

Try before You Buy: Privacy-preserving Evaluation on Cloud-based Machine Learning Data Marketplace

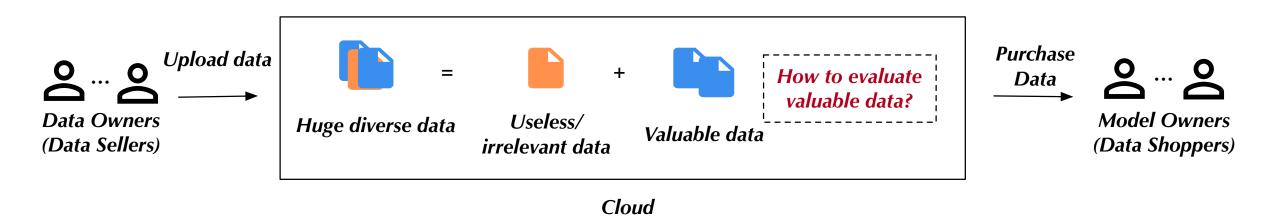
Qiyang Song, Jiahao Cao, Kun Sun, Qi Li, and Xu Ke

What is Data Marketplace?

- A good deep learning model relies on huge good-quality data.
 - > Trainers want to enrich their internal data sets with external data.
- As a result, data marketplaces emerge,
 - > providing data exchanging platforms for both enterprises and individuals.

Cloud-based Data Marketplace

• Traditional Cloud-based Data Marketplace

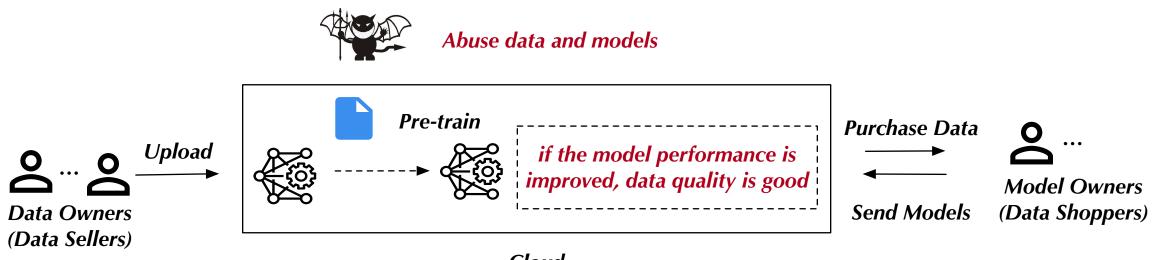


- > Model owners want to purchase the most valuable data to improve their models,
- but data owners may provide useless/irrelevant data that do not improve model performance.

How to evaluate the most valuable data for data shoppers' models?

Intuitive ML Data Evaluation

- Cloud needs to access both sellers' data and shoppers' models, but it is untrusted.
- Data and models may be sensitive for both sellers and shoppers!



Provide privacy-preserving ML data evaluation on data marketplaces

Existing Privacy Protection Solutions

- Existing privacy protection solutions
 - Homomorphic Encryption (HE), Secure Multi-party Computation (MPC)
 - > Can preserve both the privacy and functionality of data/models on the cloud

Limitations

- high computational and communication overhead
- not specially designed for ML data evaluation

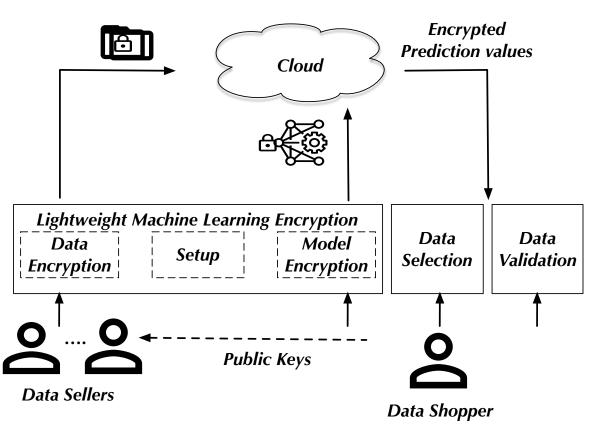
We need a lightweight encryption approach that is specially designed for ML data evaluation.

Our Solution

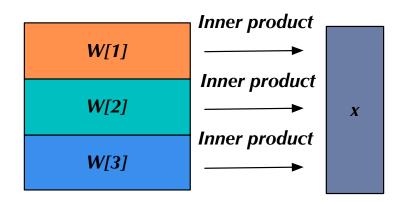
- We design a lightweight encryption approach to protect the privacy of data/models.
 - > So, the encrypted data/models cannot be directly evaluated by the cloud.
- We provide a ML evaluation approach that is compatible with our lightweight encryption approach
 - Instead of accessing the original data, we need extra information and mechanisms to evaluate valuable data.

