
Experimental Analysis & Refinement of a Guided Exploit
Generation Technique for Language Virtual Machines

Fadi Yilmaz ∗

fadiyilmaz@ybu.edu.tr
Ankara Yildirim Beyazit University

Dept. of Computer Engineering
Ankara, TURKEY

Meera Sridhar
msridhar@uncc.edu

UNC Charlotte
Dept. of Software and Info Systems

Charlotte, North Carolina

Wontae Choi †

wtchoi.kr@gmail.com

ABSTRACT

Background: We discussed GuidExp, a semi-automatic exploit
generation tool, in our paper at ACSAC 2020. GuidExp generates
an exploit script for a given ActionScript vulnerability. Unlike
the other exploit generators, GuidExp does not use fuzzing or a
symbolic execution; rather, it relies on human expertise to guide
it in successfully discovering vulnerable execution paths. This
paper augments our ACSAC paper and provides more details on
the experiments we conducted.
Aim: We sought to show that GuidExp can generate working
exploit scripts for real-world vulnerabilities in open- and closed-
source ActionScript Virtual Machine (AVM) implementations.
Data: We used community artifacts as GuidExp inputs: a ROP
gadget sequence, used to generate a GuidExp sub-goal; a proof-
of-concept (PoC) exploit script for CVE-2015-5119; and vulnerable
AVM implementations.
Method: We conducted a series of experiments, where the results
of each informed the development of the next. First, we tested
GuidExp on an open-source AVM using a single ActionScript vul-
nerability (CVE-2015-5119). We measured the number of candidate
slices generated by GuidExp, the number of candidate slices exe-
cuted successfully, and the time required to achieve each exploit
subgoal. We then implemented GuidExp optimization techniques
based on what we learned and repeated the same experiment us-
ing the optimizations. Next, we ran the experiment using eleven
di�erent vulnerabilities in a closed-source AVM. Finally, we ran
the original experiment using a larger search space to understand
how less accurate human guidance might impact GuidExp’s per-
formance.
Results: Using an optimal search space (expert human guidance),
GuidExp generated a successful exploit script for CVE-2015-5119
in an open-sourced AVM in just over 14 minutes. When the search
space was increased to by a factor of 2, the time increased to just
over 59 hours. GuidExp generated successful exploit scripts for 11
vulnerabilities in closed-source Flash Player v11.2.202.262, with the
longest completion time being just under 14 hours when using an
optimal search space.

∗The work reported herein was performed while at UNC Charlotte.
†This work was done while Wontae Choi was employed at Google Inc. However, the
work is a personal project and did not happen in the Google Inc. context. The work
also does not express the views or opinions of Google Inc.

Learning from Authoritative Security Experiment Results (LASER) 2020 
8 December 2020, Virtual
ISBN 1-891562-81-9
https://dx.doi.org/10.14722/laser-acsac.2020.23111
www.acsac.org

Conclusions: GuidExp needs to be human-guided to generate an
exploit script. Its performance is greatly a�ected by the accuracy of
the provided exploit subgoals. Redundant instructions for an exploit
subgoal signi�cantly increases the search space and subsequently,
the time that GuidExp needs to generate an exploit script.

1 INTRODUCTION

Determining exploitability [57] of a given vulnerability has histori-
cally been a labor-intensive manual process requiring deep security
knowledge. With the recent advances in fuzz testing and symbolic
execution, several approaches for automatically generating exploits
have been proposed [1, 11, 14, 15, 17–19, 22–26, 31, 34, 35, 41, 46, 50–
56, 58]. These approaches, collectively known as automatic exploit
generation (AEG), (such as AEG for return-oriented programming,
or control-�ow hijacking) have become critical tools for auditing
software security, and attack prevention.

AEG implementations are usually driven by one of two engines:
a fuzzer [36] and a symbolic execution tool [32]. The fuzzer helps
explore the input-space by monitoring the execution of randomly
generated inputs, and the symbolic execution tool helps explore the
execution-path-space by symbolically executing every execution
path. However, both approaches have their own limitations in the
space of AEG for language virtual machines (VM).

Typical fuzz testing approaches do not scale well for applications
taking as input other computer programs, such as language VMs.
They do not e�ciently generate inputs for such applications [28, 45].
For example, a fuzzer is extremely unlikely to test all possible
behaviors of a program (e.g., the probability of executing the "then"
branch of the if-statement "if (x==3)" is only 1/232 assuming x
is 32-bit integer value). While smart fuzz testing approaches [13,
33, 45] can generate random structured inputs (e.g., DNS packages),
they cannot adopt complex grammar rules (e.g., generating valid
program binaries with correct o�sets). Thus, traditional fuzzers
typically struggle to perform exploit generation for language virtual
machines.

AEG implementations for language VMs also cannot utilize a
typical symbolic execution tool due to its limitations. Symbolically
executing a language VM raises the path-explosion problem in
the early stage of the AEG process [12]. For example, the VM
produces an execution branch for every instruction it can read
during the parsing phase to obtain the sequence of instructions
to be executed. Although the general purpose of path selection
heuristics is to deal with execution-path space [12, 27, 31, 49], they
are not immediately helpful as the number of execution branches
that symbolic execution tools need to interpret is almost as many



as all possible inputs that the language virtual machine can take.
For this reason, an AEG implementation sometimes adopts a hybrid
approach, switching between the two techniques [15] when one
technique hits its limitations.

In our previous work [55], we presented GuidExp, the �rst
guided (semi-automatic) exploit generation tool that does not rely
on fuzzers or symbolic execution engines. While typical AEG im-
plementations synthesize a whole exploit script whose execution
path reaches one of prede�ned exploited program states, GuidExp
leverages exploit deconstruction, a technique of splitting the execu-
tion path into many shorter paths, to reach the exploit program
state. Hence, GuidExp can synthesize code snippets that follow
these shorter paths. GuidExp expects that program states on which
the execution path is split are given and described by a security
expert as exploit subgoals.

GuidExp focuses on generating Return-Oriented Programming
(ROP) [48] attack scripts, and demonstrate such an attack for an
AVM vulnerability that we use in our experiments. GuidExp uses
ROP attacks as representative attacks, because since 2015 almost
80% (547/698) of disclosed ActionScript (AS) vulnerabilities could
lead to an arbitrary code execution by implementing an ROP at-
tack [37]. Therefore, we ensure that GuidExp is expected and
capable of generating exploit scripts that perform an ROP attacks.
In an ROP attack, an attacker hijacks program control-�ow by gain-
ing control of the call stack and then executes carefully chosen
machine instruction sequences that are already present in the ma-
chine’s memory, called gadgets [16]. Each gadget typically ends
with a return instruction that allows the attacker to craft an in-
struction chain that performs arbitrary operations. We want to
highlight, however, that GuidExp can synthesize exploit scripts
that perform any type of attack (not just ROP) for given vulnerabil-
ities if the corresponding PoC and exploit subgoals are provided.

In this paper, we discuss experimental analyses and re�nements
we conducted as part of developing GuidExp. We introduce tech-
nical challenges we encountered during the implementation of
GuidExp, and how we overcome these challenges. We hope these
discussions are interesting to the reader since GuidExp is the �rst
exploit generation tool that can synthesize ROP exploit scripts.

The main contributions of this paper are:

• We discuss our experimental analyses of our exploit gen-
eration technique for language VM vulnerabilities.

• We discuss how the result of initial experiments allows us
to identify challenges of the exploit generation problem.

• We present our four optimization techniques and reasons
why we need to adopt them.
• We present the performance numbers of GuidExp in our

�nal experiments in which GuidExp exploits eleven AVM
vulnerabilities.

The rest of the paper is organized as follows. Section 2 presents
background on ROP attacks and our exploit generation approach.
Section 3 presents the three phases of our exploit generation tech-
nique and introduces the main components of GuidExp—the Code
Generator, the Invariant Validator, and the Exploit Subgoal Manager.
Section 4 provides implementation details of GuidExp to provide
the reader context for our experimental setup. Section 5 introduces
the initial experimental setup and artifacts that we borrowed from

the community. Section 6 introduces our optimization techniques.
Section 7 presents our experiment re�nements that led to better
performance numbers and Section 8 concludes.

