
Steganography &
Steganalysis
I N S T R U C TO R : J O H N O R T I Z
S T E G O @ S AT X . R R . C O M

TRANSFORM DOMAIN

Transform Domain

• Apply a mathematical transform and hide data
in that process

• Hide data in more significant portions of the
cover

• Generally, more robust than substitution
techniques

• Can better survive common image/audio
manipulations
• Affine transforms

• scaling, rotating, shearing, translating, flipping

• Lossy compression

• Analog-to-Digital and Digital-to-Analog Conversions
• Scan/print, fax, compact disc, DVD, etc.

12/5/2020Steganography and Steganalysis 2

Transform Domain

• Many mathematical transforms exist
• Discrete Cosine Transform (DCT)

• Discrete Fourier Transform (DFT)

• Laplace Transform

• Wavelet Transforms

• Modulated Complex Lapped Transform

• Mellin-Fourier Transform

• Is this enough?

• All of these can be applied to images and/or
audio

• We’ll be focused on the DCT which is used
in JPEG

12/5/2020Steganography and Steganalysis 3

JPEG Algorithm

• The JPEG algorithm is a complex series of
steps which makes use of lossy and lossless
compression techniques

12/5/2020Steganography and Steganalysis 4

JPEG Algorithm

• The JPEG algorithm first converts RGB to
YCrCb

• Y is the luminance component

• Cr & Cb are the color components (hue,
saturation)

• Grayscale images only have the Y component

12/5/2020More Advanced Steganography with Malware Applications 5

JPEG Algorithm

• The human eye is less sensitive to
chrominance than luminance

• Compression algorithms take advantage of this
and sub-sample the values of Cb & Cr without
significant visual degradation

• can average 4 chrominance pixels and treat as one

• i.e. result is better compression of Cr & Cb

• JPEG uses different quantization tables for
chrominance components

• The Discrete Cosine Transform (DCT) is
applied to an 8x8 image block

12/5/2020More Advanced Steganography with Malware Applications 6

JPEG Algorithm

• The results are quantized to the desired
quality

• “The purpose of this is to modulate the influence
of different spectral components on the image”

• Follow that?

• The higher frequencies contribute fewer details to
the image and can therefore be reduced or
eliminated

• A combination of Run-Length Encoding
(RLE) and Huffman coding is applied

12/5/2020More Advanced Steganography with Malware Applications 7

JPEG Algorithm

• To get the image back, the process is reversed

• The restored image looks very similar but is
mathematically completely different than the
original

• If high quality was used, there should be little, if
any, perceptible difference

12/5/2020More Advanced Steganography with Malware Applications 8

JPEG Algorithm

• An image is grouped into 8 X 8 blocks
• There is less change between spatially

adjacent pixels

• The image pixels are changed from
unsigned to signed

• For grayscale images with pixel values ranging
from 0 to 255, 128 is subtracted to result in
signed values –128 to +127

• For RGB color images, JPEG converts RGB to
YCrCb and treats each as it’s own “grayscale”
image

12/5/2020More Advanced Steganography with Malware Applications 9

4

4

20813.04187.05.0

25.03313.01687.0

1145.05866.02989.0

+−−=

++−−=
++=

BGRC

BGRC

BGRY

r

b

JPEG Algorithm

12/5/2020More Advanced Steganography with Malware Applications 10

JPEG Algorithm

• The DCT is applied to each pixel in the 8 x 8
matrix
• The output of the DCT algorithm is itself an 8 X 8

matrix

• These are called the “DCT Coefficients”

• There is a small loss due to the cosine
approximation

• An 8 x 8 quantization table is used to scale
each corresponding DCT coefficient
• The quantization step is where the greatest loss

occurs

• The Q tables were developed via experimentation
based on human visual perception