Our System

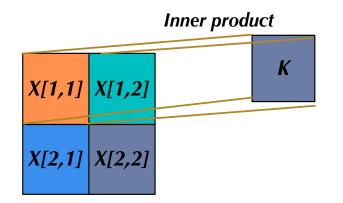
- Data sellers upload encrypted data to the cloud for sale.
- Data shopper uploads encrypted model and retrieves prediction values to select/validate data.
- The cloud helps the shopper to evaluate sellers' encrypted data.



- We need inner product computation over ciphertexts.
 - For most neural networks, both common matrix and convolution computation can be decomposed to inner product computation.



Decomposing matrix computation Wx

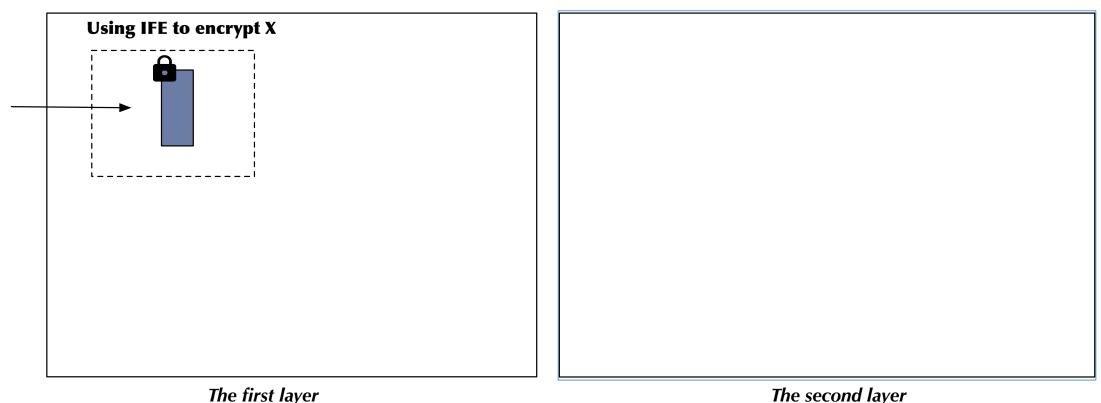


Decomposing convolution computation between K and X

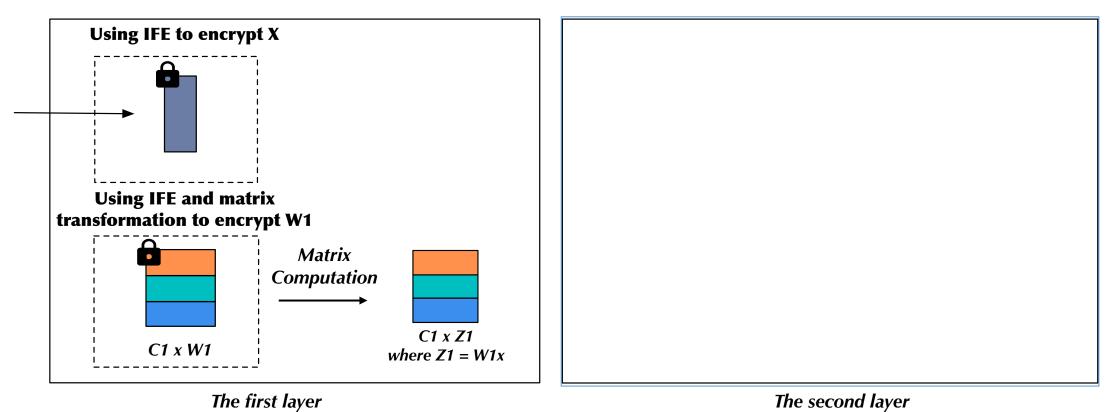
- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - Still can use encrypted model to predict/train encrypted data

- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - Still can use encrypted model to predict/train encrypted data