2 BACKGROUND

2.1 Structure of a Typical ROP Attack

In this section, we introduce the structure of a typical ROP attack.
Fig. 1a depicts the structure of a typical ROP attack. An ROP attack
starts with executing the PoC—the piece of code which triggers the
vulnerability. The PoC corrupts the memory by performing activi-
ties such as creating a dangling pointer, or mangling the structure
of the garbage collector. However, the execution of the PoC should
not raise a kernel panic [20] (a system error from which operating
systems cannot quickly or easily recover), because otherwise, the
exploit that contains the PoC would result in the same kernel panic,
and the operating system terminates the execution of the exploits
before they perform their intended malicious activities. The ROP
attack exploits the resulting corrupted memory that the execution
of the PoC caused, and performs unauthorized activities on the
memory until it builds a gadget chain performing the arbitrary op-
erations. The ROP attack achieves its malicious end goal in several
exploit subgoals, each subgoal which we demonstrate with Code
Segment # in the Fig. 1a.

2.2 Intuition Behind Target Exploit Generation

In order to facilitate exploit generation, we de�ne a structure for
our target exploit, which is a high-level, semantic outline of the �nal
exploit we expect GuidExp to generate. That is, GuidExp generates
code which is semantically equivalent to the target exploit.

Fig. 1b depicts the structure of our target exploit. The �rst portion
of our target exploit consists of the trigger slice, which is the AS
bytecode representation of the PoC. Note that while the trigger slice
is able to drive the virtual machine in to a buggy state, entering to
the buggy state is not su�cient for determining the severity of the
bug or examining the way an attack would exploit the vulnerability.
GuidExp aims to generate real exploit code that achieves the above
by appending generated code to the bug-triggering code (the trigger

(a) Structure of a typical

ROP attack

(b) Structure of our target exploit

Figure 1: Exploit Structures

2



slice). The additional code required to build an exploit can vary
from one attack to another, and is not necessarily small or simple.

Execution of the trigger slice causes vulnerable code segments in
the AVM to be executed, but performs no further activity so as not to
raise kernel panic. For a given vulnerability, GuidExp uses the same
trigger slice as a pre�x to an entire set of executables to be tested for
potential exploit candidacy, thus it is crucial that the trigger slice
avoids kernel panic, otherwise the generated executables would
result in kernel panic causing our AEG process to fail.

The remaining part of the target exploit consists of a series of
exploit subgoals—semantic goals for each step of the synthesized
exploit; each exploit subgoal is used by GuidExp to synthesize code
blocks that achieve that particular semantic goal. Together, the
series of subgoals produce code that constitute the �nal exploit
script. For example, a typical exploit subgoal in an ROP exploit (de-
noted by ’Corrupting a Buffer Space Implicitly’ in Fig. 1b)
corrupts the size of a vulnerable bu�er to read the memory beyond
the bu�er boundaries to gain access to libc libraries containing
ROP gadgets [47].

Typical ROP attacks exploiting use-after-free (UAF) and double-
free (DF) vulnerabilities in language virtual machines tend to follow
a speci�c malicious activity pattern (a sequence of abstract logical
steps). This established, well-rehearsed pattern allows for surrepti-
tious penetration into the system, without being caught by standard
operating system defenses. Here, �rst, the ROP attack script ob-
tains one or more access privileges -rwx- for a system resource,
such as reading privileges over ELF binaries. Then, by using these
privileges, the ROP attack makes the next system resource, such
as the .plt segment, which is located in ELF binaries available
for itself. The ROP attack follows this pattern until being capable
of completing its full malicious activity goal, such as invoking a
system call. The fact that most exploits follow this typical pattern
allows us to deconstruct exploit code into multiple exploit subgoals,
whereby execution of each exploit subgoal sets the stage for the
next exploit subgoal.

For example, in the exploit shown in Fig. 1b, the trigger slice,
which exploits a UAF vulnerability, allows the ROP attack script to
dereference a dangling pointer. The dangling pointer occurs after
the UAF vulnerability is triggered. The dangling pointer points to
the metadata of the freed bu�er, so that the ROP attack can modify
the metadata to corrupt the length of the bu�er (see Section 5.2 for
more details). The goal of the ROP attack is to change the .length
property of the bu�er implicitly with a large number, without ex-
plicitly calling the .length property. The implicit change in the
.length property allows the ROP attack to gain access to memory
that lies beyond the bu�er boundaries, since the implicit change
does not allow the AVM to allocate a large enough empty space for
the new bu�er size.

Corrupting the .length is our �rst exploit subgoal and denoted
by ‘Corrupting a Buffer Space Implicitly’ in Fig. 1b. Having
the corrupted bu�er allows the ROP attack to spray helper elements
such as the payload to be executed into the heap, which is our sec-
ond exploit subgoal and denoted by Spraying Helper Elements
in Fig. 1b. The ROP attack follows this pattern until execution of
its malicious payload, which is the last exploit subgoal, denoted by
‘Building and Executing the ROP Chain’ in Fig. 1b.

2.3 De�ning Exploit Subgoals, Search Spaces &

Invariant

Since the semantics of “exploitability” is �uid, i.e., can change based
on security engineers’ expectations or security-sensitive assets,
GuidExp provides �exibility in de�ning exploitability of target ap-
plications in various settings and environments. GuidExp allows
de�ning exploitability as the successful completion of a series of ex-
ploit subgoals. For example, by providing exploit subgoals that are
necessary to bypass ASLR, security engineers can obtain the exploit
script, and then, they can see how the exploit code bypasses their
ASLR implementation to �x their weaknesses. GuidExp expects
such exploit subgoals to be de�ned by security experts who have a
thorough knowledge of their target application since the success of
GuidExp relies on de�ning the exploit subgoals accurately.

In order to synthesize code corresponding to each exploit subgoal,
GuidExp takes as input a collection of exploit subgoals; each exploit
subgoal consists of (1) a search space and (2) an invariant.

The search space consists of a set of opcodes and parameters. An
opcode is the atomic portion of machine code instruction, in AS
bytecode language, that speci�es the operation to be performed. In
AS language, opcodes take zero or more parameters to be used in
the operation [9]. A parameter is either an index to a value stored
in the constant pool of the executable or a constant to be pushed
into the call stack directly. We expect that the security experts
determines opcodes and parameters based on their experience. The
experts should consider semantic meaning of every opcode and
parameter and pick opcodes and parameters that can contribute to
synthesizing the exploit subgoal.

An invariant is a test that decides whether the synthesized code
semantically satis�es the corresponding exploit subgoal, and is
written by the security expert in the form of an AS code snippet.
GuidExp utilizes the invariant since it does not modify the imple-
mentation of the AVM or require recompiling the AVM to insert
�ags that alert when an error statement is reached.

Consider the simpli�ed example of an exploit script containing
an exploit subgoal of summing two known integer values. Assume,
in this simpli�ed example, the trigger slice for the exploit script
creates these integers with the following code snippet:

1 function init(){

2 var firstVariable = 6;

3 var secondVariable = 12;

4 }

To achieve the exploit subgoal, GuidExp needs to append to the
given PoC with the following:

1 var sum = firstVariable + secondVariable;

The line calculates the sum of given two integer variables, first-
Variable and secondVariable. The same line consists of three
smaller operations within: (1) assigning a value to a variable, since
the resulting sum (firstVariable + secondVariable) is assigned
to another variable (sum), (2) pushing the values to be summed onto
the operand stack (since the AVM uses the operand stack to store
temporary values), and (3) invoking the sum operator.

A security expert can therefore create the search space for this
exploit subgoal by considering these subset of operations. The
expert can choose these opcodes for the search space for the exploit
subgoal: getlocal, add, and setlocal. The opcode getlocal
pushes the value of local variables onto the operand stack, add is

3



the opcode that pops two values from the operand stack and pushes
the result onto the operand stack, and setlocal pops the top value
from the operand stack and assigns the value to a local variable.
The parameters used with the opcodes should be the indices of the
local variables. GuidExp is capable of calculating indices of exploit
subgoal-relevant variables when their names are provided. If no
variable name is provided, GuidExp calculates indices of all local
and global variables and adds them to the current search space.