• Different Q tables are used for different quality
levels

12/5/2020More Advanced Steganography with Malware Applications 11

JPEG Algorithm

• The resulting 8 x 8 matrix generally has a
large proportion of zero values
• Lower quality jpegs will have higher numbers of

zeros

• --- The remaining compression is lossless ---
• It is run-length encoded using a simple

count
• The few values left are treated as raw data

and entropy encoded using either Huffman
or Arithmetic techniques
• Based on my own experience, Huffman seems to

be the predominant choice

• The process is repeated for the entire image

12/5/2020More Advanced Steganography with Malware Applications 12

JPEG Algorithm

12/5/2020More Advanced Steganography with Malware Applications 13

DCT
Quantizer

Quantization Table

Entropy Encoder
(Huffman)

Run-Length Encoding

8 X 8

Image

Block

(0,0)

Color Plane

Conversion

Discrete Cosine Transform

• Forward equation for the Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 14








 +







 += ∑∑
−

=

−

= N

yv

N

xu
yxavCuC

N
vub

N

x

N

y 2

)12(
cos

2

)12(
cos),()()(

2
),(

1

0

1

0

ππ



 =

=
otherwise

uif
uC

0

1
)(2

1



 =

=
otherwise

vif
vC

0

1
)(2

1

♦ For JPEG, N = 8

♦ b(u, v) is the transform of the

matrix

♦ a(x, y) is the pixel value at x, y

♦ when computing the cosine, make

sure function is in radians

♦ How many times will this loop when

implemented in a nested for loop?

Discrete Cosine Transform

♦ Programmatically, this calculation can be
implemented using four nested “for” loops

♦ for(u = 0; u < 8; u++)

♦ for(v = 0; v < 8; v++)

♦ for(x = 0; x < 8; x++)

♦ for(y = 0; y < 8; y++)

♦ { b(u, v) = b(u,v) + basis[u,v,x,y] * a(x,y) }

♦ More on basis[u,v,x,y] shortly
♦ Finally! A practical use for a 4-dimensional array!

12/5/2020More Advanced Steganography with Malware Applications 15

Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 16








 +







 += ∑∑
−

=

−

= N

y

N

x
yxaCC

N
b

N

x

N

y 2

)12(0
cos

2

)12(0
cos),()0()0(

2
)0,0(

1

0

1

0

ππ

u=0

u=7

v=0 v=7



 =

=
otherwise

uif
uC

0

1
)(2

1

X

• X is called the DC coefficient

- DC is 0 frequency

• the rest are AC coefficients

• there are 64 summations to

determine each square

• there are 64 squares in a block

• that’s 4096 total calculations for

a single 8 x 8 block

• for u=0, v=0, COS terms go to 1

X = (a(0,0) + a(0,1) + a(0,2) …) / 8



 =

=
otherwise

vif
vC

0

1
)(2

1

u(7,0)

u(7,7)

u(0,0)

u(0,7)

Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 17








 +







 += ∑∑
−

=

−

= N

y

N

x
yxaCC

N
b

N

x

N

y 2

)12(3
cos

2

)12(1
cos),()3()1(

2
)3,1(

1

0

1

0

ππ

u=0

u=7

v=0 v=7



 =

=
otherwise

uif
uC

0

1
)(2

1

X• arbitrarily take the case u=1, v=3

• do another 64 summations

• this time the cosines will have

values other than one

• repeat the calculation for all

combinations of u and v

That’s a LOT of slow cosine

calculations!



 =

=
otherwise

vif
vC

0

1
)(2

1

u(7,0)

u(7,7)

u(1,3)

u(0,7)

Discrete Cosine Transform

• Improve performance by pre-calculating the
basis functions

• The basis is the cosine portion of the formula
• It is unaffected by pixel values, only position in the

matrix

• Calculate the 8 x 8 basis matrix once for all
valid u, v pairs (0, 0; 0, 1; … 0, 7 --- 1, 0; 1,1; …
7, 7)

• For u=0, v=0, the result is one
• For v=0, the value of y is irrelevant

• These are the horizontal frequencies

• For u=0, the value of x is irrelevant
• These are the vertical frequencies

12/5/2020More Advanced Steganography with Malware Applications 18

Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 19

u = 0, v = 0 u = 0, v = 7

u = 7, v = 0 u = 7, v = 7








 +







 +=
N

yv

N

xu
basis

2

)12(
cos

2

)12(
cos

ππ

• +1 is white

• -1 is black

• 0 is gray

• lowest

frequencies

• DC is

lowest

• highest

frequencies

• shown next

Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 20

• basis

matrix

for u=1, v=0

• 8 X 8 block

from image
A0

Aa Ab

A1

• A0 = a(0,0)

• A0 is multiplied by Aa

• A1 is multiplied by Ab

• etc.