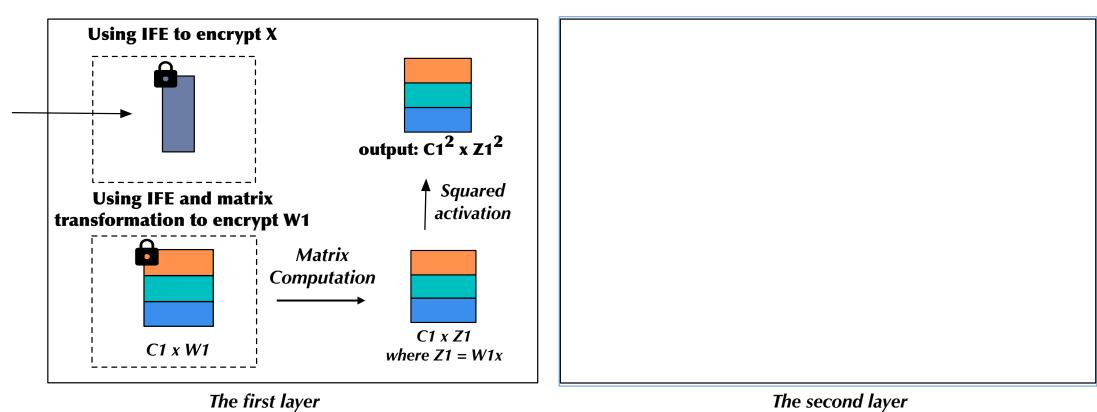
- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data



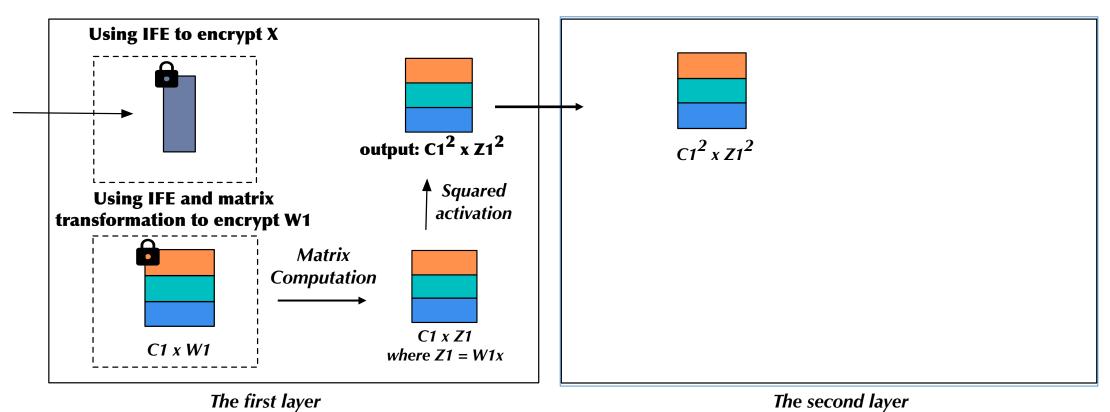
- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data



- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data



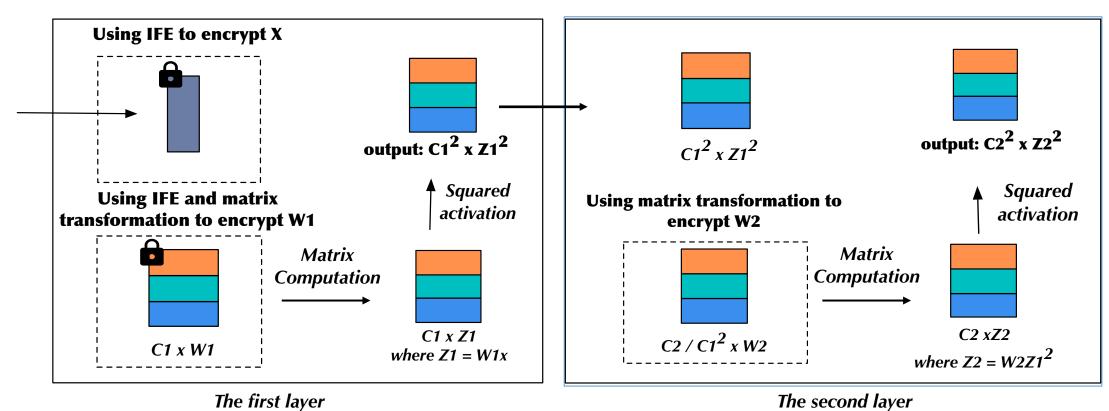
- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data



