
VIA: Analyzing Device 
Interfaces of Protected Virtual 

Machines
Felicitas Hetzelt (TUB), Martin Radev (AISEC*), Robert Buhren 
(TUB), Mathias Morbitzer (AISEC), Jean-Pierre Seifert (TUB)



Protected Virtualization (Motivation and Background)

New Technologies: AMD SEV(-ES, -SNP), INTEL 
TDX

● Protect complete commodity operating system
● Hypervisor excluded from TCB

Trust Boundary between virtual Devices 
and protected VM



Vulnerabilities in the Hardware-OS interface

(virtual) Devices used to be trusted



Vulnerabilities in the Hardware-OS interface

● SoC Peripherals



Vulnerabilities in the Hardware-OS interface

● SoC Peripherals
● PCI



Vulnerabilities in the Hardware-OS interface

● SoC Peripherals
● PCI
● USB



VIA’s Goal

Provide a generic tool to analyze the hardware interface of device 
drivers commonly used in virtual machines to find software 

vulnerabilities.



VIA’s Approach - Overview

Targeted driver fuzzing tool build on lkl and 
libfuzzer

● Target drivers loaded as shared library
● Generic VIRTIO, PCI and Platform 

device stubs
● Configuration files
● Userspace harness



Challenges in Fuzzing the Virtual Device Interface

● Low testcase throughput
○ Delays in driver code
○ Inefficient IO-Interception (VMEXIT, 

Page-Faults)
● No Interface for Coherent DMA 

Interception
○ Fresh values need to be provided on 

each access to coherent DMA area 

● In-efficient Interrupt Scheduling
○ Driver stalls until interrupt is scheduled
○ Performance loss when triggering too 

many interrupts 
● State Accumulation



VIA’s Approach - Details

● Improve Test Case Throughput
○ Remove delays in driver code (*delay, 

*sleep, schedule_timeout[_*], 
time_before/after)

● IO-Interception
○ Streaming DMA, MMIO and PIO: adapt 

existing kernel interfaces (read*, in*, 
sync_for_cpu, dma_unmap)

○ Coherent DMA: adapt ASAN 
instrumentation

● Interrupt Scheduling:
○ Track “waiting” workloads 

(wait_for_completion_*, *_wait_event_*) 
to schedule interrupts at useful 
execution points

● Reset State by Reloading Driver in 
each Iteration



VIA Performance

● 570 executions/s on average
● 163 improvement on average due to delay 

reduction
● 2706 improvement in executions/s (1915 

without delay optimization) and 2.26 
improvement in coverage compared to 
VM-based approach (Agamotto)



Bugs

● Analyzed VIRTIO, PCI and Platform drivers from 
Qemu devices and Google confidential VM (SEV)

○ ~50 bugs across 22 analyzed drivers (2 drivers had no 
issues)

○ Missing sanitization
○ Incomplete / failed initialization
○ Shared control data

● Exploitability:
○ 23/50 bugs likely not exploitable
○ HV has advanced exploitation capabilities



Device-shared pointer 
in vmxnet3

● Pointer to sk_buf placed in DMA 
memory area

● Device overwrites sk_buf pointer to 
point to device controlled memory

● Device points destructor function 
pointer to code gadget

● Gadget pivots stack to ROP chain in 
device controlled memory

Descriptor 
Array

SKB PTR

DMA
Memory

Kernel
Memory

destructor

sk_buff

destructor

sk_buff
Gadget

ROP Chain



Use-After-Free in 
virtio_net

● Device induces virtnet_probe fail; 
virtio_device is freed; error value is 
not set

● Device induces overlapping 
allocation of e1000 eeprom

E1000 
eeprom

Kernel
Memory

Dev PTR

vio_deviceMMIO

destructor

net_device

Gadget

ROP Chain



Limitations and Summary

● Applying VIA to 22 device drivers 
uncovered a large amount of 
vulnerabilities undermining the 
efficacy of protected virtualization 
technologies

● Intel TDX implements device white 
lists to limit the virtual device attack 
surface, however:

○ Many bugs affect drivers that are 
included in the white list

○ Cloud providers might have individual 
hardware requirements. E.g. none of 
the devices in the while list are used in 
the Google Confidential VM

● Limitations / Future Work:
○ No Concurrency
○ State Accumulation
○ Improved Fuzzing Methods



Thank you

https://github.com/file-citas/via

https://github.com/file-citas/via