 +







 += ∑∑
−

=

−

= N

yv

N

xu
yxavCuC

N
vub

N

x

N

y 2

)12(
cos

2

)12(
cos),()()(

2
),(

1

0

1

0

ππ

Discrete Cosine Transform

• The top row of basis images
• vertical frequencies from low (0,1) to high (0,7)

• The left column of basis images
• horizontal frequencies from low to high

• The middle basis images
• combinations of both vertical and horizontal

frequencies

• The basis images in the top left corner
• lowest frequencies (including the DC frequency)

• The basis image in the bottom right corner
• the highest frequencies

12/5/2020More Advanced Steganography with Malware Applications 21

Discrete Cosine Transform

• The DCT coefficients in the upper left
corner representing the lower frequencies
are typically higher in magnitude
• The lower frequencies contain most of the image

information

• The lower right DCT coefficients often
become zero
• This is OK since these frequencies contain less

information

12/5/2020More Advanced Steganography with Malware Applications 22

Discrete Cosine Transform

• The inverse DCT equation is used to reverse
the process

• It is basically the same except:
• b(u,v) is inside the summation

• C(u), C(v) must be inside the summation because
they change as u and v change

12/5/2020More Advanced Steganography with Malware Applications 23








 +







 += ∑∑
−

=

−

= N

yv

N

xu
vubvCuC

N
yxa

N

u

N

v 2

)12(
cos

2

)12(
cos),()()(

2
),(

1

0

1

0

ππ



 =

=
otherwise

uif
uC

0

1
)(2

1



 =

=
otherwise

vif
vC

0

1
)(2

1

JPEG Algorithm - Quantization

• The quantization tables determine the “lossiness”

• They are altered for different levels of quality

• See how high compression will result in a lot of
zeros?

12/5/2020More Advanced Steganography with Malware Applications 24

JPEG Algorithm - Quantization

• Removed 8x8 block from Mandrill’s eye

12/5/2020More Advanced Steganography with Malware Applications 25

Note: BMP files start from bottom left pixel

JPEG Algorithm - Quantization

12/5/2020More Advanced Steganography with Malware Applications 26

JPEG Algorithm - Quantization

12/5/2020More Advanced Steganography with Malware Applications 27

JPEG Algorithm - Quantization

12/5/2020More Advanced Steganography with Malware Applications 28

JPEG Algorithm – Run Length Coding

• Uses a zig-zag pattern to maximize runs of zeros

• Lower frequencies are grouped together

12/5/2020More Advanced Steganography with Malware Applications 29

JPEG Algorithm – Entropy Coding

• Entropy coding is the final, lossless stage of
coding
• Includes run-length coding and Huffman/Arithmetic algorithms

• The final matrix has a lot of zeros

• The Run-Length coding is then compressed
using a Huffman (or Arithmetic) code

• The DC term is coded differently because of its
size
• The difference from the last DC term is encoded

• Repeat for each 8x8 block

• For a 512x512 image, that is 64x64 blocks!

12/5/2020More Advanced Steganography with Malware Applications 30

JPEG Algorithm

• Seems like a LOT of calculations!

• 4096 per block! Plus the color conversion

• And then that is done for each of the 3 color planes!

• I always get asked, “How long does this take?”

• When you open a jpeg file, how long does it take to
be seen on your screen?

• 3.6 GHz is fast!

