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Model Extraction Attacks

Model extraction: duplicate/steal a machine learning model through queries.
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▪ Obtaining a practical deep learning model is non-trivial.

Why Should We Care?

▪ Model extraction attacks may facilitate other attacks.

Big data Intensive computing resources Intensive human resources
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▪ Model extraction on traditional machine learning models [1]. 

> Linear regression, logistic regression, decision tree...

▪ Model extraction on deep convolutional neural networks [2].

▪ Model extraction on BERT-based language models [3]. 

Prior Works on Model Extraction Attacks

[1] Stealing Machine Learning Models via Prediction APIs. Tramèr et al., USENIX Security 2016.
[2] High Accuracy and High Fidelity Extraction of Neural Networks. Jagielski et al., USENIX Security 2020.
[3] Thieves on Sesame Street! Model Extraction of BERT-based APIs.  Krishna et al., ICLR 2020 . 4
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Our Work

Model Extraction Attacks against Generative 

Adversarial Networks (GANs)
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▪ Conduct the first systematic study of model extraction attacks against GANs 

and devise fidelity extraction and accuracy extraction for GANs.

▪ Perform one case study to illustrate the impact of model extraction attacks 

against GANs. 

▪ Propose effective defense measures to mitigate model extraction attacks 

against GANs.

Our Work: Contributions
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Components of a GAN
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① Generated data

② Latent codes

③ Partial real data

④Discriminator 
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Taxonomy

▪ Fidelity extraction: construct a ෨𝐺 minimizing 𝑆( 𝑝𝑔, 𝑝𝑔).

▪ Accuracy extraction: construct a ෨𝐺 minimizing 𝑆( 𝑝𝑔 , 𝑝𝑟).

• 𝑝𝑔: implicit distribution of a target generator.

• 𝑝𝑔: implicit distribution of an attack generator.

• 𝑝𝑟: distribution of training set of a GAN.

• 𝑆: a similarity function between two models.
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▪ Methodology: use the generated data to retrain a GAN.

▪ Model extraction vs. Machine learning

> Model extraction: generated data.

> Machine learning: data collected in real world.

> Essentially model extraction on GANs approximates the target GAN that is a much 

simpler deterministic function.

Fidelity Extraction
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▪ Results: fidelity extraction on different models. 

Fidelity Extraction
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Performance of attack models with 50k queries Performance of target GANs

∗ FID: a smaller FID indicates a better performance of a GAN.

▪ Fidelity extraction can achieve an acceptable performance.
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▪ Results: attack performance on different number of queries.
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▪ Fidelity and accuracy values become stable with an increase in the number of queries.

▪ There is a gap in terms of accuracy between target models and attack models.

▪ Target model: PGGAN; FID = 3.40

Fidelity Extraction
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Accuracy Extraction
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▪ Reason: the target GAN model is hard to reach global equilibrium and the 

discriminator is often better than the generator in practice.

▪ An example on synthetic data.
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▪ Accuracy extraction: construct a ෨𝐺 minimizing 𝑆( 𝑝𝑔, 𝑝𝑟).

▪ Methodology:

> Discriminator + partial real data: subsample generated data through the discriminator.

> Retrain a GAN on these subsampled data. 

Accuracy Extraction
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▪ Results: accuracy extraction on different models. 

∗ Accuracy: a smaller accuracy value indicates a better attack performance.

Accuracy Extraction
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▪ Motivation: generate images on a new domain.

▪ Scenario: 

> Target model: StyleGAN trained with more than 3 million images.

> Attack model: PGGAN with 50k queries. 

> Objective: an adversary transfers the extracted model to new domains.

> The attack is successful if the performance of models trained by transfer learning based on 

the extracted GAN outperforms models trained from scratch.

Case Study
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▪ Source dataset: LSUN-Bedroom.

▪ Results: model extraction based transfer learning

∗ FID: a smaller FID indicates a better performance of a GAN.

Case Study
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▪ In terms of fidelity of model extraction

> Limiting the number of queries.

▪ In terms of accuracy of model extraction

▪ Input Perturbation-base Defenses

> Increasing the similarity of generated samples.

> Linear interpolation defense; semantic interpolation defense.

▪ Output Perturbation-base Defenses

> Perturbing generated samples.

> Random noise; adversarial noise; filtering; compression.

Defenses
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▪ Results: the performance of attack model PGGAN under various defenses

∗ A larger accuracy/fidelity value indicates a better performance of the defense.

Defenses

▪ Target model: PGGAN trained on CelebA
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▪ Protecting GANs through verifying the ownership

> A  GAN model is the intellectual property of model owners.

▪ Designing new privacy-preserving techniques for GANs

> Stealing a GAN model also means the leakage of distribution of the training set. 

Future Work
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Thank You!

Annual Computer Security Applications Conference (ACSAC) 2021

This work is supported by 

Luxembourg National Research Fund (FNR) - Grant No. 13550291 