The invariant for this exploit subgoal tests whether the sum
equals to a third known variable. A good invariant for the exploit
subgoal could be:

1 return (sum == thirdVariable)

2.4 Constructing Exploit Script from

Checkpoints

Once GuidExp synthesizes a code segment that satis�es the in-
variant for the current exploit subgoal, we declare that GuidExp
achieved the exploit subgoal. Subsequently, GuidExp can move
to the next subgoal. To do so, GuidExp �rst appends the synthe-
sized code segment into the AS executable constructed so far. This
combined executable is dubbed checkpoint. In this example, the
checkpoint for the exploit subgoal consists of the PoC and the line
that GuidExp synthesized in Section 2.3:

1 function init(){

2 var firstVariable = 6; var secondVariable = 12;

3 var sum = firstVariable + secondVariable;

4 }

Successfully acquiring a checkpoint enables GuidExp to be ready
to aim for the next exploit subgoal; therefore, GuidExp can stitch
the exploit script from checkpoint it synthesizes. When achiev-
ing one subgoal and �ndng a solution for the next one, GuidExp
builds candidate slices on top of the solution found for the previous
subgoal (i.e., new instruction permutations are appended to the
checkpoint built from solving the previous subgoal). This guar-
antees that the solution for the new subgoal always satis�es the
prior subgoals. GuidExp repeats this process until there is no more

Figure 2: Overview of GuidExp

subgoal to achieve, then returns the last obtained checkpoint as an
exploit script.

3 OVERVIEW OF GUIDEXP

Fig. 2 depicts an overview of GuidExp, which consists of three
phases. GuidExp takes as input the full series of exploit subgoals,
and at the end, produces the �nal exploit script. In the �rst phase,
GuidExp reads an exploit subgoal (denoted by τi in Fig. 2) from the
collection. Then, GuidExp parses the corresponding search space
and the invariant (denoted by Search Space(τi) and Invariant(τi) in
Fig. 2 respectively). The Exploit Subgoal Parser is responsible for
taking the search space and the invariant from the exploit subgoal.
Both the search space and the invariant are sent to di�erent units
to be used in the second phase.

In the second phase, GuidExp explores all possible execution
paths that follow the execution of the trigger slice and checks
whether the current exploit subgoal is achieved in any execution
path. There are three main units in this phase: (i) the parser, which
generates the abstract syntax tree (AST) from the trigger slice into
Java structures; the AST becomes the input for the next main unit,
(ii) the Code Generator, which analyzes the AST to locate the ex-
ecution path in which the vulnerability is triggered. The Code
Generator outputs executables that follow the execution path by
appending a permutation of instructions given in the exploit sub-
goal to the trigger slice. The executables outputted by the Code
Generator are input for the �nal main unit, (iii) the Invariant Val-
idator, which dynamically monitors execution of the executables
coming from the Code Generator to decide if the current exploit
subgoal is achieved by any of them.

The Code Generator synthesizes distinct executable scripts, called
candidate slices (denoted by Candidate Slice in Fig. 2), by appending
distinct permutations of instructions given in the subgoal to the
trigger slice at a time. Each executable script can explore a di�er-
ent execution path. However, at this point, GuidExp can generate
an in�nite number of candidate slices that follow the trigger slice.
Therefore, along with the AST, the Code Generator receives as in-
put the search space that consists a set of opcodes and parameters
that can contribute to the task of satisfying the current exploit sub-
goal. GuidExp explores execution paths constructed with opcodes
and parameters given in the search space. Thus, with having the
search space, the Code Generator eliminates the execution paths
that perform unrelated operations to the exploit. Candidate slices
are appended to the trigger slice so that they trigger the vulnerabil-
ity in the exact same way the trigger slice does.

Fig. 3 demonstrates how GuidExp explores execution paths.
Here, @8 , red and gray nodes represent AVM program states. State
@0 is the initial state, and represents the initial settings of the AVM.
The execution of the trigger slice transitions the program state to
@E , which occurs after the vulnerability is triggered. Then, GuidExp
generates distinct candidate slices to explore new execution paths.
The execution of every candidate slice results in a di�erent program
state, leading to one of three types of states:
(1) Red nodes represent program states that result in an error (e.g.,
type error, reference error, argument error) or perform an illegal
call stack operation (e.g., pop when the call stack has zero elements).
GuidExp does not append to the candidate slice whose executions

4



Figure 3: GuidExp Exploit Script Generation Process

terminate on a red node, since no matter what opcode is appended
to the candidate slice, its execution raises the same error (see Sec-
tion 6.4).
(2) Gray nodes represent program states that do not lead to a pro-
gram error. Candidate slices that do not visit a red node are in both
syntactically and semantically correct form, so they can be extended
with more instructions to obtain new candidate slices. However,
these candidate slices (that land on a gray node) cannot satisfy the
current exploit subgoal. Thus, GuidExp needs to continue generat-
ing more candidate slices by appending new instructions to these
candidate slices (of whose execution ends on a gray node).
(3) The candidate slice that satis�es the current exploit subgoal is
denoted by a green node and "Checkpoint(τi)" in Fig. 3. When a
checkpoint is synthesized, GuidExp stops generating further candi-
date slices for the current exploit subgoal, since it has already been
satis�ed. Then, GuidExp synthesizes new candidate slices to sat-
isfy the next exploit subgoal. These candidate slices are generated
by appending new instruction permutations to the checkpoint to
follow the same execution path that satis�es the previous exploit
subgoals. GuidExp, therefore, builds the exploit code (denoted by
"The Exploit" in Fig. 3) by stitching the checkpoints after all of the
given exploit subgoals are satis�ed.

Generated candidate slices are sent to the Invariant Validator,
which is the third main unit of the second phase and monitors run-
time behaviors of candidate slices. As GuidExp does not modify the
implementation of the AVM, it cannot make runtime observations.
Therefore, GuidExp utilizes invariant to decide whether the corre-
sponding exploit subgoal is satis�ed. GuidExp inserts the invariant
at the end of the execution of candidate slices to avoid altering their
intended behaviors. We expect that the invariant would be given by
security experts along with the search space as inputs for GuidExp.
The result that the invariant generates (denoted by Decision (Can-
didate Slice, τi) in Fig. 2) is input for the Exploit Subgoal Manager
which appraises the decision.

In the �nal phase, the execution result of candidate slices is
evaluated by the Exploit Subgoal Manager. If the execution of a
candidate slice results in an error, the AVM raises an error mes-
sage. The error message indicates the type of the error with an
error code [7]. GuidExp uses the error message to disqualify subse-
quently generated candidate slices based on the type of the error.
If the result is a false, the result indicates that the candidate slice
is executed without raising any error. However, the candidate slice
does not achieve the corresponding target exploit subgoal. In this

case, GuidExp discards the candidate slice and informs the Code
Generator to synthesize a new candidate slice to be tested.

If the result is a true, the candidate slice (denoted by Checkpoint-
(τi) in Fig. 2) achieves the corresponding target exploit slice. In
this case, the Exploit Subgoal Manager stops the candidate slice
generation process and informs the Exploit Subgoal Parser to parse
the next target exploit subgoal. The Exploit Subgoal Parser reads
the next search space and invariant. Simultaneously, the Exploit
Subgoal Manager sends the candidate slice back to the Code Gener-
ator so that the Code Generator can use the candidate slice as the
skeleton for the next exploit subgoal and this process keeps going
until all target exploit subgoals are achieved.

4 PROTOTYPE IMPLEMENTATION

In Section 3, we present the overview of GuidExp ’s main com-
ponents. In this section, we provide additional implementation
details for those components to provide the reader context for our
experimental setup.

Code Generator. GuidExp’s Code Generator di�ers from typical
fuzzers in executable generation approach; while typical fuzzers
randomly mutate given input seeds to generate new executables,
the Code Generator performs selective mutation in which it inten-
tionally alters code sequences in the trigger slice with a distinct
instruction permutation given in the search space. Additionally, the
Code Generator modi�es the metadata of the generated executables

Figure 4: GuidExp Experimental Setup & Re�nements

5



to ensure they do not violate the grammar rules enforced by the
AVM, and can be executed without raising parsing errors.

Invariant Validator. As mentioned before, GuidExp ’s Invariant
Validator inserts the invariant at the end of the candidate slice to test
whether the execution of the candidate slice achieves the current
exploit subgoal. After inserting the invariant, it invokes a version
of AVM by using Java’s ProcessBuilder class [40], which is used
to create operating system processes. To do that the Invariant
Validator packs the AST of current candidate slice and creates the
Flash executable from the AST. The Invariant Validator gives the
location of the AVM implementation that runs the Flash scripts and
the Flash script recently created. Invariant Validator allows a user
to pick various versions of AVM.