12/5/2020More Advanced Steganography with Malware Applications 31

JPEG Hiding Technique #1 – Swap DCT

• Choose two DCT coefficients
which have the same value in
the quantization table
• Select middle frequencies so

hidden bits are in significant
portions of the image

• The pair (2,0) & (1,2) works
[#14]
• Other pairs are highlighted

• C1 = coefficient for 2, 0

• C2 = coefficient for 1, 2
• C1 and C2 are the calculated

coefficients, NOT the Q-Table values

12/5/2020Steganography and Steganalysis 32

Quantization Table

Swap DCT

• Select a cover block
• Get DCT transform of the block
• Read a message bit from the file to be hidden

• If the bit is a zero, then C1 < C2 must be true

• If the bit is a one, then C2 < C1 must be true

• If this condition is already true, then continue
to the next block and message bit

• If the condition is not true, SWAP the
coefficients
• Note: this is done prior to quantization, so the

difference must be large enough to hold true after
quantization!
• I can’t figure out why the authors did it before quantization!

12/5/2020Steganography and Steganalysis 33

Swap DCT

• Our Q-Table value is 14, so a coefficients
with the values 7 to 20 will all quantize to 1
• Modify the coefficient values slightly to make

sure the difference is large enough

• You can add to one and/or subtract from the
other

12/5/2020Steganography and Steganalysis 34

Swap DCT

• Weaknesses in this approach
• No attempt is made to determine if a particular

cover block is a good/poor candidate for hiding

• Capacity is 1 bit per 8x8 block

• For a 256 x 256 image, that’s 32 x 32 = 1024 blocks
(i.e. message bits) max

• You could increase capacity by using all 3
pairs
• What do you think would be the downside of

that?

12/5/2020Steganography and Steganalysis 35

Swap DCT

• Weaknesses in this approach
• No attempt is made to determine if a particular

cover block is a good/poor candidate for hiding

• Capacity is 1 bit per 8x8 block

• For a 256 x 256 image, that’s 32 x 32 = 1024 blocks
(i.e. message bits) max

• You could increase capacity by using all 3
pairs
• What do you think would be the downside of

that?

• Increased perceptibility and detectability

12/5/2020Steganography and Steganalysis 36

JPEG Hiding Technique #2 Improved Swap DCT

• Zhao & Koch improved on this technique
• “Embedding Robust Labels into Images for Copyright

Protection”
• Operate on coefficients after quantization
• Use 3 coefficients to store the message

• if m=1
• C1 > C3 + D and C2 > C3 + D
• D is a minimum distance between coefficients,

normally D = 1
• Greater D, greater robustness, but also greater

perceptibility
• if m=0

• C1 + D < C3 and C2 + D < C3

• Middle frequencies are selected

12/5/2020Steganography and Steganalysis 37

Improved Swap DCT

• If modifications to coefficients exceed a threshold,
block is marked invalid

• To increase security they use a triple of coefficients
randomly chosen from the shaded values

• Need same random key for extraction

12/5/2020Steganography and Steganalysis 38

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

JPEG Hiding Technique #3 - High Capacity Swap DCT

• This technique unpublished to my knowledge

• Rather than picking a few matching pairs of
coefficients, use multiple pairs

• For each pair, compare the de-quantized
coefficients
• The q-table values do not have to be equal

• If message bit is 1, make C1 > C2

• If message bit is 0, make C2 > C1

• If the two de-quantized values are equal, skip
• Could modify them, but that increases detectability

12/5/2020Steganography and Steganalysis 39

High Capacity - Swap DCT

• Pairs chosen to more or less balance

• Start with outer pairs
• Exclude the inner most pair, image affected substantially

• Unless, capacity trumps perceptibility

• Exclude DC component and last AC component as well

• Matching pairs are color coded

12/5/2020Steganography and Steganalysis 40

Exclude

Least visual impact,

but often zero, so

less capacity

High Capacity - Swap DCT

• In implementation, the number of matching pairs
used is an option
• 1 - 31 pairs

