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Transform Domain

• Apply a mathematical transform and hide data 
in that process

• Hide data in more significant portions of the 
cover

• Generally, more robust than substitution 
techniques

• Can better survive common image/audio 
manipulations
• Affine transforms

• scaling, rotating, shearing, translating, flipping

• Lossy compression

• Analog-to-Digital and Digital-to-Analog Conversions
• Scan/print, fax, compact disc, DVD, etc.
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Transform Domain

• Many mathematical transforms exist
• Discrete Cosine Transform (DCT)

• Discrete Fourier Transform (DFT)

• Laplace Transform

• Wavelet Transforms

• Modulated Complex Lapped Transform

• Mellin-Fourier Transform

• Is this enough?

• All of these can be applied to images and/or 
audio

• We’ll be focused on the DCT which is used 
in JPEG
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JPEG Algorithm

• The JPEG algorithm is a complex series of 
steps which makes use of lossy and lossless 
compression techniques
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JPEG Algorithm

• The JPEG algorithm first converts RGB to 
YCrCb

• Y is the luminance component

• Cr & Cb are the color components (hue, 
saturation)

• Grayscale images only have the Y component
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JPEG Algorithm

• The human eye is less sensitive to 
chrominance than luminance

• Compression algorithms take advantage of this 
and sub-sample the values of Cb & Cr without 
significant visual degradation

• can average 4 chrominance pixels and treat as one

• i.e. result is better compression of Cr & Cb

• JPEG uses different quantization tables for 
chrominance components

• The Discrete Cosine Transform (DCT) is 
applied to an 8x8 image block
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JPEG Algorithm

• The results are quantized to the desired 
quality

• “The purpose of this is to modulate the influence 
of different spectral components on the image”

• Follow that?

• The higher frequencies contribute fewer details to 
the image and can therefore be reduced or 
eliminated

• A combination of Run-Length Encoding 
(RLE) and Huffman coding is applied
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JPEG Algorithm

• To get the image back, the process is reversed

• The restored image looks very similar but is 
mathematically completely different than the 
original

• If high quality was used, there should be little, if 
any, perceptible difference
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JPEG Algorithm

• An image is grouped into 8 X 8 blocks
• There is less change between spatially 

adjacent pixels

• The image pixels are changed from 
unsigned to signed

• For grayscale images with pixel values ranging 
from 0 to 255, 128 is subtracted to result in 
signed values –128 to +127

• For RGB color images, JPEG converts RGB to 
YCrCb and treats each as it’s own “grayscale” 
image
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JPEG Algorithm
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JPEG Algorithm

• The DCT is applied to each pixel in the 8 x 8 
matrix 
• The output of the DCT algorithm is itself an 8 X 8 

matrix

• These are called the “DCT Coefficients”

• There is a small loss due to the cosine 
approximation

• An 8 x 8 quantization table is used to scale 
each corresponding DCT coefficient
• The quantization step is where the greatest loss 

occurs

• The Q tables were developed via experimentation 
based on human visual perception

• Different Q tables are used for different quality 
levels
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JPEG Algorithm

• The resulting 8 x 8 matrix generally has a 
large proportion of zero values
• Lower quality jpegs will have higher numbers of 

zeros

• --- The remaining compression is lossless ---
• It is run-length encoded using a simple 

count
• The few values left are treated as raw data 

and entropy encoded using either Huffman 
or Arithmetic techniques
• Based on my own experience, Huffman seems to 

be the predominant choice

• The process is repeated for the entire image
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JPEG Algorithm
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Discrete Cosine Transform

• Forward equation for the Discrete Cosine Transform
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♦ For JPEG, N = 8

♦ b(u, v) is the transform of the 

matrix

♦ a(x, y) is the pixel value at x, y

♦ when computing the cosine, make 

sure function is in radians

♦ How many times will this loop when 

implemented in a nested for loop?



