An Integrated Framework for Multi-layer Certification-based Assurance

ACSAC 2014 - Layered Assurance Workshop
New Orleans, Louisiana, USA. December 2014

Authors:
Rajesh Harjani, Marcos Arjona, Javier Espinar, Antonio Maña (speaker), Antonio Muñoz, Hristo Koshutanski

University of Malaga, Spain
Motivation

- Current trends in computing share some characteristics that complicate the assessment and assurance of their non-functional properties (notably security and privacy)

- **Dynamism**
 - Adaptation
 - Evolution

- **Composition**
 - Vertical & horizontal
 - Lack of a common owner/controller
 - Independent evolution cycles

- **Complexity**
 - Size
 - Connectivity
 - Context-awareness
Approach

- We believe that supporting assurance in these types of systems requires at least mechanisms:
 - (i) to provide **static assurance** for the system components;
 - (ii) to **attest the dynamic state** of system components (including their supporting hardware infrastructure); and
 - (iii) to **derive properties** of the composite system based on properties offered by components and their state.

In addition to these, we also believe that any successful approach must be complemented with

- (iv) **engineering** processes, methods and tools to support developers of such systems to take full advantage of the approach.
Recent extensions and improvements to several existing technologies like certification, trusted computing and hardware-based security, dynamic testing and monitoring provide a solid basis to develop an integrated framework to support the assurance of complex, composite, layered and evolving systems in practice.
Layered certification approach

Coverage
- Applications
- Services
- Cloud Supporting Infrastructure
- Native OS
- Hardware

Layers

Example 1
- Security Certificate
- Security Certificate

Example 2
- Security Certificate
- TC Proof

Certification
TC Proofs

Example 1: Security Certificate depends on Security Certificate

Example 2: Security Certificate depends on TC Proof
Security Certification As We Know It

- The concept of security certification provides an appropriate and robust mechanism for supporting assurance and compliance...

but there are important problems:

P1 certification has traditionally been represented for humans and has not been able to support automated processing (i.e. certification verification, selection based on certificates, etc.); and

P2 certification can not provide dynamic proofs of the status of a system at runtime, which are extremely important in a dynamic, heterogeneous and unpredictable scenario such as cloud computing

P3 existing applications are not prepared to take advantage of such machine-oriented assurance certificates
New Life for Security Certification

- We have developed an **integrated framework** that solves some of the aforementioned problems and provides:
 - A machine-understandable format for **assurance certificates**
 - 3 different mechanisms to provide **both static and dynamic proofs** of the status of the system based on:
 - Testing
 - Monitoring
 - Trusted Computing
 - Plus one based on formal proofs that we had developed in a previous project
 - A tool-supported **process** and to help developers to create
 - applications that can take advantage of assurance certificates; and
 - components that are “certification friendly” (i.e. are easy to evaluate and certify)
The CUMULUS Framework

- The CUMULUS **integrated framework** includes:
 - **Models** for certification-based assurance of security properties based on evidences drawn from different analyses
 - Dynamic **testing** techniques and tools
 - An assurance-oriented **monitoring** language and monitors
 - An interoperable **certification infrastructure** for generating, maintaining and using certificates according to the different types of the certification models developed, so that to make them available to cloud providers and cloud customers
 - Additionally, we have also developed a secure solution to automatically produce certificates based on runtime evidences
 - Development of an **engineering process and toolset** supporting the development of both components and applications
Our Engineering Approach

- **Model-based methodology**
- **Focused on supporting system engineers and certifiers**
 - Management of security aspects.
 - Making design decisions for finding the best solution for their systems.
 - Provide solutions for security requirements.
 - Provide communication artefacts.
- **Separation of responsibilities based on real-world roles and functions.**
- **Flexible modelling framework and tool**
 - Fits into existing development process.
Keys of the Engineering Approach

● **Necessary knowledge**
 ► The pencil analogy
 ► **KEY 1:** Separate roles

● **Taming complexity**
 ► Try doing this with just pen and paper
 ► **KEY 2:** Provide advanced tool-support

● **At the end of the day, we must develop a system**
 ► Only win-win approaches can succeed
 ► **KEY 3:** Make security a part of system engineering

● **Necessary flexibility/specialization/reuse**
 ► Security depends on precision and details
 ► **KEY 4:** Capture security knowledge in different computer-processable artefacts
Our focus

- Engineering and developing CUMULUS-aware systems (services and applications) requires specific and novel considerations to be taken into account
 - Trust is established by means of certificates
 - Systems will be composed not only based on functional aspects, but also on security aspects (properties, threats, risks,...)
 - Systems should be designed to use certified components
 - Components should be designed for certification
 - Components of a system may change without the knowledge or control of other components
The CUMULUS Engineering Process

