%) KOREA SLLSLAB

) UNIVERSITY xCOmputer&C oooooooooooo

ty Laboratory

DICOS : Discovering Insecure Code Snippets from
Stack Overflow Posts by Leveraging User Discussions

Hyunji Hong, Seunghoon Woo, Heejo Lee
Korea University

Annual Computer Security Applications Conference (ACSAC 2021)

Goal

 Discovering insecure code snippets from Stack Overflow posts

- Motivation
« Developers copy and paste code snippets from online Q&A fora

« Reusing code snippets without understanding the code implication

« compromise the security of the software
 propagation of insecure code snippets

Motivating example

Post #122721

How do | trim leading/trailing whitespace in a standard way?

Is there a clean, preferably standard method of trimming leading and trailing whitespace from a
string in C? I'd roll my own, but | would think this is a common problem with an equally common

187 solution.
c sftring whitespace trim
. . . .
If you can modify the string: j Descri ptlon
—
har *trimwhitespace(char *str)
178 ¢
{
char *end;
// Trim leading space
\/’ while(isspace((unsigned char)*str)) str++;

if(*str == 0) All spaces?
return str;

/ Trim trailing space

end = str + strlen(str) - 1;
while(end > str &% isspace((unsigned char)*end)) end--;

// Write new null terminator character

end[1] = "\@';

return str;

Code snippet

12 @Raj: There's nothing inherently wrong with returning a different address from the one that was passed in.
There's no requirement here that the retumed value be a valid argument of the free() function. Quite the
opposite -- | designed this to avoid the need for memory allocation for efficiency. If the passed in address
was allocated dynamically, then the caller is still responsible for freeing that memory, and the caller needs to
be sure not to overwrite that value with the value returned here

You have to cast the argument for isspace to unsigned char , otherwise you invoke undefined behavior.

Question

Answer

Comments

History of post #122721

Question
uploaded

Security issues
revealed by comments

> @ > ()

Answer post
uploaded

Sep. 2008 :

Jun. 2018

Answer post
revised

Motivating example

Security issues are revealed by user discussions

Description

Code Snippets “*str” may cause
char *trimwhitespace(char *str) { a null pointer dereference

char *end;

end = str + strlen(str) - 1;

1
2
3
4 while(isspace(*str)) str++;
5
6
7
8 while(end > str && isspace(*end)) end—-; “isspace()” in line #4

9 - :
10 may cause undefined behavior

11 *(end[1]+1)
12 return str;

13 } ‘
Comments

1
S

Motivating example

=39 OLDEST version [Sep. 2008]

char *trimwhitespace(char *str) {
char *end;
// Trim leading space
while(isspace(*str)) str++;

// Trim trailing space
end = str + strlen(str) - 1;
while(end > str && isspace(*end)) end——;

// Write new null terminator character
*(end[1]1+1) = 0;
return str;

Fix for
Security
Issue

S

=3 LATEST version [Jun.2018]

OooNOoOuUlL s~ WN B

+

char *trimwhitespace(char *str) {
char *end;
// Trim leading space
while(isspace(*str)) str++;
while(isspace((unsigned char)*str)) str++;

if(*str == @) // All spaces?
return str;

// Trim trailing space
end = str + strlen(str) - 1;
while(end > str && isspace(*end)) end—-;
while(end > str && isspace((unsigned char)*end)) end—;

// Write new null terminator character
*(end[1]+1) = 0;

end[1] = '\0';

return str; }

Dicos

Discovering Insecure COde Snippets
« An approach for discovering insecure code snippets in Stack Overflow posts

» Key ideas

e an accurate approach by examining the change history of Stack Overflow
posts for discovering insecure code snippets
« Phase 1: extracting the change history from the post
« Phase 2: analyzing the diffs using selected three features

« Phase 3: determining whether the post contains insecure code snippets

P1. Extracting the change history of a post

LATEST

Descripbtion
+

Code Snippets

Comments

P

Stack Overflow answer post

1) Collect Stack Overflow posts
2) Extract all the change histories of each post

3) Extract Diffs between
the oldest and the latest revision of the post

P1. Extracting the change history of a post

Code snippet pairing problem

CST

CS2

CS3

—</>OLDEST—~ Simple diffing code snippets can extract —</> LATEST —

the erroneous change history

-~ CST

D S S o CS2

H—ﬁ[CS3 ‘
JJ

* CS = Code Snippet

P1. Extracting the change history of a post

Code snippet pairing

— <[> OLDEST —

- Y

CST -

CS2 B

’ >

CS3

* CS = Code Snippet

function 1

function 2'

the rest of CS1

the rest of CS1

function 2

function 1'

the rest of CS2

the rest of CS2

CS3

CS3

-l
H

— <[> LATEST —

- =)

- CST

- CS2

Generating new code snippets

by extracting functions

CS3

P1. Extracting the change history of a post

Code snippet pairing

—</> OLDEST — —</> LATEST —~
function 1 function 2' (
CS1 - . CS1
the rest of CS1 the rest of CS1
function 2 function 1'
CS2 CS2
the rest of CS2 k)‘ the rest of CS2
CS3 CS3 K >| CS3 r CS3
_ _J \L J

Pairing in order of highest score

, based on similarity score
* CS = Code Snippet

P2. Analyzing the extracted change history

Feature selection
Large-scale empirical study using CVE vulnerabilities

Initial feature selection (related approaches) 1) Select F1
0,
F1. Changes in security-sensitive APIs v 4%
F2. Changes in security-related keywords v
v

F3. Changes in control flows

F4. Changes in literals

F5. Changes in identifiers
Security patch General patch

17% \/ 4%

4 times higher

F6. Changes in function calls (APlIs)

