WearID: Low-Effort Wearable-Assisted Authentication of Voice Commands via Cross-Domain Comparison without Training

Presenter: Cong Shi

Cong Shi*, Yan Wang†, Yingying Chen*, Nitesh Saxena‡, Chen Wang*

*WINLAB, Rutgers University, NJ, US
† Temple University, PA, US
‡ University of Alabama at Birmingham, AL, US

ACSAC 2020
Speech recognition technologies enable smart and IoT devices to understand natural language and take voice commands. Voice assistant (VA) systems facilitate numerous daily tasks.
Highly Critical Voice Commands

- Growing trend of using critical voice commands to access sensitive information and functionalities
- Lure adversaries into faking the user’s voice commands

Adversary

VA device

What’s my password?
Order a MacBook
Open the entrance door
Existing Solutions

- Voiceprint-based technologies
 - Rely on acoustic features
 - Prone to acoustic attacks (e.g., replay attacks, hidden voice commands)

- Two-factor authentication
 - Audio CAPTCHA, replay calls/messages, or virtual buttons
 - Require significant user efforts and prone to carless behaviors

- Solutions using dedicated/specialized devices
 - Use multiple microphones or high-sampling rate accelerometers [1]
 - Lead to additional cost and energy consumption

Attack Model

- **Attacks on user’s absence (i.e., audible attacks)**
 - *Random attacks*: use the adversary’s own voice
 - *Impersonation attacks*: exploit speech synthesis techniques to produce voice commands
 - *Replay attacks*: replay pre-recorded voice commands of the legitimate user

- **Co-location attacks (i.e., inaudible attacks)**
 - *Hidden voice command attacks*: encode pre-recorded voice commands as background noises
 - *Ultrasound attacks*: modulate pre-recorded voice commands into ultrasound frequency bands
Our Idea: Capturing Aerial Speech Vibration

- Explore **the wearable’s motion sensor** to harness **aerial speech vibrations** corresponding to live human speeches
- The unique response and **short response distance** of the motion sensor prevents both audible and inaudible attacks
Our Goal: Developing a low-effort training-free voice authentication system leveraging aerial speech vibrations
Our Contributions

- Propose a **cross-domain user authentication system**
 - Compare the aerial speech vibration (i.e., in the *vibration domain*) and the audio speech (i.e., in the *audio domain*) on the VA system’s cloud
 - Do not require any hardware modifications
 - Do not require privacy-sensitive voice templates
Our Contributions

- Provide **enhanced security**
 - Leverage the unique vibration domain responses (e.g., short response distance of accelerometers) to prevent audio domain attacks

- Model the **cross-domain relationship**
 - Derive the unique spectral relationship between the audio and vibration domains
 - Convert audio signals to low-frequency vibration signals
Accelerometer vs. Microphone

- Microphone exploits a pressure-sensitive diagram to capture sound and utilizes a Low Pass Filter (LPF) for denoising.
- Accelerometer measures sound in terms of the vibration of the inertial mass and can capture up to 4kHz vibration signals.
Vendors of wearables limit the sampling rate of accelerometers to below $200Hz$ for saving energy.

- Lead to signal aliasing: $f_{alias} = |f - Nf_s|, N \in \mathbb{Z}$
- Result in unique frequency selectivity of the wearable

Accelerometer’s response to a chirp signal (0.5 kHz~1 kHz)

Microphone’s response to a chirp signal (0.5 kHz~1 kHz)
Challenges

- The weak response of wearable’s accelerometer to human voice make it difficult to extract aerial speech vibrations.

- The heterogeneous hardware designs and huge sampling rate gap make any direct comparison infeasible.

