
Proceedings

26th Annual Computer Security
Applications Conference

ACSAC 2010

Proceedings

26th Annual Computer Security
Applications Conference

Austin, Texas, USA
6–10 December 2010

Sponsored by
Applied Computer Security Associates

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York, New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright c© 2010 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously published
by ACM. If you have written a work that was previously published by ACM in any journal or conference
proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in
the ACM Digital Library, please inform permissions@acm.org, stating the title of the work, the author(s),
and where and when published.

ACM ISBN: 978-1-4503-0133-6

Editorial production by Christoph Schuba
Published by ACM, Inc. within the ACM International Conference Proceedings Series

Table of Contents

Message from the Conference Chair . ix
Message from the Program Chairs . x
Conference Committee . xi
ACSAC Steering Committee . xi
Program Committee . xii
External Review Committee . xiii
Additional Reviewers . xiii
Tutorial Reviewers . xiii
Message from the Sponsor . xiv
ACSA Members . xv

Social Networks

Detecting Spammers On Social Networks . 1
Gianluca Stringhini, Christopher Kruegel, Giovanni Vigna

Toward Worm Detection In Online Social Networks . 11
Wei Xu, Fangfang Zhang, Sencun Zhu

Who Is Tweeting On Twitter: Human, Bot, Or Cyborg? . 21
Zi Chu, Steven Gianvecchio, Haining Wang, Sushil Jajodia

Software Defenses

Cujo: Efficient Detection And Prevention Of Drive-by-Download Attacks . 31
Konrad Rieck, Tammo Krueger, Andreas Dewald

Fast and Practical Instruction-Set Randomization for Commodity Systems . 41
Georgios Portokalidis, Angelos D. Keromytis

G-free: Defeating Return-Oriented Programming through Gadget-less Binaries . 49
Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, Engin Kirda

Authentication

Towards Practical Anonymous Password Authentication . 59
Yanjiang Yang, Jianying Zhou, Jun Wen Wong, Feng Bao

Securing Interactive Sessions Using Mobile Device through Visual Channel and Visual Inspection 69
Chengfang Fang, Ee-Chien Chang

Exploring Usability Effects of Increasing Security in Click-based Graphical Passwords 79
Elizabeth Stobert, Alain Forget, Sonia Chiasson, Paul van Oorschot, Robert Biddle

v

Vulnerability Assessment of Embedded Devices

Security Analysis of a Fingerprint-protected USB Drive . 89
Benjamin Rodes, Xunhua Wang

A Quantitative Analysis of the Insecurity of Embedded Network Devices: Results of A Wide-area
Scan . 97
Ang Cui, Salvatore J. Stolfo

Multi-vendor Penetration Testing in the Advanced Metering Infrastructure . 107
Stephen McLaughlin, Dmitry Podkuiko, Sergei Miadzvezhanka, Adam Delozier, Patrick McDaniel

Classic Paper I

Network Intrusion Detection: Dead or Alive? . 117
Giovanni Vigna

Invited Essayist

Barriers to Science in Security . 127
Tom Longstaff, David Balenson, Mark Matties

Botnets

Friends of An Enemy: Identifying Local Members of Peer-to-Peer Botnets Using Mutual Contacts . . . 131
Baris Coskun, Sven Dietrich, Nasir Memon

The case for in-the-lab botnet experimentation: creating and Taking Down A 3000-node botnet 141
Joan Calvet, Carlton R. Davis, José M. Fernandez, Jean-Yves Marion, Pier-Luc St-Onge,
Wadie Guizani, Pierre-Marc Bureau, Anil Somayaji

Conficker and Beyond: A Large-Scale Empirical Study . 151
Seungwon Shin, Guofei Gu

Email, E-Commerce, and Web 2.0

Spam Mitigation using Spatio-Temporal Reputations from Blacklist History . 161
Andrew West, Adam J. Aviv, Jian Chang, Insup Lee

Breaking e-Banking Captchas . 171
Shujun Li, S. Amier Haider Shah, M. Asad Usman Khan, Syed Ali Khayam,
Ahmad-Reza Sadeghi, Roland Schmitz

Firm: Capability-based Inline Mediation Of Flash Behaviors . 181
Zhou Li, XiaoFeng Wang

vi

Hardware-Assisted Security

T-DRE: A Hardware Trusted Computing Base for Direct Recording Electronic Vote Machines 191
Roberto Gallo, Henrique Kawakami, Ricardo Dahab, Rafael Azavedo, Saulo Lima, Guido Araujo

