Constrained Concealment Attacks against Reconstruction-based Anomaly Detectors in Industrial Control Systems

Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani, Michele Carminati, Stefano Zanero, Nils Ole Tippenhauer

alessandro.erba@cispa.saarland

ACSAC 2020
December 10th 2020
Anomaly detection based on sensor readings is promising to detect anomalies caused by attackers.

Critical infrastructures are nowadays interconnected.

Security features are hard to implement.

Eavesdrop
Malicious commands
Sensor spoofing

Reconstruction-based detectors are promising to identify anomalies in the system.
In this work, we propose and evaluate constrained concealment attacks against reconstruction-based anomaly detectors.
Research challenges

- **R1:** Due to the distributed nature of the system, the attacker is constrained to manipulate only a subset of features.

- **R2:** Adversarial examples must meet the temporal and spatial correlations expected from the observed physical processes.

- **R3:** Craft adversarial examples to optimize the Mean Squared Error loss instead of optimizing the cross-entropy loss.

- **R4:** Real-time constraints of ICS environment require novel techniques to compute adversarial examples
Unconstrained Attacker
The attacker can read and spoof all the sensor readings.

Partially Constrained Attacker
The attacker can read all the sensor readings and spoof only a subset of them.

Fully Constrained Attacker
The attacker can read and spoof a subset of sensor readings.
Reconstruction-based anomaly detectors

Training
- Normal operations data
- Reconstructed normal operations data
- Reconstruction error $\varepsilon(\tilde{e})$
- Threshold θ

Testing
- Normal and anomalous operations data
- Reconstructed operations data
- Reconstruction error $\varepsilon(\tilde{e})$

$y(\tilde{x}) = \begin{cases}
\text{`under attack'} & \text{if } \varepsilon(\tilde{e}) > \theta \\
\text{`safe'} & \text{otherwise}
\end{cases}$
Attacker Goal Formalization

Given: \(\vec{x} \) (Feature vector of sensor readings)
\(y(\vec{x}) \) (Classification function)

such that: \(y(\vec{x}) = \text{`under attack'} \)

minimize \(\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\hat{x}_i - (x_i + \delta_i))^2 \)

s.t. \(\vec{\delta} \in \text{constraint space} \)
real-time constraints imposed by CPS
\(y(\vec{x} + \vec{\delta}) = \text{`safe'} \)
Replay Attack

PLC → Eavesdrop → Historian

PLC → REC

Historian

PLC → Replay Sensor Readings

Historian
Iterative Attack

The White-box attacker can start an iterative attack to decrease the reconstruction error.
Learning Based attack

PLC → Eavesdrop → Historian

PLC → Eavesdrop → Historian
Evaluation

We consider two Datasets:

1. Batadal Dataset, water distribution network simulated with epanetCPA. 43 features
2. WADI Dataset, a real-world water distribution testbed. 82 features

Each dataset is divided in two data chunks:

A. Training data → no anomalies
B. Test data → with anomalies

We train 3 Reconstruction based anomaly detectors proposed in prior work:

1. Fully connected autoencoder
2. LSTM autoencoder
3. CNN autoencoder

Attacks are evaluated in terms of reduction of Recall score of the anomaly detector:

\[\text{Recall} = \frac{TP}{TP + FN} \]
Unconstrained Concealment Attack

Detection Recall

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Original Detection</th>
<th>Replay</th>
<th>Iterative</th>
<th>Learning Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batadal</td>
<td>0.6</td>
<td>0</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>WADI</td>
<td>0.68</td>
<td>0.07</td>
<td>0.07</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Computational time in seconds

<table>
<thead>
<tr>
<th>Data</th>
<th>Replay</th>
<th>Iterative</th>
<th>Learning Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std</td>
<td>mean</td>
</tr>
<tr>
<td>Batadal</td>
<td>-</td>
<td>2.28</td>
<td>2.46</td>
</tr>
<tr>
<td>WADI</td>
<td>-</td>
<td>0.6</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Partially Constrained Concealment attacks
Transferability

LSTM

CNN
Conclusions

- We are the first to formalize a constrained attacker model for real-world ICS.
- We presented the first real-time concealment attacks on reconstruction-based anomaly detectors for ICS.
- We show that the attacks present four unique challenges, and propose two attacks to tackle them.
- We demonstrated that our attacks are feasible in general, and outperform replay attacks when the attacker is constrained to control of less the 95% of the features.
- We demonstrate our attacks in Real-time in a water distribution testbed.

Please refer to our paper for the complete results of our evaluation.
The code and data are available at: https://github.com/scy-phy/ICS-Evasion-Attacks

Thank you!

alessandro.erba@cispa.saarland