Exploit Subgoal Manager. As mentioned above, the Exploit Sub-
goal Manager is responsible for evaluating the result of execution of
candidate slices. Based on the result, it informs the Code Generator
what to do next. Di�erent versions of AVMs (mainly open-source
versions vs closed-source versions) behave di�erently. Therefore,
Exploit Subgoal Manager needs to recognize the di�erences and
handle them appropriately. The open-source AVM versions can be
executed in a terminal. This allows the Exploit Subgoal Manager
to read the execution result from the terminal without running
any I/O operation. However, the closed-source AVM versions are
distributed as parts of Flash Players. They do not return any in-
formation to the terminal but use pop-ups to inform users in case
an error is raised. Therefore, the Exploit Subgoal Manager cannot
know whether an error is raised during the execution of a candi-
date slice. Additionally, the closed-source AVM versions keep logs
of the execution of Flash scripts in the �le system. The Exploit
Subgoal Manager is required to use I/O operations to reach these
logs to learn about the execution results of Flash scripts. These
I/O operations signi�cantly slowdown the exploit generation task,
when GuidExp is running with a closed-source AVM.

5 INITIAL EXPERIMENTAL SETUP

The main goal of the initial experiment setup was to allow quick
evaluation and validation of various design ideas without paying
the expense of a full experiment. In order to make the iteration
as quick as possible, we hand-crafted a single test achieving the
balance between coverage and the simplicity.

In the initial experiments we collected three pieces of data: (1)
the number of candidate slices GuidExp generates, (2) the number
of candidate slices executed successfully, (3) and the time GuidExp
needs to take to achieve one exploit subgoal. To do that we bor-
rowed three artifacts from the community and in the rest of the
section, we introduce each of them individually and how we used
them.

5.1 ROP Gadget Sequence

We want GuidExp to synthesize the exploit script building and
executing an ROP sequence. At this point, there are many di�erent
ways of building ROP sequences each of which performs di�erent
types of ROP attack. We decided to build the ROP sequence ROPgad-
get [29] builds because it is not too complicated, and its execution
can be observed without debugging the AVM. ROPgadget builds

an ROP sequence from gadgets it locates and that can be accessed
during the execution of given binary. We ran ROPgadget in our
system and extracted the ROP sequence it built. We used the ROP
sequence to construct the exploit subgoal that allows GuidExp to
synthesize an AS code block that executes the same ROP sequence,
then GuidExp appends the AS code block to the exploit script it
generates.

GuidExp aims to synthesize an exploit script that performs an
ROP attack. ROP attacks can perform di�erent types of malicious
activities based on the sequence of gadgets (also known as the
ROP chain) they execute, e.g., producing a shell, running arbitrary
code or invoking a system call. Therefore, an ROP attack needs to
build the correct gadget sequence to achieve its malicious intention.
GuidExp builds the ROP chain that executes ’int 0x80’, which
is used to invoke system calls. GuidExp builds and executes the
ROP chain in the �nal exploit subgoal, ’Building and Executing
the ROP Chain’. The ROP chain consists of 38 lines of codes and
contains ten distinct gadgets. GuidExp builds the chain by itself
after locating these ten gadgets. To locate a gadget, GuidExp needs
to synthesize a function which scans libc libraries and returns the
address of the given gadget. After locating the �rst gadget, GuidExp
invokes the same function de�nition with di�erent gadget to locate
all required gadgets.

5.2 Initial Vulnerability & PoC Exploit Script

For our initial experimental setup, we chose CVE-2015-5119 [39] as
our target vulnerability for several reasons. First, the vulnerability
is a real-world vulnerability and was exploited frequently by ex-
ploit kits that demonstrates the impact of the vulnerability. In fact,
CVE-2015-5119 was one of the Kaspersky’s Devil’s Dozen Flash
vulnerabilities that gained immense popularity among criminals
and was added to numerous exploit kits in 2015 [30]. Second, the
vulnerability is simple enough that allows us to comprehend all
aspects of exploiting vulnerable AVM versions. Third, the vulner-
ability is not too simple and creates many challenges that allows
us to be familiar with issues that we can encounter when we work
di�erent vulnerabilities.

1 public class malClass extends Sprite {

2 public function malClass () {

3 var b1 = new ByteArray ();

4 b1.length = 0x200;

5 var mal = new hClass(b1);

6 b1[0] = mal;

7 }

8
9 public class hClass {

10 private var b2 = 0;

11 public function hClass(var b3) {

12 b2 = b3;

13 }

14 public function valueOf () {

15 b2.length = 0x400;

16 return 0x40;

17 }

18 }

19 }

Listing 1: PoC Exploit for CVE-2015-5119

The target vulnerability resides in the implementation of AVM
versions up to 18.0.0.194 for Windows, OS X, and Linux [10]. The
vulnerability happens due to a lack of a control mechanism of side

6



e�ects of implicit function calls, e.g., invoking valueOf() to get
the value of an instance while assigning it to another instance.

Listing 1 shows how the vulnerability is triggered. The class
malClass, which invokes malicious valueOf(), creates a ByteArray
instance, b1, and sets its length as 0x200 in Line 3, 4. A ByteArray
instance is a packed array of bytes that has methods and properties
to optimize working with binary data. Line 5 creates an instance
which belongs to hClass, with b1 as its attribute and assigns it to
the index 0 of b1. In Line 14, the valueOf() function is overridden
to free b2 attribute of hClass instances by altering its length. The
AVM memory management system prefers �rst to deallocate the
object, and then to reallocate it to a bigger memory chunk in case
it needs a bigger memory space. Therefore, the assignment hap-
pens in Line 6, leading to freeing b1, and reallocating it to a bigger
memory chunk, since the length of b2 (0x400) is now larger than it
was (0x200). However, the AVM does not check this side e�ect, so
the index 0 of b1 still references the freed memory chunk, allowing
writing the return value (0x40) to the freed memory chunk.

Since GuidExp has to be guided with exploit subgoals to achieve
exploit generation task, in the initial experimental setup, we pre-
pared the exploit subgoals by analyzing a well-studied exploit
script [44] provided by the cybersecurity company Rapid7 [43].
This exploit script exploits the CVE-2015-5119 vulnerability and
runs an ROP attack that allows attacker to perform an arbitrary
code execution. We observed the execution of the exploit script
and extracted the methodology of setting the scene for running the
ROP chain after triggering the vulnerability. In our experiments
we prepared the exploit subgoals that follow the methodology we
extracted from the exploit script we analyzed. Our exploit subgoals
leads GuidExp to synthesize a new exploit script that triggers the
vulnerability we introduced in this section, and then mimics the
ROP attack explained in Section 5.1. We did not build the ROP
chain given in the exploit script but preferred to execute the ROP
chain ROPgadget constructs (see Section 5.1).

5.3 Vulnerable AVM Version

Although there are numerous AVM versions been published, there
is only one open-source version and the other versions are kept as
proprietary by the owner company. While we used the open-source
AVM version in our initial experiments, we exploit a closed-source
AVM version later, and we discuss these experiments in Section 7.2.

In our initial experiments, we used the AVM Core version as
our vulnerable VM, which is the only open-source AVM version
available in GitHub [3], commit ’65a0592’. The AVM Core includes
only the core functionalities such as parsing and running Flash
scripts, but no external libraries, such as libraries required to run
the GUI.

Here, GuidExp explores a new execution path by executing a
distinct candidate slice it synthesized. In our initial experiments, we
used the AVM Core to execute candidate slices GuidExp synthesized
and evaluated execution logs the AVM Core generated to learn
about the execution results of candidate slices.

We chose the AVM Core because it runs signi�cantly faster than
the closed-source versions since it does not need to run the external
libraries every time it starts-up. Additionally, to our knowledge,

the AVM Core contains only one vulnerability, which is the vulner-
ability we introduced in Section 5.2; this allows us to quickly iterate
over exploiting our target vulnerability. However, as discussed
in Section 7, we �nally conducted several experiments with the
closed-source versions.

