
Technical University of Munich

Dynamic Taint Analysis versus 
Obfuscated Self-Checking

Sebastian Banescu    Samuel Valenzuela     Marius Guggenmos 
         Mohsen Ahmadvand       Alexander Pretschner

Annual Computer Security Applications Conference (ACSAC) - December 6-10, 2021



Technical University of Munich

Introduction

▪ Context: Self-checking used as software protection against tampering

▪ Problem: Automated attack using taint-analysis on self-checking exists

▪ Idea: Use code obfuscation to hide self-checking

▪ RQ: Can obfuscation protect against dynamic taint-analysis attacks on 

self-checking?

▪ Our work:

• Evaluate dynamic taint-analysis attack on popular obfuscations

• Improve most resilient protection

2



Technical University of Munich

Self-Checksumming: Software Tamper Protection 

▪ Detects and responds to tampering

▪ Inserts code guards in program

▪ Example:
1  ...
2  int actual = compute_checksum(...);
3  if(actual != expected) {
4    response_mechanism();
5  }
6  ...

3



Technical University of Munich

Obfuscations Used To Hide Self-Checking (1)

▪ Instruction Substitution a = b | c -> a = (b & c) | (b ^ c)

▪ Control Flow Indirection jmp 0x123 -> a = 0x123
jmp a

▪ Opaque Predicates

4



Technical University of Munich

Obfuscations Used To Hide Self-Checking (2)

▪ Control Flow Flattening

▪ Virtualization Replaces instructions with emulator

5



Technical University of Munich

Attacking Self-Checksumming on Machine Code

Input: executable binary (+ command line arguments to be applied)

Step 1: generate execution trace of binary

Step 2: taint program’s executable memory

Step 3: perform dynamic taint analysis on emulated instructions

Step 4: filter out and patch tainted control flow instructions

Output: patched executable binary bypassing all encountered code guards

6



Technical University of Munich

Evaluation of the First Attack

7



Technical University of Munich

VirtSC – Original Implementation

▪ Function used:
1  void func() {
2    // code guard here
3    other_func();
4  }

▪ VirtSC: LLVM pass combining self-checksumming and 

virtualization obfuscation

▪ VirtSC doesn’t read code from executable memory, but 

rather read-only data section 

➢ Taint analysis doesn’t notice self-checksumming

▪ Code guard implemented as virtualized instruction

 

8

Original VirtSC 



Technical University of Munich

Improved Attack on VirtSC

Example trace of VirtSC:

1  movabs rdi, 0x401528 ; code array address
2  mov eax, 0x25 ; code array length
3  ...
4  call 0x400690 ; hash function call
5  ...
6  ret ; hash function return
7  ...
8  cmp cx, ax ; checksum comparison
9  je 0x40102f

9



Technical University of Munich

Evaluation of Improved Attack on Original VirtSC

Key Insights:

▪ Bypassed all guards

▪ Drawback: attack duration

▪ Disk space for trace could become 

problematic as well

▪ Issues are of rather technical nature

10

Attack results and magnitude



Technical University of Munich

Updated VirtSC: Improving Original VirtSC

▪ Code guards’ instructions are virtualized as well

▪ Result:

• Virtualized instructions inside & outside code guards

• Code guards not bundled in machine code anymore

11



Technical University of Munich

VirtSC – Version Comparison

▪ Function used:
1  void func() {
2    // code guard here
3    other_func();
4  }

▪ Code guard length in code array:
2 vs. 110

12

Original VirtSC     vs.     Updated VirtSC



Technical University of Munich

Conclusion and Future Work

▪ Summary:

• Compared obfuscation techniques combined with self-checksumming

• Automated attack against original VirtSC

• VirtSC‘s security update

▪ Key Insights:

• Virtualization obfuscation complicates dynamic taint analysis

• Inlined code guards are harder to attack

▪ Future work: optimize performance overhead by avoiding placement of 

guards in hot code

13


