Proximity Verification for Contactless Access Control and Authentication Systems

Aanjhan Ranganathan (ETH Zurich)
Boris Danev (3dB Access AG)
Srdjan Capkun (ETH Zurich)
Contactless Systems
Contactless Systems

- Uses **RFID technology** to exchange information
- The card is **fully passive** i.e., no power supply of its own
- Designed for **short-range** applications
Contactless Systems

- Uses **RFID technology** to exchange information
- The card is **fully passive** i.e., no power supply of its own
- Designed for **short-range** applications
Contactless Systems

- Uses RFID technology to exchange information
- The card is **fully passive** i.e., no power supply of its own
- Designed for **short-range** applications
Relay Attacks
Relay Attacks
Relay Attacks
Relay Attacks

- Physical layer attack and therefore independent of any higher layer crypto
Relay Attacks

• Physical layer attack and therefore independent of any higher layer crypto

• Several practical attacks demonstrated (e.g., automobile entry systems* and Google Wallet^)

Relay Attacks

Secure proximity verification is required to prevent such relay attacks

- Physical layer attack and therefore independent of any higher layer crypto
- Several practical attacks demonstrated (e.g., automobile entry systems* and Google Wallet^)

Distance Bounding

Guarantees an upper bound on the distance between two entities: a verifier and a prover.

Verifier

Prover
Distance Bounding

Guarantees an upper bound on the distance between two entities: a verifier and a prover.
Distance Bounding

Guarantees an upper bound on the distance between two entities: a verifier and a prover

Verifier → challenge → Prover

\[tp \]
Distance Bounding

Guarantees an upper bound on the distance between two entities: a verifier and a prover.

Verifier

challenge

tp

response

Prover
Distance Bounding

Guarantees an **upper bound on the distance** between two entities: a verifier and a prover.
Distance Bounding

Guarantees an upper bound on the distance between two entities: a verifier and a prover

\[d = c \times \left(\tau - t_p \right) / 2 \]
Design Requirements

• Fully passive prover design
 • All current distance bounding implementations* use active provers

• Suitable for use in short range applications

* Tippenhauer et al. “UWB Rapid-Bit-Exchange System for Distance Bounding”. WiSec 2015
* Rasmussen et al. “Realization of RF Distance Bounding”, USENIX 2010
Our Contribution
Our Contribution

• A first step towards realizing a secure proximity verification system in which the prover can be fully-passive
Our Contribution

- A first step towards realizing a secure proximity verification system in which the prover can be fully-passive
- Specifically designed for short-range contactless systems
Our Contribution

• A first step towards realizing a secure proximity verification system in which the prover can be fully-passive

• Specifically designed for short-range contactless systems

• Our system is resilient against conventional relay attacks. Even an advanced attacker has to be within 1-2 m of both the victim card and the reader
Our Contribution

• A first step towards realizing a secure proximity verification system in which the prover can be fully-passive

• Specifically designed for short-range contactless systems

• Our system is resilient against conventional relay attacks. Even an advanced attacker has to be within 1-2 m of both the victim card and the reader

• We use Frequency Modulated Continuous Wave (FMCW) for distance measurement and backscatter communication technique for data exchange
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx

d
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx

d

Proximity Verification for Contactless Systems
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx

d

Chirp Signal

Frequency Estimator
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx

d

Proximity Verification for Contactless Systems
Overview of FMCW

Chirp Signal

Frequency Estimator

Tx

Rx

\[f(t) \]

\[f_{\Delta} \]

\[\tau \]

\[d \]
Overview of FMCW

Chirp Signal

Frequency Estimator

\[f(t) \]

\[\Delta f \propto d \]

Proximity Verification for Contactless Systems
FMCW-based Distance Bounding

• Conventional Radar systems do not require any data exchange.

• Exchange of data (challenges and responses) is important for secure proximity verification.

• We use On-Off Keying (OOK) to modulate the challenges and responses over the FMCW chirp.
The chirp signal is divided into challenge and response slots.

Verifier modulates challenges in the challenge slots and transmit clean (unmodulated) signal in the response slot.

