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Introduction

▪ Context: Self-checking used as software protection against tampering

▪ Problem: Automated attack using taint-analysis on self-checking exists

▪ Idea: Use code obfuscation to hide self-checking

▪ RQ: Can obfuscation protect against dynamic taint-analysis attacks on 

self-checking?

▪ Our work:

• Evaluate dynamic taint-analysis attack on popular obfuscations

• Improve most resilient protection
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Self-Checksumming: Software Tamper Protection 

▪ Detects and responds to tampering

▪ Inserts code guards in program

▪ Example:
1  ...
2  int actual = compute_checksum(...);
3  if(actual != expected) {
4    response_mechanism();
5  }
6  ...
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Obfuscations Used To Hide Self-Checking (1)

▪ Instruction Substitution a = b | c -> a = (b & c) | (b ^ c)

▪ Control Flow Indirection jmp 0x123 -> a = 0x123
jmp a

▪ Opaque Predicates
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Obfuscations Used To Hide Self-Checking (2)

▪ Control Flow Flattening

▪ Virtualization Replaces instructions with emulator
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Attacking Self-Checksumming on Machine Code

Input: executable binary (+ command line arguments to be applied)

Step 1: generate execution trace of binary

Step 2: taint program’s executable memory

Step 3: perform dynamic taint analysis on emulated instructions

Step 4: filter out and patch tainted control flow instructions

Output: patched executable binary bypassing all encountered code guards
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Evaluation of the First Attack
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VirtSC – Original Implementation

▪ Function used:
1  void func() {
2    // code guard here
3    other_func();
4  }

▪ VirtSC: LLVM pass combining self-checksumming and 

virtualization obfuscation

▪ VirtSC doesn’t read code from executable memory, but 

rather read-only data section 

➢ Taint analysis doesn’t notice self-checksumming

▪ Code guard implemented as virtualized instruction
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Original VirtSC 
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Improved Attack on VirtSC

Example trace of VirtSC:

1  movabs rdi, 0x401528 ; code array address
2  mov eax, 0x25 ; code array length
3  ...
4  call 0x400690 ; hash function call
5  ...
6  ret ; hash function return
7  ...
8  cmp cx, ax ; checksum comparison
9  je 0x40102f
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Evaluation of Improved Attack on Original VirtSC

Key Insights:

▪ Bypassed all guards

▪ Drawback: attack duration

▪ Disk space for trace could become 

problematic as well

▪ Issues are of rather technical nature
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Attack results and magnitude
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Updated VirtSC: Improving Original VirtSC

▪ Code guards’ instructions are virtualized as well

▪ Result:

• Virtualized instructions inside & outside code guards

• Code guards not bundled in machine code anymore
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VirtSC – Version Comparison

▪ Function used:
1  void func() {
2    // code guard here
3    other_func();
4  }

▪ Code guard length in code array:
2 vs. 110
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Original VirtSC     vs.     Updated VirtSC
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Conclusion and Future Work

▪ Summary:

• Compared obfuscation techniques combined with self-checksumming

• Automated attack against original VirtSC

• VirtSC‘s security update

▪ Key Insights:

• Virtualization obfuscation complicates dynamic taint analysis

• Inlined code guards are harder to attack

▪ Future work: optimize performance overhead by avoiding placement of 

guards in hot code
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