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Message from the Workshop Chair
Welcome to participants in the 8th Layered Assurance Workshop. The LAW organizers strive each year
to ensure that your interest in LAW is repaid with benefits. As security and safety are becoming increas-
ing concerns is a wide range of application and cyber-physical systems the relevance of our ongoing work
in assurance is becoming increasingly relevant to a broader audience. LAW represents a continuing effort
to identify, from the experiences of consumers and producers of critical systems, successful strategies and
practices, and as yet unfulfilled needs for more cost-effective assurance.

LAW provides a forum for exchange among customers, developers, evaluators, certifiers and researchers.
It is our intent and hope that this effort will yield fruit from the synergies of these communities. We look
forward to reports in future editions of LAW of the results of research, development, and practice inspired by
past and present editions of LAW that may be adopted into the assurance practices of developers, evaluators
and certifiers of future systems. We strive to provide a program for LAW that has a balance of opportunities
to present needs, describe ongoing work, report advances, gain insights from thought leaders, interact and
make new contacts.

As LAW chair I am most grateful for the steadfast contributions of Peter Neumann, Gabriela Ciocarlie, the
program committee members, Adam Hahn proceedings chair, and perennial LAW participants. I hope you
will join me in thanking them for our program and proceedings, and for the continuing existence of LAW.
Best wishes for an enjoyable and productive Layered Assurance Workshop.

Rance J. DeLong, LAW 2014 Workshop Chair

Message from the Program Chair
It is my pleasure to welcome you to the 8th Layered Assurance Workshop, hosted with ACSAC again in
New Orleans, Louisiana. A total of 4 research and 4 work-in-progress papers were accepted (same as last
year), with each paper receiving three reviews. I would like to thank the authors for contributing their work
and, in what is quickly becoming a LAW tradition, I am looking forward to engaging discussions during
the presentations. I would also like to thank our LAW Program Committee members for their continuous
support and participation in the workshop. It has been a privilege to work together. Moreover, I would
like to thank Adam Hahn, the new LAW Proceedings Chair, for compiling the proceedings and for kindly
agreeing to be part of the LAW family. LAW will also continue its tradition in offering exceptional invited
talks and panels, thanks to Rance DeLong, the LAW Chair, and Peter G. Neumann, the Law Panel Chair,
who manage to always find the perfect composition (pun intended!) for a successful workshop. It has been
a pleasure to work together, and thank you for your outstanding contributions.

Gabriela F. Ciocarlie, LAW 2014 Program Committee Chair
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ABSTRACT
The computer security community has long advocated defense in
depth, the concept of building multiple layers of defense to pro-
tect a system. Unfortunately, it has been difficult to realize this vi-
sion in practice, and software often ships with inadequate defenses,
typically developed in an ad hoc fashion. Currently, programmers
reason about security manually and lack tools to validate assur-
ance that security controls provide satisfactory defenses. In this
position paper, we propose STRATA—a holistic framework for de-
fense in depth. We examine application of STRATA in the context
of adding security controls to legacy code for authorization, con-
tainment, and auditing. The STRATA framework aims to support
a combination of: (1) interactive techniques to develop retrofitting
policies that describe the connection between program constructs
and security policy and (2) automated techniques to produce opti-
mal security controls that satisfy retrofitting policies. We show that
by reasoning about defense in depth a variety of advantages can
be obtained, including optimization, continuous improvement, and
assurance across multiple security controls.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Experimentation, Management, Security

Keywords
Automated Retrofitting, Defense in Depth, Authorization, Contain-
ment, Auditing, Assurance

1. INTRODUCTION
The security community has long encouraged programmers to

strive to implement defense in depth, where multiple layers of se-
curity controls are employed to protect security-sensitive opera-
tions. However, programmers almost always focus on functional

and economic issues initially, often delaying the introduction of
needed security controls until after initial deployment. As a result,
programmers often find themselves in the so-called penetrate-and-
patch mode, removing vulnerabilities as they are identified by ad-
versaries.

Even when programmers decide to add the security controls nec-
essary to implement defense in depth, they face many practical
challenges. First, retrofitting software with a security control re-
quires a comprehensive understanding of the program code and se-
curity requirements to integrate the security controls correctly. For
this reason, past projects that retrofit software manually for attack
containment [55, 29, 57], authorization [76, 72, 20, 4, 70, 52, 33,
12, 58], or auditing [5, 3] often span multiple years. Gaining con-
sensus over whether the implementation of a security control is sat-
isfactory is ad hoc [61, 77, 60], and mistakes have been made [21,
78], some of which were not discovered until years later [67]. Sec-
ond, retrofitting software with security controls must account for
several other factors beyond security. Naive containment imple-
mentations can cause tremendous performance overheads and naive
authorization mechanisms can result in spurious policy manage-
ment. As a result, many attack containment projects, particularly
for performance-critical software such as operating systems, have
been abandoned and some authorization mechanisms have been
refined several times after introduction [51]. Third, security con-
trols may interact, making other controls unnecessary or impacting
their placement. For example, if authorization prevents data leak-
age provably (noninterference [27]), then there is no need to audit
for data leaks. However, programmers lack tools to reason about
such interactions, resulting in unnecessary or misplaced security
controls.

Researchers have recognized that programmers need assistance
in retrofitting their programs with security controls, but the pro-
posed automated methods still require too much programmer ef-
fort, fail to account for factors other than security, and do not reason
about multiple security controls. First, researchers have proposed
automated methods to detect missing or misplaced authorization
controls [78, 21, 67, 63, 65, 53, 66] or even retrofit programs for
authorization [26, 46, 39, 64], but these methods require detailed
program knowledge, such as security-sensitive data types, vari-
ables, and/or statements, or require a partial authorization imple-
mentation. Second, methods to retrofit for authorization and attack
containment [37, 10] have been naive about the impact of security
controls on other factors, such as the performance and management
overheads, preventing wide adoption. Third, we are not aware of
any prior work that reasons about retrofitting for auditing or for
multiple security controls and their interactions.

Our insight is that advances in retrofitting software for security
enable the development of a holistic framework for the assurance



of security controls for defense in depth. While retrofitting pro-
grams for security is a challenging problem for any security con-
trol, recent advances in methods for retrofitting programs for se-
curity demonstrate what can be automated and how, distinguishing
what can be computed from what intelligence programmers need to
supply. The proposed approach takes a comprehensive view of the
problem, with an emphasis on automated and interactive tools that
developers can use to identify site-level security goals, explore the
design space of security mechanisms, and retrofit legacy code to
enforce security policies in a manner that can be machine-verified
for assurance.

In this position paper, we examine the unification of three com-
mon security mechanisms — containment, authorization, and au-
diting — to assess how reasoning about defense in depth encom-
passing these three mechanisms may improve security assurance.
First, we find that placing security controls for these mechanisms
involves solving a set of common problems, so designing methods
to solve those problems and to verify the effectiveness of the so-
lutions may be reused. Second, we find that we can compose the
validation of defense in depth for this combination of security con-
trols, enabling assurance for defense in depth. Third, we find that
runtime auditing can be leveraged for continuous improvement of
the placement of security controls for defense in depth, ensuring
that the controls can be optimized for the desired policies. We re-
fer to completed research results where available, but a goal of this
paper is to motivate reuse of common ideas across controls and in-
tegration of controls for improved security.

The remainder of the paper is structured as follows. In Section 2,
we examine the problem of designing programs to control access
to program and system resources using multiple security controls.
In Section 3, we provide an overview of how to use automated
retrofitting of programs to produce validated security controls for
defense in depth. In Sections 4 to 6, we explore the challenges
in retrofitting programs for containment, authorization, and audit-
ing independently. In Section 7, we outline the problem of unifying
retrofitting methods for defense in depth and examine opportunities
for assurance of defense in depth, including continuous improve-
ment. In Section 8, we conclude the paper.

2. BACKGROUND

2.1 What Should Retrofitting for Defense in
Depth Do?

When program vulnerabilities become too numerous, program-
mers may be motivated to make fundamental changes to their pro-
grams to add security controls. For Sendmail and OpenSSH, pro-
grammers found that the typical penetrate-and-patch approach to
security was not keeping them ahead of adversaries, leading to
complex retrofitting [55] or complete reimplementations [54, 6].
For programs that process resources belonging to multiple clients,
such as servers and middleware, programmers often found that sim-
ple isolation approaches (e.g., sandboxes) were insufficient to pro-
tect data security and provide necessary functionality [16, 22]. We
use the simple program below to demonstrate the problems.

request_loop (client_data, private_data) {
read(client_passwd, client_req );
if (necessary ||

compare_client(client_passwd,
private_data))

access_object(client_req, client_data);
}

The client request loop above is representative of many
programs that require retrofitting. This program processes

requests from multiple, mutually-untrusting clients (obtained
by read) by: (1) comparing a client-supplied password
(client_passwd) to the program’s password database
(private_data) in compare_client and (2) processing
a client request (client_req) to access data managed by
the program (client_data) in access_object. In this
discussion, we assume that the program code is benign, but may
have flaws that allow client input read by the program to permit
unauthorized access. The first operation may cause vulnerabilities
if the program allows client input to affect the program’s passwords
or if some password data is leaked as a result of the comparison.
The second operation may cause vulnerabilities if it allows any
client unauthorized access to the client data of another client.
Many programs perform these two types of operations, including
operating systems, middleware, server programs, and even some
user applications. For example, operating systems process many
client requests (e.g., system calls) and process private operating
system data that must not be manipulated by clients. On the
other hand, browser applications also run programs from multiple
sources (i.e., the browser’s clients), so they must control access
to browser resources available to those programs and protect their
private resources from leakage and unauthorized modification.

In this discussion, we will focus on retrofitting programs to con-
trol client access to security-sensitive operations, such as those in
the program above that use the program’s private data and client
data.

We examine three kinds of security controls that are commonly
used to achieve this goal. First, programmers may use contain-
ment to place protection boundaries that limit the ways that clients
may access security-sensitive data. For example, the program
above may be privilege-separated [59] into two modules running
in separate processes: (1) one that receives client requests and pro-
vides access to client data using access_object and (2) an-
other that runs compare_client that has access to the private
data. Clients can only communicate directly with the first module,
limiting the program flows that may reach or leak the private data.

Second, programmers use authorization to control access to pro-
gram data. For example, the program above may be retrofitted with
a reference validation mechanism that satisfies the reference mon-
itor concept [7] to ensure correct enforcement of an access control
policy governing which clients may access which client data and
preventing leakage and unauthorized modification of private data,
regardless of the complexity of the code in the compare_client
and access_object functions. Reference validation mecha-
nisms must be designed to enforce the data access policies expected
by the programmer, whose goals may include least privilege [59],
lattice policies [17], noninterference [27].

Third, programmers use auditing to collect information to aid in-
trusion detection retroactively for authorized operations. For exam-
ple, clients authorized to run compare_client may still cause
the private data to be leaked through some program flaw, so audit-
ing could record the values of the authorized operation and the data
returned to the client to enable later detection of whether leakage
occurred. As can be seen, these security controls form three layers
of defense, where containment limits client access at the bound-
aries, authorization within the program, and auditing follows au-
thorized operations.

2.2 State-of-the-Art in Retrofitting Programs
for Defense in Depth

Programmers retrofit programs with containment [55, 29, 57],
authorization [76, 72, 4, 70, 20], and auditing controls [5, 3] man-
ually, which presents a variety of challenges. First, programmers



must identify security-sensitive operations from low-level program
constructs, such as variables, data types, and statements. While
the program above may be simple, real programs have hundreds
of user-defined types and thousands of program statements. De-
spite the availability of several prototype reference monitor im-
plementations, the Linux Security Modules framework [76] still
contained several errors [21, 78], even some that were not discov-
ered until years later [67]. Second, programmers must determine
where to apply controls to protect those security-sensitive opera-
tions, but they must be careful not to introduce high performance
and management overheads. Programmers currently balance such
functional and security requirements in an ad hoc way. If the vari-
able necessary in the request_loop is usually true, then separating
compare_client may be satisfactory, but otherwise large over-
heads may be incurred. As a result, retrofitting projects take sev-
eral years, face delays that bring their purpose into question [61],
and may reduce the scope of security controls to only known at-
tacks [55]. Because of these challenges, only a few programs have
been retrofit with all three security controls we investigate in this
project.

Researchers have recognized the challenges facing program-
mers, but to date fail to address the most fundamental of those chal-
lenges. First, proposed methods to retrofit code still require pro-
grammers to identify security-sensitive operations from low-level
code constructs, such as code patterns, data types, and variables
that correspond to such operations [26, 63, 39, 10]. For example,
to automate placement for information flow control, all the relevant
variables must be identified and assigned an accurate security label.
Second, most current research only addresses functional concerns
implicitly if at all. For example, some prior work aims to produce a
“minimal” number of security controls [39, 50], but these methods
still introduce far more controls than added manually. Recent re-
search has proposed a retrofitting method that uses functional and
security constraints as input [30, 31]. However, such constraints are
written as traces in terms of program locations, still requiring sig-
nificant program knowledge to get right (e.g., context sensitivity).
Finally, none of the prior methods retrofit software with multiple
security controls, possibly introducing spurious security code.

2.3 Goals for Retrofitting Programs for De-
fense in Depth

The goal is to develop a method that programmers can use to
retrofit their programs with security controls for containment, au-
thorization, and auditing that satisfy explicit security goals (e.g.,
policies to enforce) and are globally optimal relative to functional
costs. Thus, we have two broad challenges: (1) develop the the-
ory and techniques to retrofit multiple security controls optimally
from program code, security goals, and functional concerns and
their costs; and (2) reduce programmers effort for producing secu-
rity goals and the costs of functional concerns sufficient to achieve
desirable security in practice. Based on the limitations of prior
research, we highlight the essential questions presented by these
challenges:

• Can we design methods for identifying security-sensitive oper-
ations and security goals for programs that do not require de-
tailed, manual analysis of program code?

• Can we design methods to retrofit programs with containment,
authorization, and auditing security controls that enable verifi-
cation that each type of security control enforces a program’s
security goal with respect to that program’s security-sensitive
operations?

• Can we design methods to optimize the functional cost of sat-

isfying a security goal across containment, authorization, and
auditing simultaneously?

Thus, an ideal retrofitting method would extract security-
sensitive operations from request_loop and relate those opera-
tions to security goals, with detailed, manual code inspection or an-
notation by programmers. Using the security-sensitive operations
and security goals, this ideal method should produce a retrofitted
program that consumes minimal functional cost and verifiably sat-
isfies those security goals for the security-sensitive operations.

3. APPROACH OVERVIEW
The goal is to retrofit a program to add a series of defensive se-

curity controls to protect program data from unauthorized access,
specifically containment, authorization, and auditing. While there
are many differences among these security controls, we find that
retrofitting these security controls into programs requires solving
four common problems:

• Finding security-sensitive operations. Each security control
aims to mediate access to security-sensitive operations for dif-
ferent purposes (e.g., defining protection boundaries or logging
such operations). While security-sensitive operations may dif-
fer for individual controls, we find that such operations share
the ability to direct execution among unsafe choices. We pro-
pose a method based on finding the program statements where
control and data “choices” are made using input from untrusted
sources [50].

• Relating security-sensitive operations to security goals using
retrofitting policy. We have found that simply mediating ev-
ery security-sensitive operation creates unnecessary overhead
for performance and policy management. Instead, programmers
need a way to relate security goals to security-sensitive opera-
tions that does not require detailed, manual analysis of program
code. We propose a method that programmers use interactively
to find relationships between security-sensitive operations based
on their impact on satisfying security goals [51], which we call
a retrofitting policy.

• Place controls for security goals. Given a retrofitting policy,
the goal is to transform the program to satisfy that policy while
minimizing cost. While different transformations are applied
for different types of security controls, choosing where to place
security controls requires complete mediation of relevant pro-
gram flows in all cases. We propose to explore use of program
dependence graphs [24] (PDGs) for reasoning about control and
data flows uniformly for all security controls.

• Verifying correct transformations. Despite the use of different
methods for placing transformation and distinct transformation
primitives, each method transforms code to mediate security-
sensitive operations for a security goal. We explore how to
leverage formal methods, so that high assurance is obtained
from our retrofitting framework. We plan to verify the correct-
ness of the transformation methods proposed by building proofs
of correctness inside Coq [14].

Figure 1 presents an overview of our proposed STRATA frame-
work, which aims to implement the methods described above. The
STRATA framework enables programmers to retrofit their programs
with containment, authorization, and auditing security controls in
two steps. In the first step, programmers interactively develop
retrofitting policies for each of these security controls, leveraging
methods to find security-sensitive operations and relate those oper-
ations to security goals for retrofitting policy. In the second step,
automated methods transform programs with security controls to
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Figure 1: STRATA framework for assurance of security controls for defense in depth

satisfy a composition of those retrofitting policies while minimiz-
ing cost and verify the correctness of such retrofitting across all
three security controls.

4. RETROFIT FOR AUTHORIZATION
Historically, there are two kinds of related, but distinct, security

models for authorizing operations on data. First, access control
mediates access to a program operation based on who requests the
access (subject) and what the data is (object), as well as the oper-
ation itself. In the request_loop, access control limits which
clients can perform which requests (operations) on which objects in
access_object. Access-control policies can be represented by
access-control lists or capabilities of access-control matrices [44],
which are intuitive to understand and easy to enforce. As a result,
they are widely adopted in programs such as servers and operating
systems. The reference monitor concept [7] defines the require-
ments for enforcing an access control policy correctly: complete
mediation, tamperproofing, and verifiability. For example, com-
plete mediation requires the placement of authorization hooks in
programs that mediate all security-sensitive operations [76, 72, 20,
4, 70, 33, 58, 52]. However, even complete mediation has been
difficult to ensure because programmers do not identify security-
sensitive operations explicitly.