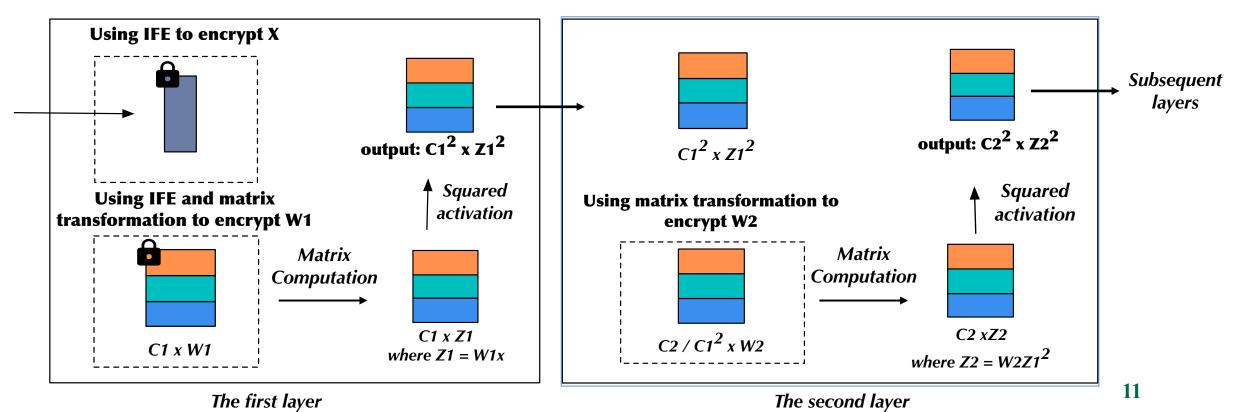
Lightweight ML Encryption

11

- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data

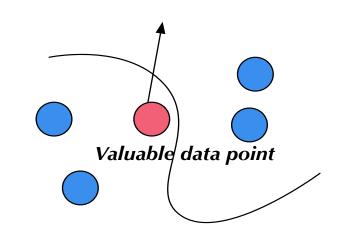


- We use lightweight inner-product functional encryption (IFE) and matrix transformation to encrypt data/models.
 - > Still can use encrypted model to predict/train encrypted data



Rationale behind Data Selection

- Data selection is based on active learning.
- Active learning uses prediction values (not original data) to evaluate data.
- Valuable data have **uncertain prediction values**.
 - Iocated near the decision boundary, i.e., provide more information

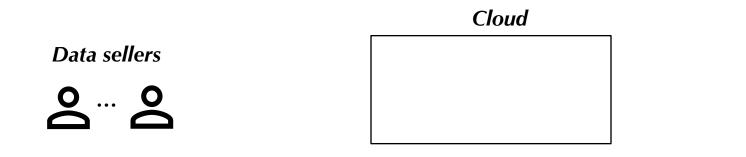


Active learning

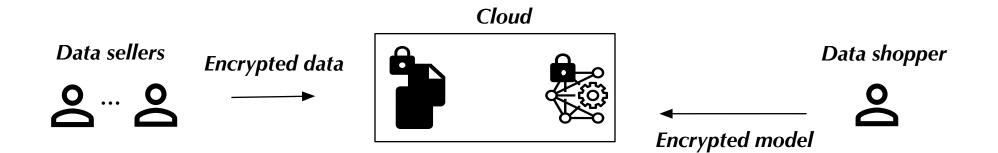
Uncertain prediction value: [0.495, 0.555]

- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.

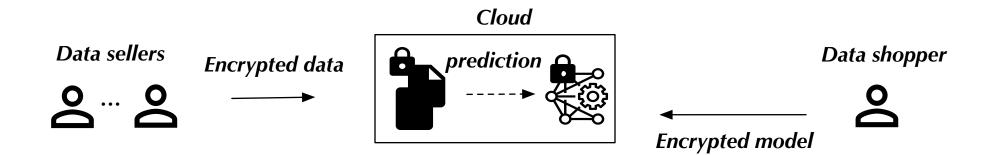
- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.



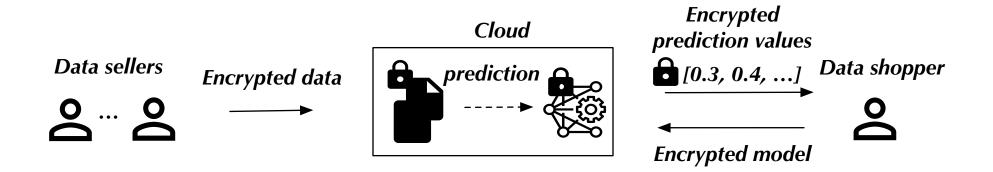
- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.



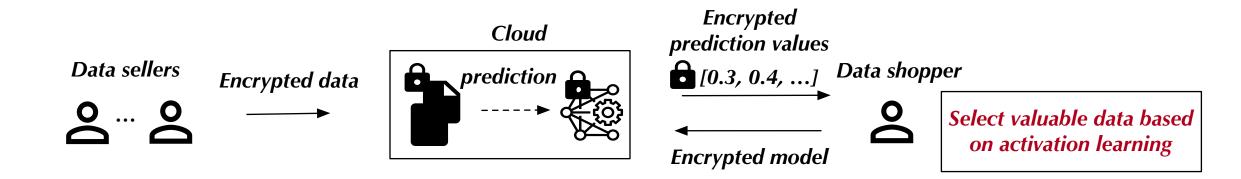
- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.



- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.



- 1. Data sellers and shopper upload their encrypted data and model.
- 2. The cloud performs prediction operations.
- 3. Data shopper collects encrypted prediction values to select valuable data.



Another Problem:

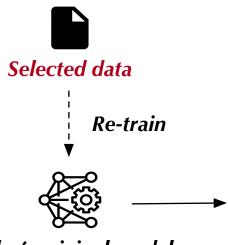
Data selection only considers the informativeness of data, but not labels, not relevance.

What if the selected data contain **unintentionally mislabeled data or irrelevant data?**

- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - > "try" : use the selected data to retrain the shopper' s model.

Rationale behind Data Validation

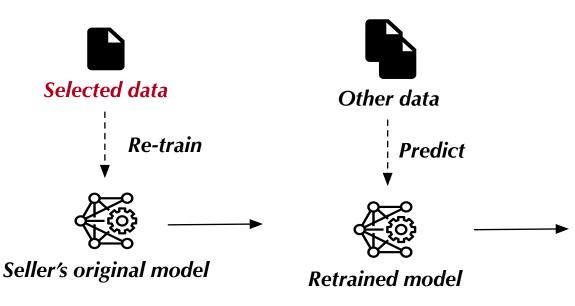
- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - "try" : use the selected data to retrain the shopper' s model.



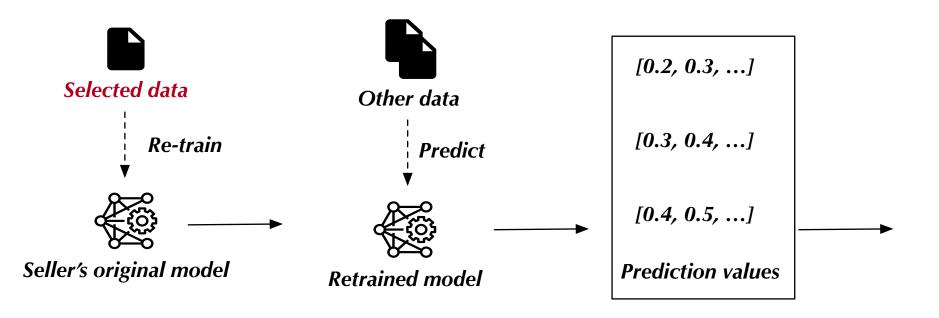
Seller's original model

Rationale behind Data Validation

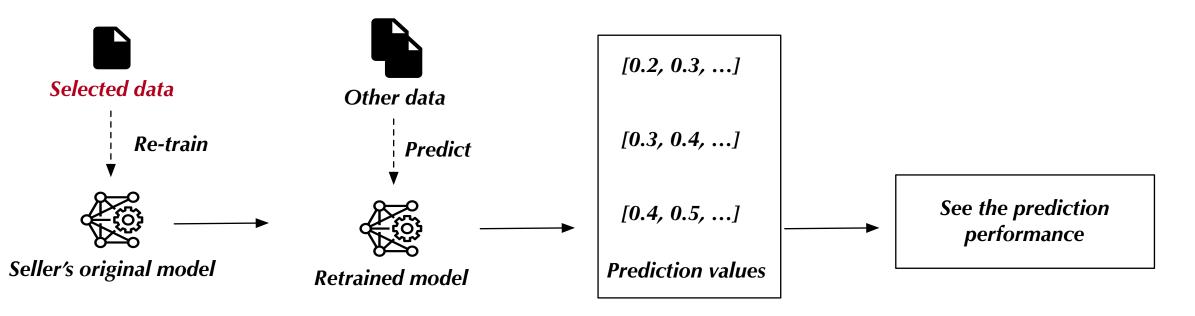
- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - > "try" : use the selected data to retrain the shopper' s model.