Discrete Cosine Transform

♦ Programmatically, this calculation can be 
implemented using four nested “for” loops

♦ for( u = 0; u < 8; u++ )

♦ for( v = 0; v < 8; v++ )

♦ for( x = 0; x < 8; x++ )

♦ for( y = 0; y < 8; y++ )

♦ { b(u, v) = b(u,v) + basis[u,v,x,y] * a(x,y) }

♦ More on basis[u,v,x,y] shortly
♦ Finally! A practical use for a 4-dimensional array!
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Discrete Cosine Transform
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Discrete Cosine Transform

12/5/2020More Advanced Steganography with Malware Applications 17








 +







 += ∑∑
−

=

−

= N

y

N

x
yxaCC

N
b

N

x

N

y 2

)12(3
cos

2

)12(1
cos),()3()1(

2
)3,1(

1

0

1

0

ππ

u=0

u=7

v=0 v=7



 =

=
otherwise

uif
uC

0

1
)( 2

1

X• arbitrarily take the case u=1, v=3

• do another 64 summations
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Discrete Cosine Transform

• Improve performance by pre-calculating the 
basis functions

• The basis is the cosine portion of the formula
• It is unaffected by pixel values, only position in the 

matrix

• Calculate the 8 x 8 basis matrix once for all 
valid u, v pairs  ( 0, 0; 0, 1; … 0, 7 --- 1, 0; 1,1; … 
7, 7 )

• For u=0, v=0, the result is one
• For v=0, the value of y is irrelevant

• These are the horizontal frequencies

• For u=0, the value of x is irrelevant
• These are the vertical frequencies

12/5/2020More Advanced Steganography with Malware Applications 18



Discrete Cosine Transform
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Discrete Cosine Transform
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Discrete Cosine Transform

• The top row of basis images 
• vertical frequencies from low (0,1) to high (0,7)

• The left column of basis images 
• horizontal frequencies from low to high

• The middle basis images 
• combinations of both vertical and horizontal 

frequencies

• The basis images in the top left corner 
• lowest frequencies (including the DC frequency)

• The basis image in the bottom right corner 
• the highest frequencies
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Discrete Cosine Transform

• The DCT coefficients in the upper left 
corner representing the lower frequencies 
are typically higher in magnitude
• The lower frequencies contain most of the image 

information

• The lower right DCT coefficients often 
become zero
• This is OK since these frequencies contain less 

information
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Discrete Cosine Transform

• The inverse DCT equation is used to reverse 
the process

• It is basically the same except:
• b(u,v) is inside the summation

• C(u), C(v) must be inside the summation because 
they change as u and v change

12/5/2020More Advanced Steganography with Malware Applications 23








 +







 += ∑∑
−

=

−

= N

yv

N

xu
vubvCuC

N
yxa

N

u

N

v 2

)12(
cos

2

)12(
cos),()()(

2
),(

1

0

1

0

ππ



 =

=
otherwise

uif
uC

0

1
)( 2

1



 =

=
otherwise

vif
vC

0

1
)( 2

1



JPEG Algorithm - Quantization

• The quantization tables determine the “lossiness”

• They are altered for different levels of quality

• See how high compression will result in a lot of 
zeros?
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JPEG Algorithm - Quantization

• Removed 8x8 block from Mandrill’s eye
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JPEG Algorithm - Quantization
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JPEG Algorithm - Quantization
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JPEG Algorithm - Quantization
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JPEG Algorithm – Run Length Coding

• Uses a zig-zag pattern to maximize runs of zeros

• Lower frequencies are grouped together

12/5/2020More Advanced Steganography with Malware Applications 29



JPEG Algorithm – Entropy Coding

• Entropy coding is the final, lossless stage of 
coding
• Includes run-length coding and Huffman/Arithmetic algorithms

• The final matrix has a lot of zeros

• The Run-Length coding is then compressed 
using a Huffman (or Arithmetic) code

• The DC term is coded differently because of its 
size
• The difference from the last DC term is encoded

• Repeat for each 8x8 block

• For a 512x512 image, that is 64x64 blocks!
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JPEG Algorithm

• Seems like a LOT of calculations!

• 4096 per block!  Plus the color conversion

• And then that is done for each of the 3 color planes!

• I always get asked, “How long does this take?”

• When you open a jpeg file, how long does it take to 
be seen on your screen?