Hardware Assistance for Trustworthy Systems Through 3-D Integration . 199
Jonathan Valamehr, Mohit Tiwari, Timothy Sherwood, Ryan Kastner, Ted Huffmire, Cynthia Irvine,
Timothy Levin

SCA-Resistant Embedded Processors – The Next Generation . 211
Stefan Tillich, Mario Kirschbaum, Alexander Szekely

Security Protocols and Portable Storage

Porscha: Policy Oriented Secure Content Handling in Android . 221
Machigar Ongtang, Kevin Butler, Patrick McDaniel

Kells: A Protection Framework for Portable Data . 231
Kevin R.B. Butler, Stephen E. McLaughlin, Patrick D. McDaniel

Keeping Data Secret under Full Compromise using Porter Devices . 241
Christina Pöpper, David Basin, Srdjan Čapkun, Cas Cremers

Model Checking and Vulnerability Analysis

Familiarity Breeds Contempt: The Honeymoon Effect And The Role Of Legacy Code In Zero-day
Vulnerabilities . 251
Sandy Clark, Stefan Frei, Matt Blaze, Jonathan Smith

Quantifying Information Leaks In Software . 261
Jonathan Heusser, Pasquale Malacaria

Analyzing and Improving Linux Kernel Memory Protection: A Model Checking Approach 271
Siarhei Liakh, Michael Grace, Xuxian Jiang

Classic Paper II

Back to Berferd . 281
William Cheswick

Intrusion Detection and Live Forensics

Comprehensive Shellcode Detection using Runtime Heuristics . 287
Michalis Polychronakis, Kostas G. Anagnostakis, Evangelos P. Markatos

Cross-Layer Comprehensive Intrusion Harm Analysis for Production Workload Server Systems 297
Shengzhi Zhang, Xiaoqi Jia, Peng Liu, Jiwu Jing

vii

Forenscope: A Framework For Live Forensics . 307
Ellick Chan, Shivaram Venkataraman, Francis David, Amey Chaugule, Roy Campbell

Distributed Systems and Operating Systems

A Multi-user Steganographic File System on Untrusted Shared Storage . 317
Jin Han, Meng Pan, Debin Gao, HweeHwa Pang

Heap Taichi: Exploiting Memory Allocation Granularity In Heap-Spraying Attacks 327
Yu Ding, Tao Wei, Tielei Wang, ZhenKai Liang, Wei Zou

SCOBA: Source Code Based Attestation On Custom Software . 337
Liang Gu, Yao Guo, Anbang Ruan, Qingni Shen, Hong Mei

Mobile and Wireless

Paranoid Android: Versatile Protection For Smartphones . 347
Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, Herbert Bos

Exploiting Smart-Phone USB Connectivity For Fun And Profit . 357
Zhaohui Wang, Angelos Stavrou

Defending DSSS-based Broadcast Communication against Insider Jammers via Delayed
Seed-Disclosure . 367
An Liu, Peng Ning, Huaiyu Dai, Yao Liu, Cliff Wang

Security Engineering and Management

Always Up-to-date – Scalable Offline Patching of VM Images in a Compute Cloud 377
Wu Zhou, Peng Ning, Xiaolan Zhang, Glenn Ammons, Ruowen Wang, Vasanth Bala

A Framework For Testing Hardware-Software Security Architectures . 387
Jeffrey S. Dwoskin, Mahadevan Gomathisankaran, Yu-Yuan Chen, Ruby B. Lee

Two methodologies for physical penetration testing using social engineering . 399
Trajce Dimkov, André van Cleeff, Wolter Pieters, Pieter Hartel

viii

Message from the Conference Chair

Welcome to the 26th Annual Computer Security Applications Conference (ACSAC). ACSAC is one of the
premiere security conferences, unique in its focus on applied security. Our program is further strengthened
through the consistent participation of attendees from both government and industry in addition to academia,
resulting in stimulating conversations that help drive cybersecurity research forward.

We have a terrific program planned for this year! Our technical program features papers across a broad range
of topics, such as social networks, botnets, and security engineering. I would like to thank our program chair,
Michael Franz, and co-chair, John McDermott, for putting together an excellent program.

Thanks to Deb Frincke and Kevin Butler we have an exciting selection of guest speakers, including Doug
Maughan from the Science and Technology Directorate of the Department of Homeland Security as our Dis-
tinguished Practitioner and Tom Longstaff from the Applied Information Science Department of the Johns
Hopkins University Applied Physics Laboratory as our Invited Essayist. We are also excited to have Gio-
vanni Vigna from UC Santa Barbara and William Cheswick from AT&T as our classic papers authors.

