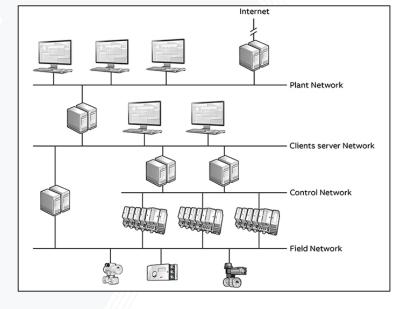
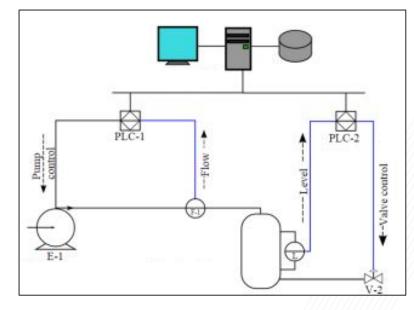
If I Knew Then What I Know Now: On Reevaluating DNP3 Security using Power Substation Traffic

Georgia Tech


CREATING THE NEXT

Celine Irvene Tohid Shekari David Formby Raheem Beyah


ICSS '19 – December 2019

Industrial Control Systems

Broad class of automation systems used to provide control and monitoring functionality

System Types

SCADA

ICS Applications

Monitor wide ranges of industrial processes and span many domains

Span Many Domains

- Public Transportation
- Health Care and Medicine
- Manufacturing
- Building Automation
- And Many More!

CREATING THE NEXT

- Plaintext Communications
- Vulnerable Legacy Devices
 Accessible via Internet
- Insufficient Authentication and Authorization
- Employees Untrained in Secure Methods and Techniques