• 3.6 GHz is fast!
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JPEG Hiding Technique #1 – Swap DCT

• Choose two DCT coefficients 
which have the same value in 
the quantization table
• Select middle frequencies so 

hidden bits are in significant
portions of the image

• The pair (2,0) & (1,2) works 
[#14]
• Other pairs are highlighted

• C1 = coefficient for 2, 0

• C2 = coefficient for 1, 2
• C1 and C2 are the calculated 

coefficients, NOT the Q-Table values
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Swap DCT

• Select a cover block
• Get DCT transform of the block
• Read a message bit from the file to be hidden

• If the bit is a zero, then C1 < C2 must be true

• If the bit is a one, then C2 < C1 must be true

• If this condition is already true, then continue 
to the next block and message bit

• If the condition is not true, SWAP the 
coefficients
• Note: this is done prior to quantization, so the 

difference must be large enough to hold true after 
quantization!
• I can’t figure out why the authors did it before quantization!
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Swap DCT

• Our Q-Table value is 14, so a coefficients 
with the values 7 to 20 will all quantize to 1
• Modify the coefficient values slightly to make 

sure the difference is large enough

• You can add to one and/or subtract from the 
other
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Swap DCT

• Weaknesses in this approach
• No attempt is made to determine if a particular 

cover block is a good/poor candidate for hiding

• Capacity is 1 bit per 8x8 block

• For a 256 x 256 image, that’s 32 x 32 = 1024 blocks 
(i.e. message bits) max

• You could increase capacity by using all 3 
pairs
• What do you think would be the downside of 

that?
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Swap DCT

• Weaknesses in this approach
• No attempt is made to determine if a particular 

cover block is a good/poor candidate for hiding

• Capacity is 1 bit per 8x8 block

• For a 256 x 256 image, that’s 32 x 32 = 1024 blocks 
(i.e. message bits) max

• You could increase capacity by using all 3 
pairs
• What do you think would be the downside of 

that?

• Increased perceptibility and detectability
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JPEG Hiding Technique #2 Improved Swap DCT

• Zhao & Koch improved on this technique
• “Embedding Robust Labels into Images for Copyright 

Protection”
• Operate on coefficients after quantization
• Use 3 coefficients to store the message

• if m=1
• C1 > C3 + D  and  C2 > C3 + D
• D is a minimum distance between coefficients, 

normally D = 1
• Greater D, greater robustness, but also greater 

perceptibility
• if m=0

• C1 + D < C3 and C2 + D < C3

• Middle frequencies are selected
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Improved Swap DCT

• If modifications to coefficients exceed a threshold, 
block is marked invalid

• To increase security they use a triple of coefficients 
randomly chosen from the shaded values

• Need same random key for extraction
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JPEG Hiding Technique #3 - High Capacity Swap DCT

• This technique unpublished to my knowledge

• Rather than picking a few matching pairs of 
coefficients, use multiple pairs

• For each pair, compare the de-quantized
coefficients
• The q-table values do not have to be equal

• If message bit is 1, make C1 > C2

• If message bit is 0, make C2 > C1

• If the two de-quantized values are equal, skip
• Could modify them, but that increases detectability
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High Capacity - Swap DCT

• Pairs chosen to more or less balance

• Start with outer pairs
• Exclude the inner most pair, image affected substantially

• Unless, capacity trumps perceptibility

• Exclude DC component and last AC component as well

• Matching pairs are color coded
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High Capacity - Swap DCT

• In implementation, the number of matching pairs 
used is an option
• 1 - 31 pairs

• Quality=100, pairs = 24, 14587 (6.52%) random bytes hidden

• 10764 blocks, 10.84 bits/block – much better than 1
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High Capacity - Swap DCT

• Using max of 31 coefficients to swap
• Quality=100, pairs = 31, 22291 (9.95%) random bytes 

embedded

• 10764 blocks, 16.57 bits/block
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High Capacity – Swap DCT
Cryptographic

• You can always encrypt your data before you 
embed it …

• That’s no fun!!! �

• Cryptography is permutation and substitution

• Let’s set limit at 24 pairs
• Experimentally shows low visible distortion

• Save each pair of each block in a list

• 1920x1080 has 240 x 135 blocks x 24 pairs = 777,600 
pairs (bits)
• Max capacity is 97,200 bytes (less due to some equal 

coefficients)

• Permute the list, encrypt each bit

• Message spread cryptographically over entire 
image
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JPEG Hiding Technique #4 

• “A Method of Embedding Binary Data into JPEG 
Bitstreams”
• Kobayashi et al.