• Quality=100, pairs = 24, 14587 (6.52%) random bytes hidden

• 10764 blocks, 10.84 bits/block – much better than 1

12/5/2020Steganography and Steganalysis 41

High Capacity - Swap DCT

• Using max of 31 coefficients to swap
• Quality=100, pairs = 31, 22291 (9.95%) random bytes

embedded

• 10764 blocks, 16.57 bits/block

12/5/2020Steganography and Steganalysis 42

High Capacity – Swap DCT
Cryptographic

• You can always encrypt your data before you
embed it …

• That’s no fun!!! �

• Cryptography is permutation and substitution

• Let’s set limit at 24 pairs
• Experimentally shows low visible distortion

• Save each pair of each block in a list

• 1920x1080 has 240 x 135 blocks x 24 pairs = 777,600
pairs (bits)
• Max capacity is 97,200 bytes (less due to some equal

coefficients)

• Permute the list, encrypt each bit

• Message spread cryptographically over entire
image

12/5/2020Steganography and Steganalysis 43

JPEG Hiding Technique #4

• “A Method of Embedding Binary Data into JPEG
Bitstreams”
• Kobayashi et al.

• 1 bit per 8x8 block

• Uses high-frequency components for cover
• since these coefficients often become zero, if m=0, no need

to change anything

• high frequency coefficients are more resistant to noise –
lower perceptibility

• Modifies quantization table such

• that highest frequency is not lost

• Capacity is 1 bit/block

• Always uses same coefficient

• Compression ratio slightly affected
12/5/2020Steganography and Steganalysis 44

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 1

JPEG Hiding Technique #5 – DCT LSB

• JSteg uses this approach

• Alter the LSB of each quantized DCT coefficient to
hold our message

• More than one bit/block capacity
• Depends on number of non-zero coefficients

• Can use any coefficients that are not zero or one
• If we used zero, that would increase capacity, distortion,

and image size

• A clear indication of data hiding would be a low number of
DCT coefficients with a zero value

• Can’t use ‘1’ because … 00012 --> change LSB and
00002!

• ‘-1’ is OK, change LSB of 11112 to 11102 … it
becomes ‘-2’

12/5/2020Steganography and Steganalysis 45

JPEG Hiding Technique #5 – DCT LSB

• Quality: 65

• File Size: 351,151 bytes

• Storage Capacity: 52032 bytes
• 14.82% of file size

• Used: 42779 bytes
• 82.22% of available

• @ Q=100
• Storage Capacity: 97639 bytes

• Better looking image, BUT

• File Size: 962,763 bytes

• Is that bad???

12/5/2020Steganography and Steganalysis 46

JPEG Hiding Technique #6 - Outguess

• Outguess is available for free download

• Hides in LSBs of DCT coefficients

• Pseudo-randomly permutes selection DCT
coefficients that are not ZERO or ONE

• After embedding a second pass is made to make
corrections to unused coefficients such that DCT
histogram is preserved
• Reduces capacity as some coefficients are used for

correction

• Makes detection more difficult

12/5/2020Steganography and Steganalysis 47

JPEG Hiding Technique #7 – Average DCT

• Have not seen a paper with this specific idea
• It may exist, there are 100’s of papers on JPEG

manipulation

• Choose some number of non-zero DCT coefficients
to average

• Store the message in the LSB (s) of the average
• (4 + 5 + -2 + 1) / 4 = 8 / 2 = 4 = 01002

• If the LSB of the message is zero, we’re done

• If the LSB of the message is one, subtract 1 from 4

• (3 + 5 + -2 + 1) / 4 = 7 / 2 = 3.75 = 3 = 00112

• Predetermine number of coefficients to average

• Predetermine number of bits to store in each
average

12/5/2020Steganography and Steganalysis 48

JPEG Hiding Technique #7 – Average DCT

• As number of coefficients for each average goes
up, number of bits to hide goes down

• Can’t re-use coefficients since you can’t change
them twice
• Could track which ones change and not reuse those …

• As number of bits per average goes up, more
perceptible since more change required

12/5/2020Steganography and Steganalysis 49

JPEG Hiding Technique #8 – F5

• F5 takes a different approach to hiding in the DCT
coefficients

• F5 has a fairly high capacity, but very low
detectability

• F5 decrements the magnitude of the coefficient
values when the LSB does not match the message
• As opposed to overwriting them with the message bits