5.4 Results

In our initial experiments, we aimed to have a working system
which is fast and lean. We collected three data pieces, including
the time GuidExp needs to take to achieve the �rst exploit subgoal.
As shown in Fig. 4, in the �rst set of experiments we did not adopt
any optimization techniques. Unfortunately, the initial experiment
was timed out after we let GuidExp run more than a day. However,
we got three important results from the initial experiment. First,
a signi�cant majority of candidate slices raised an error without
completing their execution, which allowed us to identify sequences
of instructions that cause these errors. Therefore, we disquali�ed
candidate slices that include one of these error-raising instruction
sequence before we execute them (see Section 6.2 and 6.4 for more
details).

Second, with having the �rst pseudo-exploit subgoal, we real-
ized that we can deconstruct the exploit script into many smaller
exploit subgoals and GuidExp can focus on synthesizing exploit
scripts achieving for each exploit subgoal individually. This signi�-
cantly reduced the number of candidate slices GuidExp needed to
synthesize to achieve all exploit subgoals (see Section 6.1).

Third, to deconstruct the exploit, at �rst, we manually chopped
the exploit script and analyze instructions in each piece. Our anal-
yses show us that the number of di�erent instructions used to
achieve each subgoal was signi�cantly smaller than the number
of di�erent instructions used in the entire exploit. This implied
that a seasoned security expert who has thorough knowledge on
ActionScript instructions and exploits can restrict the instructions
to be used in synthesizing each exploit subgoal individually (see
Section 6.1).

Although the initial experiment was timed out and we did not
allocate enough time for �nishing it (approximately 3 years with
our rig), three bottom lines of the initial experiment allow us to
derive the optimization techniques that we introduce in Section 6.

6 DERIVING OPTIMIZATION TECHNIQUES

Finding the correct permutation of instructions given in exploit
subgoals requires testing all possible permutations in the worst
case. According to the exploit script [44] we analyze, the �rst
exploit subgoal contains nine opcodes and six parameters, and
the bytecode sequence satisfying the exploit subgoal consists of
twelve instructions. Hence, GuidExp must generate and run 5412
candidate slices in the worst case.

To deal with such a search space blow up, we have developed
four optimization techniques, guided by data collected from the
initial experiments. In this section, we introduce these four opti-
mization techniques along with the observations that lead us to the
techniques.

7



6.1 Deconstructing an Exploit into Subgoals

The very �rst version of GuidExp didn’t have a notion of exploit
subgoals. Instead, we attempted to use GuidExp to construct the
entire exploit code at once, and the attempt was not successful;
the GuidExp just kept running for days without getting any result
until we killed the process. Facing the challenge, we �rst tried to
synthesize a small pre�x of the full exploit. We soon realized it is
possible to construct the exploit in a piecemeal. This observation
lead us to the exploit deconstruction.

With exploit deconstruction, as mentioned in Section 2.3 and
demonstrated in Fig. 1b, the task of generating a full exploit script
is split into a task of sequentially generating many smaller exploit
subgoals. In this approach, GuidExp iteratively �nds a shortest
candidate slice that reaches the checkpoint for each exploit subgoal
and stitches them to build a full exploit script. When GuidExp
synthesizes a candidate slice that reaches a checkpoint, GuidExp
prunes all other execution paths that cannot reach the checkpoint,
or those that need a longer path to reach the checkpoint.

Consider the example in Fig. 3. The example demonstrates how
exploit deconstruction prunes execution paths that GuidExp needs
to explore. After reaching the Checkpoint(τ1), GuidExp focuses
on synthesizing the candidate slice that reaches Checkpoint(τ2)
through Checkpoint(τ1), although it is possible that there are exe-
cution paths that do not visit Checkpoint(τ1) but do reach Checkpo-
int(τ2). However, the number of execution paths that GuidExp
needs to explore increases exponentially in each level as GuidExp
appends the permutations of instructions given in the current
search space to the trigger slices. Thus, with having exploit de-
construction, our experiments show that we disqualify the vast
majority of execution paths.

6.2 Operand Stack Veri�cation

Exploit deconstruction made GuidExp start to emit some results,
but the performance was not satisfactory: GuidExp still took about
a half day to �nd a solution slice for a single subgoal.

We analyzed the list of candidate slices discarded by GuidExp,
and observed that 98% of discarded candidate slices were rejected
by AVM because of operand stack errors. The observation lead us
to implement built-in operand stack veri�cation. The main bene�t
of a built-in veri�cation is that it can run before running AVM,
allowing us to disqualifying erroneous candidate slices without
paying the AVM execution overhead.

AVM is a stack machine, where the operand stack holds operands
for the instructions and stores results of operations. If a wrong com-
bination of operand stack operations are performed, AVM detects
the problem and raise one of the following two errors: (1) stack
under�ow, which occurs when an instruction tries to pop elements
from the operand stack while the operand stack holds no element,
(2) stack over�ow, which occurs when a function returns before
popping all elements it pushed onto the operand stack.

In operand stack veri�cation, GuidExp simulates the operand
stack for the candidate slice it generates to decide whether the
candidate slice causes an operand stack violation before sending the
candidate slice to the Invariant Validator. If a candidate slice causes
the stack under�ow error, GuidExp marks the instruction permuta-
tion that the candidate slice contains as ill-prefix and discards

the candidate slice. GuidExp also eliminates the subsequently gen-
erated candidate slices which contain an ill-prefix instruction
permutation since instruction sequences are pre�x-closed, and will
raise the same error. If a candidate slice causes the stack over�ow
error, GuidExp eliminates the candidate slice but does not mark
the instruction permutation it contains as ill-prefix, because
candidate slices that cause stack over�ow error might be followed
by instruction sequences that consume remnant elements in the
operand stack.

To further optimize operand stack veri�cation, GuidExp re-
members all observed ill-prefixes. Given a new candidate slice,
GuidExp checks whether the slice contains any previously ob-
served ill-prefix. If the slice contain a previously discovered
ill-prefix, GuidExp rejects it immediately. If the slice does not
contain any known ill-prefix, but the operand stack veri�cation
gives an error, GuidExp adds the slice to the ill-prefix set and
rejects the slice. Otherwise, GuidExp continues to execute the slice
in AVM.

GuidExp uses an m-ary trie, demonstrated in Fig. 5, to concisely
represent an ill-prefix set. Here, m is the number of instructions
in the current search space and n is the maximum depth we al-
low GuidExp to explore the execution-path space. In each search
space, the instructions are given a unique integer identi�er. So,
the trie stores these unique identi�ers as the value of the nodes in
the ill-prefix trie. We prefer a trie structure because it is mem-
ory e�cient, and it provides an e�cient search operation. We ini-
tially stored the discovered ill-prefixes in a nested linkedlist,
which has the time complexity of $ (<=) for searching/inserting
and the space complexity of Θ(<=). That caused GuidExp to spend
signi�cant time in searching for a matching ill-prefix, and to
consume several GB of memories remembering ill-prefix. Thus,
the idea of remembering observed ill-prefixes lost its meaning.
On the contrary, m-ary trie’s search operation has Θ(=) time
complexity. As a result, GuidExp spends signi�cantly less time
in searching/inserting for an ill-prefix, that allows us to save
signi�cant time. Trie also has a smaller memory consumption:
$ (<=−1).

6.3 Instruction Tiling

Instructions in AS bytecode typically need to be used in particular
sequences, together, to represent semantically meaningful activities.
E.g., the opcode "add", which pops two values from the top of the
operand stack and then pushes the result back to the operand stack,
requires that these two values be pushed onto the operand stack

Figure 5: The structure of the ill-prefix trie

8



previously. Therefore, the opcode "add" and the opcode "push"
are commonly used together to perform the summation.

Our third optimization technique, instruction tiling, uses such
relationships between instructions, to create instruction chains that
can perform meaningful activities such as calling a variable, coerc-
ing a type of variable, or calling a property of an object. We refer
to such an instruction chain as a tile. GuidExp generates candidate
slices adding or replacing a tile instead of an instruction. Thus,
the number of candidate slices that GuidExp synthesizes decreases
dramatically as the number of permutations of tiles is signi�cantly
smaller than the number of permutations of instructions. GuidExp
expects security experts to specify tiles using their expertise on
ActionScript semantics.

