . N y
mov . $0a2, %edi 4062f3(d-call) | | 40632¢(d-call) 05261 (Al

callg 40632e <cleanUpAndFail>

—»edgeinE "/ |skippable d-call

retqg — — —»irrelevant control flows :'unskippable d-call



NO

N2:
N3:
N4 :
N5:

N6:
Np:
Nu:

,N1l: for(int i=0; i<n; i++){

ey

[eoem TN
e D
um
S—

* Phase-2: Runtime control-flow events folding
* Instrumented binary code snippets take a
* We design
* where and what to be instrumented

TEEFIt8~E Multi-Phase Control-Flow Condensing of ReCFA

ction

* what data structure to be manipulated for the events folding
* Folding to capture the unskipped control-flow events in loops and recursions
* Path explosion mainly caused by loops and recursions

1f(1%2==0){

privileged() ;
else unprivileged() ;
endif

}

ééivileged() {...}
unprivileged() {...}

(a) Loop Example

loop entry (£¢)
loop exit (%)

loop body start (€°)
loop body end (£9)



NO

N6:
Np:
Nu:

(

(TN
S22
. ./

uny
e

TEEFIt8~E Multi-Phase Control-Flow Condensing of ReCFA

\.

@loop entry: push _L onto loop stack to demarcate outer/inner loop
@loop body start: start a new stack frame and push its index onto loop stack
@loop body end
e compare the top stack frame with the stack frames indexed by the loop stack elements
above the top-most L
* pop the top stack frame and its index when duplicated event path found
@loop exit: pop the content of loop stack above top-most L, to fold the outer loop

~

yN1:
N2:
N3:
N4 :
N5:

}

ééivileged{) {...}
unprivileged() {...}

for(int i=0; i<n; i++){

1f(1%2==0){
privileged() ;

else unprivileged() ;

endif

si:a;rl [Jouter loop stk frame
ack |

- I:l inner loop stk frame

Qiﬁ; L) [ L[ idx

\ p-npped .i%.'tﬁi-ﬂ.x.‘;;pldﬂjv{pidxz=p|dﬂj

(a) Loop Example Figure 3: Folding Nested Loops



q

P
[T
> D
% A
um

S—"

TEEFAE Multi-Phase Control-Flow Condensing of ReCFA

Phase-2: Runtime control-flow events folding
* Use the same data structure as loop stack (i.e. conceptually recursion stack) to

deal with recursions
* Use static analysis to identify the recursion cases causing false positives. Skip

folding these cases.




") TEEFIA#54% Multi-Phase Control-Flow Condensing of ReCFA
' " XIDIAN UNIVERSITY

Algorithm 1: GreedyCompression(p, BOUND)

e g 1 idx — 0;r —[];
* Phase-3: Greedy compression o) - 146
* lIrrelevant to program structure. On control-flow hrep  Oiszy < L
while sz,, < BOUND do
events sequence POSchk = POSw + 2 * (1rep + 1)
. . . . if poscpi + szv > length(p) A nypep = 0 then
* Greedy algorithm with a sliding window | breals
* Add knot information about repeating times for) 010 5 P +5 < engh(p) do
. if p|pos,, + j| # plpos.pi + j| then
* Complexity: O(n*BOUND) | breals
* n:length of events sequence end
. . g . if j = sz,, then
e BOUND: size of sliding window | Mrep e mrep + 1
. else if n,¢p = 0 then
* Not optimal: | sz e szt
else
e ele2ele2e3ele2ele2e3 compressed to knot(r.idx., (nrep + 1,52.));
rlidx..(idx + 5244)] « plpos...(posy + sz4)];
(2, 2)ele2e3(2, 2)ele2e3 dr e idrtsmn
instead of (2, 5)ele2ele2e3 P Sy e £
end
end
rlidx] « plposw|;
idx — idx + 1;

end

compress(r, idx);




Context-Sensitive Remote Enforcement
* Verifier-side shadow stack
Mapping F
* statically for forward edges. The element of F is in form c¢s = (ca, tgts).
e c¢s: call site address of a forward edge
* ca :address of the call-after point of the call site
* tgts :the set of valid target addresses of the call
Security policy : <M, F>
For call edge
* Retrieve the mapping M to find all the skipped events led by this call edge
For forward edge and its subsequent skipped events
* Validate the call/branch target (in tgts?)
* Push the call-after point onto the shadow stack
For returns
e check “return target =? top element of shadow stack”