In addition to speakers and technical papers, we also have a wonderful selection of panels and case studies,
including topics as diverse as cloud security, security economics, supply chain risk management, and the
federal cyber security research agenda. I would like to thank Hongxia Jin and Steve Rome for their work on
putting together such a great selection of panels and case studies.

Continuing due to its success last year, we have a fourth track for conference attendees that will focus on
FISMA training for government employees. I would like to thank Marshall Abrams and Ron Ross for orga-
nizing this session.

We will again have our popular works-in-progress (WiP) talks this year together with a poster session.
Thanks to Charles Payne (WiPs) and Ben Kuperman and James Early (posters) for their hard work on putting
together these sessions.

New this year, we will be hosting a career night in conjunction with the WiPs and poster session. Many
thanks go to Ben Cook and Kathyrn Hanselmann for making this session a success!

Thanks also go to Daniel Faigin for organizing a terrific line-up of tutorials and to Harvey Rubinovitz for
putting together the conference workshop. Both will be held before the conference itself, and feature topics
such as usable security and the state of the practice in intrusion detection. The workshop this year covers the
governance issues behind information technology and policy.

Without the generous help of a large number of volunteers, this conference would not be possible. In addition
to the people I’ve mentioned above, I would like to thank Art Friedman, Lillian Røstad, Mike Collins, Ken
Shotting, Kevin Butler, Ed Schneider, Christoph Schuba, Kristin Steen, Jay Kahn, and Robert Zakon for all
of their hard work and support.

And a special thanks goes to Jeremy Epstein for all of his work making arrangements with the hotel, and for
his dedication to making ACSAC a success.

I hope that you enjoy the conference - we have an amazing program this year in a location known for great
food and great music, and I look forward to meeting you there!

Carrie Gates, ACSAC 2010 Conference Chair

ix

Message from the Program Chairs

Welcome to the 26th Annual Computer Security Applications Conference. We are happy to present a
formidable technical program that is the work of many volunteers. We would like to thank all of these
volunteers for their contributions to ACSAC 2010.

First, thanks go to the authors. We received a total of 239 submissions this year. After some papers were
rejected on formal grounds or retracted by their authors, a total of 227 papers entered the reviewing phase, a
new record for ACSAC.

Second, our sincere gratitude goes to the Program Committee, who gave extra time to review the unexpect-
edly large number of submissions. Every paper was initially reviewed by two PC members. In this first
reviewing round, 132 papers received at least one score of “weak accept” or better and thereby proceeded to
the second stage. Additional reviews were solicited for all 132 papers. Of these, a total of 77 papers received
sufficiently high scores that they were ultimately discussed at the PC meeting.

An in-person PC meeting was held on Saturday, August 14th at SRI’s offices in Arlington, Virginia. We
are very grateful to Jeremy Epstein and SRI for hosting this all-day meeting. During the meeting, the PC
selected 29 papers for immediate acceptance and an additional 10 papers for conditional acceptance subject
to shepherding by members of the PC.

Reviews were double-blinded throughout: papers were submitted without author names and affiliations and
PC members never learned the identity of submitters until the reviewing process was complete. Throughout
the reviewing process, the two PC Chairs were the only people who knew which paper was authored by
whom. We took great care to manage potential conflicts, since in our double-blind process, reviewers were
often not even aware of such conflicts.

We are happy to report that all of the conditionally accepted papers made it into the final program. Thanks
go to the authors and to the shepherds for the time they collaboratively invested in improving these papers
for ACSAC 2010.

And finally, we thank the larger ACSAC community for your continuing support. Whether you are attending
ACSAC in person this year or reading these proceedings elsewhere, we hope that you will find these papers
interesting, inspiring, and relevant. Enjoy!

Michael Franz, ACSAC 2010 Program Chair

John McDermott, ACSAC 2010 Program Co-Chair

x

Conference Committee

Carrie Gates, CA Labs (Conference Chair)
Michael Franz, University of California, Irvine (Program Chair)

John McDermott, Naval Research Lab (Program Co-Chair)
Christoph Schuba, Oracle Corporation (Multimedia/Proceedings)

Daniel Faigin, Aerospace Corporation (Tutorials Chair)
Steve Rome, Booz Allen Hamilton (Case Studies Chair)

Ken Shotting, DoD (Case Studies Co-Chair)
Hongxia Jin, IBM (Panels Chair)

Art Friedman, NSA (Registration Chair)
Benjamin Kuperman, Oberlin College (Poster Chair)

James P. Early, State University of New York at Oswego (Poster Co-Chair)
Kevin Butler, University of Oregon (Publicity Chair)

Mike Collins, RedJack (Sponsorship Chair)
Charlie Payne, Adventium Labs (Works in Progress Chair)