• Note that 1 and -1 become zero – called shrinkage

• Must be decremented to zero since a 2 will become a 1

• The DCT average technique may decrement or increment

• Skips zero for embedding and extraction

12/5/2020Steganography and Steganalysis 50

JPEG Hiding Technique #8 – F5

• Inverts the meaning for negative DCT coefficients
• An LSB of 1 in a negative coefficient represents a zero

• Prevents uneven distribution of odd vs. even coefficients

• Uses permutatative straddling
• Spreads the message over the entire image

• Like the cryptographic spreading of the other techniques

• Uses matrix encoding to reduce the amount of
change required
• Embed 2 bits using 3 modifiable coefficients – 1 change

encodes 2 bits

• x1 = a1 xor a2; x2 = a2 xor a3 --- change nothing

• x1 != a1 xor a2; x2 = a2 xor a3 --- change a1

• x1 = a1 xor a2; x2 != a2 xor a3 --- change a3

• x1 != a1 xor a2; x2 != a2 xor a3 --- change a2

12/5/2020Steganography and Steganalysis 51

JPEG Hiding Technique #9
Statistically Invisible Steganography

• SIS performs a complexity analysis of each 8x8
DCT block

• Number of non-zero coefficients must exceed a
threshold or the entire block is skipped
• thr = 0.3 to 0.6

• 20 to 39 coefficients out of a block must be non-zero

• Adds up different sets of |coefficients| to produce a
sum

• If the LSB of the sum equals the message, next
block

• If not, add/subtract 1 from the largest magnitude

12/5/2020Steganography and Steganalysis 52

JPEG Hiding Technique #10 - YASS

• Yet Another Steganographic Scheme that resists
blind steganalysis

• What YASS does a little differently is to select
blocks larger than 8x8
• Example: 10 x 10

• Has 9 possible sub-blocks

• Out of the larger block, YASS selects an 8x8 block,
performs the DCT conversion and quantization

• Hides in those coefficients

• Must use an error correcting code since there will
be some errors when converted to JPEG

12/5/2020Steganography and Steganalysis 53

JPEG Hiding Technique #11 – High Capacity

• “High Capacity Data Hiding in JPEG
Compressed Images”
• Chang, C.C. and Tseng, Hsien-Wen

• Greater capacity than 1 bit per 8x8 block

• It is an adaptive DCT LSB technique
• Hides mostly in lower and middle frequency

components

• Able to perform a capacity estimation

• Adapts to different characteristics of each block

12/5/2020Steganography and Steganalysis 54

High Capacity Hiding in Jpeg

• Choose the block to be embedded

• Determine classification of the block:
• Uniform

• Non-uniform

• Set the α value (to be discussed shortly)

• Determine the number of bits to hide in
each quantized DCT coefficient

• Replace these bits with bits from the
message data

• Apply the normal JPEG entropy coding

• Repeat

12/5/2020Steganography and Steganalysis 55

High Capacity Hiding in Jpeg

• Determine which blocks can contain more
hidden information while remaining
imperceptible

• If a background has a strong texture, the
Human Visual System (HVS) is less sensitive to
distortions

• Blocks are divided into two classes:
• uniform blocks (smaller α)
• non-uniform blocks

• Non-uniform blocks can use a larger α value
• X * α where X is between 1.0 and 9.9

• There is a mathematical limit as to when a larger α will
matter

• Experimentally I have found diminishing returns around 4
• The DEMO program allows you to select an α value

12/5/2020Steganography and Steganalysis 56

High Capacity Hiding in Jpeg

• The equation below calculates the energy
intensity of the AC DCT coefficients
• Dx is the xth AC coefficient

• The DC coefficient is not considered

• If most of the coefficients are zero, this result will
be low

• This is the common case and the block is uniform

• If G is below a threshold, the block is
uniform
• I used a threshold of 100

12/5/2020Steganography and Steganalysis 57

∑
=

=
63

1

2)(
x

xDG

High Capacity Hiding in Jpeg

• Determine max number of bits in the DCT
coefficient that can be modified while
remaining imperceptible