Second, information flow tracks the propagation and release of
data through the program. Rather than being focused on program
operations, information flow is concerned with how data associated
with particular security properties may influence other data values,
causing security-critical data to be modified by untrusted data or
leaked to untrusted subjects. In the request_loop, informa-
tion flow control limits how private data (e.g., password database)
may be used to prevent its leakage when comparing it to client
input (e.g., input password) in compare_client. These influ-
ences are either through explicit data flows or implicit flows [17], in
which data is leaked via control structures of programs. For secu-
rity, hooks must mediate all unauthorized information flows using
declassifiers (for secrecy) and endorsers (for integrity) that remove
offending data from those flows.

We aim to retrofit software for both access and information flow
control. Manual placement of authorization hooks and mediation
for information flow control is laborious [32, 38, 61] and error-
prone [21, 78, 67], so we propose to develop semi-automated meth-
ods for this purpose.

The substantial limitations of previous systems are that they of-
fer little help to programmers for identifying security-sensitive op-
erations or the relationships between security-sensitive operations
and security requirements, which we call a retrofitting policy; pre-

vious systems often assume the retrofitting policy to be a manual
input [30, 31, 46]. The reality, however, is that very often pro-
grammers have only a rough idea about the security implications
of individual program statements and are unwilling to spend time
to identify such information manually. We believe that techniques
that help programmers discover retrofitting policies are needed.

Approach Overview. We define a retrofitting policy to be a set
of connections relating basic constructs. For access control, basic
constructs are the program statements that correspond to security-
sensitive operations; an example connection is the operation sub-
sumption between two operations, meaning that authorization of
the first operation always implies the authorization of the second.
In an information-flow policy, the basic constructs are also security-
sensitive operations, which are those program statements that oper-
ate on sensitive information at data sinks. Subsumption is also an
example of a connection between sinks meaning that the declassifi-
cation (sanitization) of the first sink always implies declassification
(sanitization) of the second.

In our recent work [50], we proposed a technique that in-
fers security-sensitive operations for access control from the least
amount of programmer input of any known method. A similar
method has since been proposed for Android analysis [47]. Our
method requires only the identification of language-specific look-
up functions and the sources of untrusted input. Its inference tech-
nique is based on a key observation: security-sensitive operations
correspond to the deliberate choices the program makes using client
input for retrieving data from data collections and for selecting
the conditional code paths for processing that data. Therefore, the
technique tracks the “choices” made by client requests to automati-
cally infer security-sensitive data and operations. Experiments per-
formed on programs such as X server and postgres demon-
strate this technique is effective at identifying almost all security-
sensitive operations. We compared our results with manual hook
placements by experts.

However, identifying security-sensitive operations alone is not
enough for efficient hook placements. Human experts often re-
move unnecessary hooks using domain knowledge. As a result,
the only way to reduce the number of hooks is to make the domain
knowledge explicit. In an ongoing work [51], we make the domain
knowledge explicit through the definition of retrofitting policies as
connections between security-sensitive operations. We have iden-
tified two kinds of connections: operation subsumption and oper-
ation equivalence. We have discussed operation subsumption be-
fore. Operation equivalence means that two operations are always
authorized for the same set of subjects. For multilevel security [9]
(MLS), two operations that read the same object are equivalent be-



cause the same set of subjects will also be authorized. These con-
nections are utilized for removing unnecessary hook placements.
For instance, if operation one subsumes operation two and if op-
eration one dominates operation two in control flow, then the au-
thorization hook for operation two is unnecessary (assuming an
authorization hook for operation one is already there). Prelimi-
nary experiments on a variety of software, including the X server,
databases, and the Linux kernel, demonstrate our methodology can
reduce programmers’ effort for discovering their intended policies
and can already reduce the number of access control hooks by
30% [51].

To further improve the reduction, more automatic methods are
needed to discover retrofitting policies. To help programmers find
relevant connections, STRATA must provide security and perfor-
mance constraints and analyses that find pairs of security-sensitive
operations that satisfy those constraints to suggest connections au-
tomatically (e.g., must enforce MLS policies, described above). If
programmers agree with the high-level constraint, then they can se-
lect the resultant connections as a group, rather than one at a time.
To date, we have proposed two constraints, one for security and one
for performance. Given this experience, we feel it is necessary to
investigate the effectiveness of other constraints and other methods
for using those constraints. For example, roles [23] define groups
of permissions that are authorized for the same subjects, enabling
the computation of equivalence relations. Sun et al. require role
specifications as input [66], but probably role mining [25, 49] will
be useful for this problem.

We also feel that this approach applies to the setting of informa-
tion flow. However, mediators for information flow perform dif-
ferent tasks than access control hooks, so the semantics of their
connections will differ. For example, declassifiers allow subjects
to receive a subset of the flow’s data. Further study is needed to
investigate techniques to suggest possible types of declassifiers to
programmers, based on types of sources and sinks and types of
data that flow between them. One example suggestion is to say that
flows between source s1 and sink d1 and between source s2 and
sink d1 should use the same declassifier. Given these suggestions,
programmers then decide what declassifier to apply and provide
the actual declassification code (for example, the code for sanitiz-
ing SQL strings).

In addition, Strata needs multiple program analysis and trans-
formation techniques to place authorization hooks automatically
in programs. Given a retrofitting policy, the next step is to com-
pute a minimal cost placement for authorization code that satisfies
that policy. Previous work on access control hook placement re-
lies on control dependence, whereas previous work on mediator
placement relies on data dependence. However, information flow
control often leads to fine-grained, non-intuitive mediation require-
ments, particularly for implicit flows [38]. In general, we believe
considering both control and data dependence will be synergistic,
but how exactly they interact for better hook placement will be a
research question (especially in the case of implicit flows).

We feel that a uniform program representation, called program
dependence graphs (PDGs [24]), will help this problem. A pro-
gram’s PDG represents both the control dependence and data de-
pendence of the program and can be extracted using efficient pro-
gram analysis. We believe the benefit of PDGs is that it will en-
able a unified framework to compute better hook placements for a
variety of security goals, from access control to explicit informa-
tion flows to implicit information flows. For access control, the
framework uses mostly the control dependence to reduce the num-
ber of hooks, but data dependence can be used to satisfy complete
mediation without blocking authorized operations. For controlling

explicit flows, the framework considers data-dependence edges to
insert code that tracks data flows and taint checks or declassifiers
at appropriate places. Implicit flows can be taken into account by
considering both control and data dependence [39].

5. RETROFIT FOR CONTAINMENT
Experience shows that despite our best efforts at improving soft-

ware security, adversaries may bypass defenses to achieve mali-
cious goals. This is because software is often retrofit for security
manually, using ad hoc techniques. These techniques are error-
prone, and may leave avenues that adversaries can later exploit [21,
78, 67]. Vulnerabilities may remain despite our best efforts to
retrofit software for security, especially if the requirements used
during the retrofitting process evolve over time [34, 43]. Robust
software assurance must therefore include a layer of defenses that
confine adversaries, even if the system is compromised.

Much of today’s software is not written with the goal of confin-
ing adversaries. Most server applications as well as systems soft-
ware are written as monolithic artifacts. Vulnerabilities in such sys-
tems have been exploited by adversaries to gain control over the en-
tire server [55]. Until about five years ago, web browsers were also
designed as monolithic systems. In such designs, the browser ker-
nel, script parsers, renderers, and third-party plugins ran within the
same protection domain. This design lead to many security attacks,
wherein a vulnerability in a plugin often gave an adversary com-
plete control over the browser [28, 71, 68, 56]. Motivated by such
attacks, the browser industry has shifted its focus to compartmen-
talized or modular designs, in which browser subsystems execute
within different protection domains. For example, Google Chrome
uses different OS processes to sandbox web content on each tab,
and also creates new OS processes to execute plugins and other
third-party browser content.

Strata also follows this approach, and aims to automatically
modularize software to enable attacker containment. Our overall
goal is to retrofit a monolithic software system to adhere to two ba-
sic security principles: (1) Privilege Separation, which posits that
resources that require different access rights must execute within
different protection domains, and (2) Least Privilege, which posits
that each module, running within its own protection domain, must
only receive the privileges that it needs to accomplish its task. To-
gether, these two principles ensure that the attack surface of the
modularized software system is minimized, limiting the damage
that an adversary can inflict if he were to obtain access to the sys-
tem.

Strata will develop a number of techniques to retrofit software
for attacker containment. First, it will provide a rich interface
to specify resources that must be protected. Each of the speci-
fied resources will be contained within their own protection do-
main. Second, Strata will investigate efficient techniques to mod-
ularize software. The main performance cost of modularization is
that method invocation, which is inexpensive in a monolithic soft-
ware system, involves crossing protection domains. Strata rectifies
this by optimizing for performance within the restrictions of the
retrofitting policies. Third, in contrast to prior techniques that pri-
marily used OS processes to define protection domains, Strata will
consider a number of alternatives, including language-based pro-
tection, lightweight virtual machines, as well as enhanced OS APIs
as protection domains, and will develop transformation techniques
tailored to these domains. Strata will also include verification tech-
niques that provide assurance on the correctness of the modularized
code.

Approach Overview. In a retrofitting policy for software modular-



ization, we identify connections between security-sensitive opera-
tions (as done for authorization). However, in this case the concept
of a connection has a negative connotation—A connection between
two security-sensitive resources requires the two operations to be
isolated in individual protection domains. Using the web browser
as an example, a developer may identify a connection between the
browsing history and network operations because browsing history
should not be leaked over the network. The developer can then use
the control and data dependencies from the PDG to iteratively iden-
tify statements in the software system that are connected and must
therefore appear in separate protection domains.

In Strata, a developer additionally provides a performance cost
model as part of the retrofitting policy. This model will allow devel-
opers to identify code paths that are frequently executed, e.g., using
information gathered from runtime profiles, as well as the cost of
crossing protection domains. The performance cost model iden-
tifies resources that could potentially be placed in the same pro-
tection domain to provide good performance in the modularized
software system. The connections and cost model together provide
a candidate retrofitting policy that is refined iteratively using code
analysis. Such performance cost model can potentially be obtained
automatically from profile information gathered at runtime.

Strata uses the candidate retrofitting policy identified above, to-
gether with static code analysis to identify possible module bound-
aries in the monolithic software system. This analysis has two
goals. First, the modules identified by the analysis must satisfy
all the connections, i.e., all program constructs manipulating con-
nected resources must be isolated in separate modules. A pro-
gram construct may be involved in accessing a pair of connected
resources; in such cases, it may have to be replicated, with each
replica serving one resource. Second, the overall performance cost
of the modularization should be small. Program constructs manipu-
lating unconnected resources can be co-located in the same protec-
tion domain, provided that the resulting costs of domain crossings
is not excessive.

Strata casts the problem of identifying module boundaries as an
optimization problem on the inter-procedural control-flow graph
(CFG) of the monolithic software system. The edges of the CFG
are annotated with weights from the performance cost model. The
goal of the optimization then is to partition the graph into subgraphs
so that: (a) nodes labeled with connected resources appear in sep-
arate subgraphs, and (b) the sum total of the edge weights cross-
ing subgraphs is minimized. Nodes labeled with unconnected re-
sources can appear in the same subgraph, and because there may be
several such pairs of unconnected resources, the analysis has some
flexibility in identifying module boundaries. Strata formulates this
problem as one of finding a min-cost multicut in the directed graph
denoted by the CFG [39].

Strata presents a ranked list of such boundaries, together with the
estimated cost of the associated modularization, to the developers.
The developers may interactively explore this design space before
settling upon a retrofitting policy. Once the retrofitting policy has
been identified, the developers must also supply a security policy,
which specifies the permitted message interactions between mod-
ules separating a pair of connected resources. Such a policy could
be developed interactively. The developers provide a candidate se-
curity policy, which will imply a set of security-sensitive operations
and connections, resulting in a candidate retrofitting policy. The de-
veloper then iteratively refines the policy by observing the runtime
behavior of the retrofitted system.

Once the developer has identified module boundaries, Strata
transforms the code to enforce those boundaries. The main chal-
lenge in this step is to map software artifacts to the specific isola-

tion primitives used, and to generate code to enable communica-
tion across protection domains. For example, if OS processes are
used to modularize the system, Strata have to generate marshaling
and de-marshaling code in each module, together with calls to the
OS’s IPC primitives to enable communication. Strata will include a
variety of isolation primitives, including OS processes (as in Priv-
Trans), Capsicum sandboxes [73], lightweight VMs and transac-
tions [18], and language-level primitives, such as JavaScript’s Har-
mony modules [1]. Strata’s transformation component also gener-
ates code to enforce the security policy specified by the developer
at module boundaries.

In preliminary work, we have developed a prototype of the above
approach for web browser extensions. Such extensions are avail-
able aplenty for Mozilla Firefox and Google Chrome and allow
end-users to enrich their web browsing experience. Extensions con-
tain code (both JavaScript and native code) that not only interacts
with untrusted content on web pages, but also with code that ac-
cesses system resources, such as the file system and the network.
It is critical to provide adversary containment for such extensions,
e.g., to ensure that an adversary that hijacks an extension via a ma-
licious script on a web page is unable to access system resources.

These problems have motivated much work from browser ven-
dors in developing new frameworks for extension development [2,
8] that encourage extension developers to modularize their code.
However, few guidelines exist for developers to understand how
best to modularlize their code, and the process of creating modules
is usually ad hoc. Moreover, browsers such as Firefox, which has
only recently adopted modular extension development [2, 36], have
legacy extensions that do not benefit from modularization.

We have applied modularization to legacy browser extensions,
focusing first on Mozilla Firefox [35]. In this study, we trans-
formed legacy extensions to benefit from the JetPack framework.
We plan to extend this tool to also allow such extensions to operate
atop Google Chrome, which uses different modularization primi-
tives [73]. We also plan to apply our approach to traditional server
software systems, such as the X server, OpenSSH, and the Apache
web server.

6. RETROFIT FOR AUDITING
Retroactive security is the enforcement of security, or detection

of security violations, after the execution of a process. By contrast,
security mechanisms such as access control and information flow
control enforce security either before or during execution. Years of
experience with securing cyber systems has shown that retroactive
security is necessary, in addition to protection-based mechanisms,
since not all vulnerabilities can be predicted a priori or managed
with prevention alone. Also, retroactive security can be used to
hold entities accountable for their actions [45, 75, 74].

Auditing underlies retroactive security frameworks, and has be-
come increasingly important to the theory and practice of cyberse-
curity and is essential for any defense in depth. However, audit-
ing is error-prone, and difficult to get correct, in at least two ways.
First, an audit log produced during execution must be an accurate
record of all security-relevant events. Similar to missed access-
control checks, it is easy for a programmer to accidentally omit the
recording of all relevant events– for example, it has been shown
that major health service informatics systems do not log sufficient
information in light of guidelines for HIPAA policies [40]. Second,
audit logs must be analyzed to detect security violations– a concern
is often overlooked during development, resulting in “write only”
logs that are never used for security enforcement.

Formal methods have been successful in addressing the second
problem, and have been used to establish reliable foundations for



analysis of audit logs [15, 69]. However, little attention has been
paid to the first problem: assuring correctness of the audit log. Such
assurances are essential for assuring any sort of security analysis
based on auditing. Our goals here then are (1) to obtain a semantics
of audit logging so that assurances can be meaningfully and rigor-
ously obtained for auditing policies, and (2) to define policy-driven
retrofitting tools for audit log generation, that provably respect the
semantics of input logging policies.

An Illustrative Example. Consider a medical records system at a
hospital. Some patients’ records are marked as sensitive. To ensure
that medical staff has timely access to patient information (e.g., ac-
cessing a patient’s record when they are admitted to the emergency
room), the system allows access to any record by medical staff.
The system does not enforce access control restrictions, and allows
medical staff to read from medical records, and send the record to
others. To ensure that staff do not violate this trust and only use
their access appropriately, the system should record in a log when
a user reads and subsequently sends a sensitive medical record.

The medical records system must be instrumented to generate
the appropriate logs. However, if instrumentation strategies are in-
formal, then the intended policy may not be implemented. For ex-
ample, developers may just “eyeball” the code to identify where
a medical record may be sent and insert code to record this event
in the audit log. But this strategy might record false positives if it
is not statically known that a secure file is read, prior to the send.
It can also lose information, since it may be difficult to statically
predict sequences of function calls, especially in the presence of
features such as dynamic dispatch.

Observe that the problem is not with the manner in which the
audit log is queried, but rather with the way the audit log itself is
generated. In particular, the instrumentation of the program does
not properly realize the intended logging policy. Here is a more
precise textual specification of what should be recorded in the log,
which we call LPH :

LPH : Record in the log information associated with
a remote send by a medical staff member, if a sensitive
file was read by that staff member prior to the send.

Subsequently, if system administrators discover that sensitive in-
formation is being leaked to some remote location, they may desire
to ask the following audit query, which we call AQH :

AQH : Retrieve all destination addresses of remote
sends by medical staff in the log file.