Harvey H. Rubinovitz, MITRE (Workshop Chair)
Marshall Abrams, MITRE (FISMA Coordination Chair)

Jeremy Epstein, SRI International (Local Arrangements Chair)
Krstin Steen, Sandia National Lab (Local Arrangements Co-Chair)

Lillian Røstad, Norwegian University of Science and Technology (Student Awards)
Ben Cook, Sandia National Lab (Student Outreach Chair)

Deb Frincke, Pacific Northwest Lab (Guest Speaker Liaison Chair)
Kevin Butler, University of Oregon (Guest Speaker Liaison Co-Chair)

Ed Schneider, Institute for Defense Analyses (Treasurer)
Dan Thomsen, SIFT (Knowledge Coordinator)

Jay Kahn, MITRE (ACSA Communications Chair)
Cristina Serban, AT&T (Conference Chair Emerita)

Robert H’obbes’ Zakon, Zakon Group (Web Advisor)

ACSAC Steering Committee

Marshall Abrams, The MITRE Corporation
Jeremy Epstein, SRI International

Daniel Faigin, The Aerospace Corporation
Ann Marmor-Squires, The Sq Group

Steve Rome, Booz Allen Hamilton
Ron Ross, National Institute of Standards
Christoph Schuba, Oracle Corporation

Cristina Serban, AT&T
Dan Thomsen, Cyber Defense Agency LLC

xi

Program Committee

Michael Franz, University of California, Irvine (Program Chair)
John McDermott, Naval Research Lab (Program Co-Chair)

Vijay Atluri, Rutgers University
Tuomas Aura, Microsoft Research

Lee Badger, U.S. National Institute of Standards and Technology (NIST)
Elisa Bertino, Purdue University

Konstantin Beznosov, University of British Columbia
Matt Bishop, University of California, Davis

Sjdan Capcun, ETH Zurich
Fred Chong, University of California, Santa Barbara

Christian Collberg, University of Arizona
Marc Dacier, Symantec Corporation

Mary Denz, U.S. Air Force Research Laboratory
Sven Dietrich, Stevens Institute of Technology

Jeremy Epstein, SRI International
David Evans, University of Virginia

Richard Ford, Florida Institute of Technology
Tyrone Grandison, IBM Almaden Research Center
Steven Greenwald, Independent Security Advisor
Cynthia Irvine, U.S. Naval Postgraduate School

Trent Jaeger, Pennsylvania State University
Hongxia Jin, IBM Almaden Research Center

Michiharu Kudoh, IBM Tokyo Research Laboratory
Michael Locasto, University of Calgary

Patrick McDaniel, Pennsylvania State University
Peng Ning, North Carolina State University

Charles Payne, Adventium Labs
Andreas Pfitzmann, Technische Universität Dresden

Christian Probst, Technical University of Denmark (DTU)
Lillian Røstad, Norwegian University of Science and Technology

Reiner Sailer, IBM T.J. Watson Research Center
Pierangela Samarati, University of Milan

Christoph Schuba, Oracle Corporation
R. Sekar, Stony Brook University

Cristina Serban, AT&T
Frederick Sheldon, Oak Ridge National Laboratory

Brian Snow, Independent Security Advisor
Anil Somayaji, Carleton University

Angelos Stavrou, George Mason University
Bhavani Thuraisingham, University of Texas, Dallas

Patrick Traynor, Georgia Institute of Technology
Venkat Venkatakrishnan, University of Illinois at Chicago

xii

External Review Committee

William Allen, Florida Institute of Technology
Kevin Butler, University of Oregon

Sunoh Choi, Purdue University
William Enck, Pennsylvania State University

Vinod Ganapathy, Rutgers University
Ashish Kamra, Purdue University
Ashish Kundu, Purdue University

Liam Mayron, Harris Corp.
Thomas Moyer, Pennsylvania State University

Albert Noll, ETH Zurich
Machigar Ongtang, Pennsylvania State University
Christian Wimmer, University of California, Irvine

Additional Reviewers

Scott Adams, Claudio Ardagna, Prithvi Bisht, Jeff Browne, Jonathan Burket, Joe Carozzoni,
Peter Chapman, Sabrina De Capitani di Vimercati, Sara Foresti, Karthik Thotta Ganesh, Jason Gionta,

Kalpana Gondi, Lakshmi Gowri, Steven Harp, Kirstie Hawkey, Amir Herzberg, Yan Huang, Ted Huffmire,
James Hughes, Pooya Jaferian, Quan Jia, Xuxian Jiang, Gunes Kayacik, Pranab Kini, Herb Klumpe,
Loukas Lazos, Hsien-Hsin S. Lee, Bita Masloom, Steve McLaughlin, Sara Motiee, Ildar Muslukhov,