• Uses a capacity table based upon the
quantization table
• User sets an α (alpha) factor

• Higher α, higher bit rate, but increased distortion

• User also sets a uniformity factor
• How much to increase α for non-uniform block

• Lower frequency components hold fewer bits

• Higher frequency can hold more bits, but there
are fewer

12/5/2020Steganography and Steganalysis 58

High Capacity Hiding in Jpeg

• Q = Quantization table
• D = Quantized DCT coefficient value
• CQ = capacity table based upon quantization

table
• M = max bits based upon DCT coefficient value
• E = number of bits that can be embedded
• For each Q table element

• CQ (x, y) = lg(α * Q(x, y))

• [lg is the log, base 2 � lg X = log2X = log X / log 2]

• For each DCT coefficient where D < -1 OR D > 1
• M (x,y) = lg (| D(x,y) |)

• E is the minimum of CQ and M

12/5/2020Steganography and Steganalysis 59

High Capacity Hiding in Jpeg

• Given the standard quantization table and the
quantized DCT coefficients from the Mandrill’s eye
• @ x = 3, y = 1

• CQ = floor(α * lg(17)) >= 4

• M = floor (lg(7)) = 2

• Can hide 2 bits

• Msg = 102 and 7 = 1112. 7 is changed to 6 … 1102

12/5/2020Steganography and Steganalysis 60

High Capacity Hiding in Jpeg

• Bits can be hidden in the DC component

• Since it is generally large, more bits can be
hidden

• However, it is more perceptible sooner,
especially if the quality factor is high

• Uses a slightly different capacity estimate
• CQ (0,0) = lg(α * Q(0,0)*2/lg(quality factor))

• Was determined experimentally

• Will reduce the number of bits hidden in DC
coefficient

12/5/2020Steganography and Steganalysis 61

High Capacity Hiding in Jpeg

• Note that negative coefficients must be
adjusted
• A -2 (11102) would allow a bit to be hidden

• Changing the LSB to 1 results in a value of -1!!!

• The extractor can’t tell the difference between an
ignored, “-1” and a modified “-2”

• So -3 is the minimum negative value that can be
used for hiding

• Note 2: I decided to use -1’s (and -2’s) in my
implementation – works just fine
• Just can’t ignore -1 and use -2

12/5/2020Steganography and Steganalysis 62

High Capacity Hiding in Jpeg

• The extractor must be able to determine which
blocks are uniform and non-uniform too

• Can’t use the same calculation because the
modified values will result in a different G value
• This may change whether it crosses the threshold

• Chang et al. chose to use the last AC coefficient
• Zero if uniform

• most blocks are uniform

• most AC coefficients are zero

• One if non-uniform

• Requires modified Q table with 64th Q value = 1

12/5/2020Steganography and Steganalysis 63

High Capacity Hiding in Jpeg

• A modified Q table is a HUGE flag indicating
some type of manipulation

• I don’t like it

• During implementation, my solution was to
limit the number of bits to be hidden to 4
• During experimentation, 5 would rarely occur anyway, so

minimal impact on capacity

• Never saw a 6 …

• Q table value would have to be at least 64

• DCT coefficient would also have to be 64 after dividing by 64 (4096)

• Only used the upper 4 bits of the coefficients to
calculate G

12/5/2020Steganography and Steganalysis 64

High Capacity Hiding in Jpeg

• Chang et al. did some statistical analysis

• Used a Signal to Noise Ratio to determine
stego-image quality
• Signal in this case is the original image

• Noise is the stego image

• Mean Squared Error (MSE)

• PSNR = Peak Signal to Noise Ratio (higher is
better)

