
DICOS : Discovering Insecure Code Snippets from
Stack Overflow Posts by Leveraging User Discussions

Hyunji Hong, Seunghoon Woo, Heejo Lee
Korea University

 Annual Computer Security Applications Conference (ACSAC 2021)

 Goal

2

• Discovering insecure code snippets from Stack Overflow posts

• Motivation

• Developers copy and paste code snippets from online Q&A fora

• Reusing code snippets without understanding the code implication

• compromise the security of the software

• propagation of insecure code snippets

 Motivating example

3

Question
uploaded

Answer post
uploaded
Sep. 2008

Security issues
revealed by comments

Jun. 2018

.	.	.

Answer post
revised

History of post #122721Post #122721

Computer	&	Communication	Security	Lab,	Korea	University

4

Code Snippets

Description

Comments

OLDEST version [Sep. 2008]

 1 char *trimwhitespace(char *str) {
 2 char *end;
 3 // Trim leading space
 4 while(isspace(*str)) str++;
 5
 6 // Trim trailing space
 7 end = str + strlen(str) - 1;
 8 while(end > str && isspace(*end)) end--;
 9
10 // Write new null terminator character
11 *(end[1]+1) = 0;
12 return str;
13 }

“isspace()” in line #4
may cause undefined behavior

“*str” may cause
 a null pointer dereference

 Motivating example

Security issues are revealed by user discussions

 Motivating example

5

OLDEST version [Sep. 2008]

 1 char *trimwhitespace(char *str) {
 2 char *end;
 3 // Trim leading space
 4 while(isspace(*str)) str++;
 5
 6 // Trim trailing space
 7 end = str + strlen(str) - 1;
 8 while(end > str && isspace(*end)) end--;
 9
10 // Write new null terminator character
11 *(end[1]+1) = 0;
12 return str;
13 }

 1 char *trimwhitespace(char *str) {
 2 char *end;
 3 // Trim leading space
 4 - while(isspace(*str)) str++;
 5 + while(isspace((unsigned char)*str)) str++;
 6
 7 + if(*str == 0) // All spaces?
 8 + return str;
 9
10 // Trim trailing space
11 end = str + strlen(str) - 1;
12 - while(end > str && isspace(*end)) end--;
13 + while(end > str && isspace((unsigned char)*end)) end--;
14
15 // Write new null terminator character
16 - *(end[1]+1) = 0;
17 + end[1] = '\0';
18 return str; }

LATEST version [Jun. 2018]

Fix for
Security

Issue

 Dicos

6

Discovering Insecure COde Snippets

• An approach for discovering insecure code snippets in Stack Overflow posts

• Key ideas
• an accurate approach by examining the change history of Stack Overflow

posts for discovering insecure code snippets
• Phase 1: extracting the change history from the post

• Phase 2: analyzing the diffs using selected three features

• Phase 3: determining whether the post contains insecure code snippets

 P1. Extracting the change history of a post

7

Stack Overflow answer post

Comments

Code Snippets

Description

OLDEST

Comments

Code Snippets

Description
+

-
+

LATEST

+

1) Collect Stack Overflow posts

2) Extract all the change histories of each post

3) Extract Diffs between
 the oldest and the latest revision of the post

...

 P1. Extracting the change history of a post

8

Code snippet pairing problem

* CS = Code Snippet

</> OLDEST

CS1

CS2

CS3

</> LATEST

CS1

CS2

CS3

Simple diffing code snippets can extract
the erroneous change history

 P1. Extracting the change history of a post

9

* CS = Code Snippet

CS1

CS2

CS3

the rest of CS1

the rest of CS2

CS3

function 2

function 1

</> OLDEST

the rest of CS1

the rest of CS2

CS3

</> LATEST

CS1

CS2

CS3

function 1'

function 2'

Generating new code snippets
by extracting functions

Code snippet pairing

 P1. Extracting the change history of a post

10

* CS = Code Snippet

CS1

CS2

CS3

the rest of CS1

the rest of CS2

CS3

function 2

function 1

</> OLDEST

the rest of CS1

the rest of CS2

CS3

</> LATEST

CS1

CS2

CS3

function 1'

function 2'

Pairing in order of highest score
based on similarity score

Code snippet pairing

 P2. Analyzing the extracted change history

11

Feature selection
Large-scale empirical study using CVE vulnerabilities

1) Select F1

Security patch
 17%

General patch
4%

17%

4%

4 times higher

Initial feature selection (related approaches)
F1. Changes in security-sensitive APIs

F2. Changes in security-related keywords

F3. Changes in control flows

F4. Changes in literals

F5. Changes in identifiers

F6. Changes in function calls (APIs)

