Mining Attribute-based Access Control Policies by Taking Aspirations form Particle Swarm Optimization Algorithm

Masoud Narouei*, Hassan Takabi†, and Laura Adams‡

*Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
† Texas State University, San Marcos, Texas, USA

Abstract

ABAC has been emerged as a general model that could overcome the limitations of the dominant access control models (i.e., MAC, DAC, and RBAC) while unifying their advantages. Once fully implemented within an enterprise, ABAC promotes information sharing while maintaining control of the information. However, ABAC's policy specification is more complex and can result in an expensive and time-consuming task. To reduce this burden, policy mining algorithms have been proposed to partially or totally automate the construction of ABAC policies from available access control information. In this work, we propose a nature-inspired methodology for solving the policy mining task. Initial results proved the effectiveness of the proposed methodology.

Method

Considering the following access request which means faculty can add scores for cs601 course:

\[\text{Request} = \text{<Faculty, addScore, cs601>} \]

And the following attributes:

\[\text{faculty} = \text{<position=faculty, department=cs, crsTaught=<cs601>}, \text{cs601} = \text{<department=cs, crs=cs601, type=gradebook>} \]

Our methodology looks for an ABAC policy in the following form that satisfies the request:

\[\text{<type e (gradebook), {readScore, addScore}, crs e crsTaught>} \]

Algorithm 1 Particle Swarm Optimization

1. procedure PSO
2. Initialize particle population using requests
3. Find initial global best particle
4. LOOP:
5. FOR each particle:
6. Decide if it will be updated based on global best position, previous best position or local best position.
7. if position is updated then
8. if new position is better than current rule: then replace current rule with updated rule
9. if new position is better than previous best rule: then replace previous rule with updated rule
10. if new position is better than global best rule: then replace previous rule with updated rule
11. end FOR
12. update global best rule
13. goto LOOP.

Experiments

We evaluated our proposal experimentally on University-abac case study considered in previous research. This case study consists of a set of 22 users, 34 resources, 9 operations, and 10 rules. Users and resources are associated with various attributes. Rules were carefully constructed to express non-trivial policies and exercise all the features of the policy language, including use of set membership and superset relationships in attribute expressions and constraints. We executed our approach on this case study and were able to reduce the number of generated rules to 7. WSC of an ABAC policy is a weighted sum of the number of elements in the policy. We use WSC to measure the complexity of generated rules. Generally, less complex rules are more favorable. Another important result is that our approach tends to generate a policy which is less complex than the baseline (WSC was reduced by 4).

Results

| Case study | I | U | R | O | A|R | A|P | S|R | P|S | WSC(P) | | | |
|-------------|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|
| University | 22 | 34 | 9 | 6 | 5 | 168 | 6564 | 10 | 37 | 7 | 33 |

- \(|U|\) is number of users
- \(|R|\) is number of resources
- \(|O|\) is number of operations
- \(|A|R|\) is number of user attributes
- \(|A|P|\) is number of resource attributes
- \(|S|R|\) is number of requests accepted
- \(|S|P|\) is number of requests denied
- \(|P|S|\) is number of original rules
- \(|P|T|\) is number of newly generated rules
- WSC is weighted sums of the complexity

Introduction

Attribute-based access control (ABAC) is an access control model wherein the access control decisions are made based on a set of attributes, associated with the requester, the environment, and/or the resource itself. ABAC allows “an unprecedented amount of flexibility and security while promoting information sharing between diverse and often disparate organizations”. ABAC promises long-term cost savings through reduced management effort, however, manual development of ABAC initial policies can be difficult and expensive. A promising approach to diminish the burden of policy specification is represented by policy mining, whose goal is to partially or totally automate the construction of an ABAC policy from available access control information (e.g., access control logs, RBAC policies).

References