P2. Analyzing the extracted change history

Feature selection
Large-scale empirical study using CVE vulnerabilities

Initial feature selection (related approaches) 2) SelectF2, F3
F1. Changes in security-sensitive APIs v
F2. Changes in security-related keywords v

v

F3. Changes in control flows

F4. Changes in literals

F5. Changes in identifiers
Security patch General patch

F6. Changes in function calls (APIs
ges I TUnct () more than 60% less than 26%

P2. Analyzing the extracted change history

Feature selection
Large-scale empirical study using CVE vulnerabilities

Initial feature selection (related approaches)

F1. Changes in security-sensitive APIs v

F2. Changes in security-related keywords v

F3. Changes in control flows v

F4. Changes in literals We select three features

F5. Changes in identifiers F1. Changes in security-sensitive APIs

F6. Changes in function calls (APIs) F2. Changes in security-related keywords
F3. Changes in control flows

P2. Analyzing the extracted change history

Analyzing code snippets

- Dicos checks changes in security-sensitive APIs and control flows

Checks if deleted code lines contain
security-sensitive APIs

7 F3 Checks whether the diffs contain
a change in control flows or conditional statements

code snippet Diffs

P2. Analyzing the extracted change history

Analyzing descriptions and comments

- Dicos checks whether security-related keyword pair is included in the diffs

[Example] noun
security-related
B -typesincommentsandimprovereadability y verb
keywords
@ math to handle angles... —
modifier

Check if (noun, verb) or (modifier, verb)
in each sentence

P3. Determining insecure code snippets

A </> changes in security-sensitive APIs
post </> changes in control flows
7 {...} changes in security-related keyword pair

if two or more features are detected =¥ insecure post

Evaluation

Dataset collection
« Google BigQuery, SOTorrent dataset (version. 2020-12-31)

- We collected Stack Overflow posts tagged with C, C++, Android
- We extracted a total of 1,958,283 Stack Overflow answer posts

+ 668,520 (34%) posts contain at least one change history

Evaluation

 Dicos discovered 12,458 insecure posts

ID #Total Posts #TP #FP #TN #FN

* Accuracy measurement G1 788 757 3l
. G2 400 346 54
G1. All posts with three selected features G3 200 162 38
. G4 400 318 82
G2.Top 400 posts with two selected features G5 200 o 185 15
G3. Randomly selected 200 posts with two features Total 1988 L2 123 OB
Precision 0.91
G4. Top 400 posts with only one feature Recall 0.93
Accuracy 0.89

G5. Top 200 posts without features
Accuracy measurement results for

C, C++ and Android posts

Findings

Q1.| Are older posts more likely to provide insecure code
snippets?

Q2.| Are accepted answer posts more secure than
non-accepted posts?

Q3.| What types of insecure code snippets were discovered?

Findings

Q1. Are older posts more likely to
provide insecure code snippets?

I |nsecure posts W Secure posts

75,297 79,599 82,983 79,647 85,546
37,260 °8655 58,476

35,896
20,755 28,388
11,114
2,446
1,408 1,544 1,675 1,554 1,318 1,149
251 458
g I I

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(Year)

Year distributions of secure and insecure posts discovered by Dicos

Findings

Q1. Are older posts more likely to
provide insecure code snippets?

I |nsecure posts W Secure posts

75,297 79,599 82,983 79,647 85,546

37,260 58,655 58,476

35896 28,388

11,114 20,755

T ol ol osh| el Rl g P BTl 1l (oo B About 2% of Insecure Posts are
251

ill I I I I I I I I I I I uploaded each year

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
(Year)

Year distributions of secure and insecure posts discovered by Dicos

Findings

Q2. Are accepted answer posts more

secure than non-accepted posts?

Bl [nsecure posts WM Secure posts

270,042 386,020

7,870

4,588

Accepted posts Non-accepted posts

Ratio of insecure posts between accepted
and non-accepted posts discovered by Dicos

Answers

v

A

v

Accepted answer post

Non-accepted answer posts

Findings

Q2. Are accepted answer posts more

secure than non-accepted posts?

Bl [nsecure posts WM Secure posts

386,020

270,042

7,870

4,588

Accepted posts

Non-accepted posts

Ratio of insecure posts between accepted
and non-accepted posts discovered by Dicos

Accepted(1.67%)
Tl almost same
Non-accepted(1.99%)

Findings

Q3. What types of insecure code
snippets were discovered?

367 = [nsecure code snippets with three features

175

91 90 68
H e 2 2
I —

Undefined Null- Memory Buffer Initialization Infinite Out-of- Others
behavior terminated leak overflow issue loop bounds error
string issue

(Categorization)

Types of discovered insecure code snippets

Findings

Q3. What types of insecure code
snippets were discovered?

367 mm |nsecure code snippets with three features
Dicos covers various types of
175) insecure code snippets
90
H N s = - .
Undefined Null- Memory Buffer Initialization Infinite Out-of- Others
behavior terminated leak overflow issue loop bounds error

string issue
(Categorization)

Types of discovered insecure code snippets

Conclusion

« We present Dicos, an accurate approach for discovering insecure code
snippets in Stack Overflow posts by leveraging user discussions

« Equipped with insecure code snippet discovery results from Dicos

 improve the credibility of Stack Overflow by addressing discovered
insecure code snippets

o create a safe code snippet reuse environment

Q&A

Thank you for your attention!
» Dicos repository (https://github.com/hyunji-Hong/Dicos-public)

CONTACT

 Hyunji Hong (hyunji_hong@korea.ac.kr)
« Computer & Communication Security Lab (https://ccs.korea.ac.kr)

https://github.com/hyunji-Hong/Dicos-public
mailto:hyunji_hong@korea.ac.kr
https://ccs.korea.ac.kr