- The CUMULUS engineering process and toolset includes:
 - A process based on the principle of separation of responsibilities (KEY 1)
 - Tools (KEY 2) to:
 - Create, store and publish models and artefacts
 - Interact with the CUMULUS infrastructure
 - Assist system engineers during system design (KEY 3)
 - Assisted integration of elements (requirements, solutions, certified components,...)
 - Full traceability to support evaluation and certification
 - On-the-fly validation of designs
 - A modeling framework including different layers and artefacts (KEY 4)
● CSM (Core Security Metamodel): The language

- contains the definition of core elements (represented in UML) and their relations to represent the most relevant security concepts, such as of security properties, security requirements, threats, attacks, certification, etc.
- Work in progress but already usable
- We have focused on requirements, properties and solution modeling (through patterns)
- But also cover threat, attack and attacker modeling, certification, verification and validation, risks...
 - We still need contributions in those aspects
CUMULUS Engineering Process (Main artefacts)

- **DSM (Domain Security Metamodel): The knowledge**
 - Allow experts to capture specific security knowledge, including the definition of additional rules (company policies, standards, etc.) for a particular domain.
 - Include domain “asset stereotypes” and “domain security requirements” to facilitate requirement elicitation, coherence and management.
 - Include specific requirements, properties, solutions, attacks, certification schemes, ...
 - Include domain rules to ensure coherence among the mentioned elements.
TOOL SUPPORT

Core Security Metamodel (CSM)

Domain Security Metamodel (DSMs)

System model

CUMULUS Consortium

System Engineers

Domain Security Experts

Layered Modeling Framework: Artifacts

LAW'14 Workshop @ ACSAC, New Orleans, December 2014
CUMULUS Engineering Process (Main artifacts)

- **COSSP (COnputer-Supported Security Pattern):** The solutions
 - Contains precise, machine-readable, integration-oriented, descriptions of validated solutions to recurrent security problems

- **SAP (Security Assurance Profiles):** The certification requirements
 - Allows expressing which certificates are acceptable for the system in order to guarantee that an external component fulfills a given security requirement
Layered Modeling Framework: Artifacts

TOOL SUPPORT

- **Core Security Metamodel (CSM)** creates
- **Domain Security Metamodel (DSMs)** conform to
- **COMputed-Supported Security Patterns (COSSPs)** defines
- **Service Assurance Profiles (SAPs)** designs
- **System model** creates

CUMULUS Consortium uses
System Engineers uses
Domain Security Experts uses
Pattern Designers refers to
Certification Authorities & Security Experts refers to
Model relations with the CUMULUS Fw

Integrated Framework

Core Security Metamodel

Domain Security Metamodels

COSSPs (Patterns)

Service Assurance Profiles

Certification Metamodel

Certification Models

Certificates

Security Enhanced System Model

Security Solutions

Engineering Framework

Certification Infrastructure

Conceptual

Security Knowledge

Assurance
Engineering Tool Relevance

● The **CUMULUS Engineering Tool (CET)**, based on the **relevant artifacts**, provides rich support for Cloud System Developers to make **informed security design decisions** in the **application development** process.

 ► *Applications are engineered to use certified cloud services*

● CET supports the **development of certification-friendly cloud services**.

 ► *Services are engineered to facilitate certification*

● The **certification-centric approach** of CET addresses the current concerns regarding assurance, security, privacy, governance and compliance of the data and services offered through the cloud.

 ► *This approach –based on the certification of security properties– increases trust in cloud services and their providers, and reduces uncertainty of cloud customers regarding the security of their services once they are deployed in the cloud.*
What CET can do now

- Import appropriate DSMs for our SUD
- Apply asset stereotypes to our model elements
- Automatically derive requirements based on the asset stereotypes
- Automatically attach relevant security knowledge to the security-sensitive elements
- Automatically on-the-fly check coherence rules
- Assist engineers in selecting the right solution for their requirements
- Assist engineers in integrating the selected solutions (in the form of COOSSPs) in their SUDs
- Transform security requirements into certification requirements (via SAPs)
- Select cloud services based on the selected SAPs (via the CUMULUS infrastructure)
- Automatically on-the-fly check solution constraints
What we are working on

- Offer personalized **views** of the SUD
- Develop a trust infrastructure for **Security Knowledge**
- Automatically on-the-fly check of **advanced coherence rules**
- Automatic documentation generation including
 - Traceability
 - Security design decisions
- Assist engineers in implementing the selected **solutions** (in the form of **COOSPs**) in their SUDs
- Supporting system re-engineering for legacy systems
Like to see it working?

- Very brief demo for a cloud-supported e-health system
Thanks for your attention!

Questions?
ABOUT CUMULUS

CUMULUS: Certification infrastructure for Multi-Layer cloud Services

▶ EU-Funded Research Project
▶ 8 Partners from across Europe

http://proteus.lcc.uma.es/cumulus
http://www.cumulus-project.eu