Distributed MILS (D-MILS) Technology Achievements

Rance DeLong
A Brief MILS/D-MILS Refresher

- MILS is a component-based approach for the construction, assurance, and certification of dependable systems that encourages a commercial marketplace of off-the-shelf high-assurance components.

- MILS can be understood as a two phase approach:
 - **Architecture**
 - Abstract policy architecture represented with “boxes” (operational components) and “arrows” (interactions).
 - System purpose is achieved by behavior of the operational components and their interactions.
 - Assumption: the architecture will be strictly enforced.
 - **Implementation**
 - A robust resource-sharing platform composed of MILS foundational components creates strongly isolated “exported resources.”
 - Components individually developed and assured according to standard specifications.
 - Components compose “additively” to form a distributed trusted sharing substrate, the MILS Platform.
MILS Policy Architecture

The architecture expresses an interaction policy among a collection of components.

Circles represent architectural components (subjects / objects).

Arrows represent interactions.

The absence of an arrow is as significant as the presence of one.

C1

C2

C4

C3

C5

C6

Trusted Subject

Components are assumed to perform the functions specified by the architect (trusted components enforce a local policy).

Suitability of the architecture for some purpose presumes that the architect’s assumptions are met in the implementation of the architecture diagram.
MILS Platform – Provides Straightforward Implementation of Policy Architecture

Architecture
Validity of the architecture assumes that the only interactions of the circles (operational components) is through the arrows depicted in the diagram.

Implementation
SK, with other MILS foundational components, form the MILS Platform allowing operational components to share physical resources while enforcing Isolation and Information Flow Control.
The MILS Platform: Resource-Sharing Components

Additive compositionality – e.g.,
Partitioning Kernel \oplus Partitioning Net
= Partitioning (Kernel + Net)

MP = MILS Platform
+ D-MILS includes limited versions of Net(work) and Console components
* D-MILS does not include MILS FS, EA and Aud components
Distributed MILS

- A single policy architecture may span multiple D-MILS nodes expressed in declarative MILS-AADL.
- **Guarantees** similar to a single MILS node: isolation, information flow control, determinism.
- **Determinism** over network could be achieved in various ways – in D-MILS we use Time-Triggered Ethernet (TTE).
- Must **configure and schedule** the network and the processors of the nodes **coherently**.
- Support verification of architectural properties, presentation of assurance case, and generation of configuration with **integrated automation** with the greatest practical use of existing verification technology.
Distributed MILS: Policy architecture deployment spanning nodes
Distributed MILS Platform – MILS nodes with deterministic communication

A Distributed MILS Platform:

- TTE Switch
- TTE Switch
- TTE Switch
- TTE Switch

Enables:

Realization of deterministic distributed MILS architectures

SK ⊕ MNS
Foundational Plane

Node Hardware Node Hardware Node Hardware Node Hardware Node Hardware
D-MiLS Technology Areas

- **Graphical and Declarative Languages (front-end)**
 - Architecture Analysis and Design Language, MILS extended subset (MILS-AADL)
 - Goal Structuring Notation (GSN)

- **Integration of GSN and MILS-AADL**
 - Structure of GSN assurance case informed by information gleaned from MILS-AADL model

- **Representations and Transformations**
 - Semantics preserving transformation between front-end languages and intermediate and back-end languages of the analysis tools

- **Compositional Verification**
 - Reduce verification of system to independent verification of its parts
 - Properties to verify and appropriate verification strategies and tools

- **Compositional Assurance Cases**
 - Modular GSN
 - Rely / guarantee argumentation

- **Configuration Compiler**
 - Generate configuration information for D-MiLS nodes and connecting TT network infrastructure
 - Configuration constrained by actual physical resources available

- **D-MiLS Platform**
 - Separation kernel with extended configuration
 - MILS Network Subsystem with TTEthernet
Technology Work Package Relationships

MILS-AADL
Annotations
Verification framework
Assurance Case

WP1 Requirements Specification
WP2 Graphical & Declarative Languages
WP3 Representation Semantics & Transforms
WP4 Compositional Verification
WP5 D-MiLS Platform Configuration Compiler
WP6 Separation Kernel Extensions
WP7 Integration & Evaluation
WP8 Dissemination & Exploitation
WP9 Project Management
Summary of D-MILS Project Technology Achievements

- Coordinated “top-to-bottom” and “end-to-end” strategy has been demonstrated – from declarative system description language, through verification, to platform deployment and execution.

- Basis for increased confidence that system meets requirements, through modelling, analysis, and construction.