• 1 bit per 8x8 block

• Uses high-frequency components for cover
• since these coefficients often become zero, if m=0, no need 

to change anything

• high frequency coefficients are more resistant to noise –
lower perceptibility

• Modifies quantization table such

• that highest frequency is not lost

• Capacity is 1 bit/block

• Always uses same coefficient

• Compression ratio slightly affected
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JPEG Hiding Technique #5 – DCT LSB

• JSteg uses this approach

• Alter the LSB of each quantized DCT coefficient to 
hold our message

• More than one bit/block capacity
• Depends on number of non-zero coefficients

• Can use any coefficients that are not zero or one
• If we used zero, that would increase capacity, distortion, 

and image size

• A clear indication of data hiding would be a low number of 
DCT coefficients with a zero value

• Can’t use ‘1’ because … 00012 --> change LSB and 
00002!

• ‘-1’ is OK, change LSB of 11112 to 11102 … it 
becomes ‘-2’

12/5/2020Steganography and Steganalysis 45



JPEG Hiding Technique #5 – DCT LSB

• Quality: 65

• File Size: 351,151 bytes

• Storage Capacity:   52032 bytes
• 14.82% of file size

• Used: 42779 bytes
• 82.22% of available

• @ Q=100
• Storage Capacity: 97639 bytes

• Better looking image, BUT

• File Size: 962,763 bytes

• Is that bad???
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JPEG Hiding Technique #6 - Outguess

• Outguess is available for free download

• Hides in LSBs of DCT coefficients

• Pseudo-randomly permutes selection DCT 
coefficients that are not ZERO or ONE

• After embedding a second pass is made to make 
corrections to unused coefficients such that DCT 
histogram is preserved
• Reduces capacity as some coefficients are used for 

correction

• Makes detection more difficult
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JPEG Hiding Technique #7 – Average DCT

• Have not seen a paper with this specific idea
• It may exist, there are 100’s of papers on JPEG 

manipulation

• Choose some number of non-zero DCT coefficients 
to average

• Store the message in the LSB (s) of the average
• (4 + 5 + -2 + 1) / 4 = 8 / 2 = 4 = 01002

• If the LSB of the message is zero, we’re done

• If the LSB of the message is one, subtract 1 from 4

• (3 + 5 + -2 + 1) / 4 = 7 / 2 = 3.75 = 3 = 00112

• Predetermine number of coefficients to average

• Predetermine number of bits to store in each 
average
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JPEG Hiding Technique #7 – Average DCT

• As number of coefficients for each average goes 
up, number of bits to hide goes down

• Can’t re-use coefficients since you can’t change 
them twice
• Could track which ones change and not reuse those … 

• As number of bits per average goes up, more 
perceptible since more change required
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JPEG Hiding Technique #8 – F5

• F5 takes a different approach to hiding in the DCT 
coefficients

• F5 has a fairly high capacity, but very low 
detectability

• F5 decrements the magnitude of the coefficient 
values when the LSB does not match the message
• As opposed to overwriting them with the message bits

• Note that 1 and -1 become zero – called shrinkage

• Must be decremented to zero since a 2 will become a 1

• The DCT average technique may decrement or increment

• Skips zero for embedding and extraction
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JPEG Hiding Technique #8 – F5

• Inverts the meaning for negative DCT coefficients
• An LSB of 1 in a negative coefficient represents a zero

• Prevents uneven distribution of odd vs. even coefficients

• Uses permutatative straddling
• Spreads the message over the entire image

• Like the cryptographic spreading of the other techniques

• Uses matrix encoding to reduce the amount of 
change required
• Embed 2 bits using 3 modifiable coefficients – 1 change 

encodes 2 bits

• x1 = a1 xor a2; x2 = a2 xor a3 --- change nothing 

• x1 != a1 xor a2; x2 = a2 xor a3 --- change a1

• x1 = a1 xor a2; x2 != a2 xor a3 --- change a3

• x1 != a1 xor a2; x2 != a2 xor a3 --- change a2
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JPEG Hiding Technique #9
Statistically Invisible Steganography

• SIS performs a complexity analysis of each 8x8 
DCT block

• Number of non-zero coefficients must exceed a 
threshold or the entire block is skipped
• thr = 0.3 to 0.6