ICS Attacks

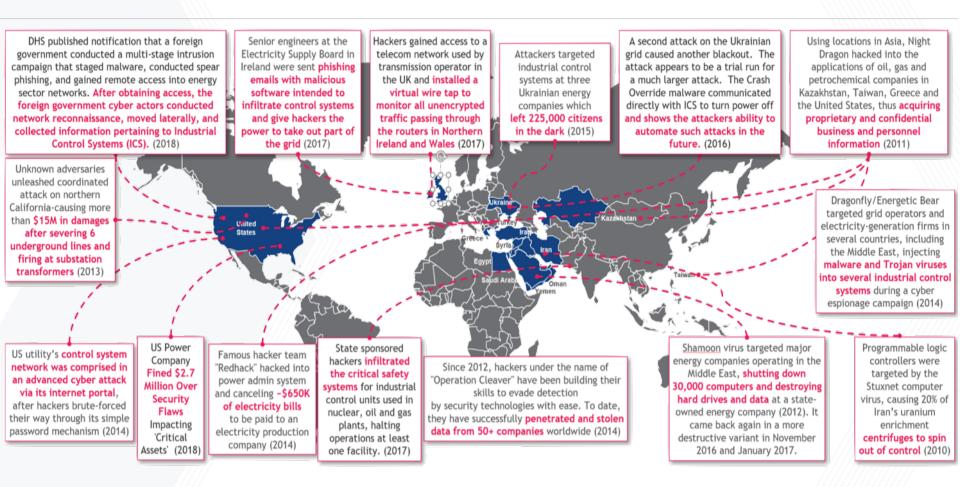
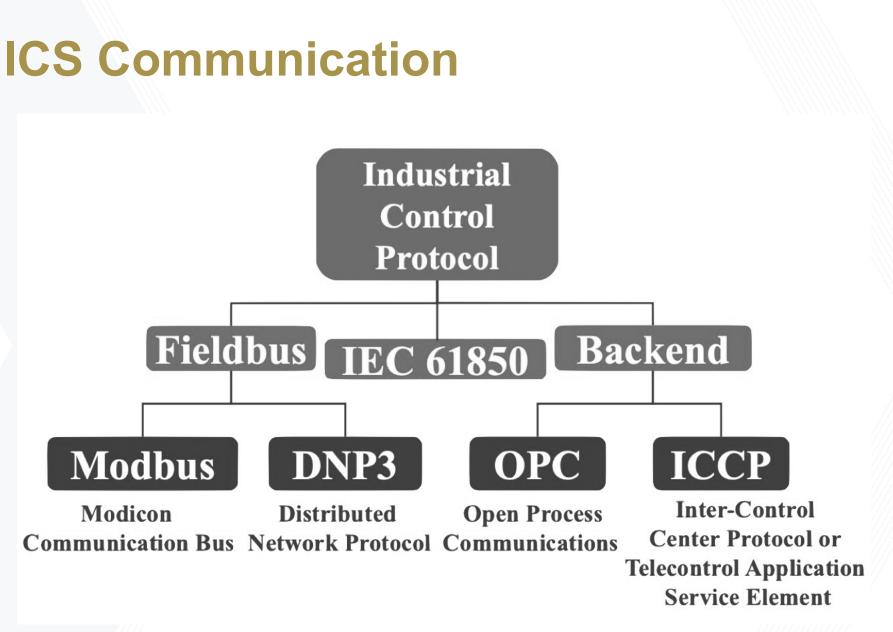
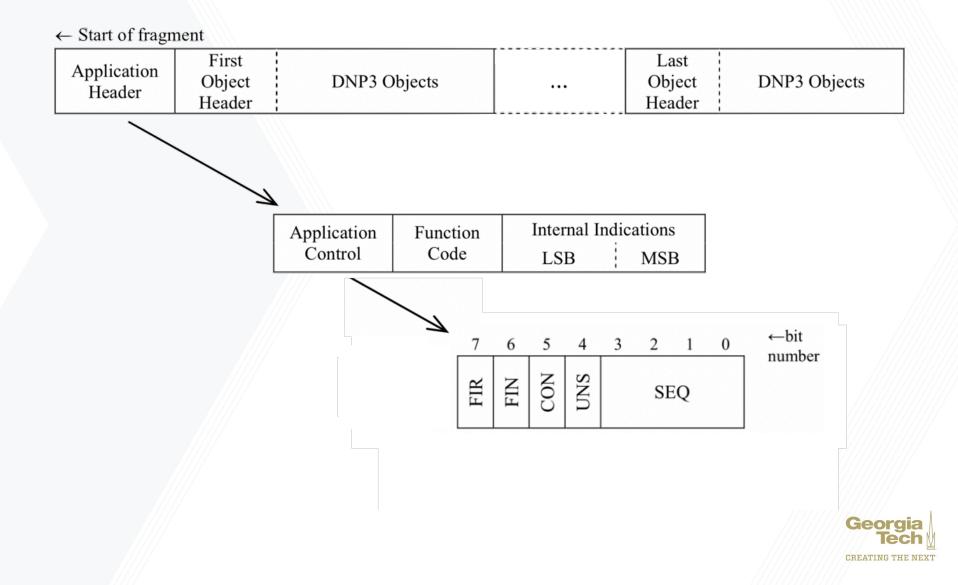



Image credit: Scott Christensen, GrayMatter



DNP3 Protocol

DNP3 APPLICATION LAYER	Application Cntrl [1 byte]	Function Code [1 byte]	Internal Indicatio [2 bytes]	ons Object Range Hdr [2 bytes]	DNP3 Objects		-	t Range Hdr 2 bytes]	DNP3 Objects
DNP3 TRANSPORT LAYER	FIN [1 bit]	FIR [1 bit]	Sequence Number [6 bits]						
DNP3 LINK LAYER	Magic (0x0564) [2 bytes]	Length [1 byte]	Control [1 byte]	Destination [2 bytes]	Source [2 bytes]		Header CRC [2 bytes]		
	TCP Header								
	IP Header Ethernet Header								

DNP3 Application Layer

Function Codes and IINs

Function Codes				
Requests (Hex)				
0	Confirm	10	Initialize application	
1	Read	11	Start application	
2	Write	12	Stop application	
3	Select	13	Save configuration	
4	Operate	14	Enable unsolicited	
5	Dir operate	15	Disable unsolicited	
6	Dir operate – No resp	16	Assign class	
7	Freeze	17	Delay measurement	
8	Freeze – No resp	18	Record current time	
9	Freeze clear	19	Open file	
А	Freeze clear – No resp//	1A	Close file	
В	Freeze at time	1B	Delete file	
С	Freeze at time – No resp	1C	Get file information	
D	Cold restart	1D	Authenticate file	
Е	Warm restart	1E	Abort file	
F	Initialize data			
Resp	onses (Hex)			
81	Response			
82	Unsolicited response			