✔

✔

✔

 P2. Analyzing the extracted change history

12

Security patch
 more than 60%

General patch
less than 26%

60%
26%

2) Select F2, F3Initial feature selection (related approaches)
F1. Changes in security-sensitive APIs

F2. Changes in security-related keywords

F3. Changes in control flows

F4. Changes in literals

F5. Changes in identifiers

F6. Changes in function calls (APIs)

✔

✔

✔

Feature selection
Large-scale empirical study using CVE vulnerabilities

2) Select F2, F3

 P2. Analyzing the extracted change history

13

Security patch
 more than 60%

General patch
less than 26%

60%
26%

We select three features

F1. Changes in security-sensitive APIs

F2. Changes in security-related keywords

F3. Changes in control flows

Initial feature selection (related approaches)
F1. Changes in security-sensitive APIs

F2. Changes in security-related keywords

F3. Changes in control flows

F4. Changes in literals

F5. Changes in identifiers

F6. Changes in function calls (APIs)

✔

✔

✔

Feature selection
Large-scale empirical study using CVE vulnerabilities

 P2. Analyzing the extracted change history

14

Analyzing code snippets
• Dicos checks changes in security-sensitive APIs and control flows

-
-
+
+

code snippet Diffs

{
F1

F3
Checks whether the diffs contain
a change in control flows or conditional statements

Checks if deleted code lines contain
security-sensitive APIs

 P2. Analyzing the extracted change history

15

Analyzing descriptions and comments
• Dicos checks whether security-related keyword pair is included in the diffs

security-related
keywords

[Example]

① Fix typos in comments and improve readability

② Fixed math to handle negative angles... { noun

verb

modifier

Check if (noun, verb) or (modifier, verb)
in each sentence

 P3. Determining insecure code snippets

16

{A
post

if two or more features are detected ➜ insecure post

</> changes in security-sensitive APIs

</> changes in control flows

{...} changes in security-related keyword pair

17

Dataset collection
• Google BigQuery, SOTorrent dataset (version. 2020-12-31)

• We collected Stack Overflow posts tagged with C, C++, Android

• We extracted a total of 1,958,283 Stack Overflow answer posts

• 668,520 (34%) posts contain at least one change history

 Evaluation

Computer	&	Communication	Security	Lab,	Korea	University

 Evaluation

18

• Dicos discovered 12,458 insecure posts

• Accuracy measurement
G1. All posts with three selected features

G2. Top 400 posts with two selected features

G3. Randomly selected 200 posts with two features

G4. Top 400 posts with only one feature

G5. Top 200 posts without features
Accuracy measurement results for

C, C++ and Android posts

Computer	&	Communication	Security	Lab,	Korea	University

 Findings

19

Q1. Are older posts more likely to provide insecure code
 snippets?

Q2. Are accepted answer posts more secure than
 non-accepted posts?

Q3. What types of insecure code snippets were discovered?

 Findings

20

Q1. Are older posts more likely to
provide insecure code snippets?

Year distributions of secure and insecure posts discovered by Dicos

 Findings

21

Q1. Are older posts more likely to
provide insecure code snippets?

About 2% of Insecure Posts are
uploaded each year

Year distributions of secure and insecure posts discovered by Dicos

 Findings

22

Q2. Are accepted answer posts more
secure than non-accepted posts?

Ratio of insecure posts between accepted
and non-accepted posts discovered by Dicos

Answers

Accepted answer post

Non-accepted answer posts

 Findings

23

Q2. Are accepted answer posts more
secure than non-accepted posts?

Ratio of insecure posts between accepted
and non-accepted posts discovered by Dicos

Accepted(1.67%)

⇅
Non-accepted(1.99%)

almost same

 Findings

24

Q3. What types of insecure code
snippets were discovered?

Types of discovered insecure code snippets

 Findings

25

Q3. What types of insecure code
snippets were discovered?

Types of discovered insecure code snippets

Dicos covers various types of
insecure code snippets

Computer	&	Communication	Security	Lab,	Korea	University

 Conclusion

26

• We present Dicos, an accurate approach for discovering insecure code
snippets in Stack Overflow posts by leveraging user discussions

• Equipped with insecure code snippet discovery results from Dicos

• improve the credibility of Stack Overflow by addressing discovered
insecure code snippets

• create a safe code snippet reuse environment

Computer	&	Communication	Security	Lab,	Korea	University

 Q&A

27

Thank you for your attention!
• Dicos repository (https://github.com/hyunji-Hong/Dicos-public)

CONTACT
• Hyunji Hong (hyunji_hong@korea.ac.kr)
• Computer & Communication Security Lab (https://ccs.korea.ac.kr)

https://github.com/hyunji-Hong/Dicos-public
mailto:hyunji_hong@korea.ac.kr
https://ccs.korea.ac.kr