However, note that while administrators expect that the answer to
AQH will return e.g. every relevant potential recipient of sensitive
information, this is the case only if LPH has been instrumented
correctly. If logging is incomplete, for example, then some po-
tential recipients may be missed. If logging is overzealous, some
legitimate recipients of sensitive information may be erroneously
flagged. In other words, the connection between audit queries and
log-generating processes is the manner in which programs are in-
strumented to generate logs, and correctness of logging instrumen-
tation is vital for auditing assurances. By “instrumented”, we mean
the functionality that is added to code specifically to generate logs.

Approach Overview. We advocate for retrofitting approaches to
auditing, since such tools can assure correct audit log generation
even for untrusted code. That is, if retrofitting tools can be shown
to correctly instrument any input program to support some class of
logging policies, correctness of generated audit logs is automati-
cally ensured. Clearly, a formal semantics of audit logging is nec-
essary to establish correctness of retrofitting strategies.

We regard an audit log as a piece of information that is a refine-
ment of the information contained in a process. Thus, the proper
meaning of an auditing policy is as a kind of operation over infor-
mation structures. With this view, it is natural to pursue a seman-
tics of auditing based on information algebra [42, 41], which is a
generalized framework for information systems. Information alge-
bra has been shown to capture systems such as relational algebra,
predicate logic, and linear systems. Aside from the philosophical
appeal of realizing an auditing semantics in this general theory, an
information algebra formulation has a number of technical advan-
tages. For example, relations between distinct information algebras
have been established, so the FOL-centric results in this paper can
be ported to other systems, e.g. relational databases. Significantly,
audit algebras enjoy a partial information ordering, denoted ≤ that
allows comparison of information pieces wrt their information con-
tent. This ordering is crucial in relating audit logs with logging
policy semantics, and establishing notions of soundness and com-
pleteness of retrofitting. Although the former is concrete, whereas
the latter is abstract, they can be related by the information they
contain.

In more detail, we argue that the semantics of a particular log-
ging policy LP , which is specified in some formal language, be
defined as an operation in a complete program trace. That is, for
any program p, the semantics of a logging policy are a refinement
of p’s complete execution trace, denoted traceof (p). This refine-
ment can be specified as an information algebraic operation we call
genlog that takes as input traceof (p) and LP , so that:

genlog(traceof (p),LP)

denotes the intended semantics of a logging policy LP for a given
program p.

Given this semantic definition, as well as notions of informa-
tion ordering available in information algebras, we can meaning-
fully define correctness of retrofitting strategies. Let retro be
some retrofitting strategy, that takes as input programs p and a log-
ging policy LP , where we assume that LP is selected from some
nonempty set of logging policies P that the strategy supports. We
write:

retro(p,LP) � L

to denote that the log L is generated by executing the program p′

that results from instrumenting the program p to support the log-
ging policy LP . We say that retro is sound iff L represents a
subset of information in genlog(traceof (p),LP), and retro is
complete iff genlog(traceof (p),LP)’s information content is con-
tained in L’s. More precisely, we have:

DEFINITION 1. A retrofitting strategy retro is sound for P iff
for all p ∈ L and LP ∈ P , we have that L ≤ genlog(p,LP),
where retro(p,LP) � L.

DEFINITION 2. A retrofitting strategy retro is complete for P
iff for all p ∈ L and LP ∈ P , we have genlog(p,LP) ≤ L, where
retro(p,LP) � L.

In work so far, we have defined a language of logging policies
based on first order logic (FOL), and have formalized a notion of
program traces expressed as sets of temporally ordered FOL formu-
lae. These definitions, along with additional constructions, obtain
an information algebraic framework in which audit logging can be
endowed with a semantics defined in terms of algebraic operations.
We have also defined a retrofitting strategy for a core functional
calculus that supports an interesting class of logging policies, the
so-called surveillance policies. This strategy has been verified to be



sound and complete, in the information algebraic sense described
above, using the Coq framework.

In ongoing work, our immediate research targets include devel-
oping retrofitting strategies for realistic programming languages
with correctness assurances, as well as type-directed optimiza-
tions. These optimizations will be based on our previous work on
temporally-sensitive typing analyses [62].

7. VALIDATING DEFENSE IN DEPTH
Building on methods to validate security controls for authoriza-

tion, containment, and auditing, we identify three advantages to
reasoning about all three in unison. The first advantage is that
we may be able to optimize the use of security controls by elim-
inating redundant controls. For example, authorization may reli-
ably control all adversary flows from one module to another, which
may eliminate the need to separate those modules. The second ad-
vantage is that the actual runtime use of the program may moti-
vate changes in security controls that improve security. For ex-
ample, logging downgraded data could show that the downgrading
task is more common and more complex than envisioned, moti-
vating changes in the retrofitting policies to enact more authoriza-
tion and/or containment. Finally, the third advantage is that assur-
ance can encompass all three controls, providing a comprehensive
validation of enforcement. We plan to develop formal verification
techniques to certify the correctness of retrofitting, similar to Com-
pCert [13] and Vellvm [79, 80].

Thus, we propose a unified framework for retrofitting programs
for defense in depth spanning all three security controls. Figure 1
shows the expected high-level design of the STRATA framework. In
this task, we will explore methods for step two, unified retrofitting.
This step receives retrofitting policies for each of the three secu-
rity controls, plus the program code and optional feedback from
deployed security controls. The output from this step is the pro-
gram code retrofitted for authorization, containment, and auditing
that satisfies the retrofitting policies and is optimal with respect to
the costs of the controls.

Unified policy representation. A distinct benefit of designing a
multi-layered security framework from the ground up is the oppor-
tunity to unify and synthesize policies across layers. For example,
authorization and auditing policies can be synthesized to ensure
auditing, and thus retroactive accountability, if certain authoriza-
tion conditions are not met by actors. Such a policy was already
suggested in Section 6. A unified policy representation, capturing
properties at each layer, can be used to specify this.

Key to enabling unified retrofitting is a uniform denotation of
retrofitting policies across STRATA levels. Authorization, contain-
ment, and auditing all refer to subjects (to be controlled), objects
(that may be accessible to subjects or may have security require-
ments), program flows (control, data, and traces), and security poli-
cies. We argue that it would be beneficial to apply a single language
to express retrofitting policies at each layer. One option is to ex-
press security controls in terms of automata. For example, I/O au-
tomata are labeled transition models for asynchronous concurrent
systems [48]; they are typically used to describe the behavior of
a system interacting with its environment. In I/O-automata-based
models of monitoring, the system (node) to be monitored and the
monitor are represented as I/O automata, with the input and output
actions of each automaton representing their interaction with the
environment and each other. Security policies are defined in terms
of allowed or disallowed executions (traces). Using I/O automata,
we can capture requirements on input (e.g., control of various sub-
jects to that input), output (e.g., the impact of the operation on the

security of the object), and trace effects (e.g., logging in particular
states). Further, extensions to I/O automata have been proposed to
represent probabilistic policies [11] and model cost [19], so this ap-
proach could capture a variety of whole-system enforcement sce-
narios. A remaining challenge is to ensure that I/O automata are
at least translatable to resident policy languages at each STRATA

layer.

Optimization via synthesized transformations. Policies specify
the semantics of security mechanisms, but uniform policies will
also enable the implementation of policies via program constructs
that leverage connections between layers. As a retrofitting policy
is defined to be a set of connections among a set of program con-
structs, the goal of this task is two-fold: (1) produce a single set
of program constructs from the three control-specific sets and (2)
produce a single set of connections among them from three control-
specific sets. While the naive approach to union the three construct
and connection sets to form a multi-control retrofitting policies can
yield a solution if one exists, it may miss opportunities to find bet-
ter solutions. For example, if the same constructs are identified
for containment and authorization, then a sub-optimal solution that
employs containment to isolate the constructs when authorization
effectively blocks illegal data can be eliminated. We will explore
automated analyses to identify such opportunities. For example, we
will explore methods to identify such dominance relations across
controls. Recall that programmers produce retrofitting policies in-
teractively with STRATA, so such analyses must be meaningful to
programmers. Ultimately, we would like programmers to “pro-
gram” the retrofitting policy interactively with STRATA.

The problem of transformation takes a program, a retrofitting
policy, and a cost function and produces a retrofitted program that
satisfies the retrofitting policy for the minimal cost. For individual
controls, the cost function focuses on only one dimension at a time,
but since different controls apply different cost metrics we must
consider transformation as a multi-dimensional optimization where
the retrofitting policy implies a set of constraints.

Improving retrofitting policies continuously. The goal of contin-
uous improvement is to use knowledge of how programs are actu-
ally run to reduce the risks taken by the trade-off of security with
functional concerns proactively. To address this problem, we will
leverage the unification of security controls to collect information
for guiding improvements to the security controls themselves. The
problem is analogous to auditing, except that rather than looking
for intrusions we will try to estimate the risks introduced by secu-
rity controls quantitatively to identify those most in need of revi-
sion. This is sometimes called feedback in the systems literature.
For the auditing example on downgrading, we may estimate risk by
the percentage of data to redact or number of decisions necessary
to identify the data to redact. Using these quantitative metrics we
may identify more (fewer) program constructs in need of control or
eliminate (add) connections that are violated (satisfied) in practice,
resulting in more (fewer) security controls. In addition, we will
explore methods to make retrofitting changes based on such find-
ings automatically, leading to agile retrofitting of programs as they
execute.

Verifying transformations. Having retrofitted software for de-
fense in depth, how can we show that the retrofitted system preserve
the functionality of the original software system? In fact, we are in-
terested in demonstrating that the behavior of the retrofitted system
is a subset of the monolithic original, with omitted behaviors being
those excluded by a security policy.

In general, proving correctness of program transformations is a
difficult challenge, one that has remained open for several decades,



cf., the quest to produce provably correct compilers and program
optimizers. However, over the last few years, there have been im-
pressive developments in this domain, thanks to advances in inter-
active theorem proving systems and SMT solvers.

We plan to build upon this line of research to build a verified
retrofitting pipeline. One approach that we plan to explore is the
use of Coq [14] to achieve the goal of verified transformations. Coq
is an interactive proof assistant that allows co-development of pro-
gram transformations, themselves expressed in Coq, together with
their proofs of correctness. Transformations can be developed iter-
atively with their proofs, using the Coq system to debug the trans-
formations or their proofs as errors are discovered. Thus, when the
transformation has been fully specified, it is also accompanied with
a machine-checkable proof of correctness. This approach was re-
cently used in Vellvm [79, 80] to prove the correctness of several
optimizations within LLVM. As has been noted in Section 6, we
have already used Coq to verify a retrofitting strategy for auditing
in preliminary work.

8. CONCLUSIONS
Even when programmers decide to add the security controls nec-

essary to implement defense in depth, they face many practical
challenges. First, Defenses are often added manually, using an ad
hoc process. Second, each security control typically uses its own
policies and mechanisms, so the manual process has to be repeated
for each control. Third, it is difficult to prove that a manual deploy-
ment of security controls provides an advertised level of assurance.
Recent work on methods to retrofit legacy code with security con-
trols has begun to address some of these issues, but these methods
still require significant manual effort, do not explicitly map secu-
rity goals to program code, and they do not reason about multiple
security controls. In this paper, we propose the STRATA frame-
work for retrofitting legacy code for authorization, containment,
and auditing security controls. The STRATA framework imple-
ments a comprehensive view of assurance, with an emphasis on
automated and interactive tools that developers can use to iden-
tify site-level security goals, in terms of a retrofitting policy, and
retrofit legacy code to enforce security policies in a manner that can
be machine-verified for assurance. We show how security controls
can be retrofit individually by STRATA and how STRATA enables
optimization, continuous improvement, and assurance across mul-
tiple security controls. We show that by reasoning about defense
in depth a variety of advantages can be obtained, including opti-
mization, continuous improvement, and assurance across multiple
security controls.
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ABSTRACT
Our analysis of the state-of-the-art (SOA) for cloud comput-
ing concludes current offerings are fundamentally not able
to provide a high assurance of protecting information from
disparate security domains sharing a cloud infrastructure.
This is especially evident in the face of (even moderately)
determined adversaries who are likely to employ software
subversion in artifices like Trojan horses and trap doors. An
intrinsic limitation is the absence of an explicit security pol-
icy for which it is even theoretically feasible to constrain
information flow while providing authorized sharing. Al-
though not employed by current cloud offerings the tech-
nology SOA does include well-understood mandatory access
control (MAC) policy that supports such controlled shar-
ing. Furthermore, currently the cloud is simply not hosted
on platforms with hardware and operating system technol-
ogy that is verifiably trustworthy. Yet the available platform
SOA includes high assurance security kernel technology. Our
conclusion is that, although not used by current practice, the
SOA of current security technology as evidenced in a num-
ber of legacy systems reviewd in this paper, can support
securing data for big environments with disparate domains
in the cloud by providing high assurance.
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1. INTRODUCTION
Information supremacy wins wars and gains competitive

advantage. Such advantage always requires sharing the right
information with the right people. Amid this growing unmet
need to share information, cloud computing has come to the
fore. As fuzzy as this metaphor seems, cloud is becoming the
driving force of many enterprises today. Before cloud, each
enterprise was a separate security domain having no system-

atic sharing between these domains1. Since the requirement
is for controlled sharing in today’s world, the air-gapped
security domains do not cater to these needs. Mandatory
access controls are required for secure sharing of informa-
tion between these disparate domains. Historically, secure
systems have leveraged the power of a sound mandatory ac-
cess control policy to prevent unauthorized exfiltration.

Before the ”dotcom” era, the enterprises were mostly sep-
arate domains where the systems were logically air-gapped.
There was no possibility of unauthorized information to flow
from one enclave to other. But at the same time it made it
impossible for legitimate information to be shared between
these domains. At this time, before cloud computing was
a reality; the basic concepts were very well articulated in
what was then called a computer utility2. Multics, a re-
search project initiated at MIT, was described initially in a
set of six papers presented at the 1965 Fall Joint Computer
Conference. A computer, its software, and staff set up to
provide 24-hour service for all of a community’s information
needs, the ancestor of the ”Information Highway”. Multics
was envisioned as quite this, ”Multiplexed Information and
Computing Service”, from which it took its name. The en-
visioned service was present, reliable, powerful, and all that
is needed as an information resource for a large number of
people, all the time. This was radical at the time, when
computers were mostly restricted to dedicated functions.

The seeds of this concept were laid out in an article The
Computers of Tomorrow by Martin Greenberger of MIT in
1964. He posed a very important futuristic question on ”How
computers would be used in its third decade?”. By achieving
reliability along with capability, computers have won broad
commercial acceptance. But was there a plateau just above
the horizon? He asserted that ”computing services and es-
tablishments will begin to spread throughout every sector of
American life, reaching into homes, offices, classrooms, lab-
oratories, factories, and businesses of all kinds” [13]. The
article then goes on to make an analogy to electricity and
discusses the concept of information utility at length. Se-
curity was a core value proposition for the computer utility,
as evident in its requirement that one of its core properties
is Sufficient control of access to allow selective shar-

1Security Domain here is analogous to a physical encalve
wherein the information is air gapped from other enclaves.
2FJ Corbato, JH Saltzer and CT Clingen described Multics
as a computer utility in their paper ”Multics- The first seven
years”



ing of information. But the innovative computer utility
concept did not have an immediate or widespread adoption,
which is not surprising as Internet (i.e. the World Wide
Web) was not a reality then. However, several decades later
the concept of the ”cloud” was born out of some of the sim-
ilar emerging requirements of sharing of information and
resources stimulated by widespread use of World Wide Web
(www).

Some writers have opined that the cloud metaphor seems to
have arisen from graphics in which the complexity of a com-
puting network was replaced by an abstraction for a cloud,
in order to avoid the complexity of drawing all the lines. It
is not a very helpful metaphor except perhaps in the sense
that the cloud interface obscures the details behind it. In-
terest in cloud computing has rapidly grown in recent years
due to the advantages of greater flexibility and availability
of computing resources at lower cost. NIST defines cloud
computing as [15]:

”A model for enabling convenient, on-demand network
access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and re-
leased with minimal management effort or cloud provider
interaction.”

While aspects of these characteristics have been realized to a
certain extent, cloud computing remains a work in progress.
Cloud computing services benefit from economies of scale
achieved through versatile use of resources, specialization,
and other practicable efficiencies. However, cloud computing
is an emerging form of distributed computing that is still in
its infancy. In our analysis we did not find strong evidence
that security is at this time a core value proposition for the
cloud, in sharp contrast to a computer utility.

2. OVERVIEW OF MAJOR PRESENT DAY
CLOUD PROVIDERS

Cloud,today, has changed the way the conventional IT
enterprises functioned. It has revolutionized the way IT is
managed and maintained. But with all such advancements,
one primary issue of providing high assurance security has
not been addressed. We provide a brief overview of 2 leading
cloud providers and the security mechanisms implemented
in their cloud solutions. While the two examples are not
exhaustive of the present day offerings, they are illustrative
of the security approaches.

2.1 Microsoft
Microsoft Azure (formerly Windows Azure before 25 March

2014) is a cloud computing platform and infrastructure, cre-
ated by Microsoft, for building, deploying and managing ap-
plications and services through a global network of Microsoft-
managed datacenters. It supports many different program-
ming languages, tools and frameworks, including both Microsoft-
specific and third-party software and systems to provide var-
ious services. With Azure, Microsoft hosts data and pro-
grams belonging to customers. Microsoft Azure must there-
fore address information security challenges above and be-
yond traditional on or off-premises IT scenarios. Microsoft

Azure is designed to abstract much of the infrastructure that
typically underlies applications (servers, operating systems,
web and database software, and so on) so that developers
can focus more on developing applications[19].