- **D-MILS Declarative language**
 - MILS-AADL extended subset of standard AADL, syntax and formal semantics
 - Compiler implementation with translations to languages of the backend tools in the D-MILS tool chain

- **D-MILS Assurance Case**
 - Automated support for compositional assurance with modular assurance case guided by declarative language features
 - Integration of verification results

- **Compositional Verification**
 - Application of Contract-Based Design (CBD) to MILS – critical to MILS refinement claims
 - Integrated framework providing a high degree of verification automation and simulation

- **D-MILS Configuration Compiler**
 - Automated configuration of distributed platform to distributed mode
 - Coherent details of system deployment across multiple nodes
 - Method to ensure configuration correctness

- **D-MILS Distributed Platform**
 - Operational deterministic distributed platform based on:
 - Extended separation kernel (LynxSecure)
 - MILS Network System
 - Extended deterministic networking (TTEthernet)
 - MILS Console System

- **D-MILS Industrial Demonstration and Evaluation**
 - Use and assessment of D-MILS tool chain for modeling/verification/deployment of two industrial use cases
 - fortiss Smart Microgrid
 - Frequentis Voice Services
More about selected accomplishments
WP2 Declarative Language & WP3 Semantics and Transformations

Prior to D-MILS
- SLIM dialect of AADL
- COMPASS analysis tools

Accomplishments of D-MILS
- MILS-AADL syntax and formal semantics including MILS features, ops and data types
- Translations to SMV/BIP/Prolog
- Integration of annotations for property specifications, contracts, and deployment
- Analysis of cryptographically masked info flow
- Slicing-based verification procedure for info flow properties supporting encryption
WP2: Languages
- Definition and parsing of MILS-AADL
- Extended data types and operations
- XML metamodel and export

WP3: Semantics and Transformations
- Definition of formal semantics
- Support for translation to SMV/BIP/Prolog and XML for GSN
WP4 Compositional Verification

Prior to D-MILS, these tools and their analyses
- COMPASS
- nuSMV, OCRA
- BIP

Accomplishments of D-MILS
- Integrated verification framework
- Contract-Based Design applied to MILS-AADL
- New algorithms, including invariants and temporal logics
- New and extended properties and compositional analyses
 - Functional requirements
 - Security
 - Safety
 - Real-time
 - Hybrid systems
 - Timed systems
 - Uniform Verification of Parameterized Systems
 - Deadlock freedom
 - Transitive non-interference
Compositional Verification Tool Chain

- MILS-AADL analysis
- COMPASS
- Contract refinement
- OCRA
- Temporal logic entailment
- nuXmv
- Model checking of liveness
- Model checking of invariant
- Contract-based fault-tree analysis
- FTA as param synthesis
- OCRA
- COMPASS extended with contract-based analysis
- New translation to OCRA
- OCRA extended with EUF
- nuXmv extended with EUF
- New algorithm for temporal logics with infinite-state systems
- New algorithm for invariants with infinite-state systems
- xSAP
WP4 Compositional Assurance

- Prior to D-MILS
 - Manual construction of assurance case
 - Manual confirmation of completeness and correspondence to system design

- Accomplishments of D-MILS
 - Assurance argument pattern catalogue
 - Automation of assurance argument creation with pattern instantiation from models by Model-Based Assurance Case (M-BAC) tool
 - Integration of assurance argument with design and verification by Weaving model with explicit mapping to system models
Compositional Assurance Tool Chain

D-MiLS assurance argument patterns

M-BAC pattern editor

Weaving model

D-MiLS system models

D-MiLS assurance case
WP5 MILS Platform Configuration Compiler

- Prior to D-MILS
 - Single system, no distributed or global view
 - No interoperability of diverse products
 - No cohesive implementation of “MILS Platform”
 - No traceability of deployment to design spec

- Accomplishments of D-MILS
 - Global configuration of distributed MILS system
 - Flows from high-level design specification
 - Flexible targeting based on adapters
 - Configuration representation standard emerging
 - Configuration correctness validation
MPCC: MILS Platform Configuration Compiler

- Policy Architecture
- MILS-AADL
- MILS to Prolog translator
- D-MILS Platform
- MILS-AADL
- Flexible retargeting by adapters
- User Interface
- Prolog Engine
- MCNF

XML Configuration
- SK Configuration
- GIFP Configuration
- Network Configuration

External Representation
- MCNF External Representation (Prolog or XML)
WP6 D-MILS Platform - SK extensions

Prior to D-MILS

- Independent separation kernel implementation and standalone configuration
- “D-MILS Platform” as an integration of SK, MILS Network System, and MILS Console was only a concept (MNS and MCS did not previously exist)

Accomplishments of D-MILS

- Distributed MILS Platform from integration of LynxSecure and MNS/TTEthernet + MCS
- Security extensions to TTEthernet
- Deterministic system: nodes and communication
- Operational support for distributed architectures
- Platform configuration tools now connected through D-MILS tool chain all the way back to the MILS-AADL system model
WP7 Industrial Demonstrations

- Detailed evaluations performed
- Frequentis Voice Service (FVS)
 - MILS AADL specs for FVS
 - Prototype MILS Console system
- fortiss Smart Micro Grid (SMG)
 - MILS AADL specs for SMG
 - Starlight example – MILS-AADL to configuration to running demo
- Provide excellent feedback for future development of D-MILS tools/platform
Summary and Lessons Learned

- Our goals were ambitious and we are very proud of our accomplishments.
- We’ve learned much about what needs to be done to improve usability and applicability of tools and platform:
 - Improvements for platform performance
 - Integration, modularity, and UI of tools
 - Methodology and supporting features
 - Extension to dynamic systems
 - Upgrade TRL of all components