Engineering a Safer (and More Secure) World

Nancy Leveson
Col. Bill Young
MIT
Safety vs. Security

• Safety: prevent losses due to unintentional actions by benevolent actors
• Security: prevent losses due to intentional actions by malevolent actors
• Key difference is intent
• Common goal: loss prevention
 – Ensure that critical functions and services provided by networks and services are maintained
 – An integrated approach to safety and security is possible
 – New paradigm for safety will work for security too
Traditional Approach to Safety

• Traditionally view safety as a failure problem
 – Chain of directly related failure events leads to loss

• Forms the basis for most safety engineering and reliability engineering analysis:

 e.g., FTA, PRA, FMECA, Event Trees, etc.

 and design (Establish barriers between events or try to prevent individual component failures):

 e.g., redundancy, overdesign, safety margins, interlocks, fail-safe design,
Domino “Chain of events” Model

Cargo door fails → Floor collapses → Hydraulics fail → Airplane crashes

DC-10:

Failure Event-Based

© Copyright Nancy Leveson, July 2013
Accident with No Component Failures
Types of Accidents

- Component Failure Accidents
 - Single or multiple component failures
 - Usually assume random failure

- Component Interaction Accidents
 - Arise in interactions among components
 - Related to interactive complexity and tight coupling
 - Exacerbated by introduction of computers and software but problem is system design errors
Interactive Complexity

- Arises in interactions among system components
 - Software allows us to build highly coupled and interactively complex systems
 - Coupling causes interdependence
 - Increases number of interfaces and potential interactions

- Too complex to anticipate all potential interactions

- May lead to accidents even when no individual component failures
Confusing Safety and Reliability

Not safety related

Scenarios involving failures

Unsafe scenarios

Not reliability related

© Copyright Nancy Leveson, July 2013
It's only a random failure, sir! It will never happen again.
Safety ≠ Reliability

- Safety and reliability are NOT the same
 - Sometimes increasing one can even decrease the other.
 - Making all the components highly reliable will have no impact on component interaction accidents.

- For relatively simple, electro-mechanical systems with primarily component failure accidents, reliability engineering can increase safety.

- But this is untrue for complex, software-intensive socio-technical systems.
Software-Related Accidents

• Are usually caused by flawed requirements
 – Incomplete or wrong assumptions about operation of controlled system or required operation of computer
 – Unhandled controlled-system states and environmental conditions

• Merely trying to get the software “correct” or to make it reliable will not make it safer under these conditions.
Software-Related Accidents (2)

• Software may be highly reliable and “correct” and still be unsafe:
 – Correctly implements requirements but specified behavior unsafe from a system perspective.
 – Requirements do not specify some particular behavior required for system safety (incomplete)
 – Software has unintended (and unsafe) behavior beyond what is specified in requirements.
Limitations of Traditional Approach (1)

• Systems are becoming more complex
 – Accidents often result from interactions among components, not just component failures
 – Too complex to anticipate all potential interactions
 • By designers
 • By operators
 – Indirect and non-linear interactions
Limitations of Traditional Approach (2)

• Omits or oversimplifies important factors
 – Component interaction accidents (vs. component failure accidents)
 – Indirect or non-linear interactions and complexity
 – Systemic factors in accidents
 – Human “errors”
 – System design errors (including software errors)
 – Evolution and change over time
So What Do We Need to Do?
“Engineering a Safer World”

• Expand our accident causation models
• Create new, more powerful and inclusive hazard analysis techniques
• Use new system design techniques
 – Safety-driven design
 – Improved system engineering
• Improve accident analysis and learning from events
• Improve control of safety during operations
• Improve management decision-making and safety culture
Nancy Leveson, *Engineering a Safer World: Systems Thinking Applied to Safety*

MIT Press, January 2012
STAMP
(System-Theoretic Accident Model and Processes)

• A new, more powerful accident causation model
• Based on systems theory, not reliability theory
• Treats accidents as a dynamic control problem (vs. a failure problem)
• Includes
 – Entire socio-technical system (not just technical part)
 – Component interaction accidents
 – Software and system design errors
 – Human errors
Introduction to Systems Theory

Ways to cope with complexity

1. Analytic Reduction
2. Statistics
Analytic Reduction

• Divide system into distinct parts for analysis

 Physical aspects ➔ Separate physical components

 Behavior ➔ Events over time

• Examine parts separately

• Assumes such separation possible:

 1. The division into parts will not distort the phenomenon
 – Each component or subsystem operates independently
 – Analysis results not distorted when consider components separately
2. Components act the same when examined singly as when playing their part in the whole
 – Events not subject to feedback loops and non-linear interactions

3. Principles governing the assembling of components into the whole are themselves straightforward
 – Interactions among subsystems simple enough that can be considered separate from behavior of subsystems themselves
 – Precise nature of interactions is known
 – Interactions can be examined pairwise