6.4 Feedback from the AVM

The Code Generator sends candidate slices that do not violate the
operand stack to the Invariant Validator to be executed in the AVM
in Phase 2 in Figure 2. However, the AVM can raise di�erent types
of run-time errors during the execution of candidate slices that
GuidExp cannot detect before their execution. The AVM raises
these errors when candidate slices perform an illegal operation,
such as reading outside of an array boundaries, or if the AVM can-
not keep running because of resources restrictions. For example,
if a candidate slice contains an in�nite loop, the AVM will raise
the out-of-memory error. The Code Generator marks the instruc-
tion permutation that the error-raising candidate slice contains as
ill-prefix, and discards the candidate slice. The Code Generator
also inserts ill-prefixes to the ill-prefix trie the same way it
handles ill-prefixes that violate the operand stack.

The most common types of error messages that GuidExp receives
are: TypeError [8], ArgumentError [2], ReferenceError [6], Ran-
geError [5], stack under�ow, and stack over�ow errors [9].

TypeError. A TypeError is thrown when the actual type of an
operand is di�erent from the expected type. In addition, this ex-
ception is raised when a value is assigned to a variable and cannot
be coerced to the variable’s type or the super keyword is used ille-
gally. Candidate slices that raise a TypeError are eliminated after
they are executed in the AVM. However, the other candidate slices
that append to these candidate slices are disquali�ed even without
being generated by GuidExp. Although the type of operands can
be coerced explicitly, GuidExp allows type coercion only before
the operand is called [8].

ArgumentError. An ArgumentError occurs when the arguments
supplied in a function do not match the arguments de�ned for that
function. This error is raised, for example, when a function is called
with the wrong number of arguments, an argument of the incorrect
type, or an invalid argument. When an ArgumentError is raised,
GuidExp veri�es the candidate slice that raises the error because
the error might occur because of a wrong number of arguments.
GuidExp changes the bytecode that declares the number of argu-
ments with the number of elements in the operand stack when the
function is called. After the candidate slice is veri�ed, it is executed
one more time to see if the error persists. If yes, the candidate slice
and the other candidate slices that append to the candidate slice

are disquali�ed as the error occurs because of the incorrect type or
invalid arguments [2].

ReferenceError. A ReferenceError exception is thrown when
a reference to an unde�ned property is attempted. Candidate
slices that GuidExp generates raise this error when a property is
called by an object that does not de�ne the property it calls. The
other candidate slices that follow the candidate slice that raises
a ReferenceError must remove the reference of the unde�ned
property. However, GuidExp does not allow such an operation be-
cause pushing an element onto the operand stack and then popping
it without making use of it can create in�nite loops [6].

RangeError. A RangeError occurs when an invalid index is pro-
vided to an array type bu�er. An index is invalid if it is less than zero,
or it points beyond the array boundaries, or it is not an integer.
When a candidate slice causes the AVM to raise a RangeError, af-
ter discarding the candidate slice, GuidExp disquali�es the other
candidate slices that append to the candidate slice, based on the
type of the index [5].

7 EXPERIMENT REFINEMENTS

In this section, we present our �nal experiments with re�nements.
With each re�nement, we improve the performance of GuidExp,
and increase the coverage.

All experiments were conducted on a virtual machine with a 3.4
GHz Intel Core i7 processor with 8 GB RAM. We used VMware
Workstation 15 to emulate the virtual machine with Ubuntu 16.04
LTS. PoC scripts were created using Adobe Flex SDK 4.6 [4], mxmlc,
and Mozilla Tamarin Project AS Compiler, asc.jar [38]. GuidExp
was written in Java with NetBeans IDE 8.0.2 JDK v.1.8.

7.1 Re�nement #1: Initial PoC

In the second set of experiments, we adopted the optimization
techniques we introduced in Section 6. We repeated the �rst set
of experiments with the optimization techniques and we used the
same PoC vulnerability to exploit (see Section 5.2 for more details).

After re�ning GuidExp with the optimization techniques, we
conducted the second set of experiments to see whether synthesiz-
ing the exploit script was feasible for GuidExp.

GuidExp utilized the AVM Core, the open-source AVM imple-
mentation, to execute candidate slices GuidExp generated for our
example vulnerability. Table 1 demonstrates our experimental re-
sults with the AVM Core for our example vulnerability. We give
the number of generated candidate slices and executed candidate
slices during synthesizing each exploit subgoal. GuidExp output
the exploit script in just under 15 minutes.

7.2 Re�nement #2: Closed-Source AVM

Versions

Exploit Databases. To conduct the third set of experiments, we
used PoC exploit scripts for known AVM vulnerabilities, selected
from exploit databases such as exploit-db [21] and Google Project
Zero [42]. We selected CVE-2013-0634, CVE-2014-0502, -0515, -
0556, CVE-2015-0313, -0359, -3090, -3105, -5122 since they are well-
studied and are included in commonly used exploit kits.

9



Number of Generated Number of Executed Percentage of Executed Synthesizing

Candidate Slices Candidate Slices Candidate Slices Time (s)

Exploit Subgoal open-source closed-source open-source closed-source open-source closed-source
Corrupting a Bu�er Space Implicitly 2,396,744 12,229 29,167 0.51 1.21 9.35 605.58
Spraying Helper Elements 19,173,952 73,997 210,225 0.38 1.09 55.90 3,895.64
Locating Sprayed Elements 37,448 357 769 0.95 2.05 1.72 12.76
Disclosing the O�set of the Located Elements 55,345,757 282,392 508,339 0.51 0.91 138.26 6,845.86
Corrupting the Disclosed Bu�er 4,793,488 21,591 41,342 0.45 0.86 17.03 963.86
Locating ELF Object Files 19,173,952 81,545 201,852 0.42 1.05 57.12 3,364.89
Locating libc Libraries 55,345,757 278,385 459,336 0.50 0.82 138.05 6,276.25
Locating Executable Segment 76,695,808 379,587 706,031 0.49 0.92 199.78 9,546.07
Locating Gadgets and Building the ROP Chain 435,848,049 1,648,451 2,954,400 0.37 0.67 240.92 11,512.47

Total Time (with the open-source AVM implementation): 858.13 (14m 18.13s)
Total Time (with the closed-source AVM implementation): 43,023.38 (11h 57m 03.38s)

Table 1: Exploit generation for CVE-2015-5119 with open-source core implementation of the AVM and closed-source Flash

Player

We used the PoC exploit scripts for the vulnerabilities to prepare
accurate exploit subgoals. We aimed to demonstrate that GuidExp
can generate new exploit scripts for a given vulnerability using a
PoC exploit script and de�ned exploit subgoals.

Closed-Source AVM Versions. To our knowledge, the AVM Core
contains only one vulnerability, which is the vulnerability we used
in our �rst and second sets of experiments. Therefore, we could
not conduct further experiments to demonstrate GuidExp is not
restricted to synthesizing the exploit script for only one vulnerabil-
ity.

To overcome this challenge, we exploited vulnerabilities in the
closed-source AVM versions, also known as Flash Player. Flash
Player v11.2.202.262 contains all of these vulnerabilities, therefore,
we could conduct our experiments without changing the setup.
Running a closed-source AVM brought two interesting changes.

First, exploit generation process took around 45 times longer as
compared to our second set of experiments. Table 1 also shows our
experimental results with the closed-source Flash Player, v11.2.202.
262, for our example vulnerability. The slowdown is due to the
starting/closing overhead of the Flash Player. Note that there is no
easy way to just start/stop the AVM included in the closed Flash
Player. To run an AS executable on the closed-source AVM, we have
to start/stop the full Flash Player every time GuidExp generates
a candidate slice. Speci�cally, starting and closing a Flash Player
takes 85ms on average, equivalent to ∼ 89% of the time required to
test one candidate slice, producing the slice takes ∼ 1%, executing
the slice takes∼ 6%, reading the result takes∼ 4%. Con the contrary,

Table 2: Exploit generation results for selected vulnerabili-

ties

Selected Vulnerabilities Synthesizing Time Flash Player Version

CVE-2015-5119 11h 57m 03.38s v11.2.202.262

CVE-2013-0634 12h 09m 14.50s v11.2.202.262
CVE-2014-0502 12h 54m 15.19s v11.2.202.262
CVE-2014-0515 12h 51m 26.67s v11.2.202.262
CVE-2014-0556 12h 08m 35.29s v11.2.202.262
CVE-2015-0311 11h 56m 19.10s v11.2.202.262
CVE-2015-0313 12h 20m 47.98s v11.2.202.442
CVE-2015-0359 11h 05m 05.61s v11.2.202.262
CVE-2015-3090 12h 01m 33.16s v11.2.202.262
CVE-2015-3105 13h 25m 46.80s v11.2.202.262
CVE-2015-5122 12h 07m 02.59s v11.2.202.262

the open-source version has a smaller initialization overhead. The
initialization overhead only takes ∼ 11% of the experiment for open-
source AVM. Note that this performance di�erence is due to the
characteristics of AVM, and it is not an issue of GuidExp. In fact,
any mutation testing tool and fuzz testing tool targeting a closed-
source AVM will have to deal with the initialization/termination
overhead.