The prover uses the response slots to modulate back the responses.
Challenge and Response Slots
Challenge and Response Slots

C_1
Challenge and Response Slots

C1 R1
Challenge and Response Slots

C1 → R1
Challenge and Response Slots

C₁ → R₁ → C₁
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response

Proximity Verification for Contactless Systems
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

C₁ R₁ C₂

Prover keeps reflecting the challenge back to the verifier as it computes the response

C₁ R₁ C₂
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Proximity Verification for Contactless Systems

Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response
Challenge and Response Slots

Prover keeps reflecting the challenge back to the verifier as it computes the response.
Example Challenge Response Slots

C={1,0,1,0}

R={0,1,0,1}
Example Challenge Response Slots

\[C = \{1, 0, 1, 0\} \]

\[R = \{0, 1, 0, 1\} \]
Example Challenge Response Slots

$C = \{1, 0, 1, 0\}$

$R = \{0, 1, 0, 1\}$
Example Challenge Response Slots

C = {1, 0, 1, 0}
R = {0, 1, 0, 1}
Example Challenge Response Slots

C = \{1, 0, 1, 0\}

R = \{0, 1, 0, 1\}
Example Challenge Response Slots

$C = \{1, 0, 1, 0\}$

$R = \{0, 1, 0, 1\}$
Example Challenge Response Slots

\[C = \{1,0,1,0\} \]

\[R = \{0,1,0,1\} \]
Example Challenge Response Slots

C = {1, 0, 1, 0}

R = {0, 1, 0, 1}
Example Challenge Response Slots

C={1,0,1,0}

R={0,1,0,1}
Example Challenge Response Slots

\[C = \{1, 0, 1, 0\} \]

\[R = \{0, 1, 0, 1\} \]
Example Challenge Response Slots

$C = \{1, 0, 1, 0\}$

$R = \{0, 1, 0, 1\}$
Example Challenge Response Slots

C={1,0,1,0}

R={0,1,0,1}
Modifications to Contactless Cards

Reader

modified contactless card

modulator challenge processing memory

Conventional Link
Backscatter Link
Comparable Complexity

Copyright 2009
Modifications to Contactless Cards

Reader

modulator

challenge processing

memory

COTS energy detectors that consume less than 3 mA
Resilience against Relay Attacks

• Conventional Amplify & Forward
Resilience against Relay Attacks

• Conventional Amplify & Forward
Early Detect & Late Commit Attacks

Early Detect & Late Commit Attacks

• **Early Detect**: Attacker tries to predict the bit before receiving all the signal samples

Early Detect & Late Commit Attacks

- **Early Detect:** Attacker tries to predict the bit before receiving all the signal samples.
- **Late Commit:** Leverages the ability of a receiver to decode the bit even though all the samples are not correct.

Early Detect & Late Commit Attacks

- **Early Detect**: Attacker tries to predict the bit before receiving all the signal samples.

- **Late Commit**: Leverages the ability of a receiver to decode the bit even though all the samples are not correct.

Success of the attack depends on the length of each slot!

Experimental Setup

• Focus on two key parameters

1. Challenge processing delay
2. Ranging precision

1. Slotted chirp signal Gen
2. Amplifier
3. Tx antenna
4. Storage Oscilloscope
5. Rx Antenna
6. Challenge demodulator
Experimental Results

Challenge processing delay

![Graph showing processing delay vs. trials at different distances (1m and 4m).]

- Processing delay (ns)

- Trials

- Slot length of 50 ns is very much feasible!

Ranging Precision

![Graph showing estimated distance vs. actual distance at 100 MHz and 200 MHz.]

- Estimated distance (m)

- Actual distance (m)

- Ranging precision of ~ 1.5 m
Summary
Summary

• Our work makes a first step towards realizing a secure proximity verification system in which the prover can be fully-passive
Summary

• Our work makes a first step towards realizing a secure proximity verification system in which the prover can be fully-passive

• We leveraged backscatter communication technique for data exchange and Frequency Modulated Continuous Wave (FMCW) for distance measurement
Summary

• Our work makes a first step towards realizing a secure proximity verification system in which the prover can be fully-passive.

• We leveraged backscatter communication technique for data exchange and Frequency Modulated Continuous Wave (FMCW) for distance measurement.

• We showed that our system is resilient against conventional amplify and forward relay attacks as well as stronger early detect & late commit attacks.
Summary

• Our work makes a first step towards realizing a secure proximity verification system in which the prover can be fully-passive

• We leveraged backscatter communication technique for data exchange and Frequency Modulated Continuous Wave (FMCW) for distance measurement

• We showed that our system is resilient against conventional amplify and forward relay attacks as well as stronger early detect & late commit attacks.

Thank You!

aanjhan@inf.ethz.ch