Customers manage the storage and applications through
subscription, which broadly can be considered a discretionary
access control method. SMAPI (Service Management API),
a programtical way to access Azure, authentication is based
on a user-generated public/private key pair and self-signed
certificate registered through the Microsoft Azure Portal.
The certificate is then used to authenticate subsequent ac-
cess to SMAPI. Azure implements Identity and Access Mange-
ment as one of its service supplemented with encryption to
protect the control channels. To align with the principle of
least privilege, customers are not granted administrative ac-
cess to their VMs, and customer software in Microsoft Azure
is restricted to running under a low-privilege account by de-
fault.

2.2 Amazon
Amazon Web Services (AWS) is a collection of remote

computing services (also called web services) that together
make up a cloud computing platform, offered over the In-
ternet by Amazon.com.Such is the popularity of AWS that
many enterprises like Dropbox, Netflix have their business
operated on AWS! The most central and well-known of these
services are Amazon EC2 and Amazon S3. The service is
advertised as providing a large computing capacity (poten-
tially many servers) much faster and cheaper than building
a physical server farm.

The AWS network has been architected to permit you to se-
lect the level of security and resiliency appropriate for your
workload. Network devices, including firewall and other
boundary devices, are in place to monitor and control com-
munications at the external boundary of the network and at
key internal boundaries within the network. These bound-
ary devices employ rule sets, access control lists (ACL), and
configurations to enforce the flow of information to specific
information system services. All of the AWS APIs are avail-
able via SSL-protected endpoints which provide server au-
thentication. Amazon EC2 AMIs automatically generate
new SSH host certificates on first boot and log them to the
instance’s console. You can then use the secure APIs to call
the console and access the host certificates before logging
into the instance for the first time. Amazon EC2 instances
cannot send spoofed network traffic. The AWS-controlled,
host-based firewall infrastructure will not permit an instance
to send traffic with a source IP or MAC address other than
its own. AWS provides a number of ways for you to identify
yourself and securely access your AWS Account. AWS also
provides additional security options that enable you to fur-
ther protect your AWS Account and control access: AWS
Identity and Access Management (AWS IAM), key man-
agement and rotation, temporary security credentials, and
multi-factor authentication (MFA)[1].

2.3 Is this the solution?
Based upon a brief analysis of some of the security tech-

niques adopted by Amazon and Microsoft, it is fair to ask if
we can adopt the above methodologies to assert authorita-
tively that the cloud is secure with disparate domains. But



unfortunately that is NOT true. The methods employed
have a couple of huge gaps for security: They don’t include
any:

• Systematic mandatory access controls that are essen-
tial to addressing disparate domains and,

• They offer no basis for high assurance that would sig-
nificantly mitigate the threat of subversion by a witted
adversary.

Cross VM side-channel attacks as mentioned in [24], [26]
clearly shows that the problem is far from being solved. The
recent Apple iCloud hack [3], [2] is a wake up call for the
cloud vendors to re-visit their security practices because all
it takes is one vulnerabiltiy for a determined adversary to
expose the entire system[5]. The clear LOUD message in
cLOUD security is requirement of data isolation, controlled
sharing and high assurance above all.

3. REQUIREMENTS FOR SECURE CLOUD
WITH DISPARATE DOMAINS

Computer utility, as described before, had 3 requirements
namely controlled sharing, isolation and high assurance. Draw-
ing parallels from it, the present day cloud scenario strictly
demands all these requirements when dealing in a multi-
level environment as is cloud because no cloud architecture
can emphatically address the issue of subversion without
the above three properties. Thus, implementing an archi-
tecture keeping in mind the computer utility goals provides
a sufficiently high assurance to resist subversion from witted
adversaries.

3.1 Cloud Isolation
The cloud is a vast area with many types of service mod-

els, heterogeneity of hardware, and support many types of
use cases. Isolation is the first of the three dominant require-
ments for securing the cloud with information from disparate
domains. A domain, in the context of this paper, means the
information with a common basis for access authorizations,
such as that belonging to an enterprise at a given sensitiv-
ity level. Long before the advent of cloud computing, all
the enterprises had their information within their security
perimeter as these enclaves were physically air gapped. This
ensured that no unauthorized information from one enter-
prise flow to the other. Isolation, as this air-gapped arrange-
ment is called, ensured that if the systems are not connected
to each other then the information (unauthorized) does not
flow.

A virtual machine (VM) is a software implementation of
a machine (e.g., a computer) that executes programs like
a physical machine. Virtual machines operate based on the
computer architecture and functions of a real or hypothetical
computer. The piece of software that provides this abstrac-
tion of virtual machines is known as Virtual Machine Moni-
tor (VMM). One of the earliest examples, the VM/370 sys-
tem enables a single IBM System/370 to appear functionally
as if it were multiple Independent System/370’s (i.e., mul-
tiple ”virtual machines”) [21]. Thus, a VMM can make one
computer system function as if it were multiple physlcally
isolated systems(a typical realization of air-gapped arrange-
ment). A VMM accomplishes this feat by controlling the

multlplexing of the physical hardware resources in a man-
ner analogous to the way that the telephone company mul-
tiplexes communications enabling separate and, hopefully,
isolated conversations over the same wires [21].

VAX VMM, a high-assurance VMM (actually it is a secu-
rity kernel) developed by DEC ran on the VAX 8530, 8550,
8700, 8800, and 8810 processors [18]. It created isolated
virtual VAX processors, each of which can run either the
VMS or ULTRIX-32 operating system. If desired, virtual
machines running each of the operating systems can run si-
multaneously on the same computer system.3 VAX VMM
is an example of MAC enforcing VMM which provided high
assurance security - in particular high assurance isolation.
It provides virtual machines and virtual disks as an abstarc-
tion of subjects and objects respectively.

In 1998, VMware figured out how to similarly run multi-
ple instances of operating systems on the x86 platform and
created the market for their form of x86 virtualization. Be
it VMWare’s virtualization technique or Xen’s paravirtual-
ization technique4 or Microsoft Virtual Server, which is Mi-
crosoft’s solution for desktop virtualization facilitating the
creation of virtual machines on Windows, the hypervisor
(VMM) has been leveraged to provide nominal isolation be-
tween the virtual machines by virtualizing the CPU, mem-
ory etc. But in all variants, the inherent property of nominal
isolation stays, i.e, in all the solutions above the very mean-
ing of isolation between the domains is maintained which
ensures restriction of unauthorized information flow. Thus,
there exists a state-of-the-art technology for cloud isolation,
although (except for the VAX VMM) there is little basis for
assurance in this isolation from a security perspective.

3.2 Cloud Sharing
Since the enterprises had the storage and processing of

information restricted to their server room before advent of
cloud, the controlled sharing of information between these
disparate domains was generally not regarded as practical.
These isolated physical enclaves in different domains needed
a way to share information with high assurance such that
the information does not flow from one domain to another.

The VMM technology nominally provides isolation between
the virtual machines but fails to provide a solution for con-
trolled sharing of information. Each virtual machine is iso-
lated from other virtual machines running on the same hard-
ware. Although virtual machines share physical resources
such as CPU, memory, and I/O devices, a guest operating
system on an individual virtual machine cannot detect any
device other than the virtual devices made available to it as
shown in Figure 1. But in the cloud, the information of dif-
ferent domains from different enterprises resides in one place.
In the cloud controlled sharing is one of the most important
requirement for securing the cloud with disparate domains.
One common approach is to make a copy in the high domain,
using techniques like one-way data diodes between multiple
independent domains. This is depicted in Figure 2 where all

3The VAX architectue was not virtualizable and hence some
extensions were added to support virtualization.
4As opposed to full hardware self-virtualization techniques,
paravirtualization changes the guest OS by making hyper-
calls to the hypervisor in case of sensitive OS instructions.



Figure 1: Virtual Machine Isolation

the readable data from a domain is copied to another do-
main. This can provide high security but is inefficient and
even impractical for the massive amounts of data needed
from the cloud. That problem is further exacerbated and
grows in an combinatorial manner as more domains are in-
volved in network-based operations.

Figure 2: Massive copies of same information in dis-
parate domains

Cross-domain solutions (CDSs) provide another way to ful-
fill this requirement when the information passes from one
domain to another. But again presently there are few if
any high assurance CDS solutions available. Network based
orchestration relies on untrusted application to connect the
end-points on disparate domains. Emory Anderson created
a subversion demonstration with an attack on the Network
File System in the Mandrake version of Linux. The arti-
fice, consisting of a total of eleven lines of source code, was
distributed in several locations within the operating system,
and was activated and deactivated by a single corrupted
UDP packet[7]. This shows us that it merely takes good
programming expertise t subvert a system if underlying plat-
form does not provide high assurance which is in the case of
this attack on NFS server on Linux. Any protection mecha-
nism can be rendered ineffective by modifying it so that the
protection mechanism is bypassed. With the risk that the ar-
tifice can be planted in the kernel, no application layer secu-
rity solution can be counted on to provide the protection for
which it is designed[6]. Computer security is a general term
which can be used to describe defenses against everything

from wire tapping to sophisticated software attacks using
subversion, like ”Trojan horses” and ”trap doors”. Firewalls,
cryptographic mechanisms and other software based security
tools would provide protection to information in transit but
not while the information is at rest or during computation.

On Multics, as on many systems, the first line of defense
is a set of tables which lists users and their access rights to
data- what is commonly termed an access control list (ACL).
These tables are scanned by the operating system on each
user’s reference to a block of data. This might seem to be
a simple and unbreachable defense. But in reality, a funda-
mental and intrinsic limitation of discretionary access con-
trol policy (DAC) is that it is not possible to prevent unau-
thorized information flow [16]. To prevent unauthorized flow
between disparate domains, the more powerful mandatory
access control (MAC) policy is required. The Bell-LaPadula
model [8] gave a verifiable path to secure systems by propos-
ing a set of rules to be followed. The model provides a proof
that the the security is maintained in every state (i.e through
inductive nature). The model was based on the concept of
labels encompassing the user clearance and object’s classi-
fication. Based on a well-defined dominance relation, the
labels are compared and the access to the information is
mediated. This provides a secure way by which informa-
tion is shared in a controlled fashion. Though the model
does not address the problem of covert channels explicitly,
but the secure systems like GEMSOS, VAX VMM, SCOMP,
Multics Guardian, which have been interpretations of BLP
model, demonstrates a framework to effectively analyze and
address the covert channels as evident from [20], [18].

The computer utility approach provides controlled sharing
as it is one of its specifically enumerated requirements for
a system to be qualified as a computing utility. The Ac-
cess Isolation Mechanism, the extended access control sys-
tem with a composition of discretionary controls and non-
discretionary (i.e. MAC) mechanisms used on some Multics
systems was one of the first attempt to achieve this [16].
This computer utility was in use at Pentagon and General
Motors which allows us to fairly assert that it can be used for
controlled sharing of the information. But our analysis could
not find this controlled sharing requirement inherently im-
plemented in or provided by any present cloud architectures.

3.3 Assurance
The current approaches to the needed controlled assured

sharing have serious limitation for both security and effi-
ciency reflecting that security is not a core-value proposi-
tion. Present day cloud architectures primarily use incom-
plete techniques like testing. Unfortunately they fail to ad-
dress one core problem that is essential to a secure cloud: the
problem of subversion by a witted (determined) adversary.
A witted adversary needs to just find (or introduce via sub-
version) one flaw in the system. That witted adversary does
not care if the system is secure against other attacks. This is
one of the reason there is a compelling requirement for Class
A1 assurance systems (evaluation class in TCSEC/Orange
Book) which provide verified protection so that the system
substantially addresses the threat of subversion of TCB.

Security is not an add-on. The systems to which security en-



forcement mechanisms have been added, rather than built-in
as fundamental design objectives, are not readily amenable
to extensive analysis since they lack the requisite concep-
tual simplicity of a security kernel. This is because their
TCB5 extends to cover much of the entire system. Hence,
their degree of trustworthiness can best be ascertained only
by obtaining test results. Since no test procedure for some-
thing as complex as a computer system can be anywhere
near exhaustive, it is always likely that a subsequent pen-
etration attempt would succeed. It is for this reason that
such systems must fall into the lower evaluation classes [27].

SELinux is a modified version on Linux kernel with secu-
rity specific module added to it. It is interesting to compare
the complexity and size of SELinux with that of Multics
which achieved much of its security by structuring of sys-
tem and minimizing complexity. The ring 0 of Multics of
1973 occupied about 628K bytes of executable code and read
only data. This was at that time considered to be a large
system- in fact far too large to be high assurance without
being restructured to have a much smaller security kernel.
By comparision, the size of just the SELinux module with an
example policy code and read-only data has been estimated
to be 1767K bytes. This shows that just the example secu-
rity policy of SELinux is more than 2.5 times bigger than
the entire 1973 Multics kernel and that does not count the
size of Linux kernel itself [17]. The reason for comparing
the size of the security kernel in terms of the lines of code
is the overall complexity of the system which increases as
the TCB becomes larger and more complex. TCB is the
totality of the hardware and software which provides impl-
mentation of a kernel, and it needs to be minimized so as to
assure that the attack surface for the determined adversaries
is less. Given that complexity is the single biggest enemy
of security, it becomes evident the SELinux designers prob-
ably failed to carefully examine whether or not there is a
complexity problem to be addressed. Given that security
related module (known as Linux Security Module(LSM)) is
added on, it is not surprising that the assurance with which
it was evaluated was the low assurance EAL 4+ according
to Common Criteria evaluation classes.

SEVMS VAX is another example which was the security
enhanced version of Digital’s OpenVMS VAX Version 6.1
operating system. SEVMS VAX was designed for secure
data processing environements that requires MAC, multiple
levels and categories of classifiesd data, and users of varying
security clearances [9]. Not surprisingly, SEVMS VAX ver-
sion 6.0 was considered evaluable by the NCSC as Class B1
secure operating system, using TCSEC.

From the two examples above, it can be inferred that se-
curity if added on later on fails to address the problem of
subversion and provides low assurance. For Multics to meet
the security requirements for a computer utility, the security
features for mandatory access controls (MAC) were added
on later. These were known as Multics AIM (Access iso-
lation Mechanism). Our analysis did not find any current
cloud service offerings with a suitable architecture for se-
curity. An architecure which provides MAC, let alone high

5TCB: Trusted Computing Base is the totality of hardware,
software and firmware which provides implementation of a
security kernel.

assurance, needs to be based on the basic builiding block re-
quired for contolled access and sharing, i.e., Mandatory Ac-
ces Control policy. To efficiently achieve MAC policy with
high assurance it is required to leverage hardware that pro-
vides segmentation and protection rings. Figure 3 indicates
the segmentation implemented in Multics. Here the Core
refers to the place where the segment resides in the mem-
ory. A CPU can directly address the memory using segments
where the access rights annotated as ”acc” facilitate the con-
trolled sharing.

Figure 3: Segmentation in Multics

According to the Orange Book evaluation classes, a distin-
guishing difference between Division B and Division A is the
substantial protection from subversion provided with Class
A1 assurance level even though both divisions require sup-
port of MAC policy. Mitigation of subversion at the TCB
itself is primarily what makes a system secure in the face of
a witted (determined) adversary. With TCSEC as a metric
to evaluate a system for assurance, there is no evidence of
SELinux being evaluated at level higher then B1 or SEVMS
VAX and Multics AIM higher then B2. Thus, any archi-
tecture with such low to moderate assurance systems at the
base fails to address the problem of subversion. On the
flip side, considering security architectures with systems like
GEMSOS, VAX VMM at its base provides an effective pro-
tection from subversion with having high assurance security
ingrained in it from beginning of its design. Trusted Net-
works Interpretion (TNI) gives a consistent set of design
principles for laying out a Network Security Architecture
Design (NSAD) that can be adopted to build a high as-
surance cloud architecture. The incipient architecure that
we have suggested here in Figure 6 and Figure 7 leverages
these principles and this architecture can be further built
into a complete NSAD. Figure 7 represents different clients
interacting with the MLS verifiable security kernel. The ar-
chitecture makes no comments about clients being at differ-
ent levels, but even so, this architecture assures that there
would not be any exfiltration of unauthorized information
from one enclave to other. On the server side, where the
cloud is conceptually realized, there is a persistent storage
which intracts with various SaaS services and the NFS file
server. Though the details have been abstracted but there
has been a successful effort in past in form of GARNETS
[14] to leverage the high assurance GEMSOS/GTNP base



to provide a file system implementation. Interfacing it with
the standard Linux middleware, one can create a high as-
surance NFS server implementation over a verifiably secure
MLS platform. The present day architectures fairly lack
high assurance security of this order.

4. CLOUD PLATFORMS
The security of a system as a whole is equal to that of

the weakest link of the system. Making some components
more secure than others does not serve the purpose. The
system needs to be built with a policy in mind and every
component should with consistent assurance implement the
policy elements allocated to it by the security architecture
of the cloud system. The overall cloud security architecture
needs to address all the three requirements mentioned in
previous section: isolation, controlled sharing, and high as-
surance. These should have an implementation of the refer-
ence monitor because one cannot utter high assurance MAC
and controlled sharing without a reference monitor as the
foundation. The security kernel, which implements the ref-
erence monitor, should be high assurance so as to thwart
subversion from a witted adversary. From our analysis, the
computer utility provides a mature and proven technological
base for the cloud.

