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DISTRIBUTED POINT FUNCTIONS

OUR GOAL

Our goal is to build a recommendation system,
that:

RECOMMENDATION SYSTEMS

Allows Dbusiness to
increases their sales.
User information col-
lected, which could
potentially be mis-
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1. Provides relevant recommendations to the

users.
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1. Private Information Retrieval allows us to
obliviously fetch data from a database. For
example, a PIR based Nettlix would allow
users to watch movies while Netflix is com-
pletely oblivious to the movies watched by
the users.

2. (2,1) Distributed Point Functions provide
a way to distribute a point function P,
amongst 2 servers such that the servers
learn nothing about ¢, if they don’t collude.
A point function P; evaluates to 0 at every
input except .

3. Multi-Party Computation

We show how to use the DPFs to realize two-party fixed-selection-wire multiplexers and demultiplexers,
which serve as extremely fast and non-interactive drop-in replacements for what would otherwise be
the two most expensive steps in MPC-based gradient descent.

OUR SYSTEM

query 1 PIR:

1. Several replicas of the database.

2. To retrieve a record, users send different
query vectors to each replica and get a re-
sponse.

~response 1

query 2

e P,---,F,, with private inputs 3. Individual query vectors reveal nothing
wi, - - -, wy respectively. _response 2 about the retrieved record’s index.

e Compute a function F(wi,- - ,wp) 4. Users combine the responses to get the de-
while keeping their private il’lplltS Se- . . . . . sired record.
cret. 1. M;; = 11if a user 7 has queried for item 7,
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otherwise Mij = 0.

2. Find U, V (for some A, ;1) which minimizes:
>, —1 (M = (Ui, V)2 + N[U]lg + | V-

3. For (¢/, j") such that M;/;, = 0, use <UZ-/,V3T,>
as the prediction.

query 3

response 3

query 4

“response 4

user profile
shares

MPC:

. Keep collecting the PIR queries until the end

of every epoch.

. 3PC Protocol on the secret-shared data.
. 3PC outputs secret shared user profiles.
. Users reconstruct corresponding profiles.
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Gradient descent is used to solve the optimiza- . Item profiles are public.

tion problem.

CONTACT INFORMATION
Adithya avadapal@iu.edu

ASSUMPTIONS

o We use the recent Hafiz-Henry PIR protocol which is computationally optimum and has an opti-
mal download cost.
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e The price that is paid: The protocol requires that no two servers collude.