N

[ 2a N

. D

N 2

e,
p—



e

\ TEEFHLE Implementation of ReCFA

* Binary-level CFG

Derived with TypeArmor. Neutral to different binary CFG generation approaches

* Security policy <M, F>

M: static analysis with Dyninst
F: static analysis with TypeArmor

* Edge encoding

Indirect branches and returns: a pair of code addresses
Direct call: one code address of the call site

* Intel’s MPK protected user-space data structures (loop stack and path stack)

CFA data regions only allowed to be written by instrumented code snippets
Insert guards at entry and exit points of code snippet

* The guard notifies the kernel the type of each snippet and the guarded point
Kernel-level pairing the consecutive entry/exit signal of guards with the same
snipped type
Avoid using indirect branches in the code snippets



"

'-) TGEEFH#FE Evaluations
st=y/ XIDIAN UNIVERSITY

SPEC CPU 2006’s C benchmarks (standard workload “test”)
Binaries build with GCC v7.5.0 and LLVM v10.0.0

\
Effect of call-site filtering
The ratio of reduction ranges 16.1%~57.2% for GCC binaries and 16.1%~54.5% for
LLVM binaries. The overall reduction is around 40.5%. )
GCC LLVM
#d-call | #d-call | #d-call | #d-call
Program orig | skipped orig | skipped
400.perlbench 13,793 4168 13,799 4179
401.b2'1p2 288 134 271 129
403.gcc 48,610 21,558 | 48,416 21,412
429 mcf 31 3 31 3
433.milc 929 358 929 358
445.gc-bmk 8,898 3,150 8,887 3,143
456. hmmer 2,141 764 2,141 764
458.sjeng 739 272 739 272
462.1'1hquantum 407 233 410 222
464 h264ref 2,070 735 2,070 744
470.1bm 33 18 33 18
482.sph'1m(3 2,064 1,075 2,064 1,075
Overall reduction 40.6% 40.5%




e

TEEFAIAEL Evaluations

*um‘ XIDIAN UNIVERSITY

S

( Effect of control-flow events folding A

Average time overhead of instrumented program is 42.3%
Overall reduction in the control-flow events is 93.2%
Average attestation speed (E-speed) is 28.2M/s
| Peak D-speed is 2.53MB/s (GCC) and 2.59MB/s (LLVM). Average D-speed is 283.0KB/s )

E-speed: speed of the prover generating raw runtime control-flow events
D-speed: speed of the prover generating data that are sent to the verifier

GCC LLVM

Program Torig | Tinstr Ter #€ Uppial #eUg1d #eUgy Zs | Torig | Tinstr Tor #eUyptal #eUgyld #e Uy, Zs

] 6O 6 (x10%) | (x10%) | (x10°) (KB)| ()| ()| (5 (x10%) | (x10%) | (x10%)  (KB)
400.perlbench 13 4.0 0.5 25311.0 | 15,471.4 | 15,4442 519.4 1.6 47 0.1 24,884.0 2,855.6 2,830.6 469.1
401.bzip2 10.3 121 0.1 205,593.1 1,804.5 1,742.9 566.6 11.4 13.2 0.1 205,599.3 1,806.7 1,745.1 566.7
403.gcc 1.5 3.5 3.4 187,747.3 | 99,408.6 | 97.690.7 17,4893 1.5 33 3.5 185,831.5 | 100,174.0 | 98,463.0 17,579.9
429.mcf 4.0 6.7 0.3 174,799.9 9,767.0 7,090.7 2,195.7 4.4 7.0 0.3 174,799.9 9,767.1 7,090.7 2,241.1
433.milc 12.0 13.7 0.0 311,950.1 15.4 15.4 3.0 16.6 18.0 0.0 313,774.1 15.8 15.8 3.0
445.gobmk 5.4 7.5 1.6 60,850.8 | 50,976.7 | 50,534.1 7,786.2 5.2 7.4 1.6 60,859.8 50,985.4 | 50,543.0 7.781.5
456.hmmer 7.4 8.0 0.0 79,139.7 4.7 4.7 2.7 6.8 8.0 0.0 79,139.7 4.7 4.7 2.7
458.sjeng 5.6 | N/A | N/A 383,144.6 N/A N/A N/A 5.5 N/A | N/A 378,466.7 N/A N/A N/A
462.libquantum 0.1 0.1 0.0 1,018.7 24.6 24.6 2.7 0.1 0.1 0.0 1,279.3 24.7 24.7 2.6
464.h264ref 27.9 39.6 1.3 | 2,059,738.2 | 40,118.8 | 40,032.9 2,580.7 | 29.8 41.6 1.8 | 2,061,382.9 52,545.2 | 52,459.3 2,976.7
470.1bm? 2.8 2.8 0.0 0.12 0.03 0.03 0.2 2.5 2.5 0.0 0.12 0.03 0.03 0.2
482.sphinx3 2.1 23 0.0 34,596.9 842.4 728.4 166.2 2.0 2.3 0.0 34,730.4 836.1 725.0 167.4
Avg? overhead = 43.7% reduction = 93.2% overhead = 41.0% reduction = 93.2%