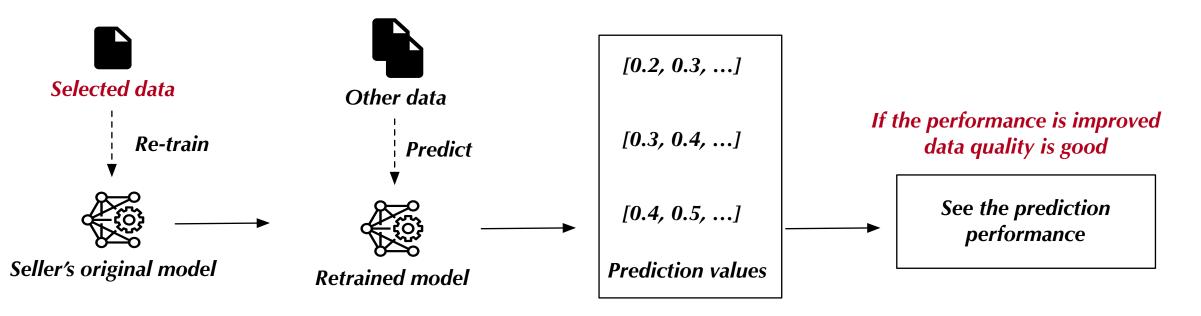
- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - > "try" : use the selected data to retrain the shopper' s model.



- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - > "try" : use the selected data to retrain the shopper' s model.



- The shopper and cloud **cannot directly see selected data** to estimate quality.
- Indirect approach: let the model "try" data and check model performance.
 - > "try" : use the selected data to retrain the shopper' s model.

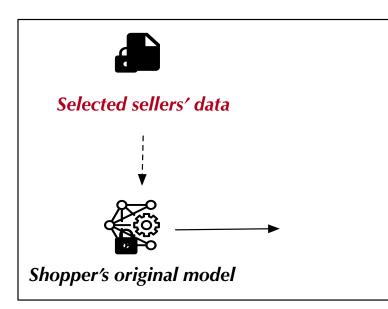


- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.

- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.

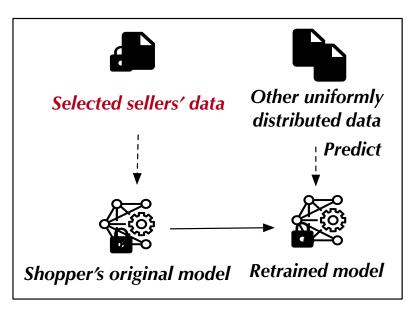
Data Validation

- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.



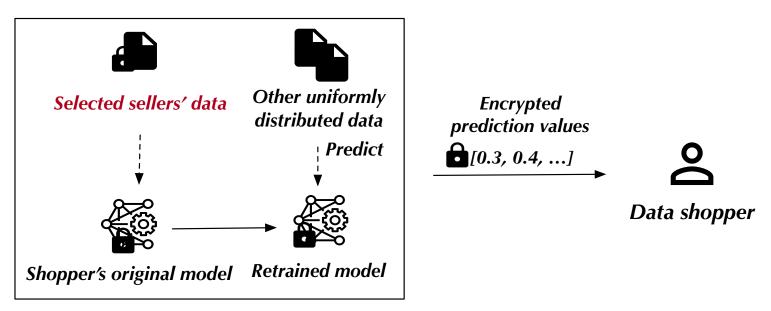
Data Validation

- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.



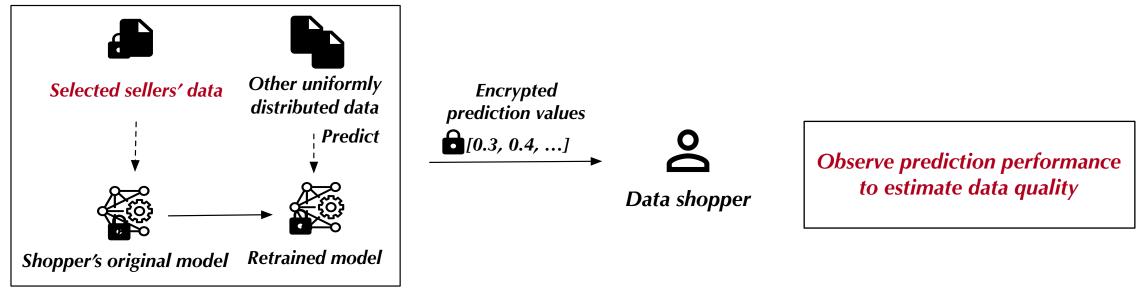
Data Validation

- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.



Data Validation

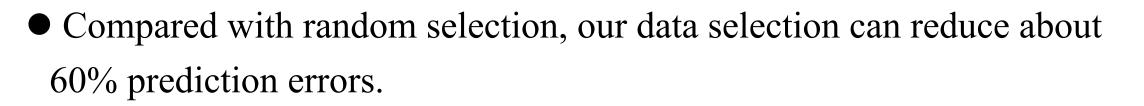
- 1. Cloud uses the selected data to retrain the shopper's encrypted model.
- 2. Cloud uses the retrained model to predict uniformly distributed data.
- 3. The shopper **collects encrypted prediction values** to estimate data quality.