Called **Organized Simplicity**
Statistics

- Treat system as a structureless mass with interchangeable parts
- Use Law of Large Numbers to describe behavior in terms of averages
- Assumes components are sufficiently regular and random in their behavior that they can be studied statistically

Called **Unorganized Complexity**
Complex, Software-Intensive Systems

• Too complex for complete analysis
 – Separation into (interacting) subsystems distorts the results
 – The most important properties are emergent

• Too organized for statistics
 – Too much underlying structure that distorts the statistics

Called Organized Complexity
Systems Theory

• Developed for biology (von Bertalanffy) and engineering (Norbert Weiner)

• Basis of system engineering and system safety
 – ICBM systems of the 1950s
 – Developed to handle systems with “organized complexity”
Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken separately
 – Some properties can only be treated adequately in their entirety, taking into account all social and technical aspects
 – These properties derive from relationships among the parts of the system
 How they interact and fit together

• Two pairs of ideas
 1. Hierarchy and emergence
 2. Communication and control
Hierarchy and Emergence

• Complex systems can be modeled as a hierarchy of organizational levels
 – Each level more complex than one below
 – Levels characterized by emergent properties
 • Irreducible
 • Represent constraints on the degree of freedom of components at lower level

• Safety is an emergent system property
 – It is NOT a component property
 – It can only be analyzed in the context of the whole

• Security is another emergent property
Example Safety Control Structure
Example High-Level Control Structure for ITP
Communication and Control

• Hierarchies characterized by control processes working at the interfaces between levels

• A control action imposes constraints upon the activity at a lower level of the hierarchy

• Systems are viewed as interrelated components kept in a state of dynamic equilibrium by feedback loops of information and control

• Control in open systems implies need for communication
Control processes operate between levels of hierarchy

Control Actions

Actuator

Goal condition
Controller

Model condition

Sensor

Observability condition

Feedback

Controlled Process

Action condition
Role of Process Models in Control

- Controllers use a **process model** to determine control actions.
- Accidents often occur when the process model is incorrect.
- Four types of hazardous control actions:
 - Control commands required for safety are not given.
 - Unsafe ones are given.
 - Potentially safe commands given too early, too late.
 - Control stops too soon or applied too long.

(Leveson, 2003); (Leveson, 2011)
STAMP: Safety as a Control Problem

- Safety is an emergent property that arises when system components interact with each other within a larger environment
 - A set of constraints related to behavior of system components (physical, human, social) enforces that property
 - Accidents occur when interactions violate those constraints (a lack of appropriate constraints on the interactions)

- Goal is to control the behavior of the components and systems as a whole to ensure safety constraints are enforced in the operating system.
STAMP (2)

• Accidents involve a complex, dynamic “process”
 – Not simply chains of failure events
 – Arise in interactions among humans, machines and the environment

• Treat safety as a dynamic control problem rather than a reliability problem
Examples of Safety Constraints

• Power must never be on when access door open
• Two aircraft must not violate minimum separation
• Aircraft must maintain sufficient lift
• Public health system must prevent exposure of public to contaminated water and food products
Safety as a Dynamic Control Problem

• Examples
 – O-ring did not control propellant gas release by sealing gap in field joint of Challenger Space Shuttle
 – Software did not adequately control descent speed of Mars Polar Lander
 – At Texas City, did not control the level of liquids in the ISOM tower
 – In Deepwater Horizon, did not control the pressure in the well
 – Financial system did not adequately control the use of financial instruments
Safety as a Dynamic Control Problem (2)

• Events are the result of the inadequate control
 – Result from lack of enforcement of safety constraints in system design and operations

• Losses (accidents) are the result of complex dynamic processes where the safety constraints are not enforced by the safety control structure

• A change in emphasis:
 “prevent failures”
 ↓
 “enforce safety constraints on system behavior”
Safety as a Control Problem

• Identify the safety constraints

• Design a control structure to enforce constraints on system behavior and adaptation
 – Physical design (inherent safety)
 – Operations
 – Management
 – Social interactions and culture
Processes

System Engineering (e.g., Specification, Safety-Guided Design, Design Principles)
Risk Management
Operations
Management Principles/Organizational Design
Regulation

Tools
Accident/Event Analysis
CAST
Hazard Analysis
STPA
Specification Tools
SpecTRM
Organizational/Cultural Risk Analysis
Identifying Leading Indicators
Security Analysis

STAMP: Theoretical Causality Model
STPA

- Integrated into system engineering
 - Can be used from beginning of project
 - Safety-guided design

- Works on social and organizational aspects of systems

- Generates system and component safety requirements (constraints)

- Identifies flaws in system design and scenarios leading to violation of a safety requirement (i.e., a hazard)
Steps in STPA

• Identify accidents
• Identify hazards
• Construct functional control structure
• Identify unsafe control actions
• Define system and component safety requirements
• Identify causal scenarios for unsafe control actions
• Augment system and component safety requirements
Inadequate Control Algorithm
(Flaws in creation, process changes, incorrect modification or adaptation)

Controller

Process Model
(inconsistent, incomplete, or incorrect)

Controller

Sensor

Inadequate operation

Inadequate or missing feedback

Feedback Delays

Incorrect or no information provided
Measurement inaccuracies
Feedback delays

Controller

Process output contributes to system hazard

Conflicting control actions

Component failures

Change over time

Unidentified or out-of-range disturbance

Controller

Process input missing or wrong

Controller

Inappropriate, ineffective, or missing control action

Inadequate operation

Delayed operation

Actuator

Missing or wrong communication with another controller

Controller

Unidentified or out-of-range disturbance

Controller

© Copyright Nancy Leveson, July 2013
Is it Practical?