E-speed = 29.2M/s D-speed = 291.3KB/s E-speed = 27.2M/s D-speed = 275.2KB/s

2 Small numbers of #ev to two decimal places.
b 458.sjeng not taken into account.



ey

[eoem TN
e D
um
S—

q

XIDIAN UNIVERSITY

( )

Effect of BOUND value tunning
Greedy compression time increases exponentially along with the exponential increase

of BOUND. The increase in the gain of compression is not exponential. Thus small
BOUND is preferred

. J
BOUND

Program 2° 27 2¢ 2”

R T(s) R To(s) R Toe(s) R Tx(s)
400.perlbench 1.002 0.538 | 1.002 1.198 | 1.004 2.576 | 1.005 5.111
401.bzip2 1.035 0.075 | L.106 | 0.122 | 1.213 0.225 | 1.253 0.426
403.gcc 1.018 3.431 | 1.039 | 6.762 | 1.046 | 14.924 | 1.056 | 28.358
429.mcf 1.377 0.309 | 1.470 | 0.517 | 1.488 1.112 | 1.492 2.197
433.milc 1.000 0.002 | 1.000 [ 0.003 | 1.000 0.004 | 1.000 0.007
445.gobmk 1.009 1.594 | 1.010 | 3.309 | 1.019 7.357 | 1.022 | 14.013
456. hmmer 1.000 0.001 | 1.001 0.001 | L1006 0.002 | 1.008 0.002
462.libquantum 1.000 0.003 | 1.000 [ 0.004 | 1.000 0.006 | 1.000 0.011
464.h264ref 1.002 1.344 | 1.002 2.890 | 1.003 6.725 | 1.003 | 13.278
470.1bm 1.000 0.001 | 1.000 | 0.001 | 1.000 0.001 | 1.000 0.001
482.sphinx3 1.157 0.032 | 1.177 0.055 | 1.183 0.109 | 1.187 0.223
Avg((1-% / Ty,) 0.511 0.506 0.496 0.492




ey

[N
S

S

TEEFHta+E Evaluations

XIDIAN UNIVERSITY

Effectiveness of Context-Sensitive Enforcement at Verifier
The average verification speed is 1.03M/s

Incomparable to the speeds of ScaRR. Different definitions of control-flow events

GCC LLVM

Program |M| |71 | Ty=1(s) | Tuls) | IM] |71 | T,-105) | Tane(s)
400.perlbench 4,289 | 15,299 0.556 | 15.025 4308 | 15,248 0.103 6.513
401.bzip2 134 460 0.066 0.974 129 433 0.067 0.997
403.gcc 21,879 | 53,159 3455 | 56,417 | 21,740 | 52,417 3.527 | 136.505
429 mct 5 83 0.294 5.498 5 84 0.292 5.658
433.milc 372 1,591 0.002 0.015 372 1.618 0.001 0.016
445.gobmk 3,191 9.969 1646 | 43.629 3.154 0,986 1.644 43828
456 . hmmer 789 4,074 0.001 0.005 787 4,083 0.001 0.004
458.s)eng 273 1,247 N/A N/A 273 1.367 N/A N/A
462.libquantum 234 554 0.003 0.021 223 260 0.003 0.021
464.h264ret 750 3,347 1414 | 39.829 759 3,533 1.883 50.149
470.1bm 19 74 0.002 0.000 19 T6 0.001 0.000
482.sphinx3 1,078 2,758 0.029 0.651 1,078 2,767 0.029 0.649
Avg. vrt. speed 1.27M/s 0.87M/s




q

XIDIAN UNIVERSITY

P N
[T
. D
N 2
um

S—

~

Real exploits diagnosed by ReCFA
ReCFA’s verifier detects typical exploits detectable by TypeArmor.
Only instrument on a related part of CFG due to the large size of binary

Program Source Type Detected?
fimpeg CVE-2016-10190 | heap corruption v
Apache httpd | PoC exploit of [15] | heap corruption v
Nginx PoC exploit of [15] | heap corruption v
( )

Available: https://github.com/suncongxd/ReCFA




THAN@

Thanks for listening