Divya Muthukumaran, Mohammad Nikseresht, Richard O’Brien, Fahimeh Raja, Sandra Rueda,
Heba Saadeldeen, Joshua Schiffman, Ferdinand Schober, Brian Sessler, Haya Shulman, Andreas

Sotirakopoulos, Anna Squicciarini, San-Tsai Sun, Mike Ter Louw, Mohit Tiwari, Sven Türpe, Alfonso
Valdes, Praveen Venkatachari, Jiang Wang, Zhaohui Wang, Hassan Wassel, Mark Williams, Yu Yao,

Michelle Zhou, Yuchen Zhou

Tutorial Reviewers

Daniel P. Faigin, The Aerospace Corporation, (ACSAC Tutorial Chair)
M. Patrick Collins, RedJack LLC

Patricia Daggett, EMC Corporation
Deborah D. Downs, The Aerospace Corporation

Tyrone W A Grandison, IBM Almaden Reserch Center
Jay Kahn, Retired

Donna Mitchell, Lockheed Martin Corporation
Charles Payne, Adventium Labs

W. Warren Pearce, Northrop Grumman Corp.
Marco Ramilli, University of Bologna, Italy
Max Robinson, The Aerospace Corporation

Steven Rome, Booz Allen Hamilton
Michelle Ruppel, Saffire Systems

Harvey Rubinovitz, The MITRE Corporation
Cristina Serban, AT&T

Paul Streander, The Aerospace Corporation
Danielle Weigold, Lockheed Martin
Simon Wiseman, Deep-Secure Ltd

xiii

Message from the Sponsor

Applied Computer Security Associates

ACSA had its genesis in the first Aerospace Computer Security Applications Conference in 1985. That con-
ference was a success and evolved into the Annual Computer Security Applications Conference (ACSAC).
ACSA was incorporated in 1987 as a non-profit association of computer security professionals who have a
common goal of improving the understanding, theory, and practice of computer security. ACSA continues
to be the primary sponsor of the annual conference.

In 1989, ACSA began the Distinguished Practitioner Series at the annual conference. Each year, an outstand-
ing computer security professional is invited to present a lecture of current topical interest to the security
community.

In 1991, ACSAC began the Best Paper by a Student Award, presented at the Annual conference. This award
is intended to encourage active student participation in the conference. The award winning student author
receives an honorarium and conference expenses. Additionally, our Student Conferenceship program assists
selected students in attending the Conference by paying for the conference fee. Applicants must be under-
graduate or graduate students, nominated by a faculty member at an accredited university or school, and
show the need for financial assistance to attend this conference.

An annual prize for the Outstanding Paper has been established for the Annual Computer Security Applica-
tions Conference. The winning author receives a plaque and an honorarium. The award is based on both the
written and oral presentations.

ACSA initiated the Marshall D. Abrams Invited Essay in 2000 to stimulate development of provocative and
stimulating reading material for students of Information Security, thereby forming a set of Invited Essays.
Each year’s Invited Essay addresses an important topic in Information Security not adequately covered by
the existing literature.

This year’s ACSAC continues the Classic Papers feature begun in 2001. The classic papers are updates of
some of the seminal works in the field of Information Security that reflect developments in the research com-
munity and industry since their original publication. Each presentation also considers how these classical
security results will impact us in the years to come.

ACSA continues to be committed to serving the security community by finding additional approaches for en-
couraging and facilitating dialogue and technical interchange. In previous years, ACSA has sponsored small
workshops to explore various topics in Computer Security (in 2000, the Workshop on Innovations in Strong
Access Control; in 2001, the Workshop on Information Security System Rating and Ranking; in 2002, the
Workshop on Application of Engineering Principles to System Security Design). In 2003, ACSA became
the sponsor of the already established New Security Paradigms Workshop (NSPW). This year, ACSA is ex-
cited to welcome the Layered Assurance Workshop as an affiliated ACSA activity. ACSA also maintains a
Classic Papers Bookshelf that preserves seminal works in the field and a web site focusing on Strong Access
Control/Multi-Level Security.

