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Important Milestones

2014
Gradient-based 

Attacks

FGSM[1], BIM[2] 
and PGDM[3]

2017
Carlini & 
Wagner

C&W[5]Defensive Distillation[4], 
Gradient Masking, etc

2016
Defences against 
Gradient Attacks

2017
Adversarial 

training

Adv 
training[6]

2019
Certified 
Defenses

Certified 
Defenses[7], 
PixelDP[8]

Moving 
Target 

Defense

[1] https://arxiv.org/abs/1412.6572

[2] https://arxiv.org/pdf/1611.01236.pdf

[3] https://arxiv.org/pdf/1706.06083.pdf

[4] https://arxiv.org/abs/1511.04508

[5] https://arxiv.org/abs/1608.04644

[6] https://arxiv.org/abs/1611.01236

[7] https://arxiv.org/abs/1705.07204

● [8] https://arxiv.org/abs/1801.09344

[9] https://arxiv.org/abs/1802.03471

2021
Morphence

(this work)



Why Moving Target 
Defense?

● Highly vulnerable to model 
approximation

● Fitting the target model 
could be harder

Fixed Model Moving Model

● Given enough time, the 
adversary will eventually find 
a way to evade it

● Repeated Attack: Once 
successful, it is always 
successful

● The defender is always one 
step ahead

● An attack can succeed only 
once



A Moving Model
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Model Pool Generation

Base model

An accurate 
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PGD
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Another Layer of 
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Local storage and 
repetitive generation

Stack



Deployment
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Model Pool Renewal
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Results on MNIST

Undefended Adversarially-
trained Morphence

No Attack 99.72% 97.17% 99.04%

FGSM 9.98% 42.38% 71.43%

C&W 0.0% 0.0% 97.75%

SPSA [10] 29.04% 59.43% 97.77%

[10] https://arxiv.org/abs/1802.05666

Do not sacrifice accuracy on 
benign data

Significant increase 
compared to adv training 

Overcomes C&W

Robust against iterative-
query attacks



Results on CIFAR10

Undefended Adversarially-
trained Morphence

No Attack 83.63% 75.37% 84.64%

FGSM 9.98% 36.62% 38.78%

C&W 1.25% 1.34% 44.50%

SPSA 38.96% 59.43% 62.83%

Can improve accuracy on 
benign data

Improvement compared to 
adv training 

Significant improvement on 
C&W

Higher robustness against 
iterative-query attacks



Robustness Against 
Repeated Attacks

Does successful attacks on 
pool-1 remain evasive on 
different pool of models?



Detailed Results in the paper

[11] https://arxiv.org/abs/1412.6572



Moving Target Defense 
Against Adversarial 

Examples

● A Moving target model is more 
robust than the best fixed model 
defense.

● A Moving target model can 
prevent falling to the same attack 
multiple times.

● Iteratively querying a moving 
target model is not effective to 
optimize adversarial perturbations.

● We hope that Morphence will be 
used as a new benchmark for 
robustness against evasion attacks 

Conclusions

Morphence



Available Artifact
THANKS!

Do you have any 
questions?

aamich@umich.edu

https://abderrahmen-amich.netlify.app/

@AbderrahmenAmi2

https://github.com/um-dsp/Morphence

mailto:aamich@umich.edu