• STPA has been or is being used in a large variety of industries
 – Spacecraft
 – Aircraft and Integrated Modular Avionics
 – Air Traffic Control
 – UAVs (RPAs)
 – Defense
 – Automobiles
 – Medical Devices
 – Chemical plants
 – Oil and Gas
 – Nuclear and Electrical Power
 – CO₂ Capture, Transport, and Storage
 – Etc.
Is it Practical? (2)

Social and Managerial

• Analysis of the management structure of the space shuttle program (post-Columbia)
• Risk management in the development of NASA’s new manned space program (Constellation)
• NASA Mission control — re-planning and changing mission control procedures safely
• Food safety
• Safety in pharmaceutical drug development
• Risk analysis of outpatient GI surgery at Beth Israel Deaconess Hospital
• Analysis and prevention of corporate fraud
• UAVs in civilian airspace
Does it Work?

- Most of these systems are very complex (e.g., the U.S. Missile Defense System)
- In all cases where a comparison was made:
 - STPA found the same hazard causes as the old methods
 - Plus it found more causes than traditional methods
 - Sometimes found accidents that had occurred that other methods missed
 - Cost was orders of magnitude less than the traditional hazard analysis methods
Event-based thinking

Systems Thinking

WYOUNG@MIT.EDU
© Copyright William Young, 2012
Integrated Approach to Safety and Security

• Both concerned with losses (intentional or unintentional)

• Starts with defining unacceptable losses
 - “What”: essential services to be secured
 - “What” used later to reason thoroughly about “how” best to guard against threats
 - Analysis moves from general to specific
 • Less likely to miss things
 • Easier to review
Strategy vs. Tactics

• Strategy vs. tactics
 – Cyber security often framed as battle between adversaries and defenders (tactics)
 – Requires correctly identifying attackers motives, capabilities, targeting

• Can reframe problem in terms of strategy
 – Identify and control system vulnerabilities (vs. reacting to potential threats)
 – Top-down vs. bottom-up tactics approach
 – Tactics tackled later
Top-Down Approach

• Starts with identifying losses and safety/security constraints

• Build functional control model
 – Controlling constraints whether safety or security
 – Includes physical, social, logical and information, operations, and management aspects

• Identify unsafe/unsecure control actions and causes for them
 – May have to add new causes, but rest of process is the same
Safety Control Structure Diagram for FMIS

Command Authority
- Exercise Results
- Readiness Status
- Wargame Results
 - Docwine
 - Engagement Criteria
 - Training
 - TTP
 - Workarounds

Early Warning System
- Status Request
- Engage Target
- Operational Mode Change
- Readiness State Change
- Weapons Free / Weapons Hold

Radar
- Tasking
- Readiness Mode Change
- Status Request
- Track Data

Fire Control
- Launch Report
- Status Report
- Heartbeat

Interceptor Simulator
- Abort
- Arm
- BIT Command
- Task Load
- Launch
- Operating Mode
- Power
- Safe
- Software Updates

Launcher
- Launch Position
- Slew Position
- Perform BIT
- BIT Results
- Launcher Position
- Task Cancellation

Launch Station
- Acknowledgements
- BIT Results
- Health & Status

Flight Computer
- Breakwires
- Safe & Arm Status
- Voltages
- BIT Info
- Safe & Arm Status

Interceptor H/W
- Arm
- Safe
- Ignite

© Copyright Nancy Leveson, July 2013
Example: Stuxnet

- **Loss**: damage to reactor (in this case centrifuges)
- **Hazard/Vulnerability**: Centrifuges are damaged by spinning too fast
- **Constraint**: Centrifuges must never spin above maximum speed
- **Hazardous control action**: Issuing *increase speed* command when already spinning at maximum speed
- **One potential cause**:
 - Incorrect process model: thinks spinning at less than maximum speed
 - Could be inadvertent or advertent
Evaluation

• Informal so far but with real red teams
 – Went through STPA-Sec steps
 – Found things they had not thought of before

• Formal experiment in Spring 2014
Summary

• Key question: How to control vulnerabilities, not how to avoid threats

• Starts with system vulnerabilities and moves down to identify threats (top-down systems engineering approach)

 vs.

 Starting with threats and moving up to vulnerabilities they might exploit to produce a loss (bottom-up approach)

• Elevates security problem from guarding network to higher-level problem of assuring overall function of enterprise.