Multics (Multiplexed Information and Computing Service)
is a multi-user operating system begun in 1965 and used un-
til 2000. The system was built as a part of Project MAC
at MIT where the design intentions were to build it as a
fully support commercial products that could support the
computer utility concept. Multics was designed to be secure
from the beginning, and incorporated MAC in the course of
its development. The Multics memory architecture divides
the memory into segments and uses paged memory in the
manner pioneered by the Atlas system [4]. Segmented ad-
dresses generated by the CPU are translated by hardware
from a virtual address to a real address as illustrated in Fig-
ure 3. As opined by David Jordan in an article on which the
paper Multics Data Security is based:

”When Multics was developed, an attempt was made to
design a system, including security mechanisms, which
could grow without system reorganization. The design-
ers recognized that it would be impossible, at the design
stage, to anticipate all the problems which would crop
up when the software was written. Therefore, if prob-
lems arose as a module of the system was implemented,
it, was redesigned, a process which served to reduce the
convolution and complexity of the final software sys-
tem. In addition, provision was made to allow func-
tions to be added to the system as subsystems rather
than as modifications of the operating system itself.”

Initially Multics was not built with mandatory access con-
trols but in response to clear and demanding requirements
from both their governement and commercial customers for
deployment in multi level environments, MAC was made an
integral part of its security capabilities. Project Guardian
grew out of the ARPA support for Multics and the poten-
tial sale of Multics systems to both the US Air Force and
the auto industry, e.g., General Motors. USAF wanted a

system that could be used to handle more than one secu-
rity classification of data at a time. Project Guardian led
to the creation of the Access Isolation Mechanism (AIM),
the implementation of the labelling and Bell-LaPadula star
property support in Multics [28]. AIM was implemented in
response to General Motors’ demands to separate and pro-
tect engineering data while providing controlled sharing of
less sensitive administrative data, and a Pentagon request
for a mechanism which would enforce military security pol-
icy. Multics AIM was later evaluated at Class B2 according
to Orange Book.

On systems which use both the ACL and AIM mechanisms,
the user’s effective access to a segment is determined by the
most restrictive of the two. The DoD Orange Book was in-
fluenced by the experience in building secure systems gained
in Project Guardian. The main aim of Project Guardian was
to produce a high assurance minimized kernel for Multics,
as complexity is the single largest enemy of security, and
produce an auditable version of Multics. The implementa-
tion of Multics6 in the 60s and 70s preceded the ideas of
a minimal security kernel; several facilities in Ring 0 were
included for efficiency, even though they didn’t need to be
there for security. In 1974, Ring 0 comprised about 44,000
lines of code, mostly PL/I, plus about 10,000 lines of code
in trusted processes [28]. Several design documents were
produced in shrinking the size of the kernel which entailed
moving non-security functions out of Ring 0. Air Force ESD
was directed to discontinue computer security research by
the Office of the Secretary of Defense in 1976 which led to
Multics guardian project getting cancelled without shrink-
ing Ring 0.

At around the same time Honeywell initiated a project called
SCOMP (Secure Communications Processor) to create a se-
cure front-end communications processor for Multics. SCOMP
included hardware specially designed for security and for-
mally verified software design. Although Project Guardian
design for a Multics security kernel was not implemented,
the use of Multics features to provide multilevel security
was pursued in the SCOMP effort. The hardware base was a
Honeywell Level 6 minicomputer, augmented with a custom
Security Protection Module (SPM), and a modified CPU
whose virtual memory unit obtained descriptors from the
SPM when translating virtual addresses to real. All autho-
rization was checked in hardware. As illustrated in Figure 4,
SCOMP had a security kernel and 4 hardware rings [11].
The SCOMP OS, called STOP, was organized into layers:
the lowest layer was a security kernel. A Formal Top Level
Specification (FTLS) for the system’s function was verified
to implement DoD security rules [11]. In 1983 SCOMP was
evaluated to Class A1, the highest class according to the
Orange Book. However, it did not maintain the Class A1
rating beyond the initially evaluated version.
The Gemini Multiprocessing Secure Operating System (GEM-
SOS), a Gemini Computers Inc. product, was an Class A1
evaluated trusted operating system based on a security ker-

6The security mechanisms provided in initial Multics were
somewhat ad hoc. The lack of a simple model of security
meant that even if an auditor were to undertake the previ-
ously mentioned overwhelming task of understanding every
line of code, that auditor would lack a systematic specifica-
tion of what to look for [25].



Figure 4: SCOMP software architecture

nel. The GEMSOS Final Evaluation Report [10] discusses,
at several places, using GEMSOS as a Virtual Machine Mon-
itor (VMM) to implement virtual machines on top of it.
GEMSOS7 is a multiprocessor real time operating system
(RTOS) that leverages the Intel IA-32 processor architec-
ture to implement a Reference Monitor that verifiably en-
forces Mandatory Access Control (MAC) policies. GEMSOS
delivers full multilevel security (MLS) capabilities with the
highest assurance, as confirmed by previous NSA Class A1
evaluations and deployments. The GEMSOS security kernel
design was significantly influences by the Project Guardian
Multics kernel design. Consistent with that, with GEMSOS
controlled sharing, sensitive processing can directly access
less sensitive data without massive write-up copies. Yet
strong separation of processes and protection domains al-
low strict isolation where required. In a cloud environment
where we recognized isolation too is a dominant requirement
alongwith controlled sharing, GEMSOS provides both with
high assurance. High assurance is delivered ”out of the box”
with no need for trusted application code.

Figure 5: GEMSOS delivers MLS Sharing ”Out of
the Box” among strongly separated partitions

5. RELATED WORK
Historically, many efforts have been made to secure infor-

mation in a multi-level environment. The baseline approach
of all the successful efforts was implementing the underlying
security policy correctly with high assurance by conformance
to a formal security policy model such as Bell-LaPadula.
HSRP (Headquarters System Replacement Program) [12]
was a large scale Management Information System acqui-
sition for the USAF 7th Communication Group (7CG) lo-
cated at Pentagon. The primary requirement of the project

7GEMSOS and GTNP (Gemini Trusted Network Processor)
are used interchangeably in this paper since GTNP used
GEMSOS security kernel.

was to replace the Honeywell Multics systems with AIM,
when the vendor was acquired and discontinued the prod-
uct. The existing system was to be replaced by an initial
COTS Class C2 implementation which would conceptually
evolve to Class B2 and finally a Class A1 implementation
as defined in TNI (Trusted Network Interpretation) of TC-
SEC. The Class B2 and eventual Class A1 implementation is
based on introduction of a Secure Communications Proces-
sor Environement(SCPE) which would be based on GEM-
SOS security kernel.

SCOMP, as discussed in the previous section, was evalu-
ated at Class A1 but it did not maintain this evaluation
class. A distant relative of SCOMP on different hardware
and software is presently available in the trusted operating
system, STOP, is today distributed at a relatively low as-
surance level of EAL 4+ on the XTS-400 platform. BAE
XTS-400 platform is used by Naval Postgraduate School for
Monterey Security Architecture (MYSEA), an MLS cloud
[22] research project. Its a federated architecture with mul-
tiple MLS servers which jointly enforce system wide MLS
policy. The platform is designed to be evaluated against
Common Criteria EAL 5. It consists of TPE (Trustted
Path Extension), conjoined to every workstation to provide
trusted path to MYSEA cloud, and TCM (Trusted Channel
Module), to provide labelling of network traffic from multi-
ple single-level networks. These two components are based
on Least Privilege Seperation Kernel. But since by its very
definition a seperation kerne inherently does not implement
a reference monitor, there is little basis for assurance that it
mitigates against subversion.

Gemini Computers (currently a subsidiary of Aesec Corpo-
ration), the developers of verifiably secure GEMSOS-based
platfroms , is developing a MLS File Server that will support
a controlled access and controlled cross-domain file sharing
solution (CDS), including for cloud storage. Prior to that
development the current high-assurance approach to main-
taining the security of multidomain environments is to du-
plicate the hardware for each domain, which is expensive
and which complicates sharing in many applications that
depend on it. The Gemini MLS File Server is designed to
support the Network File Service (NFS) file protocol where
workstations, servers, and applications process information
of a single classification level while allowing data sharing
between the various levels. The prototype server will have
separate Network Interface Cards (NICs) for each security
domain. No trusted code outside the GEMSOS TCB is re-
quired in order to provide low-to-high controlled sharing via
MLS read-down from higher domains to lower domain files
and directories.

6. CONCLUSION AND FUTURE WORK
This paper focuses on the secure system implemetations

that have been done in the past and how the methodologies
adopted at that time be used today to address security in
a cloud with disparate domains. Even if the cloud was not
a buzzword then, the properties of sharing, assurance and
isolation were still prominent as evidenced from computer
utility requirements. Thus, this paper does not intend to
innovate in terms of a new cloud technology but rather aims
to apply the security constructs codified in TCSEC/TNI to
analyze the current cloud security. This makes clear that



Figure 6: Server-Side Architecture

Figure 7: Client-Side Architecture

current practice is far short of providing the required shar-
ing, assurance and isolation. In contrast these are evident
in the computer utility formulation, that have been demon-
strated for high assurance mandatory access control to pro-
vide effective sharing and isolation in the face of attacks like
subversion by a witted adversary.

Through a comprehensive analysis of available highly secure
kernels shown in this paper, we propose an initial blueprint
of the cloud security architecture as shown in and Figure 6
and Figure 7 in its most rudimentary level. This architecture
can be used as a basis to provide MLS verified protection
in a cloud with disparate domains. The architecture is laid
out by applying the principles codfiied in TCSEC/TNI by
the experienced investigators in this field. We aim to build
an assured system from assured components.

One of the most prominent IT analysts, Gartner, identi-
fied cloud computing as the primary source of growth in IT
spending, increasing over 20 percent year-on-year to global
revenues of 56 billion dollars in 2009 and surging to over
130 billion dollars by 2013 [23]. This demonstrates the im-
portance of cloud computing today. But presently available

cloud architectures, have not addressed the Advanced Per-
sistent Threats (APT), that are illustrated by the threat of
system subversion evident in attacks like Stuxnet and the
one demonstrated by Anderson[6]. A recent Microsoft sur-
vey found that: ”58 percent of the public and 86 percent of
business leaders are excited about the possibilities of cloud
computing. But more than 90 percent of them are worried
about security, availability, and privacy of their data as it
rests in the cloud” [23].

Multi-tenant clouds with data from disparate security do-
mains require strong separation,controls on data access, con-
figuration and executable sharing, and a system-based ap-
proach to assuring customers their data will remain private
to their domain unless and until the system policy explic-
itly authorizes them to share it. Although the VMMs used
today are not even close to high assurance needed for this
isolation, not to mention their inability to support controlled
sharing, the the technological state-of-the-art suggests that
this is possible, all that is required is a sound architetural
design implementing MAC and providing high assurance.
The design principles of a computer utility, as Multics was
espoused, can be leveraged while designing the current cloud
product because they are largely encompassed by the com-
puter utility vision of future. A verifiable MLS security ker-
nel, like GEMSOS, should be used to implement applications
on top of it which provides controlled sharing of information
between different levels with high assurance. The GEM-
SOS product is available today as a commercial off-the-shelf
(COTS) product under a proven OEM business model.
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ABSTRACT
Modern warfare has increasingly evolved to include multiple 
variants of platforms and participants, including coalition 
partners, which are hosting and exchanging information spanning 
a wide range of classification/caveat/compartment levels. This has 
led to a difficult Multi-Level Security (MLS) challenge that must 
be addressed both technologically and operationally in order to 
effectively test and train modern warfighters. The ongoing 
evolution to include Live, Virtual, and Constructive (LVC) within
the modern training curriculum is exceeding the current 
capabilities of existing security solutions, resulting in the need for 
a cost effective solution to address the problem. Rockwell Collins 
has developed a layered solution for high-assurance MLS test,
training, and LVC to address this challenge. The solution takes 
advantage of several Multiple Independent Levels of Security 
(MILS) technologies along with a focus on modularity and 
composability across the solution. This has led to a very efficient 
and flexible solution that is an ideal case study for layered 
assurance.

Categories and Subject Descriptors
H.1.1 [Information Systems]: Models and Principles Systems 
and Information Theory – General systems theory, Information 
theory, Value of information.  

General Terms
Design, Security. 

Keywords
Test Range Infrastructure, Training Range Infrastructure, Live 
Virtual Constructive (LVC), Multi-Level Security (MLS),
Multiple Independent Levels of Security (MILS), Simulation and 
Training Systems, Cost effective MLS implementation

1. INTRODUCTION
In looking at the solution space to address modern test and 
training and LVC interoperability issues, it becomes apparent that 
range instrumentation is an ideal solution space to leverage the 
principles of layered assurance. This space includes significant 
security-related scope as well as safety issues which must be 
addressed. High assurance/robustness of the solution is critical to 
address these issues. However, cost and schedule viability are a 
serious consideration as with any modern military development 
effort. This paper describes a solution which is based on the 
principles of layered assurance and composability at multiple 
levels in the architecture. All of the elements described herein 

have completed their individual certification efforts (e.g. NSA 
Type 1, Common Criteria, etc.). The system-level solution is 
rapidly maturing and is in the process of completing accreditation 
as part of its fielding.

2. OVERVIEW OF THE PROBLEM SPACE
2.1 Testing
Modern military ranges are testing with a variety of platforms that 
can each host and share information at a wide range of 
classification/caveat/compartment levels. For example 5th 
generation platforms (e.g. F-35) and 4th generation platforms (e.g. 
F-18) have communications links, weapons, and sensors that are 
processing data at different levels of security thus requiring 
different keys and infrastructure at the range to support tests with 
each platform. In addition, the humans working with and in these 
platforms also have limits on clearance and “need to know”.
Multiple test missions may be simultaneously occurring at the 
range and different sets of personnel will be accessing different 
sets of the information which is flowing around the range on 
common infrastructure.

2.2 LVC Training
A typical training scenario will include 3rd, 4th, and 5th 
generation platforms, as well as Unmanned Aerial Systems 
(UAS), each with different security levels and requirements for 
exchange. The weapons being simulated also have a wide range of 
classification levels. Datalinks and sensors have a variety of 
performance parameters and capabilities which also span a 
number of classification levels. Add to that, the desire to 
interoperate with coalition partners and the requirements continue 
to expand. The current state of training exercises results in 
segregated information flows  that lead to a reduction in safety as 
well as training effectiveness by keeping necessary information 
from being shared between the participants who need it the most.

2.3 Common Problem 
All of this leads to the need for an MLS information exchange 
solution that enforces the operational security requirements, but 
enables testing and training to be performed efficiently and 
successfully. In order to test or train effectively in modern 
environments, one must be able to affordably control the flow of 
information among the players while ensuring that all information 
(which must be exchanged) is supported in a timely manner. In 
addition, the ranges often want a low impact scalable solution that 
supports system-high (at a single-level) through certified MLS 
operation. 



3. GUIDANCE FOR THE SOLUTION
SPACE
The following general guidelines have been developed as a means 
to bound the problem and direct the solution space toward 
scalable solutions that can be cost effectively implemented and 
technically useful for addressing the current test, training, and 
LVC functional requirements.

Table 1: General MLS Guidelines

Guideline 

Perform all data processing in the lowest possible (level/caveat) 
security enclave.

Follow relevant Defense Information Systems Agency (DISA),
National Security Agency (NSA), National Information 
Assurance Partnership (NIAP), and Department of Defense 
(DoD) services guidance documents for secure configuration of 
applications and devices in the MLS LVC environment.

Where possible use a MILS-based approach to support Multiple 
Single Level (MSL) and MLS information processing.

Where the MILS-based approach is insufficient and the MLS 
requirements do not drive spanning more than 2 levels (e.g. Top 
Secret-to-Secret (TS-S) or Secret-to-Unclassified (S-U)), use a 
traditional label-based MLS approach (nesting MLS within a 
MILS partition is also an option to reduce SWaP).

MLS processing implementation should be scalable to support
multiple system-high / single-level partitions with no cross 
domain information flow through all-way guarding between 
enclaves. 

Safety channel or allocation in the training range data link to 
support low latency high priority safety traffic.

Utilize Black-side only training data link, as opposed to a data 
link that spans both Red and Black sides.

Operational security mechanisms (non-technological processes) 
are an essential part of a comprehensive security solution.
Ensure solution is capable of supporting operation at System-
High at a single-level through certified MLS operation with a 
single equipment set. 

Table 2 Cross Domain Solution (CDS) and Encryption 
Guidelines

Guideline 

Bind classification/caveat/compartment labels to information.

Include meta-data where possible on which element of a data item 
drives the classification label level.

Utilize encryption systems that support CIK-less operation and 
remote ignition and key distribution/loading.

Encryption system should support single channel and multi-
channel system-high operation with key agility and the ability to 
scale to support MLS with minimum impact to accreditation, 
thereby allowing customers to gradually transition to MLS.

Guideline 

Encryption systems should not be the bottleneck for training data 
link throughput. Determine the aggregate throughput required for 
the training data link and size the encryption system to support 
that rate.

Participant package should include MLS encryption capable of 
supporting recording storage and retrieval of relevant sensitive 
training exercise information (data-at-rest)  

Participant package should include MLS encryption capable of 
supporting communication of relevant sensitive training exercise 
information over-the-air (data-in-transit)  

Ground infrastructure to support MLS encryption capable of 
supporting communication of relevant sensitive training exercise
information over-the-air (data-in-transit) 

Utilize MILS or MLS cryptographic systems which include 
support for a range of classification levels, caveats/compartments,
and key agility.