• N*M image dimensions, p is original pixel
value, q is decoded pixel value

12/5/2020Steganography and Steganalysis 65

[] []()∑∑
= =

−






=
N

x

M

y

yxqyxp
MN

MSE
1 1

2
,,*

*

1
MSEPSNR /255log*10 2

10=

High Capacity Hiding in Jpeg

12/5/2020Steganography and Steganalysis 66

Mandrill512.bmp_q95_a8_u8.jpg ---> 71745/ 322564 22.24% of stego

High Capacity Hiding in Jpeg

12/5/2020Steganography and Steganalysis 67

Domino512.bmp_q95_a8_u8.jpg ---> 38827 / 175915 22.07% of stego

High Capacity Hiding in Jpeg

12/5/2020Steganography and Steganalysis 68

S2_Rocky.jpg_q99_a8_u8.jpg ---> 107643 / 511089 21.06% of stego

High Capacity Hiding in Jpeg

12/5/2020Steganography and Steganalysis 69

S2_Rocky.jpg_q50_a8_u8.jpg ---> 6612/ 37437 17.66% of stego

High Capacity Hiding in Jpeg

12/5/2020Steganography and Steganalysis 70

S2_Rocky_A.jpg_q50_a8_u8.jpg ---> 1575/ 6612 18.81% of stego

Histograms are NOT Effective

12/5/2020Steganography and Steganalysis 71

Detection

• The following example illustrates how
modification of the DCT coefficients can be
detected

• In their unmodified state, the count of
coefficients tend to be symmetrical about
zero
• The number of +1 values is roughly equal to the

number of -1 values

• The number of +2 values is approximately the
same as the number of -2 values

• The number of +3 values …

12/5/2020Steganography and Steganalysis 72

Detection

12/5/2020Steganography and Steganalysis 73

Storage Capacity: 140500 bytes --> 26.01% Total File Size

Detection

• Histogram of DCT Coefficients – note the symmetry

12/5/2020Steganography and Steganalysis 74

-80 -64 -48 -32 -16 0 +16 +32 +48 +64 +80

Detection

• DCT Coefficients after embedding 26% random data

12/5/2020Steganography and Steganalysis 75

-80 -64 -48 -32 -16 0 +16 +32 +48 +64 +80

Detection

• WHY do the DCT coefficient values become non-
symmetrical?

• When we change a +2 it becomes a +3

• 00000010
2
� alter LSB � 00000011

2

• And when we change a +3, it becomes a +2

• BUT, when we change a -2, it becomes -1

• 11111110
2
� alter LSB � 11111111

2

• And when we change a -1, it becomes -2

• So if the number of changes to these coefficients is
balanced (i.e. randomized or encrypted data), the +/-
balance is destroyed

12/5/2020Steganography and Steganalysis 76

Detection

• We generally do not use zero for hiding because it
would negate a large component of the
compression

• PLUS, an unusually small number of ZEROs would
be an indication!

• So we cannot use a +1 either, because a change in
the LSB results in ZERO

• The decoder can not tell the difference between
an actual zero and a one that was altered to a
zero

12/5/2020Steganography and Steganalysis 77

Detection

• Since +1’s are not changing, but -1’s are, they
become unbalanced too

• For positive numbers, 2’s and 3’s swap
• 4’s/5’s, 6’s/7’s, etc.

• For negative numbers, it’s -2’s and -1’s
• -4’s/-3’s, -6’s/-5’s, etc.

12/5/2020Steganography and Steganalysis 78

Questions & Comments

12/5/2020Steganography and Steganalysis 79

References

• “Embedding Robust Labels into Images for
Copyright Protection”, Zhao, Koch

• “A Method of Embedding Binary Data into JPEG
Bitstreams”, Kobayashi et al.

• “High Capacity Data Hiding in JPEG Compressed
Images”, Chang, C.C. and Tseng, Hsien-Wen

• “A JPEG-Based Statistically Invisible
Steganography”, Qingzhong Liu, Andrew H. Sung,
Zhongxue Chen, Xudong Huang

• “F5 - A Steganographic Algorithm - High Capacity
Despite Better Steganalysis”, Andreas Westfeld,
Technische Universit¨at Dresden

• Compressed Image File Formats, JPEG, PNG, GIF,
XBM, BMP, John Miano, Addison Wesley

• “Defending Against Statistical Steganalysis”, Niels
Provos

12/5/2020Steganography and Steganalysis 80