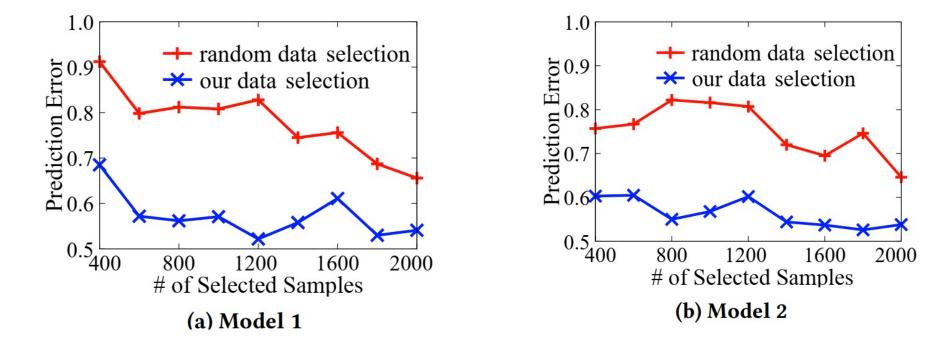


Experiment Setup

- We simulate
 - \geq 100 sellers and 1 shopper
 - ➢ divide MINIST to 101 subsets, assigned to sellers and shopper
- We evaluate
 - ➤ benefits of our data selection
 - \succ the accuracy of our data validation
 - \succ computational overhead

Benefits of Our Data Selection

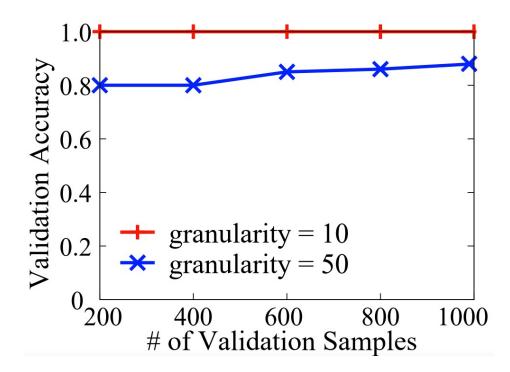




* Model 1 and 2 are trained with 5500 and 55000 samples, respectively.

Accuracy of Our Data Validation

• Simulate low-quality samples that are most likely to evade data validation



* We split samples into multiple subsets and validate them one by one.

* Validation granularity means that the size of validation subsets.

Computational Overhead

• Compared with homomorphic encryption based approach (E2DM)

Operations	Execution Time (second)	
	E2DM	Ours
Data Encryption	0.40	0.48
Model Encryption	0.14	0.20
Feed Forward	35.88	2.59
Back Propagation	N/A	0.05

Table 1: Execution Time of CNN models

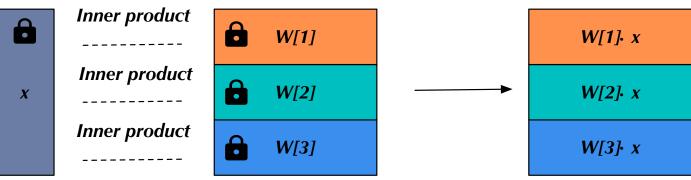
* We encrypt a six-layer CNN model and measure relevant operations

Conclusion

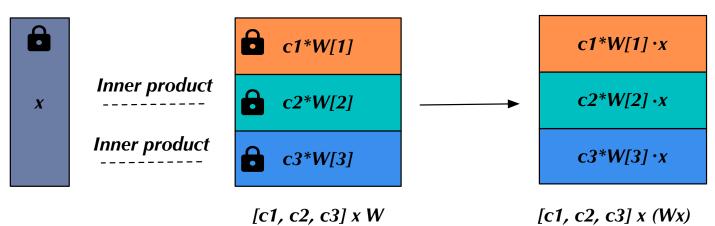
- A privacy-preserving and efficient ML data evaluation framework on data marketplaces
- A new lightweight ML encryption protocol that can preserve both privacy and functionality of data/models on the cloud
 > Based on IFE and matrix transformation
- Privacy-preserving Data Selection and Validation
 Can select valuable data and validate the data quality
 Do not disclose the original data and models

Thank you!

• We can use **inner product functional encryption** to enable matrix or convolution computation over ciphertexts.