ACSA is always interested in suggestions from interested professionals and computer security professional
organizations on other ways to achieve its objectives of encouraging and facilitating dialogue and technical
interchange. For more information on ACSA and its activities, please visit http://www.acsac.org/acsa

To learn more about the conference, visit the ACSAC web page at http://www.acsac.org

xiv

ACSA Members

Marshall Abrams, The MITRE Corporation (ACSA Founder and Assistant Treasurer)
Jeremy Epstein,SRI International (ACSA Vice President)

Daniel Faigin, The Aerospace Corporation (ACSA Secretary)
Ann Marmor-Squires, The Sq Group

Steve Rome, Booz Allen Hamilton (ACSA President)
Harvey Rubinovitz, The MITRE Corporation (ACSA Treasurer)

Cristina Serban, AT&T
Mary Ellen Zurko, IBM Corporation

xv

Detecting Spammers on Social Networks

Gianluca Stringhini
University of California, Santa

Barbara
gianluca@cs.ucsb.edu

Christopher Kruegel
University of California, Santa

Barbara
chris@cs.ucsb.edu

Giovanni Vigna
University of California, Santa

Barbara
vigna@cs.ucsb.edu

ABSTRACT
Social networking has become a popular way for users to
meet and interact online. Users spend a significant amount
of time on popular social network platforms (such as Face-
book, MySpace, or Twitter), storing and sharing a wealth of
personal information. This information, as well as the pos-
sibility of contacting thousands of users, also attracts the in-
terest of cybercriminals. For example, cybercriminals might
exploit the implicit trust relationships between users in order
to lure victims to malicious websites. As another example,
cybercriminals might find personal information valuable for
identity theft or to drive targeted spam campaigns.

In this paper, we analyze to which extent spam has en-
tered social networks. More precisely, we analyze how spam-
mers who target social networking sites operate. To collect
the data about spamming activity, we created a large and
diverse set of “honey-profiles” on three large social network-
ing sites, and logged the kind of contacts and messages that
they received. We then analyzed the collected data and
identified anomalous behavior of users who contacted our
profiles. Based on the analysis of this behavior, we devel-
oped techniques to detect spammers in social networks, and
we aggregated their messages in large spam campaigns. Our
results show that it is possible to automatically identify the
accounts used by spammers, and our analysis was used for
take-down efforts in a real-world social network. More pre-
cisely, during this study, we collaborated with Twitter and
correctly detected and deleted 15,857 spam profiles.

1. INTRODUCTION
Over the last few years, social networking sites have be-

come one of the main ways for users to keep track and com-
municate with their friends online. Sites such as Facebook,
MySpace, and Twitter are consistently among the top 20
most-viewed web sites of the Internet. Moreover, statistics
show that, on average, users spend more time on popular
social networking sites than on any other site [1]. Most so-
cial networks provide mobile platforms that allow users to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

access their services from mobile phones, making the access
to these sites ubiquitous.

The tremendous increase in popularity of social network-
ing sites allows them to collect a huge amount of personal
information about the users, their friends, and their habits.
Unfortunately, this wealth of information, as well as the ease
with which one can reach many users, also attracted the in-
terest of malicious parties. In particular, spammers are al-
ways looking for ways to reach new victims with their unso-
licited messages. This is shown by a market survey about the
user perception of spam over social networks, which shows
that, in 2008, 83% of the users of social networks have re-
ceived at least one unwanted friend request or message [16].

From a security point of view, social networks have unique
characteristics. First, information access and interaction is
based on trust. Users typically share a substantial amount
of personal information with their friends. This information
may be public or not. If it is not public, access to it is
regulated by a network of trust. In this case, a user allows
only her friends to view the information regarding herself.
Unfortunately, social networking sites do not provide strong
authentication mechanisms, and it is easy to impersonate a
user and sneak into a person’s network of trust [15]. More-
over, it often happens that users, to gain popularity, ac-
cept any friendship request they receive, exposing their per-
sonal information to unknown people. In other cases, such
as MySpace, the information displayed on a user’s page is
public by design. Therefore, anyone can access it, friend or
not. Networks of trust are important from a security point
of view, because they are often the only mechanism that
protects users from being contacted by unwanted entities.

Another important characteristic of social networks is the
different levels of user awareness with respect to threats.
While most users have become aware of the common threats
that affect the Internet, such as e-mail spam and phishing,
they usually do not show an adequate understanding of the
threats hidden in social networks. For example, a previous
study showed that 45% of users on a social networking site
readily click on links posted by their “friend” accounts, even
if they do not know that person in real life [10]. This be-
havior might be abused by spammers who want to advertise
web sites, and might be particularly harmful to users if spam
messages contain links to malicious pages.

Even though social networks have raised the attention of
researchers, the problem of spam is still not well understood.
This paper presents the results of a year-long study of spam
activity in social networks. The main contributions of this
paper are the following:

1

• We created a set of honeynet accounts (honey-profiles)
on three major social networks, and we logged all the
activity (malicious or not) these accounts were able to
observe over a one-year period for Facebook and an
eleven-month period for Twitter and MySpace.