Internal Indications			
LSB			
IIN1.0	All stations		
IIN1.1	Class 1 events		
IIN1.2	Class 2 events		
IIN1.3	Class 3 events		
IIN1.4	Need time		
IIN1.5	Local control		
IIN1.6	Device trouble		
IIN1.7	Device restart		
MSB			
IIN2.0	Function code not supported		
IIN2.1	Object unknown		
IIN2.2	Parameter error		
IIN2.3	Event buffer overflow		
IIN2.4	Already executing		
IIN2.5	Configuration corrupt		
IIN2.6	Reserved 1		
IIN2.7	Reserved 2		

. . ..

.

Application Layer most susceptible to attack because it provides the data payload

Function Code Attacks

Internal Indications Attacks

Function Code Attacks

Function Code	
WRITE	An attacker could use this to overflow or corrupt the outstation's memory
FREEZE/CLR	Injecting this to an outstation, it could lead to device malfunctions and crashes
COLD/WARM RESTART	Perpetually sending these messages could DoS the outstation and never let it completely start up
INITIALIZE	Transmitting with random data objects could cause the outstation to reinitialize itself and lead to system state inconsistencies resulting in device failures
STOP	Could terminate applications running on the outstation and make it unresponsive to commands from the master
UNSOL RESPONSE	Assuming unsolicited response mode is enabled, attackers can use this to cause DoS or buffer overflow unsuspecting nodes by repeatedly transmitting data packets

Internal Indication Attacks

Internal Indication Flag	
IIN2.5 Configuration Corrupt	Set from the outstation to the master. This triggers the master to send a new configuration file which could then be intercepted by a MITM and swapped with the attacker's desired configuration
IIN2.3 Event Overflow Buffer	Will trigger the master to request event data. If an attacker keeps this bit set she can dupe the master into an infinite loop of requesting data, to impede it from performing other tasks

DNP3, like many ICS protocols, is insecure

Data communications in the **wild** may **differ** from protocol operation in **theory**

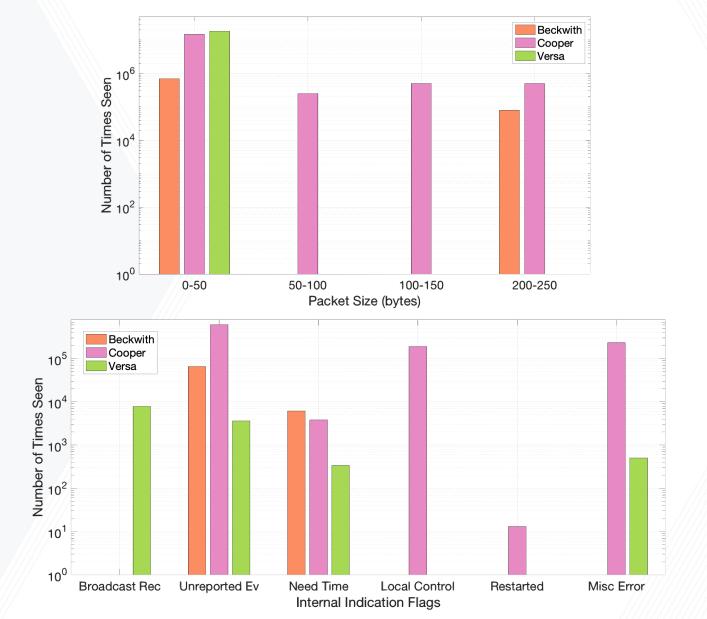
Little research dedicated to the **characterization** of ICSs or DNP3 with real network traffic

Contributions

DNP3 Application Layer **traffic analysis** of large-scale power substation dataset

Attack and mitigation assessment of previously proposed techniques from real-world dataset perspective