Utilize cross domain guards (transfer CDS) which support the 
“all-way” guarding function.

Utilize cross domain guards (transfer CDS), virtual where 
possible, physical where not, to mediate cross domain information 
flow.

Where possible use “access CDS” for MLS common operational 
picture when required.

Label low information and utilize low overhead one-way data 
diodes to pass information from lower enclaves to all higher 
enclaves.

Outside of traditional malware/virus and otherwise network 
attack-based detection avoid use of “smart” cross domain 
functions for low-to-high traffic flow.

Leverage smart cross domain functions to perform high-to-low 
filtering and downgrading.

Assume a minimum of three enclaves are needed, but ensure that 
the architecture supports the flexibility to address more when/if 
necessary.

4. DETAILS OF THE SOLUTION
Rockwell Collins has broken the solution down into several 
architectural elements which are targeted at providing a modular 
solution with an eye toward reusability across the ground 
infrastructure as well as airborne/mobile assets. The solution also 
takes advantage of previously evaluated elements which are 
composed in a layered manner to provide high assurance at the 
system level based on these underlying building blocks.

For a typical test or training application, the system of systems 
can generally be divided into two parts:  the ground-based 
elements (generally stationary), and the airborne or mobile 
elements. The airborne or mobile elements are usually attached to 
or installed in participant packages. These modular reusable 
elements have been packaged in a variety of form factors and can 
be re-packaged as needed to address a wide range of platforms.



4.1 Airborne/Mobile Elements
4.1.1 Element 1: MLS Participant Interface Module 
(PIM)
The PIM is a Multi-Level MILS processing environment 
supporting configurable interfaces (Fibre Channel, 1553, 
Ethernet, Serial, etc.). The separation kernel is a Common Criteria 
Evaluation Assurance Level (EAL) 6+ certified MILS Real-Time 
Operating System (RTOS) that hosts the multiple single-level 
enclaves and a modular NSA-evaluated Cross Domain Guard
(CDG) supporting TS-U information processing and flow control. 
The solution supports system-high operation with single or 
multiple channels as well as certified MLS operation for military 
users who do not need MLS or only want a path to MLS in the 
future. The fundamental building block of this element is the 
processor board which is one of the key building blocks of the 
system and provides mandatory access control along with other 
security and information flow policy enforcement. As shown in 
Figure 1 below, the component is a MILS based implementation 
using a separation kernel to provide the separation policy 
enforcement. Independent of that, the Filter Engine adds another 
layer to the composable security policy enforcement providing the 
cross domain filtering. Finally, a labeler and label checking 
function (shown as the purple box with an “L”) provides the 
ability to bind labels to information packets within the system or 
check labels of packets. This module works synergistically with 
the End Cryptographic Unit (ECU) and the Multi-Channel MLS 
Mission/Debriefing Room Cross Domain Guard (MMMDR-
CDG) to provide appropriate information flow policy enforcement 
at the system level. The enclave applications represent a range of 
options from processing of participant information from the host 
platform to execution of weapon or threat simulations. The Filter 
Engine enables information flow across the domains such as 
command/control, Built-In Test (BIT)/Status, Real-Time Kill 
Notification (RTKN), etc. One additional key aspect of this 
implementation is that all of the enclaves, as well as the guarding 
rules, are configurable in conjunction with the setup of the ECU.
This benefits the user by providing a layer of flexibility that 
allows the same hardware and core software to support a wide 
range of both participant platforms as well as I/O interfaces which 
lowers total lifecycle cost. Each of the external interfaces is 
assigned to a partition (security level) based on the configuration. 
All of this capability is contained in a 1.5”x 3.5” x 6.4” package, 
making it easy to embed in a wide range of platform level 
packages, thus demonstrating that MLS can be packaged in a 
constrained form factor.

Figure 1: PIM Architecture

4.1.2 Element 2: Multi-Channel MLS NSA Type 1 
End Cryptographic Unit (ECU) 
The ECU is a MILS-based multi-channel MLS encryption unit 
that abstracts the encryption from the datalink. This provides 
datalink-agnostic encryption at the IP networking layer. It 
operates much like an IP router. It also provides data-at-rest 
encryption for on board storage of mission data in support of post 
mission processing. In addition, the encryption unit also provides 
another layer of assurance for the labeling provided by the PIM by 
checking the labels for each channel against a pre-defined (at 
configuration time) table on a packet-by-packet basis. Thus, if an 
error occurs in the PIM, it will be detected at the ECU. The ECU 
supports single channel and multi-channel system-high operation 
with key agility along with the multi-channel MLS capability so 
customers can gradually transition to MLS if desired. The core of 
the ECU is the Janus encryption engine which is based on the 
Rockwell Collins Gemini Encryption Engine and the MILS 
certified AAMP7 hardware separation kernel processor. These 
two devices provide MILS based MLS encryption that has 
completed NSA Type 1 certification supporting simultaneous key 
handling of TS and below (TSAB) key material, as well as 
simultaneous encryption/decryption of multiple differing 
classification levels (one in each channel). Five Red side and 3 
Black side interfaces are included to support a variety of enclaves 
on the Red side and over the datalink, local encrypted storage on 
the Data Recorder Device (DRD), as well as a local wired 
connection for the Portable Test Set (PTS) or other wired test 
equipment on the Black side. All of this capability is contained in 
a 1.5” x 3.5” x 6.4” package which typically consumes 12W of 
power when using all channels. Figure 2 depicts the ECU 
architecture highlighting the MILS approach and layered 
architecture.

Figure 2: ECU Architecture

4.1.3 Element 3: High-Throughput, Mobile Ad-Hoc 
Networking (MANET) Data-Link (HT-DL)
The datalink network employs uplink, downlink, and peer-peer 
crosslink services with packet rates roughly 4 to 5 times greater 
than legacy pod-based range instrumentation. Relay routes are 
self-forming, out to 4 hops. Manual routing can also be managed
between user-selected nodes. Datalink range for a single-hop
route is 100 nmi air-air, and 130 nmi air-ground.
The datalink at 6.6 lbs. is miniaturized to roughly half the weight 
of existing equipment. The datalink is partitioned into a 
Transceiver Modem (TRM) module and a Power Amplifier (PA) 



module, measuring 6.6” and 11” in length, respectively, and each 
having a 3.5” x 1.4” cross section.
The datalink can be configured to support built-in Type 3 
encryption for sensitive but unclassified operations. Because the 
Type 1 encryption is provided external to the datalink, the system 
is more modular to enable alternate datalinks to be utilized for 
specific applications or for easy upgrade of datalink functionality 
without requiring recertification with the NSA.

4.1.4 Element 4: High Accuracy Time Space 
Position Information (HA-TSPI)
Although not a part of the security functionality or layering of 
security, the TSPI is a critical element of any test/training system. 
The information feeds testing exercises as well as on-board 
weapon and threat simulations. Much like the datalink, by 
isolating this function to an independent element, the modularity, 
and composability of the system is enhanced. The HA-TSPI 
leverages the Rockwell Collins high accuracy miniature Selective 
Availability Anti-Spoofing Module (SAASM) GPS and state-of-
the-art Inertial Measurement Unit (IMU) technology tightly 
coupled together to provide Real-Time Horizontal (x, y) and 
Vertical (z) position accuracy of 0.5 meters RMS, Real-Time 
Horizontal (x, y) and Vertical (z) velocity accuracy of 0.03 m/sec 
RMS, and Real-Time Attitude accuracy of 0.1 degrees RMS.

4.1.5 Element 5: User Interface (UI) with high 
capacity Data Recorder Device (UI-DRD)
The UI-DRD provides a modular UI which can support remote 
key loading and zeroization for encryption and GPS key material 
within the ECU and HA-TSPI as well as hosting a solid state 
storage media for mission data recording. The storage media is 
also able to store configuration data and files in addition to the 
over-the-air configuration option.

4.2 Ground-Based Elements
For the most part, all ground elements are 19” rack mounted units; 
however, significant module-level reuse is achieved based on the 
airborne elements.

4.2.1 Element 1: Multi-Channel MLS 
Mission/Debriefing Room Cross Domain Guard 
(MMMDR-CDG) 
Based on the core processor and underlying Common Criteria 
(CC) EAL6+ RTOS and NSA evaluated CDG used in the PIM, 
the MMMDR-CDG includes a scalable, rack mounted version of 
the PIM which is configured to support the filtering of 
information for mission and exercise debriefing rooms. This 
filtering is currently based on classification level/caveat as well as 
mission number. Figure 3 below depicts the software architecture 
for the MMMDR-CDG. Significant commonality was achieved 
between the PIM and the MMMDR-CDG.
In order to ease system testing and debug, the PIM and MMMDR-
CDG can be directly connected thereby isolating the ECU’s and 
Datalinks from the infrastructure. In the same manner, the ECU’s 
can be directly connected on the Black side thereby isolating the 
datalinks from the infrastructure. The open and modular nature of 
this design approach enables much easier integration and testing.

Figure 3: MMMDR-CDG Architecture

4.2.2 Element 2: Multi-Channel MLS NSA Type 1 
End Cryptographic Unit (ECU) 
This is an identical module as used in the airborne application 
which has been rack mounted and connected between the Data 
Link Controller and the MMMDR-CDG. Generally, in a ground 
based application, this device can also be used to perform over-
the-air key distribution and rekey. It also supports two different 
modes: one mode where it can utilize a Crypto Ignition Key
(CIK), and another where it supports CIK-less operation for 
remote participant ECUs based on over-the-air authentication to a 
CIK-ignited ECU. Generally this module performs the 
communication to/from the MMMDR-CDG and the ground-based 
array of datalinks.

4.2.3 Element 3: Data Link Controller (DLC) 
The DLC is a commercial computing platform hosting software 
that enables management of both ground-based and participant 
package datalink modules, as well as datalink network, including 
information flow to and from ground and airborne nodes. Each 
DLC hosts an EAL4 certified OS and conforms to DISA Security 
Technical Implementation Guide (STIG) guidelines for cyber 
security. Thus they play a part in the security role of the layered 
security architecture.

4.2.4 Element 4: System Controller Workstation 
(SCW)
The SCW is a commercial computing platform hosting mission 
and participant management software, including configuration for 
ground and airborne elements, as well as key distribution. Each 
SCW hosts an EAL4 certified OS and conforms to DISA STIG 
guidelines for cyber security. Each is allocated a port on the 
MMMDR-CDG which filters range traffic to and from the SCW. 
The SCW generally operates in a “blind administration” mode 
(not typically accessing range participant traffic, but primarily 
focused on command and control functions that manage the range 
assets participating in exercises). The SCW also plays a part in the 
layered security architecture, as it is capable of managing 
encryption keys as well as performing other airborne/mobile and 
ground element configuration and control functions. 

4.2.5 Element 5: Mission/Debrief Room Workstation 
(MDRW)
The MDRW is a commercial computing platform hosting mission 
management and debrief application software. Each MDRW hosts 
an EAL4 certified OS and conforms to DISA STIG guidelines for 
cyber security. Each is allocated a port on the MMMDR-CDG 
which filters range traffic (live, recorded playback or a hybrid).
The MDRW also benefited from reuse of the functionality from
the SCW which enabled cost and schedule efficiencies. The 



MDRW adds another independent layer of security to the system 
based on its isolation, independent configuration and management 
with respect to the other elements of the system.

4.2.6 Element 6: Portable Test Set (PTS) 
The PTS is essentially a man-portable miniature ground sub-
system capable of being carried around the range to support wired 
remote operations, as well as configuration, test, and debug of 
airborne equipment spread across the range locale. Each PTS 
includes a ruggedized laptop computer that hosts an EAL4 
certified OS and conforms to DISA STIG guidelines for cyber 
security. The PTS also leverages some common software from the 
SCW and MDRW providing a cost effective functional and 
security implementation. 

4.2.7 Element 7: Remote Ground System (RGS)
The RGS includes a datalink and an optional weather sensor, 
along with the ability to remotely power manage the RGS
elements. One or more RGS datalinks are used to provide area 
coverage (diversity) for the ground-based DLC (Data Link 
Controller). The weather sensor augments accuracy when 
operating an RGS in a GPS-denied mode. Although not a 
significant security element, the RGS does provide a critical 
function in the ability to expand the reach of the ground-based 
systems when needed.

4.2.8 Element 8: Range Gateways 
A variety of flexible computing and networking equipment and 
associated protocol translation and formatting software/firmware 
are also key elements of the range system to enable inter/intra-
range operability and bridging to legacy systems.

4.3 Bringing it all together 
As shown in the figures below, the various layers of security all 
work together to provide a cyber-hardened multi-level 
information processing, storage, transmission, and handling 
system for test and training/LVC applications. As previously 
stated, the system is unique in that it is one of the few systems in 
deployment that is leveraging the MILS principles across-the-
board to support trusted separation of multiple security levels, 
trusted labeling, trusted cross domain guarding both high-to-low 
and low-to-high, trusted encryption and decryption, and trusted 
routing. As stated, the system was designed to support both single 
channel and multi-channel system-high operation and key agility 
to enable customers to transition toward MLS over time if desired. 
In addition to being very modular with open standards based 
interfaces, the system is designed to be highly configurable such 
that the processing, labeling, storage, I/O, encryption, and
guarding elements are all boot-time configurable for the specific 
classification level or cross domain flow policy assigned to them.
Further, some of the configuration elements can be updated at 
run-time to address dynamic system reconfiguration requirements. 
All of these features and capabilities have been evaluated as part 
of the system accreditation and component certification efforts.
Figure 4 below depicts the context for a participant 
instrumentation package sub-system. The primary information 
sources are from the host participant interfaces and the Time, 
Space, Position information (TSPI) provided by the included 
TSPI module. These interfaces of the host platform and the TSPI 
module directly connect to the PIM. The PIM hosts mission or 
training applications in partitions along with the guard and 
health/control partition as detailed in Figure 1. Information from 
the host participant is passed through the PIM interface into a 

partition based on the classification level of the information. The 
information is then processed and, if necessary, it is passed to the 
filter engine within the PIM for cross domain transfer. Otherwise, 
the information flows in its classification level “swim lane” 
between the PIM and the ECU. The PIM and ECU have “swim 
lanes” dedicated to individual security enclaves which are directly 
connected between them. The ECU is further detailed in Figure 2.

Portable Test Set

DataLink
Instrumentation 

Package (IP)

ECUPIM

UI-DRD

TSPI

Host

Figure 4: Participant Sub-System
At the ECU interfaces additional checks are performed for 
information integrity before the payload is encrypted and then 
passed to the Black side of the ECU where it is routed to the 
appropriate external interface based on an IP address. The ECU 
essentially provides a low overhead IP routing function with NSA 
Type 1 encrypted payloads through IP/Ethernet interfaces on the 
Red and Black sides. This implementation provides a very low 
overhead approach which is quite beneficial for over-the-air 
communications, leaving much more bandwidth available for the 
data versus alternative approaches such as SSL, IPsec, or HAIPE. 
The Black side Ethernet connections support communication 
through the high throughput datalink as well as Black side 
recording. The data is passed to the recorder for Data-At-Rest 
(DAR) storage on the UI-DRD or to the HT-DL for Data-In-
Transit (DIT) communication with other participants in the 
network or the ground control sub-system(s). The Black side 
recorder DAR capability supports hosting encrypted applications 
and configuration information for the modules within the 
instrumentation package. 
Additionally, the data can be flowed to the PTS for testing and 
configuration or to a portable debrief station as necessary, through 
an available third Ethernet port.
Finally, the instrumentation package hosts a datalink which 
supports communication to/from other participants and any 
ground control systems. As discussed earlier, the datalink also has 
integrated Federal Information Processing System (FIPS) 140-2
certified (Type 3) encryption where sensitive but unclassified 
information is being communicated between participants and 
Type 1 encryption is not desired.
Figure 5 below depicts the context for a ground control sub-
system. The ground control system functions very similar to the 
participant instrumentation package sub-system. Communications 
with participants is performed via the datalink. 