• We investigate how spammers are using social net-
works, and we examine the effectiveness of the counter-
measures that are taken by the major social network
portals to prevent spamming on their platforms.

• We identify characteristics that allow us to detect spam-
mers in a social network.

• We built a tool to detect spammers, and used it on
a Twitter and Facebook dataset. We obtained some
promising results. In particular, we correctly detected
15,857 on Twitter, and after our submission to the
Twitter spam team, these accounts were suspended.

2. BACKGROUND AND RELATED WORK
Social networks offer a way for users to keep track of their

friends and communicate with them. This network of trust
typically regulates which personal information is visible to
whom. In our work, we looked at the different ways in which
social networks manage the network of trust and the visibil-
ity of information between users. This is important because
the nature of the network of trust provides spammers with
different options for sending spam messages, learning infor-
mation about their victims, or befriending someone (to ap-
pear trustworthy and make it more difficult to be detected
as a spammer).

2.1 The Facebook Social Network
Facebook is currently the largest social network on the In-

ternet. On their website, the Facebook administrators claim
to have more than 400 million active users all over the world,
with over 2 billion media items (videos and pictures) shared
every week [3].

Usually, user profiles are not public, and the right to view
a user’s page is granted only after having established a re-
lationship of trust (paraphrasing the Facebook terminology,
becoming friends) with the user. When a user A wants to
become friend with another user B, the platform first sends
a request to B, who has to acknowledge that she knows A.
When B confirms the request, a friendship connection with A
is established. However, the users’ perception of Facebook
friendship is different from their perception of a relation-
ship in real life. Most of the time, Facebook users accept
friendship requests from persons they barely know, while in
real life, the person asking to be friend would undergo more
scrutiny.

In the past, most Facebook users were grouped in net-
works, where people coming from a certain country, town,
or school could find their neighbors or peers. The default
privacy setting for Facebook was to allow all people in the
same network to view each other’s profiles. Thus, a mali-
cious user could join a large network to crawl data from the
users on that network. This data allows an adversary to
carry out targeted attacks. For example, a spammer could
run a campaign that targets only those users whose profiles
have certain characteristics (e.g., gender, age, interests) and
who, therefore, might be more responsive to that campaign.
For this reason, Facebook deprecated geographic networks

in October 2009. School and company networks are still
available, but their security is better, since to join one of
these networks, a user has to provide a valid e-mail address
from that institution (e.g., a university e-mail address).

2.2 The MySpace Social Network
MySpace was the first social network to gain significant

popularity among Internet users. The basic idea of this net-
work is to provide each user with a web page, which the user
can then personalize with information about herself and her
interests. Even though MySpace has also the concept of
“friendship,” like Facebook, MySpace pages are public by
default. Therefore, it is easier for a malicious user to ob-
tain sensitive information about a user on MySpace than on
Facebook. Users might be profiled by gender, age, or nation-
ality, and an aimed spam campaign could target a specific
group of users to enhance its effectiveness.

MySpace used to be the largest social network on the In-
ternet. Although it is steadily losing users, who are mainly
moving to Facebook [2], it remains the third most visited
site of its kind on the Internet.

2.3 The Twitter Social Network
Twitter is a much simpler social network than Facebook

and MySpace. It is designed as a microblogging platform,
where users send short text messages (i.e., tweets) that ap-
pear on their friends’ pages. Unlike Facebook and MyS-
pace, no personal information is shown on Twitter pages by
default. Users are identified only by a username and, op-
tionally, by a real name. To profile a user, it is possible to
analyze the tweets she sends, and the feeds to which she is
subscribed. However, this is significantly more difficult than
on the other social networks.

A Twitter user can start “following” another user. As a
consequence, she receives the user’s tweets on her own page.
The user who is “followed” can, if she wants, follow the other
one back. Tweets can be grouped by hashtags, which are
popular words, beginning with a “#” character. This allows
users to efficiently search who is posting topics of interest at
a certain time. When a user likes someone’s tweet, he can
decide to retweet it. As a result, that message is shown to
all her followers. By default, profiles on Twitter are public,
but a user can decide to protect her profile. By doing that,
anyone wanting to follow the user needs her permission. Ac-
cording to the same statistics, Twitter is the social network
that has the fastest growing rate on the Internet. During
the last year, it reported a 660% increase in visits [2].

