On Detecting Growing-Up Behaviors of Malicious Accounts in Privacy-Centric Mobile Social Networks

Zijie Yang, Binghui Wang, Haoran Li, Dong Yuan, Zhuotao Liu, Neil Zhenqiang Gong, Chang Liu, Qi Li, Xiao Liang, and Shaofeng Hu
Privacy-centric Mobile Social Networks (PC-MSNs)

• A new trend of Online Social Networks (OSNs)

• Strict usage policy
 • Restricted account access
 • search account ID / phone number
 • scan QR code
 • Restricted content access
 • posts and comments can be viewed only by friends
Growing-up Accounts

• Growing-up behaviors
 • disguised as a benign user for a period of time
 • make connections (e.g., making friends and commenting on posts) with other benign users

• Growing-up accounts form huge threats to PC-MSNs
 • click farm, spam, phishing
 • over 90% of malicious accounts can be classified as growing-up accounts
 • it is important to detect them before they engage in effective malicious campaigns
Real WeChat Dataset in Our Study

- WeChat: The largest mobile social network app in China
 - over 1 billion monthly active users

- WeChat Dataset
 - collected real-world data
 - first-week action records after registration
 - around 440k accounts
 - label obtained from WeChat’s security team
Measurement: IP Address

- CDF of the number of used IP addresses
- The number of accounts sharing each IP address
Measurement: Client Version & Action Count

- The number of accounts that use each client version
- The CDF curves of the number of actions
Overview of Muses

• Muses: Detect growing-up accounts in an unsupervised fashion using behavior data
Overview of Muses

Account-IP Bigraph

Account-Client Bigraph

Account-Action Bigraph
Overview of Muses

1. Account-Behavior Bigraph Construction
2. Account-Account Graph Construction
3. Unsupervised Maliciousness Assessment
4. Growing-Up Account Detection

User Behaviors
- UUID: XXXXXXXX
- Action: Login
- Time: 158 ********
- IP: ...*
- Version: ***

Account Nodes: A_0, A_1, ..., A_n
IP Set Nodes: IPSets_0, IPSets_1, ..., IPSets_m

Detected Growing-Up Accounts
Overview of Muses

Community (Account) Maliciousness

\[s(c_i) = \frac{c_{\text{max}} - \sigma(c_i)}{c_{\text{max}} - c_{\text{min}}} \]

\[c_{\text{max}} = \max_{c_j \in C} \sigma(c_j) \]

\[c_{\text{min}} = \min_{c_j \in C} \sigma(c_j) \]

Final malicious score

\[s(u) = \sqrt{s_{\text{IP}}(u)^2 + s_{\text{VER}}(u)^2 + s_{\text{ACT}}(u)^2} \]
Experimental Setup

• Evaluation with real datasets
 • first-week action records after registration from WeChat

• Evaluation metrics
 • Precision, Recall, aucPR

• Compared methods
 • Clickstream
 • SynchroTrap
 • EvilCohort
Overall Detection Performance

• Impact of threshold
 • Precision 90%
 • Recall 82%
 • AUC 0.95
Muses vs. Baseline Methods

- Muses outperforms the three baseline methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>AUC</th>
<th>Recall under different precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>SynchroTrap</td>
<td>0.29</td>
<td>0.342</td>
</tr>
<tr>
<td>ClickStream</td>
<td>0.56</td>
<td>0.571</td>
</tr>
<tr>
<td>EvilCohort</td>
<td>0.88</td>
<td>0.398</td>
</tr>
<tr>
<td>Muses</td>
<td>0.95</td>
<td>0.919</td>
</tr>
</tbody>
</table>
Conclusion

• Present the first systematic study of the growing-up behaviors of malicious accounts based on a real-world dataset.

• Propose a novel unsupervised method to effectively detect growing-up accounts.

• Experimental results show that Muses detects more than 82% of growing-up accounts with a precision higher than 90%, achieving 2x recall rate and even better precision compared with existing methods.
Thanks!

Q&A