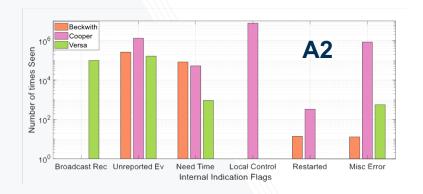
Lightweight application layer defense and security enhancing recommendations

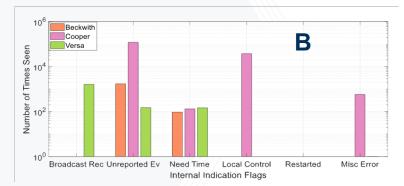

Power Substation Dataset

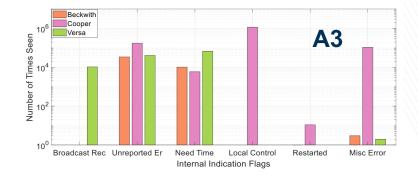
Captured from **Four** Medium-Voltage Distribution Substations

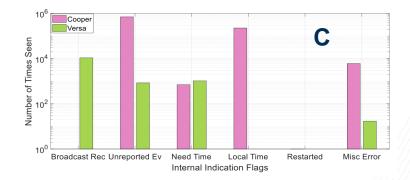
Dataset	Size (GB)	Nodes	Collection Period
A1	21.7	228	September 2013 - February 2014
A2	146.4	300	January - August of 2015
A3	147	300	August 2015 - April 2016
В	0.34	199	August 10 - August 11, 2015
С	5.7	121	April May 2016
D	11.7	104	April - May 2016

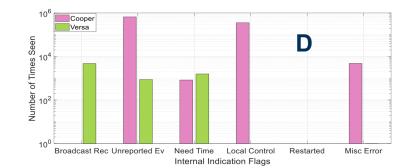
Traffic Characterization – A1

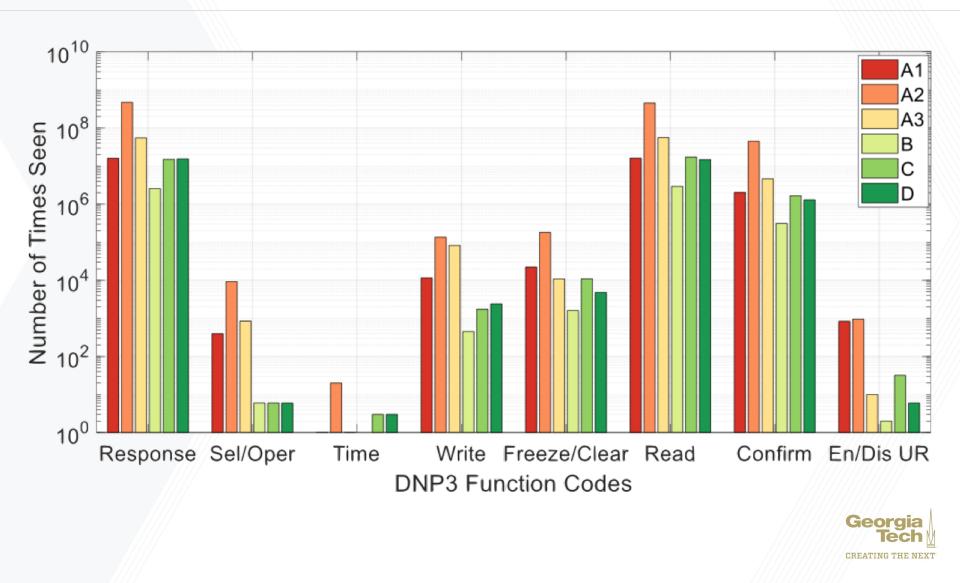



Georgia


Tec


CREATING THE NEXT


Datasets A2 - D



Function Code Analysis

Key Characterization Takeaways

Real world DNP3 data can vary from substation to substation

But data trends DO EXIST!