• 20 to 39 coefficients out of a block must be non-zero

• Adds up different sets of |coefficients| to produce a 
sum

• If the LSB of the sum equals the message, next 
block

• If not, add/subtract 1 from the largest magnitude
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JPEG Hiding Technique #10 - YASS

• Yet Another Steganographic Scheme that resists 
blind steganalysis

• What YASS does a little differently is to select 
blocks larger than 8x8
• Example: 10 x 10

• Has 9 possible sub-blocks

• Out of the larger block, YASS selects an 8x8 block, 
performs the DCT conversion and quantization

• Hides in those coefficients

• Must use an error correcting code since there will 
be some errors when converted to JPEG
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JPEG Hiding Technique #11 – High Capacity

• “High Capacity Data Hiding in JPEG 
Compressed Images”
• Chang, C.C. and Tseng, Hsien-Wen

• Greater capacity than 1 bit per 8x8 block

• It is an adaptive DCT LSB technique
• Hides mostly in lower and middle frequency 

components

• Able to perform a capacity estimation

• Adapts to different characteristics of each block
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High Capacity Hiding in Jpeg

• Choose the block to be embedded 

• Determine classification of the block:
• Uniform

• Non-uniform

• Set the α value (to be discussed shortly)

• Determine  the number of bits to hide in 
each quantized DCT coefficient

• Replace these bits with bits from the 
message data

• Apply the normal JPEG entropy coding

• Repeat
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High Capacity Hiding in Jpeg

• Determine which blocks can contain more 
hidden information while remaining 
imperceptible

• If a background has a strong texture, the 
Human Visual System (HVS) is less sensitive to 
distortions

• Blocks are divided into two classes:
• uniform blocks  (smaller α)
• non-uniform blocks

• Non-uniform blocks can use a larger α value
• X * α where X is between 1.0 and 9.9

• There is a mathematical limit as to when a larger α will 
matter

• Experimentally I have found diminishing returns around 4
• The DEMO program allows you to select an α value
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High Capacity Hiding in Jpeg

• The equation below calculates the energy 
intensity of the AC DCT coefficients
• Dx is the xth AC coefficient

• The DC coefficient is not considered

• If most of the coefficients are zero, this result will 
be low

• This is the common case and the block is uniform

• If G is below a threshold, the block is 
uniform
• I used a threshold of 100
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High Capacity Hiding in Jpeg

• Determine max number of bits in the DCT 
coefficient that can be modified while 
remaining imperceptible

• Uses a capacity table based upon the 
quantization table
• User sets an α (alpha) factor

• Higher α, higher bit rate, but increased distortion

• User also sets a uniformity factor
• How much to increase α for non-uniform block

• Lower frequency components hold fewer bits

• Higher frequency can hold more bits, but there 
are fewer
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High Capacity Hiding in Jpeg

• Q = Quantization table
• D = Quantized DCT coefficient value
• CQ = capacity table based upon quantization 

table
• M = max bits based upon DCT coefficient value
• E = number of bits that can be embedded
• For each Q table element

• CQ (x, y) = lg(α * Q(x, y) ) 

• [ lg is the log, base 2 � lg X = log2X = log X / log 2 ]

• For each DCT coefficient where  D < -1 OR D > 1
• M (x,y) = lg ( | D(x,y) | )

• E is the minimum of CQ and M
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High Capacity Hiding in Jpeg

• Given the standard quantization table and the 
quantized DCT coefficients from the Mandrill’s eye
• @ x = 3, y = 1

• CQ = floor(α * lg(17) ) >= 4

• M = floor ( lg(7) ) = 2

• Can hide 2 bits

• Msg = 102 and 7 = 1112.  7 is changed to 6 … 1102
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High Capacity Hiding in Jpeg

• Bits can be hidden in the DC component

• Since it is generally large, more bits can be 
hidden

• However, it is more perceptible sooner, 
especially if the quality factor is high

• Uses a slightly different capacity estimate
• CQ (0,0) = lg(α * Q(0,0)*2/lg(quality factor) )

• Was determined experimentally

• Will reduce the number of bits hidden in DC 
coefficient
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High Capacity Hiding in Jpeg

• Note that negative coefficients must be 
adjusted
• A -2 (11102) would allow a bit to be hidden

• Changing the LSB to 1 results in a value of -1!!!