ECU

Guard

DataLink

UI-DRDDDDDDDDDDRRDRRRDRDRD-DRDDRDDDDDDRDRDRRDDRR-DDR---DDDDR---DDDDRRR---DDDDDRRDDRDDDDDDDDRRDDDDDDDDDRRR
UI-DRD

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDRDRRRRR-DDDDR-DDDDDDDRRRRRRR-DDDDDDRRR--DDDRDDDRRDDDDDDDDDRDDDDDDRRDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
UI-DRD

Mission/Debrief Room
Mission/Debrief 

Rm(s)

SCW

Figure 5: Ground Control Sub-System (GCS)

The information flow on the ground sub-system from the datalink 
network side is as follows.
The RGS and DLC are utilized as part of the ground infrastructure 
to support a wide range of participants and datalinks 
communicating to multiple potential ground based entities across 
a very broad range. The datalink controller (DLC) fronts for one 
or more datalinks and routes encrypted data to/from the ECU via 
one of the Black side Ethernet interfaces. The ground ECU (being 
the same as the participant ECU) supports recording and playback 
of recorded information as well as encryption and decryption of 
application and configuration files for ground sub-system 
elements via the UI-DRD.
The “swim lanes” between the ground guarding function and the 
ECU are identical to that of the Instrumentation package. They are
allocated to individual security enclaves as required for the 
application of the day. Enclave switches support connectivity to 
as many MMMDR-CDGs as needed to support the number of 
mission and/or debrief rooms and associated SCWs and MRDWs.
If passed through the MMMDR-CDG, the information is 
processed by the label checking function and passed to the filter 
engine where the guard rules are applied to determine if the 
information is to be routed to the mission/debrief workstation. Of 
course, range level command and control information would be 
flowed to/from the SCW rather than the MDRW. 
Figure 6 below provides a context for the system in a typical test 
or training range application.  
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Figure 6: System Diagram for Typical Application
Figure 7 adds (to Figure 6) some key elements for a Live, Virtual, 
and Constructive (LVC) training application namely virtual 
participants, virtual Electronic Warfare (EW) elements, and 
constructive participants. In addition, supplemental weapon and 
threat simulations would be hosted at the appropriate 
classification levels within the various participant instrumentation 

packages. This may include hosting simulations at classification 
levels above that of the host platform.
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Figure 7: System Diagram for Typical LVC Training 
Application

5. SUMMARY
A layered approach to solving the MLS problems associated with 
modern test, training, and LVC issues has been described. This 
solution takes advantage of layering and abstraction with a focus 
on modularity and composability to enable cost effective 
implementation for a wide range of applications. The solution also 
takes advantage of several MILS building blocks to reduce 
Certification & Accreditation (C&A) cost, schedule, and risk.
And, the solution supports a range of other modes of operation as 
needed by users (e.g. system-high, MSL, MLS). Finally, the 
solution described is not simply a proposed concept but is 
founded on Technology Readiness Level (TRL) 6+ products and 
technologies that have completed certification and are finishing 
accreditation through deployment for both domestic and 
international applications to solve MLS test, training, and LVC 
challenges.
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ABSTRACT
Complexity, dynamism and overlays in networks and systems are 
some of the main challenges we face nowadays when reasoning 
on systems’ assurance and behavior. Security certification has 
shown to be a solid foundation to provide assurance and trust 
about system properties. This paper presents a certification 
framework for composite, layered and evolving systems, such as 
cloud systems or cyber physical systems. The framework's 
certification-based methodology defines a solid ground to provide 
security assurance aspects of these systems. The framework 
integrates two main domains of research: (i) certification, models 
and mechanisms (based on testing, monitoring, trusted computing, 
and hybrid evidences) for providing assurance of the system 
components and attesting properties of the composite systems; 
and (ii) software engineering, process, methodology and tools to 
enable developers engineer cloud applications with strong 
awareness and requirements on security assurance of underlying 
cloud platforms and services. 
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Assurance, Security, Multi-layer Certification, Engineering 
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1. INTRODUCTION
Most of the current trends and paradigms in computing systems 
(notably cyber-physical systems, Internet of Things or cloud 
computing) share a series of characteristics that greatly complicate 
the tasks of guaranteeing their behavior, especially in terms of 
security, dependability, privacy, etc. Among these characteristics, 
we highlight three essential ones: 

Dynamism. Systems are not static anymore. At design time, 
system engineers do not have all the information they would need 
to design systems that fulfill their requirements, especially the 
non-functional ones like security, dependability, performance, etc. 
Moreover, they have to design systems that have both adaptation 
capabilities (involving short term reaction to better fit the current 
context and the system state) and evolution capabilities (involving 
long term reactions to keep the system aligned to its design goals 
and the external situation). In this situation there is no permanent 
and complete system implementation that can be used to apply 
thorough and rigorous code reviewing, testing, formal analysis, 
and other techniques to verify (ensure its quality and correctness) 
and validate (ensure fulfillment of requirements) these systems as 
a whole. 

Composition: Most of the new computing paradigms and 
trends follow a component-based approach. Systems are created 
by integrating components both statically at development time and 
dynamically at runtime. These components are frequently coming 
from different providers, and sometimes remain under the control 
of such providers instead of the system owner. The evolution of 
these components is decoupled from the evolution of the systems 
in which they are used. Composition in these systems happens 
both vertically (between what we normally call layers) and 
horizontally (between components at the same layer). 

Complexity: We have already mentioned that systems are 
larger, include more functionalities, require more guarantees, are 
interconnected to other systems forming Systems-of-Systems, are 
in continuous evolution, etc. The combination of these 
characteristics results inevitably in levels of complexity scaling up 
quickly. 

Providing a practical approach to support assurance in complex, 
composite, layered and evolving systems requires the combination 
of different elements in a coherent and integrated way. In 
particular, a practical assurance approach for these types of 
systems requires at least mechanisms: (i) to provide static 
assurance based for the system components; (ii) to attest the 
dynamic state of system components (including the supporting 
hardware infrastructure); and (iii) to derive properties of the 
composite system based on the state and properties offered by 
components. In addition to these, we also believe that any 
successful approach must be complemented with engineering 
processes, methods and tools to support developers of such 
systems to take full advantage of the approach. 

Recent extensions and improvements to several existing 
technologies like certification, trusted computing, monitoring and 
reconfiguration provide a solid basis to develop an integrated 
layered assurance framework to support the assurance of complex, 
composite, layered and evolving systems in practice. In this paper, 
we present such approach, show how it is applied to cloud 
computing and discuss the challenges of future application to 
other types of systems, with a particular focus on cyber-physical 
systems. 

2. INTEGRATED CERTIFICATION-
BASED ASSURANCE FRAMEWORK 
A common approach in enhancing assurance and reducing risks in 
the light of such uncertainties is to rely on the certification of the 



different components and artifacts that constitute the potentially 
complex and fast changing nature of our target systems. 
Therefore, the main goal of the proposed approach is to develop 
an integrated framework of models, processes and tools 
supporting the certification-based assurance of security properties 
for layered computing infrastructures. 

Assurance of cloud-based applications and services allows service 
consumers and providers to ascertain that the service properties 
provided in the certificates guarantee continuous compliance with 
their own requirements [1][2][3]. This increases consumers’ and 
providers’ confidence that their required level of assurance is 
being kept, before becoming involved in service design, 
deployment, and access on cloud. 

With this purpose, the framework relies on multiple types of 
security evidences (e.g., testing, monitoring, trusted computing) 
used for certificate issuing, and includes relevant mechanisms for 
generating the evidence supporting a security property and for the 
secure communication of these evidences between different 
components within the certification infrastructure [2][3]. This 
evidence communication is supported by Trusted Computing 
(TC) [4] mechanisms providing means to establish integrity 
(authenticity) of evidence, and subsequently verify if the captor 
integrity holds (can be trusted). Whenever possible, evidence 
gathering is build upon existing standards and practices (e.g., 
interaction protocols, representation schemes etc.) regarding the 
provision of information for the assurance of security in clouds. 

Furthermore, the framework supports the generation of hybrid 
certificates based on the combination of different types of 
evidences, including testing and monitoring data, and trusted 
computing platform proofs [5][2]. Hence, it supports decision 
making in business and societal contexts, which, due to existing 
legislation, established societal and business practices or 
individual preferences, might require and accept evidence of 
specific degrees of formality regarding a security property of a 
cloud service before this service can be used. This leads to cover 
security properties to an unprecedented extent and increase the 
overall confidence in the use of cloud computing. 

To address the aforementioned security problems, several partners 
from European science and industry have joined efforts in the 
CUMULUS1 (Certification infrastrUcture for MUlti-Layer cloUd 
Services) research project to investigate how to improve 
assurance, security and trustworthiness of multi-layer cloud 
services facing end users. 

In its current implementation, the integrated framework allows 
service users, service providers and cloud suppliers to work 
together with certification authorities in order to use security 
certificates for deriving dynamic assurance evaluations in the 
ever-changing cloud environment. To achieve this, the proposed 
approach focuses on the following tasks: 

• Definition, development and realization of advanced models
for certification-based assurance of security properties based
on evidences drawn from service testing and operational
monitoring, as well as on trusted computing platform proofs.
This facilitates the task of how to address a layered assurance
framework given the complexity of interactions of cloud
services.

1 http://www.cumulus-project.eu 

• Development of an interoperable certification infrastructure
for generating, maintaining and using certificates according to
the different types of the certification models developed, so
that to make them available to cloud providers and cloud
customers.

• Development of an engineering process supporting the
development of (i) cloud services in a way that facilitate their
certification through a semi-automatic process and (ii)
applications taking advantage of those services.

• Evaluation of the certification framework to ensure its
technical soundness and industrial applicability, in particular
for SmartCities and eHealth domains.

• Delivery of an interoperable certification solution and
contribution to existing standards (e.g., interaction protocols,
representation schemes etc.) regarding the provision of
information for the assessment of security in clouds.

As a framework that aims to support the certification-based 
assurance of security properties in clouds at infrastructure, 
platform and software application layer services, the CUMULUS 
architecture is structured as an infrastructural overlay of the 
monitored payload system. The overlay is implemented by 
components, which provide the hooks to the monitored cloud 
system. Figure 1 shows the CUMULUS multi-layer certification-
based assurance and infrastructure high-level overview including 
several conceptual layers and artifacts: 

• Certification Aware Service/App Engineering Tools:
providing means for supporting the engineering of cloud
services and applications that can make use of the framework.
This is a tool capable of interacting with the Infrastructure,
and in particular with the different repositories, in order to
take advantage of Certified Services.

• Certification Infrastructure: producing test, monitoring and
trusted computing based multi-layer, incremental and hybrid
certificates. The Certification Manager will realize this by
making use of different Certification Models containing the
necessary requirements and guidance to support the
generation of certificates.

• Evidence Generation and Communication: for the provision of
the certification evidences, it is where the components
producing core test, monitoring and trusted computing based
evidences are deployed.

The multi-layer certification-based assurance starts from the 
physical platform’s Trusted Platform Module (TPM) [6] where 
platform integrity measurements are stored.  The physical 
platform assurance (TC assurance) provides the basic building 
block over which the compositional layered assurance of the 
higher levels of the cloud system is built upon. Each of the higher 
levels of a cloud system has it own certification-based assurance 
provided by test, motoring, TC or hybrid certification models, 
which provide an assurance building block for next (higher) level 
of the cloud system and corresponding certification models. 

3. CERTIFICATION-BASED ASSURANCE
BUILDING BLOCKS 
To achieve the proposed goals, namely providing means for 
evidence generation, communication and combination for 
assurance, we have developed different certification-based 
assurance building blocks [2][5][7]. These building blocks are 
based on testing, monitoring and trusted computing methods. 



Figure 1. CUMULUS multi-layer certification-based 
assurance 

By using testing mechanisms we can obtain static and dynamic 
evidences, however monitoring and trusted computing proofs 
(based on TPM) are clearly focused on collecting dynamic 
evidences. We make use of both, static and dynamic certificates, 
as well as TPM remote attestation as the elements for secure 
evidence communication. For each specific case a certification 
authority is responsible of the evidence combination and encodes 
the resulting properties in a certificate. It is important to notice 
that the combination is not automatic; it is the responsibility of an 
authority to perform it case by case. The Certification Authority 
analyses all involved components in the combination with their 
respective properties, and the resulting one from the combination 
is also particularly analyzed for it. This analysis can be done by 
different ways: checking the code, testing, monitoring, etc. The 
certification models are designed to allow the combination of 
different properties, making unnecessary the use of external rules 
to check the validity of the certificates. 

Test-based certificates rely upon the results that are extracted of 
executing tests on the targeted services/software [8][9] as well as 
on composite services [7]. The Certification Authority guides the 
tests according to the target of certification in order to know if the 
software holds a certain property. This kind of certificates can be 
based on static or dynamic proofs; the static tests are performed 
offline while the dynamic tests are executed once the software is 
in a production environment. Therefore, these certificates may 
include both dynamic and static evidences according to the kind 
of tests used to extract the proofs. Software testing is performed 
by testing agents/captors their main task consists of injecting the 
test cases and collecting the corresponding results to compose the 
evidences. Testing Captors implement functionalities for both 
static and dynamic collection of evidences and they can be 

running on the same system or in another external to the software 
we want to certify. 

Monitoring-based certificates are clearly focused on extracting 
dynamic evidences [10][11]; the monitoring operations are, by 
definition, continuous and they have to be performed once the 
software is deployed and accessible to user [12]. The proofs that 
will be included in such certificates can cover contextual 
conditions (e.g., co-tenant software, optimization strategies, 
network status...) that might not be possible to extract in a pre-
production environment. The entities responsible for the 
monitoring process are the monitoring agents/captors; they 
capture all events and check if these events are compliant with the 
assertion included in the certification model [10]. 

The third type of certificates is based on Trusted Computing 
mechanisms that are used to provide hardware-based support for 
securing computing platforms, allowing certification authorities to 
verify that only authorized code runs on a system [13][14]. A TC 
mechanism usually is implemented using a TPM chip, which is 
integrated into the hardware of a platform (such as a PC, a laptop, 
a PDA, a mobile phone). TPM can be accessed directly via TC 
commands or via higher layer application interfaces (the Trusted 
Software Stack, TSS). 

We consider two main scenarios for TC-based certification; in 
these scenarios the trusted computing mechanisms are used to 
protect both the integrity of the software and the underlying 
platform (including software and hardware) [14]. In the first 
scenario, the TC certification model is not used as an independent 
model but we make use of this building block to provide the trust 
that is needed for the validation of the Monitoring and Testing 
based certification. This means that the TC is not employed to 
directly certify a security property but instead used to increase the 
trust in other types of certifications. For instance, in a test-based 
certificate, it can be used to prove that the platform configuration 
at runtime is the same as the one used during testing in a pre-
production environment, or it can also be used to ensure that the 
agent or monitoring captors have not been modified, meaning that 
they are extracting the proofs correctly. In the second scenario, the 
TC certification model will be used as an independent model to 
certify either platforms or services that are running in distributed 
systems. We would like to remark that this second use case is a 
generalization of the first scenario in such a way that allows to 
protect the integrity of more heterogeneous platforms and 
services, instead of only the monitoring and testing agents 
involved in the other CUMULUS certificates. 

Each of the three types of certificates complies with the 
CUMULUS Meta-Model. This Meta-Model has a modular 
structure to represent: the property vocabulary, the certificate 
itself (including assertions, evidences, context...) and the 
certification model. 

The combination of different evidences, to cover all components 
in a heterogeneous distributed system, can be carried out by a 
certification authority easily since all types of certificates conform 
to the same Meta-Model. This common structure fosters the 
combination of different properties to compose new ones avoiding 
the use of external rules to check the validity of the certificates. In 
addition, the dynamic testing, monitoring and trusted computing 
techniques allow these certificates to provide dynamic assurance 
of the properties they contain. These certificates are able to transit 
from one state to another, in their lifecycle, based on the dynamic 
evidences; for example, a valid certificate can be revoked if the 
monitoring agent captures an incompatible event with the 
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included assert, or if the trusted computing mechanisms are no 
longer able to prove the integrity of the software and/or the 
underlying platform. 

4. ENGINEERING PROCESS
On the basis of the insights exposed, both the foundations and the 
powerful assurance artifacts sustaining the capabilities of this 
proposal, we need a solid platform ready to combine sources of 
security knowledge with the means to create assurance building 
blocks close to the end-users terms and requirements. Such 
complexity cannot be faced as a whole with a single threaded 
approach but instead it has to be addressed as a compositional set 
of engineering tools and activities that converge together into a 
coordinated and security-enriched process, giving solution to 
these multidisciplinary issues. 

This Service Engineering Process (SEP) [15] sets out different 
guidelines to drive all the activities during the complete lifecycle 
of service development. The most prominent virtues and features 
allow (i) to interact with the different security areas and experts to 
gather security knowledge into machine processable data; (ii) to 
express this information in form of security requirements close to 
customers, developers and cloud system engineers,(iii) to define 
adequate compositions of techniques, certified services and 
building blocks to provide validated assurance solutions for those 
requirements and (iv) to support the deployment, usage and 
integration of these security solutions into cloud services and 
applications. 

Figure 2. Integrated Engineering Process 

Therefore the main objective of the SEP is to support the 
development of services and applications compliant with 
predefined certification models, in order to flexibly integrate 
certified security properties along with the necessary security 
knowledge to assure the target systems. Figure 2 shows the big 
picture of the Engineering workflow, defining several layers of 
abstraction (horizontal) and different elements at same level 
(vertical). Following, we use this figure as a basis for a brief 
description of the SEP and its main activities. 

As we have stated, the SEP requires a very thoughtful approach to 
the multiple activities involved in the assurance methodology. 
Therefore a hierarchical strategy has been defined based on 
previous research and use cases experiences [16][17] defining 
three abstraction layers, each one composed of different artifacts: 

• Conceptual: The top layer of the process stack lays down the
common modeling language to express security knowledge,
along with a collection of OCL rules [18] to validate the usage
of the language. On the other hand, the certification
metamodel and their schematics are conceptually described at
this level.

• Security Knowledge: The middle layer uses the concepts of
the abstract layer to express the knowledge and experience of
security experts into libraries and to elaborate certification
models aiming the production of certified services for cloud
applications. Both artifacts operate across the Service
Assurance Profiles explained later below. The actions of this
layer are intended not only to help cloud app developers to
integrate security knowledge by design, but also to make the
system a better candidate for certification-based assurance.

• Assurance: The bottom layer reflects the final stage of the
SEP, where all the security libraries and their solutions are
used to transform or reengineer legacy cloud applications into
certification-aware systems. This stage implies several
transformations based on the security knowledge, and the
resulting application will be able to interact with the
CUMULUS platform deployed in the cloud infrastructure in
order to retrieve or reconfigure certified services. Those
services, as explained in the previous section, have been
created and accredited by certification authorities, which
guarantee the chain of trust.