- Synchronization of the data collected in totally different hardware is difficult.
System Overview

Parallel Wake Word Detection based Approach

Coarse-grained Synchronization

Wearable Device

Accelerometer Data Collection

Voice Assistant Device

Microphone Data Collection

WiFi Communication based Approach

Vibration-domain Feature Extraction

Accelerometer Readings

Data Denoising and Segmentation

Time-frequency Feature Extraction

Audio-domain Feature Extraction

Microphone Readings

Data Denoising and Segmentation

Feature Extraction and Domain Conversion

Cross-Domain User Authentication

Spectrogram Calibration based on 2D-normalization

Cross-domain Comparison based on 2D-Serial Correlation

Matching?

Voice Command Verified

Verification Failed
Synchronization and Data Preprocess

- Coarse-grained synchronization
 - Based on WiFi: VA device sends a triggering message to synchronize the data collection process on the wearable
 - Based on the wearable’s accelerometer: detect the wake word in parallel with the VA device to trigger data collection
- Data processing: Apply a high-pass Butterworth filter with a cut-off frequency of 20 Hz to remove human motion artifacts
Feature Domain Conversion

- Explore **Short Time Fourier Transform representations** (i.e., spectrogram) as features for audio and vibration domains.
- Convert audio spectrogram into vibration domain:

\[
\hat{S}_{mic}(t, f_w) = \sum_{n=-\infty}^{\infty} S_{mic}(t, \text{win}(|f_m + n \times \omega|))
\]

Spectrogram of vibration signals for “Alexa”

Converted spectrogram of audio signals for “Alexa”
Cross-Domain Similarity Comparison

- Explore 2D-normalization to resolve the scale differences
- Calculate cross-domain similarity: \(\text{Corr}(\hat{S}_{mic}, S_{acc}) = \frac{A \times V}{\sqrt{A^2 \times V^2}} \)

\[s.t., A = \sum_{t} \sum_{f} (\hat{S}_{mic}(t, f) - \mu), V = \sum_{t} \sum_{f} (S_{acc}(t, f) - \mu) \]

Cross-domain similarity among 20 voice commands
Experimental Setup

- **Smartwatch**
 - Huawei 2 sport (100Hz)
 - LG W150 (200Hz)

- **Setup**
 - Subject wears the smartwatch
 - Subject stands 1m to the VA device (simulated with a Nexus 6 smartphone)
 - 80\(^{dB}\) sound pressure level

- **Data collection**
 - 10 participants
 - 20 critical voice commands
 - 10 hidden voice commands

Voice Command Examples
- "What’s on my calendar for tomorrow"
- "Where is my next appointment"
- "List all events for January 1st"
- "How much is a round-trip flight to New York"
- "Remember that my password is ‘money’"
- "What is my password"
- "Add ‘go to the grocery store’ to my to-do list"
- "What’s on my shopping list"
- "Track my order"
- "Read me my email"
- "Call my mother"
Defending Audible Attacks

❖ Over 99.6% TPR and close to 0% FPR for both watches
❖ Over 0.94 and 0.89 AUCs under random attacks for Huawei 2 sport and LG W150
❖ Over 0.91 and 0.88 AUCs under relay attacks for the two smartwatches
Defending Inaudible Attacks

- Cross-domain similarities are low for hidden voice commands

- The ultrasound chirp cannot impact accelerometer readings
Conclusion

- Proposed WearID, a wearable-assisted low-effort training-free user authentication scheme for VA systems

- Explored wearable devices’ motion sensor to harness aerial speech vibrations to verify highly critical commands

- Developed cross-domain comparison for training-free and privacy-preserving authentication

- Demonstrated the effectiveness and robustness of WearID against various attacks through extensive experiments
Limitations and Future Work

❑ Improving accuracy and usability
 ❖ Using more sensitive wearables
 ❖ Improving the authentication algorithms

❑ Defending replay attack in vibration domain
 ❖ Exploring frequency-selective patterns of the accelerometer

❑ Deployment feasibility
 ❖ Removing environmental factors
Thank you!

Cong Shi
@cs1421@scarletmail.rutgers.edu
http://winlab.rutgers.edu/~cs1421/