• The extractor can’t tell the difference between an 
ignored, “-1” and a modified “-2”

• So -3 is the minimum negative value that can be 
used for hiding

• Note 2: I decided to use -1’s (and -2’s) in my 
implementation – works just fine
• Just can’t ignore -1 and use -2

12/5/2020Steganography and Steganalysis 62



High Capacity Hiding in Jpeg

• The extractor must be able to determine which 
blocks are uniform and non-uniform too

• Can’t use the same calculation because the 
modified values will result in a different G value
• This may change whether it crosses the threshold

• Chang et al. chose to use the last AC coefficient
• Zero if uniform

• most blocks are uniform

• most AC coefficients are zero

• One if non-uniform

• Requires modified Q table with 64th Q value = 1
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High Capacity Hiding in Jpeg

• A modified Q table is a HUGE flag indicating 
some type of manipulation

• I don’t like it

• During implementation, my solution was to 
limit the number of bits to be hidden to 4
• During experimentation, 5 would rarely occur anyway, so 

minimal impact on capacity

• Never saw a 6 … 

• Q table value would have to be at least 64

• DCT coefficient would also have to be 64 after dividing by 64  (4096)

• Only used the upper 4 bits of the coefficients to 
calculate G
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High Capacity Hiding in Jpeg

• Chang et al. did some statistical analysis

• Used a Signal to Noise Ratio to determine 
stego-image quality
• Signal in this case is the original image

• Noise is the stego image

• Mean Squared Error (MSE)

• PSNR = Peak Signal to Noise Ratio (higher is 
better)

• N*M image dimensions, p is original pixel 
value, q is decoded pixel value
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High Capacity Hiding in Jpeg
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Mandrill512.bmp_q95_a8_u8.jpg ---> 71745/ 322564  22.24% of stego



High Capacity Hiding in Jpeg
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Domino512.bmp_q95_a8_u8.jpg ---> 38827 / 175915 22.07% of stego



High Capacity Hiding in Jpeg
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S2_Rocky.jpg_q99_a8_u8.jpg ---> 107643 / 511089   21.06% of stego



High Capacity Hiding in Jpeg
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S2_Rocky.jpg_q50_a8_u8.jpg ---> 6612/ 37437   17.66% of stego



High Capacity Hiding in Jpeg
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S2_Rocky_A.jpg_q50_a8_u8.jpg ---> 1575/ 6612   18.81% of stego



Histograms are NOT Effective
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Detection

• The following example illustrates how 
modification of the DCT coefficients can be 
detected

• In their unmodified state, the count of 
coefficients tend to be symmetrical about 
zero
• The number of +1 values is roughly equal to the 

number of -1 values

• The number of +2 values is approximately the 
same as the number of -2 values

• The number of +3 values … 
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Detection
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Storage Capacity:  140500 bytes -->  26.01% Total File Size



Detection

• Histogram of DCT Coefficients – note the symmetry
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Detection

• DCT Coefficients after embedding 26% random data
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Detection

• WHY do the DCT coefficient values become non-
symmetrical?

• When we change a +2 it becomes a +3

• 00000010
2
� alter LSB � 00000011

2

• And when we change a +3, it becomes a +2

• BUT, when we change  a -2, it becomes -1

• 11111110
2
� alter LSB � 11111111

2

• And when we change a -1, it becomes -2

• So if the number of changes to these coefficients is 
balanced (i.e. randomized or encrypted data), the +/-
balance is destroyed
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Detection

• We generally do not use zero for hiding because it 
would negate a large component of the 
compression

• PLUS, an unusually small number of ZEROs would 
be an indication!

• So we cannot use a +1 either, because a change in 
the LSB results in ZERO

• The decoder can not tell the difference between 
an actual zero and a one that was altered to a 
zero
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Detection

• Since +1’s are not changing, but -1’s are, they 
become unbalanced too

• For positive numbers, 2’s and 3’s swap
• 4’s/5’s, 6’s/7’s, etc.

• For negative numbers, it’s -2’s and -1’s
• -4’s/-3’s, -6’s/-5’s, etc.
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Questions & Comments
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