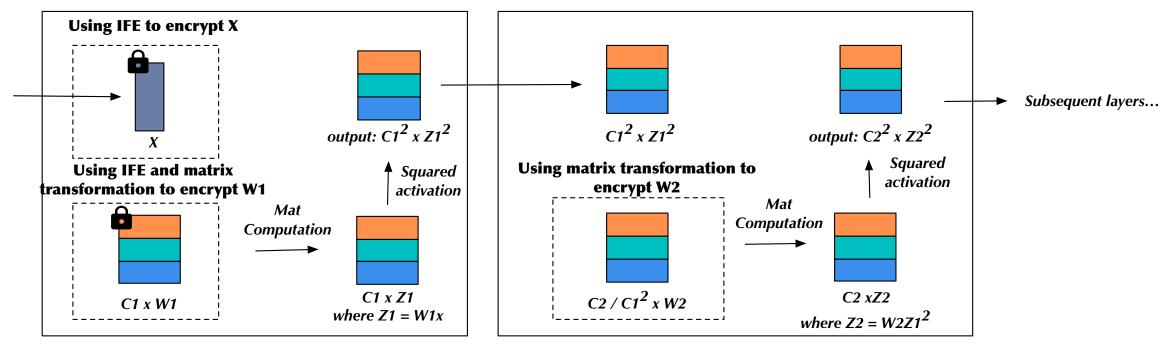


• The result is plaintext, we apply **matrix transformation** to hide the result.



Backup: Our ML Encryption

- IFE is only used to encrypt the first layer since it only support simple inner product computation.
- Remaining layers are encrypted by matrix transformation (see our paper).

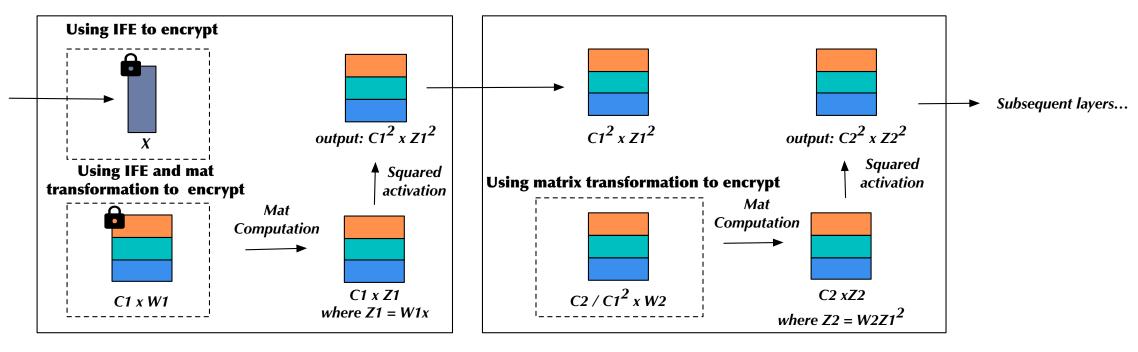


The first layer

The second layer

Backup: Our ML Encryption

- During prediction, the output of each layer is $C_i^2 \times Z_i^2$ (Z_i^2 is original output).
- We can decrypt the output by multiply C_i^{-2} .

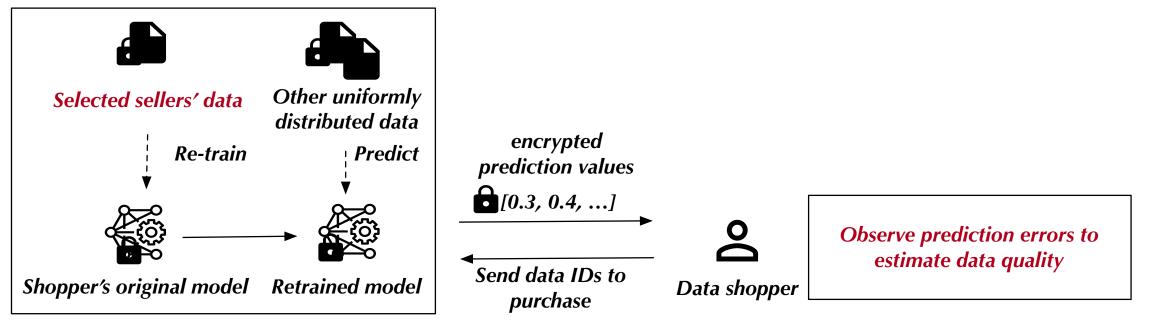


The first layer

The second layer

Backup: Data Validation

- To evaluate data of different values, we set a variable threshold T.
- T is often the previous prediction errors. If the current prediction errors < T, we can say the performance is improved, and the data quality is good.



Backup: TEE

- TEE may leak some sensitive information.
 - Cache Attacks
 - Fault injection attacks
- TEE has some memory limits.
 - ➢ For SGX, 128 MB