Some of the **worst** attacks from the literature are reasonably detectable

Assessment of Proposed DNP3 Attacks and Mitigations

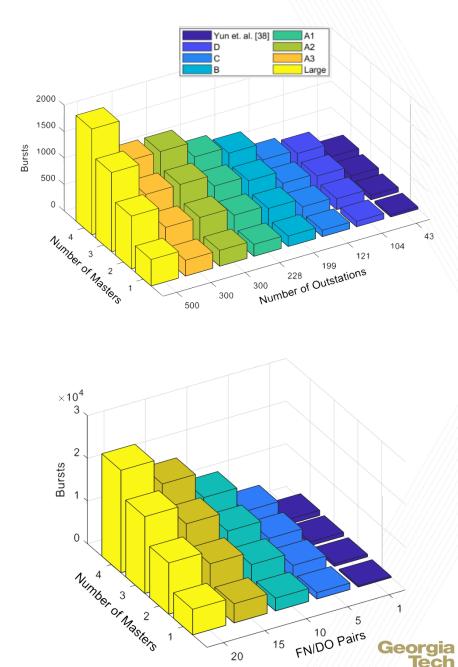
Goal - Better understand the breadth of DNP3 attack landscape

Investigate two DNP3 attacks proposed in the literature

If given, analyze their proposed mitigation techniques

Attack 1

Proposed Two Scenarios


- Abnormal Control/Data Transfer
- Traffic Flooding

Countermeasure

 Whitelist-based approach which categorizes all seen network traffic into bursts

Shortcoming – Expensive

Jeong-Han Yun, Sung-Ho Jeon, Kyoung-Ho Kim, and Woo-Nyon Kim. 2013. Burst- based anomaly detection on the DNP3 protocol. International Journal of Control and Automation 6, 2 (2013), 313–324.

Attack 2

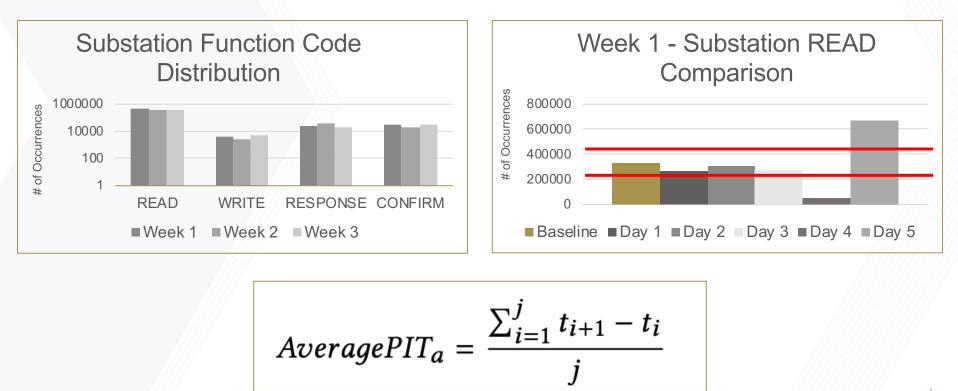
Main Goal

 Identify function codes which pose the largest threats to DNP3

Implementation

 Simulated DNP3 network – 1 MTU and 3 RTUs configured via OpenDNP3

Shortcoming – Simulated


Attac US	k Surface Singh[35]
	*
*	
*	*
*	*
*	-
*	-
*	-
*	-
*	
*	*
	US

C. Singh, A. Nivangune, and M. Patwardhan. 2016. Function code based vulnerability analysis of DNP3. In 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). 1–6. https://doi.org/10.1109/ANTS.2016. 7947865

Baseline Distribution Countermeasure

Use limited set of application layer function codes to generate a baseline of normal network behavior

Defense Recommendations

In addition to the baseline distribution approach for detecting network availability compromises other techniques have been proposed

Defense	
[10] Darwish et al. 2018	Time based mitigation technique for detecting MITM attacks
[23] Lee et al. 2014	DNP3 Authenticated Encryption method
[16] Fovino et al. 2010	Using IDS rules which describe critical ICS system states
[36] Valdes et al. 2009	Anomaly detection for monitoring host communication patterns and individual network flows

Summary and Future Work

Application layer characterization of real power substation network traffic

Analyzed the efficacy of previously proposed DNP3 attacks and defenses

Proposed a **lightweight application layer defense** and gave security recommendations

> Future Work - Numerical evaluation on proposed theoretical approaches with real world data

QUESTIONS?

Contact: cirvene3@gatech.edu

cap.ece.gatech.edu