Second, since the error messages that the player outputs are
shown to the users in pop-ups, we cannot leverage the feedback
coming from the player. Thus, the number of candidate slices to be
searched is higher with the player. Again, this is a characteristic
of the closed-source AVM version. GuidExp may easily fetch the
error messages raised by closed-source versions of other language
virtual machines.

Results. Table 2 shows our experimental results with eleven AVM
vulnerabilities we selected. In these experiments, GuidExp executes
candidate slices with the closed-source player. According to our
experiments, GuidExp can generate an exploit script for a vulnera-
bility in less than 14 hours.

7.3 Re�nement #3: Initial PoC with a Larger

Search Space

To demonstrate that GuidExp can tolerate some level of inaccuracy
in de�ning a search space, we performed additional experiments.
This is important because it is unrealistic to expect a human security
expert to always provide the tightest search space without any
mistake. In this experiments, we run GuidExp with 1.25, 1.5, and 2
times larger search spaces than the optimal search space (the most
accurate).

Table 3 shows exploit script synthesizing time of GuidExp with
larger spaces for CVE-2015-5119 with the AVM Core. Since GuidExp
generates a candidate slice for every permutation of instructions
and parameters given in search spaces, the performance of GuidExp
is a�ected by combinatorial rate with having unnecessary instruc-
tions and parameters in search spaces.

7.4 Discussions

It turned out we were lucky that we started with a vulnerability
in an open-source VM because with a closed-source VM, our ini-
tial development could be infeasible. Therefore, we learned that

10



Table 3: Subgoal synthesizing time(s) with di�erent size of search spaces

Exploit Subgoal Base Search 1.25x Size of Search Space 1.5x Size of Search Space 2x Size of Search Space

Corrupting a Bu�er Space Implicitly 9.35 44.58 161.75 1,184.6
Spraying Helper Elements 55.90 310.05 1184.51 10,120.85
Locating Sprayed Elements 1.72 6.70 26.82 108.45
Disclosing the O�set of the Located Elements 138.26 827.14 3543.43 35,417,77
Corrupting the Disclosed Bu�er 17.03 62.18 270.18 1104.61
Locating ELF Object Files 57.12 308.14 1,204.95 10,348.54
Locating libc Libraries 138.05 820.98 3,607.04 34,178.59
Locating Executable Segment 199.78 1,230.68 5,319.27 52.980.04
Locating Gadgets and Building the ROP Chain 240.92 1,679.20 7,252.01 67,518.73
Total: 858.13 (14m 18.13s) 5,289.65 (1h 28m 9.65s) 22,569.96 (6h 16m 09.96s) 212,962.18 (59h 10m 03.38s)

�nding a good "golden" example lets us to focus on it to accelerate
development. This allows us to iterate extremely fast, and lead us to
understand all the small details of algorithms and examples. How-
ever, our initial development could be biased to a wrong direction, if
our "golden example" were not providing enough coverage and not
raising issues that we can encounter with di�erent vulnerabilities.

Additionally, generalizing a number obtained from one con�g-
uration to another con�guration can be challenging. To resolve
this challenge, we need to conduct another experiment to explain
the di�erence between two con�gurations and the reasons why we
could not use the numbers from the previous experiments.

8 CONCLUSION AND FUTUREWORK

In our recent work, we proposed the �rst semi-automatic exploit
generation tool, GuidExp, for AVM vulnerabilities. We demon-
strated that GuidExp successfully exploited eleven di�erent AVM
vulnerabilities in open- and closed-source AVM implementations.
In this work, we present additional details on our development
cycles, how we improved the performance number of GuidExp,
after each iteration, and introduce the artifacts that we borrow from
the community.

In future work, we plan to conduct a user study where we justify
and measure the human intervention cost. Our user study will focus
on answering questions such as "How much expertise is needed to
set up exploit subgoals?", "To what extent the proposed framework
can help craft exploits and determine exploitability?", or "Since we
have exploit patterns to follow, what the role that human plays in
the procedure?".

ACKNOWLEDGMENTS

This research was supported by NSF CRII award #1566321; we
would like to thank Dr. Koushik Sen for providing help.

REFERENCES

[1] Anno Accademico. Static detection and automatic exploitation of intent message
vulnerabilities in android applications. Master’s thesis, Politecnico Di Milano,
2013.

[2] Adobe Inc. ArgumentError - AS3. https://help.adobe.com/en_US/FlashPlatform/
reference/actionscript/3/ArgumentError.html. Accessed: 2021-02-11.

[3] Adobe, Inc. avmplus. https://github.com/adobe/avmplus.
[4] Adobe, Inc. Download Adobe Flex SDK. https://www.adobe.com/devnet/�ex/

�ex-sdk-download.html.
[5] Adobe Inc. RangeError - AS3. https://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/RangeError.html. Accessed: 2021-02-11.
[6] Adobe Inc. ReferenceError - AS3. https://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/ReferenceError.html. Accessed: 2021-02-11.
[7] Adobe, Inc. Run-Time Errors. https://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/runtimeErrors.html.

[8] Adobe Inc. TypeError - AS3. https://help.adobe.com/en_US/FlashPlatform/
reference/actionscript/3/TypeError.html. Accessed: 2021-02-11.

[9] Adobe, Inc. ActionScript Virtual Machine 2 (AVM2) Overview. https://www.
adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf, May 2007.

[10] Adobe, Inc. Adobe security bulletin. http://tinyurl.com/ofdwo9c, July 2015.
Accessed" 2016-12-03.

[11] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and V.N. Venkatakrishnan.
Chainsaw: Chained automated work�ow-based exploit generation. In Proceed-
ings of the 23th ACM Conference on Computer and Communications Security (CCS),
October 2016.

[12] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. Aeg:
Automatic exploit generation. In Proceedings of The Network and Distributed
System Security Symposium (NDSS), February 2011.

[13] So�a Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. Finding soft-
ware vulnerabilities by smart fuzzing. In Proceedings of the 4th IEEE International
Conference on Software Testing, Veri�cation and Validation (ICST), 2011.

[14] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
Hacking blind. In Proceedings of the 2014 IEEE Symposium on Security and Privacy
(SP’14), May 2014.

[15] Konstantin Böttinger and Claudia Eckert. Deepfuzz: Triggering vulnerabilities
deeply hidden in binaries. Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 9721:25–34, 2016.

[16] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good
instructions go bad: Generalizing return-oriented programming to risc. In
Proceedings of the 15th ACMConference on Computer and Communications Security
(CCS), pages 27–38. ACM, 2008.

[17] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCamant, and Dawn
Song. HI-CFG: Construction by Binary Analysis and Application to Attack
Polymorphism. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
Proceedings of the 18th European Symposium on Research in Computer Security
(ESORICS), pages 164–181, 2013.

[18] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
Losing control: On the e�ectiveness of control-�ow integrity under stack at-
tacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (ACM CCS), pages 952–963, 2015.

[19] Jared D. DeMott, Richard J. Enbody, and WIlliam F. Punch. Towards an automatic
exploit pipeline. In Proceedings of the 6th International Conference for Internet
Technology and Secured Transactions (ICITST), December 2011.

[20] Pavel Dovgalyuk, Denis Dmitriev, and Vladimir Makarov. Don’t panic: reverse
debugging of kernel drivers. In Proceedings of the 10th Joint Meeting on Founda-
tions of Software Engineering, 2015.

[21] Exploit-DB. Exploit database - exploits for penetration testers, researchers, and
ethical hackers. https://www.exploit-db.com/. Accessed: 2021-02-11.

[22] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. Automatic
generation of inter-component communication exploits for android applications.
In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering,
September 2017.