The layered approach of SEP requires several modules to interact 
at horizontal level in the same abstraction level but also defines 
the workflow to move and export resources and knowledge 
between different vertical layers. This significant amount of 
activities are not perceived by users because these processes are 
managed and performed by the different supporting tools of the 
SEP, depending on their goal and stage in the overall 
methodology. All of these together make an integrated framework 
that covers all expected functionalities, dividing the methodology 
in two different responsibility areas, the Modeling Framework and 
the Certification Infrastructure. Both connected by Service 
Assurance Profiles (SAP). 

The Modeling Framework has been implemented as a plugin of 
MagicDraw [19] to support all the designing and modeling 
activities required in the SEP along with the transformation and 
validation of the intermediate stages. The results of this software 
are the sum and composition of the following elements in the 
three levels of progression: 

• The Core Security Metamodel (CSM) and the OCL Validation
rules establish the proper and valid definition of UML
elements to represent the security knowledge, defining the
language, characteristics and mandatory attributes to describe
the information for further automatic machine processing.

• Domain Security Metamodels (DSM) and Security Patterns
[20] express security knowledge and solutions respectively to
fulfill security requirements using the previous language.
Security experts create those security libraries gathering
security knowledge in compliance with the environment of
their applications (company policies, standards, etc.) for a
particular domain and they include well-known solutions and
solvers in form of security patterns.

• Security Enhanced System Models are obtained once security
libraries have been applied to improve the cloud system
models with the security measures and solutions, fulfilling the
security requirements of the system by means of certification
requirements and claiming remote certified services from the
CUMULUS platform.

With respect to the certification assurance operations, an 
interoperable Certification Infrastructure for generating, 
maintaining and using certificates according to the different types 
of certification models have been described in Section 3. To 
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achieve this goal the SEP requires a deployed CUMULUS 
platform in the cloud infrastructure allowing the interaction with 
CUMULUS-aware systems to offer and respond to service request 
by the CUMULUS enhanced systems. 

The SAPs are auxiliary artifacts designed to establish the 
anchorage point between the two categories of security knowledge 
feeding the engineering process. SAPs aim to link specific details 
of certification requirements included in the security libraries, 
with the wide spectrum of certification mechanisms and certified 
services, most of these with similar goals, certification models, 
evidences or assurance goals, registered by different certification 
authorities. Therefore, SAPs have been created to introduce a 
discrimination of the expected security necessities and 
preferences, as security experts have the freedom to select the 
most proper assurance approaches and entities for their security 
solutions, based on reliability, trustworthiness and efficiency 
parameters these experienced users have obtained. 

5. OUTLOOK AND FUTURE WORK
Cyber Physical Systems (CPSs) – systems created as a federation 
of smart, cooperative, sensing devices – are starting to play an 
important role in the everyday life of citizens, connected both to 
ICT systems and to the physical world. While the notion of 
sensors gathering data is not new, the sheer amount of new 
devices, the amount of data they can now gather, their data 
processing capabilities and the fact that they are all becoming 
connected to the Internet of Things, enables exciting, new 
services. The components of a CPS, whether ICT or non-ICT 
ones, may operate under distributed ownership and control, and 
within uncontrolled and unprotected physical environments, 
characterized by changing operational conditions and constraints 
(e.g., changing temperatures, physical damage, changes to power 
supply etc.). They may also operate within the remit of different 
and not always harmonized jurisdictions and transfer data across 
them. Furthermore, the ICT components of CPSs may have 
diverse computational features and roles. As a consequence of 
these factors, CPSs may often: 

• Be vulnerable to security attacks and adverse operating
context conditions that can compromise the availability and
security of some of their components (e.g., local sensors,
network components, application level components etc.);

• Generate, make use of and inter-relate massive personal data
in ways that can potentially breach legal and privacy
requirements;

• Experience frequent and unpredicted changes in the
components and infrastructures that they rely on, which can
compromise the security, resilience and availability of their
operations and/or the service(s) that they offer.

Preserving quality, security and privacy (QSP) properties in CPSs 
under the above circumstances is a particularly challenging 
scientific and engineering problem. Hence, engineering CPSs in 
ways that can simultaneously guarantee all QSP properties of 
interest becomes a challenging problem requiring an integrated 
CPS design, development, monitoring, and adaptation approach.  

A CPS engineering approach needs also to be aware of and 
support effectively the composition of software and physical 
components. This composition is inherently different from 
traditional software-based/service-based systems compositions. 
This is because software centric approaches to composition (e.g., 
software service/components orchestration workflows) are often 
not appropriate for CPS systems or at least the physical layer of 

their implementation stack due to their intrinsic complexity that 
often cannot be supported in the case of embedded systems.  

An assurance-oriented engineering approach like the one 
presented in this paper, that could be applied to the development 
of CPS would clearly represent an important advance. Based on 
the current results obtained from the application of our approach 
to cloud systems, and its capacity to solve several of the problems 
we have just mentioned, we have started to develop extensions 
and adaptations to deal with the engineering of CPS. In particular, 
we have already extended the concept of security pattern to be 
able to represent solutions for CPS [21]. Ongoing work focuses on 
the representation of the dual nature of CPS by using layers that 
allow us to provide different engineering views for the physical 
and cyber layers of a CPS while maintaining their interrelations. 

6. CONCLUSIONS
We have presented a layered assurance framework for 
certification of security properties of complex, layered and 
dynamically evolving systems, such as Cloud-based systems. The 
framework's certification-based assurance methodology provides 
a solid ground to manage security aspects of these systems. The 
cornerstones of the framework are the certification models (based 
on testing, monitoring, TC, and hybrid evidences) which drive 
certificates lifecycle, and the evidence gathering and composition 
for certification.  

The framework provides to certification authorities a 
comprehensive tool set to enable effective cloud certification on a 
number of relevant and important security properties; and to 
Cloud app developers a comprehensive methodology and tools to 
engineer cloud applications with strong awareness and 
requirements specification on security assurance of underlying 
cloud platforms and services.  

The security engineering methodology provides not only a source 
of specialized structured security knowledge for system 
engineering, but also compliance to specific certification models 
used to certify systems’ properties. Thus, following the 
engineering process, a system designer will not only embed 
system's security aspects by design, but will also embed modular 
security and assurance of system's components for more effective 
system certification. 

Cyber-physical systems with their complex and composite nature 
can well leverage on the framework's certification models, 
mechanisms and methodology to successfully handle security 
assurance of their (network of) interactive elements. The 
framework's certification-based assurance is envisaged to provide 
an important foundation towards a more comprehensive cyber 
security framework. 
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ABSTRACT
A layered assurance argument requires a mapping of lower level 
security mechanisms, and their corresponding policies, into the 
support for higher level policies. This WIP presents a security 
policy for security tagged architectures and highlights key features 
that need to be addressed in a lauered assurance framework.  

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access 
control, information flow control.

General Terms
Experimentation, Security, Verification.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
A layered assurance argument requires a mapping of lower

level security mechanisms, and their corresponding policies, into 
the support for higher level policies. This work in progress (WIP) 
presentation discusses current research focused on simplifying 
that mapping process.

The project discussed in this WIP uses a proposed hardware-
based security tagged architecture (STA) as the foundation for 
operating system security services. The intent of the STA is to 
provide mechanisms to enable the operating system to provide 
services for application level security policies. As is true with 
many lower level mechanisms, there is not a direct mapping to the 
higher level security policies, and there are ways to misuse the 
mechanism.

In the STA, a security tag is associated with each 32-bit word 
of memory and each memory register. The hardware-based tag 
checking and propagation controls access and information flows 
in the system. This protection includes stack protection, user 
isolation and enforcement of least privilege. Individual modules 

of the embedded OS are classified into different security levels, 
which are stored in the security tag and supported by the STA 
hardware, and software-level tag and user management modules. 

Hardware-based tagging can be used to check for memory 
type mismatches, to compare security levels of tags, control 
information flow, etc. Because hardware-based tagging is based 
on a defined hierarchy of security labels, and is only aware of the 
security tags and associated domains, not all security policies can 
be directly enforced by the STA. To make the tagging system 
working properly, and to support a wider range of security 
policies, software level tagging is needed to initialize the tagging 
system and help deal with some special conditions on tag 
checking and propagation. 

Proofs of the correctness of the tagging rules and 
implementation at the hardware level indicate proper tag 
propagations and correct behaviors of the STA. These proofs can 
then be used to easily validate some higher level security policies. 
However, because of the existence of complex tag checking and 
propagation rules implemented at the software level, which can 
alter information flows in the system, the verification and 
validation of rules that enforce more complex security policies are 
more complicated.  

To simplify the verification of these more complex policies 
we are classifying the verification issues and policy concerns into 
sets that satisfy specific characteristics. These characteristics 
apply to system configurations, properties of system modules and 
other implementation issues. If a specific system is shown to 
satisfy these characteristics, then we can use the hardware proofs 
to verify the preservation of the higher level security policies. To 
ensure that all of the higher level policies are correctly 
implemented, the characteristics defining specific system 
configurations and issues that may cause violations of the policies 
need to be identified and corresponding verifications have to be 
conducted. 

In this WIP presentation, we will discuss the STA security policy, 
highlighting key features that can generate problems in a layered 
assurance framework. We then discuss the configuration, 
mechanisms, and verifications that are needed to provide the 
assurance that the higher level policy is correctly implemented. 
Although we use an STA, we believe the techniques we discuss 
are generalizable to a wider range of systems.. 
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In recent decades, there have been numerous attacks on
Cyber-Physical Systems (CPS) that are part of the critical
infrastructure. CPS components have many vulnerabilities
with the ability to bring down systems in their entirety. This
has made institutions and people realize the importance of
CPS security which was absent when the systems were ini-
tially built. In the past decade there are several examples
that demonstrate the vulnerabilities that exist in the current
system. These vulnerabilities can be devastating if a ter-
rorist attacks and brings down our critical infrastructures.
After the discovery of the Stuxnet attack based on software
subversion malware, several PLC producing companies are
working towards making the PLC secure, whereas before,
security of PLCs received little attention. Such attacks also
make clear that the real time operating systems that are
used are vulnerable to exploits. The adoption of commer-
cial software, firmware, and hardware as the CPS platform
has led to vulnerabilities of the commercial environment.
We need to deal with these systems in a different manner,
i.e., we need to develop highly secure critical infrastructure
systems with existing features. The present systems are sus-
ceptible to subversion, illustrated by Stuxnet, as they are not
of high assurance. To address subversion we need verifiable
protection which is systematically codified, such as done by
the TCSEC and TNI. It is important to note that a system
is secure only with respect to a policy. The present systems
often have no explicit security policy, and in particular there
is no MAC policy implement in a trusted computing base,
which is essential for any system to deal with subversion.
To provide this we propose to integrate an existing security
kernel and associated hardware into a reusable Trusted De-
vice, reminiscent of a reusable commercial computer moth-
erboard as the CPS platform. There are three components
to cyber physical system: the PLC, HMI and software de-
velopment environment. The PLC has several basic stages
of operation also as called as scan cycle. The scan cycle is
essential for controlling the steps in execution on the PLC.
We should note that the steps each perform a different task
that is important for the PLC to work. The security rela-

tionship of the steps can be represented as a MAC integrity
policy. And they can be implemented in different process so
the MAC policy can be implemented with integrity access
classes for different subjects. These should be communicat-
ing processes, and there must be synchronization between
them. We suggest using assured pipelines so that each pro-
cess communicates with just those processes it needs. An as-
sured pipeline limits the communication within a sequence
of steps so that each process only communicates with an
adjacent process in the scan cycle. Any other process out-
side the pipeline cannot interfere with data in the pipeline.
Constrained by the MAC integrity policy the interrelated
processes maintain the secure decorum between the differ-
ent processes. These use the divide and conquer technique to
build a secure application. Introducing the reusable Trusted
Device as the platform at the core of the architecture makes
it significantly agnostic to the specific application context,
while retaining its properties for substantial reduction in
time and resources.

This is only the one aspect of the cyber-physical systems.
There are many security facets of this problem. In order to
address them we need to have more researches in this field.
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ABSTRACT
There is often a disconnect between the high level abstract 
security policies and the actual policy implemented by lower level 
mechanisms. However a layered assurance argument requires a 
mapping of lower level security mechanisms, and their 
corresponding policies, into the support for higher level policies.
This WIP presents work towards resolving that mapping between 
high level security policies and actual implementations within a 
network configuration.  

Categories and Subject Descriptors
C.2 [Computer-Communication Networks] General – security and
protection

D.4.6 [Operating Systems]: Security and Protection – access 
control, information flow control.

General Terms
Experimentation, Security, Verification.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
This work in progress (WIP) presentation discusses current

work to define a mapping between high level security policies and 
actual implementations within a network configuration.  

At the most abstract level, a classic security policy specifies 
events that may occur and the security actions that happen for 
those events. An event is specified in terms of a subject, object 
and action. The subject is the active entity in the system 
attempting to perform some action on a passive entity, the object. 
At the highest levels of abstractions, the subject is typically 
defined as a user, the object is some type of data resource and the 
action is a generic activity such as read, write, etc. Associated 
with each entity are a set of attributes, which could be as simple as 
a security classification, and as complex as characteristics of data 

releasability tags, location of the request, time, history of previous 
requests, source of the data, etc. The security mechanisms may 
allow the requested action, deny it, log the activity, modify the 
request, or trigger additional actions.

To complicate matters, a subject specified at the highest level 
of abstraction, may not have a direct corresponding entity in the
implementation. For example, a firewall in a network is 
configured with rules based on the contents of network packets, 
specifically packet headers. The firewall, one of the security 
mechanisms implementing the policy, is aware of things such as 
ip addresses, ports, and networks. It is not aware of specific users 
or objects in the system.

Verification efforts require a formal way to specify the 
entities within each security mechanism of the system, the entities 
within the security policies, and a mapping between them. 
Currently, this is typically done on a per-system, ad-hoc basis. 
This WIP discusses a project to formalize this mapping, providing 
a theoretical basis for the mapping that ensures correctness and 
completeness. The theorems of the mapping can be instantiated 
for specific systems and reused -- simplifying the overall 
verification effort.

This WIP discusses progress made in the development of this 
formalism, and current issues.
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ABSTRACT
The aim of our project is to gather empirical evidence on
the security impacts of language and Application Program
Interface (API) design. Ultimately, the cause of cybersecu-
rity failures is flawed code written by programmers. Our
philosophy is that programmers are people, and we need to
study how to design APIs which are usable by programmers
— APIs with which it is easy to develop secure code.

It is well-known that API design can have a large impact
on security, and this barrier is difficult, if not impossible, to
overcome by training alone. For example, buffer overflows
were understood and documented as early as 1972, but are
still one of the most common vulnerabilities. Furthermore,
APIs are typically designed by a small number of experi-
enced developers but have an extremely long life-span, and
therefore the impact of poor API design can have far reach-
ing consequences.

There has been some previous work on the usability of
APIs, but so far this work has restricted itself to other soft-
ware quality attributes, such as learnability. A relevant ex-
ample of such work is Stylos et al [1], which studied the
relative usability of different styles of constructing objects.
The results were rather dismaying from a security point-of-
view: programmers strongly preferred a style which would
cause contructed objects to be mutable, whereas the secu-
rity community generally considers mutability a source of
security problems. One of our tasks will be to investigate
and measure this apparent trade-off between traditional us-
ability and security.

We should make clear that we are not targeting just APIs
with security-relevant functionality, such as libraries that
support authentication. Ordinary libraries — including but
not limited to string, file, and XML processing and net-
work libraries — pose more interesting problems because

∗This work is partially supported by NSF award 1423054
†email: {samweber|rcs|dmk}@cert.org, fjshull@sei.cmu.edu
‡email: {bam|mcoblenz}@cs.cmu.com

programmers using them are not actively considering secu-
rity and are consequently more likely to be susceptible to
the misconceptions, unstated assumptions, and flawed us-
age patterns that underlie most vulnerabilities.

API design is a broad domain to research, so we are focus-
ing on a few select areas that research has shown to have se-
curity implications such as concurrency and design patterns
like immutability. We expect that usability and security will
be aligned with respect to concurrency APIs (that is, more
usable APIs will also be more secure), but as mentioned
above, they will be opposed with respect to mutability. Our
research methodology relies on a mix of corpus review (to
understand how these issues are dealt with in contemporary
code bases) and studies with human subjects under more
controlled conditions.

We are extracting typical design patterns by which devel-
opment teams deal with concurrency API calls by analyzing
code repositories that use concurrency. We are augment-
ing these corpus reviews with field observations and surveys
using contextual inquiries of professionals, and surveying al-
ternate concurrency standards and approaches. From this
information, we will identify specific hypotheses about the
usability differences between alternate styles of presenting
concurrency to programmers. This will be used to design
and conduct user-studies.

We will use two different populations, students and ex-
perts, with a balanced within-subjects design to control for
individual programmer differences as well as ordering effects.
The evaluation will include quantitative measures (such as
number of errors, code length, completion time) and quali-
tative measures (such as rationales for design decisions) col-
lected through a think-aloud protocol and questionnaires.
This task will produce data as to the types and frequency
of errors that programmers can be expected to make using
alternate concurrency APIs.

In parallel, we will also conduct programmer studies of
the impact of mutability on both security and usability.

The ultimate aim of our project is to produce experimentally-
validated and specific guidance to API designers on how to
create systems which are less prone to security vulnerabili-
ties.
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