[23] Sean Heelan. Automatic generation of control �ow hijacking exploits for software
vulnerabilities. Master’s thesis, University of Oxford, 2011.

[24] Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap layout manip-
ulation for exploitation. In Proceedings of the 27th USENIX Security Symposium
(USENIX SS), August 2018.

[25] Hu Hong, Chua Zheng Leong, Adrian Sendroiu, Saxena Prateek, and Liang
Zhenkai. Automatic generation of data-oriented exploits. In Proceedings of the
24th USENIX Conference on Security Symposium (USENIX SS), pages 177–192,
August 2015.

[26] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang, Chung-Wei Lai, Han-Lin
Lu, and Wai-Meng Leong. Crax: Software crash analysis for automatic exploit
generation by modeling attacks as symbolic continuations. In 2012 IEEE Sixth
International Conference on Software Security and Reliability, pages 78–87. IEEE,
2012.

11

https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/ArgumentError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/ArgumentError.html
https://github.com/adobe/avmplus
https://www.adobe.com/devnet/flex/flex-sdk-download.html
https://www.adobe.com/devnet/flex/flex-sdk-download.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/RangeError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/RangeError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/ReferenceError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/ReferenceError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/TypeError.html
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/TypeError.html
https://www.adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/avm2overview.pdf
http://tinyurl.com/ofdwo9c
https://www.exploit-db.com/


[27] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang, Han-Lin Lu, and Chung-
Wei Lai. Software crash analysis for automatic exploit generation on binary
programs. IEEE Transactions on Reliability, 63(1):270–289, 2014.

[28] Karthick Jayaraman, David Harvison, and Adam Kiezun Vijay Ganesh. jFuzz:
A concolic whitebox fuzzer for Java. In Proceedings of the First NASA Formal
Methods Symposium, 2009.

[29] JonathanSalwan. Ropgadget. https://github.com/JonathanSalwan/ROPgadget.
[30] Kaspersky security bulletin 2015. The overall statistics for 2015. http://tinyurl.

com/zgkkdbj.
[31] Cha Sang Kil, Avgerinos Thanassis, Rebert Alexandre, and Brumley David. Un-

leashing mayhem on binary code. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy (SP’12), pages 380–394, 2012.

[32] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, july 1976.

[33] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and Roberto Paleari. A Smart
Fuzzer for x86 Executables. In Proceedings of the 29th International Conference on
Software Engineering Workshops (ICSEW), 2007.

[34] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao,
Min Yang, Xinyu Xing, and Peng Liu. System service call-oriented symbolic
execution of android framework with applications to vulnerability discovery and
exploit generation. In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys), June 2017.

[35] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao Min
Yang, Xinyu Xing, and Peng Liu. Context-aware system service call-oriented
symbolic execution of android framework with application to exploit generation.
CoRR, 2016.

[36] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[37] MITRE, Inc. CVE details - The ultimate security vulnerability data-
source. https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&
product_id=6761&version_id=&page=1.

[38] Mozilla.org. Tamarin project. https://www-archive.mozilla.org/projects/
tamarin/.

[39] National Institute of Standards and Technology. CVE-2015-5119. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5119, 2015.

[40] Oracle. Processbuilder (java platform se 7 ). https://docs.oracle.com/javase/7/
docs/api/java/lang/ProcessBuilder.html. Accessed: 2021-02-11.

[41] V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov. Automated exploit generation
for stack bu�er over�ow vulnerabilities. Programming and Computer Software,
41, 2015.

[42] project-zero. Monorail - project-zero - project zero - monorail. https://bugs.
chromium.org/p/project-zero/issues/list. Accessed: 2021-02-11.

[43] Rapid7. Cybersecurity and compliance solutions and services | rapid7. https:
//www.rapid7.com/. Accessed: 2021-02-11.

[44] Rapid7. metasploit-framework/cve-2015-5119. https://github.com/rapid7/
metasploit-framework/tree/master/external/source/exploits/CVE-2015-5119.
Accessed: 2021-02-11.

[45] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giu�rida, and
Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), volume 17,
pages 1–14, 2017.

[46] Dusan Repel, Johannes Kinder, and Lorenzo Cavallero. Modular synthesis of
heap exploits. In Proceedings of the 12th ACM SIGSAC Workshop on Programming
Languages and Analysis for Security (PLAS), 2017.

[47] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit hard-
ening made easy. In Proceedings of the 20th USENIX Security Symposium, 2011.

[48] Hovav Shacham. The geometry of innocent �esh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security (CCS), pages 552–561, 2007.

[49] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. "sok:(state of) the art of war: O�ensive techniques in binary
analysis". In Proceedings of the 37th IEEE Symposium on Security and Privacy (SP),
pages 138–157, 2016.

[50] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the e�ectiveness
of �ne-grained address space layout randomization. In Proceedings of the 2013
IEEE Symposium on Security and Privacy (SP’13), May 2013.

[51] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Proceed-
ings of 23rd Annual Network and Distributed System Security Symposium (NDSS),
volume 16, pages 1–16, 2016.

[52] Minghua Wang, Purui Su, Qi Li, Lingyun Ying, Yi Yang, and Dengguo Feng. Auto-
matic polymorphic exploit generation for software vulnerabilities. In Procedings
of the 9th International Conference on Security and Privacy in Communication
Systems (SecureComm), pages 216–233, September 2013.

[53] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. FUZE:
Towards Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities.
In Proceedings of the 27th USENIX Security Symposium (USENIX SS), August 2018.

[54] Luhang Xu, Weixi Jia, Wei Dong, and Yongjun Li. Automatic exploit generation
for bu�er over�ow vulnerabilities. In Proceedings of the 4th IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C), July
2018.

[55] Fadi Yilmaz, Meera Sridhar, and Wontae Choi. Guide me to exploit: Assisted
ROP exploit generation for ActionScript virtual machine. In Annual Computer
Security Applications Conference, pages 386–400, 2020.

[56] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian,
and Bin Liang. Semfuzz: Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), OCt-Nov 2017.

[57] Awad Younis, Yashwant K Malaiya, and Indrajit Ray. Assessing vulnerability
exploitability risk using software properties. Software Quality Journal, 24(1):159–
202, 2016.

[58] Ming Yuan, Ye Li, and Zhoujun Li. Hijacking your routers via control-hijacking
urls in embedded devices with web interfaces. Information and Communications
Security (ICICS), 10631:363–373, 2017.

12

https://github.com/JonathanSalwan/ROPgadget
http://tinyurl.com/zgkkdbj
http://tinyurl.com/zgkkdbj
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1
https://www.cvedetails.com/vulnerability-list.php?vendor_id=53&product_id=6761&version_id=&page=1
https://www-archive.mozilla.org/projects/tamarin/
https://www-archive.mozilla.org/projects/tamarin/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5119
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5119
https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html
https://bugs.chromium.org/p/project-zero/issues/list
https://bugs.chromium.org/p/project-zero/issues/list
https://www.rapid7.com/
https://www.rapid7.com/
https://github.com/rapid7/metasploit-framework/tree/master/external/source/exploits/CVE-2015-5119
https://github.com/rapid7/metasploit-framework/tree/master/external/source/exploits/CVE-2015-5119

	Abstract
	1 Introduction
	2 Background
	2.1 Structure of a Typical ROP Attack
	2.2 Intuition Behind Target Exploit Generation
	2.3 Defining Exploit Subgoals, Search Spaces & Invariant
	2.4 Constructing Exploit Script from Checkpoints

	3 Overview of GuidExp 
	4 Prototype Implementation
	5 Initial Experimental Setup
	5.1 ROP Gadget Sequence
	5.2 Initial Vulnerability & PoC Exploit Script
	5.3 Vulnerable AVM Version
	5.4 Results

	6 Deriving Optimization Techniques
	6.1 Deconstructing an Exploit into Subgoals
	6.2 Operand Stack Verification
	6.3 Instruction Tiling
	6.4 Feedback from the AVM

	7 Experiment Refinements
	7.1 Refinement #1: Initial PoC
	7.2 Refinement #2: Closed-Source AVM Versions
	7.3 Refinement #3: Initial PoC with a Larger Search Space
	7.4 Discussions

	8 Conclusion and Future Work
	Acknowledgments
	References
	Untitled