2.4 Related Work
The success of social networks has attracted the attention

of security researchers. Since social networks are strongly
based on the notion of a network of trust, the exploitation of
this trust might lead to significant consequences. In 2008, a
Sophos experiment showed that 41% of the Facebook users
who were contacted acknowledged a friend request from a
random person [8]. Bilge et al. [10] show that after an at-
tacker has entered the network of trust of a victim, the vic-
tim will likely click on any link contained in the messages
posted, irrespective of whether she knows the attacker in
real life or not. Another interesting finding was reported
by Jagatic et al. [13]. The authors found that phishing at-
tempts are more likely to succeed if the attacker uses stolen
information from victims’ friends in social networks to craft

2

their phishing emails. There are also botnets that target
social networks, such as koobface [9].

Brown et al. [12] showed how it would be possible for
spammers to craft targeted spam by leveraging the infor-
mation available in online social networks. As for Twitter,
Krishnamurthy et al. studied the network, providing some
characterization of Twitter users [14]. Yardi et al. [18] ran
an experiment on Twitter spam. They created a popular
hashtag on Twitter, and observed that spammers started
using it in their messages. They also discuss some features
that might allow one to distinguish a spammer from legiti-
mate users, such as node degree and frequency of messages.
Another work that studied social network spam using honey-
profiles was conducted by Webb et al. in 2008 [17]. For this
experiment, 51 profiles were created on MySpace, which was
the largest social network at the time. The study showed a
significant spam activity. The honey-profiles were contacted
by 1,570 spam bots over a five-month period.

Compared to their work, our study is substantially larger
in size and covers three major social networks, and the hon-
eypot population we used is representative of the average
population of these networks, both from an age and nation-
ality point of view. Moreover, we leverage our observation
to develop a system able to detect spammers on social net-
works.

This system has detected thousands of spam accounts on
Twitter, which have been subsequently deleted.

3. DATA COLLECTION
The first goal of our paper was to understand the extent

to which spam is a problem on social networks, as well as the
characterization of spam activity. To this end, we created
900 profiles on Facebook, MySpace, and Twitter, 300 on
each platform. The purpose of these accounts was to log
the traffic (e.g., friend requests, messages, invitations) they
receive from other users of the network. Due to the similarity
of these profiles to honeypots [4], we call these accounts
honey-profiles.

3.1 Honey-Profiles
Our goal was to create a number of honey-profiles that

reflect a representative selection of the population of the
social networks we analyzed. To this end, we first crawled
each social network to collect common profile data.

On Facebook, we joined 16 geographic networks, using a
small number of manually-created accounts. This was pos-
sible because, at the time, geographic networks were still
available. Since we wanted to create profiles reflecting a di-
verse population, we joined networks on all continents (ex-
cept Antarctica and Australia): the Los Angeles and New
York networks for North America, the London, France, Italy,
Germany, Russia, and Spain ones for Europe, the China,
Japan, India, and Saudi Arabia ones for Asia, the Algeria
and Nigeria ones for Africa, and the Brazil and Argentina
networks for South America. For each network, we crawled
2,000 accounts at random, logging names, ages, and gender
(which is the basic information required to create a profile
on Facebook). Afterwards, we randomly mixed this data
(names, surnames, and ages) and created the honey-profiles.
Gender was determined by the first name. Each profile was
assigned to a network. Accounts created using data from a
certain network were assigned either to this network or to
a network where the main language spoken was the same

(e.g., profiles created from accounts in the France network
were used in networks associated with francophone coun-
tries). This was a manual process. For larger networks (e.g.,
New York, Germany, Italy) up to three accounts were cre-
ated, while only one account was set up for smaller ones. In
total, we created 300 accounts on the Facebook platform.

On MySpace, we crawled 4,000 accounts in total. This
was easier than on Facebook because, as mentioned in Sec-
tion 2.2, most profile pages are public. Similar to Facebook,
our aim was to generate “average” profiles based on the user
population of the social network. After data collection, we
looked for common names and ages from profiles with dif-
ferent languages, and created profiles in most nations of the
world. We created 300 accounts on MySpace for our exper-
iment.

While on Facebook and MySpace, birth date and gen-
der are needed for registration, on Twitter, the only infor-
mation required for signing up is a full name and a profile
name. Therefore, we did not find it necessary to crawl the
social network for “average” profile information, and we sim-
ply used first names and surnames from the other social net-
works. For each account, the profile name has been chosen
as a concatenation of the first and last name, plus a random
number to avoid conflicts with already existing accounts.
Similarly to the other networks, we created 300 profiles.

We did not create more than 300 profiles on each network
because registration is a semi-automated process. More pre-
cisely, even though we could automatically fill the forms re-
quired for registration, we still needed a human to solve the
CAPTCHAs involved in the process.

3.2 Collection of Data
After having created our honey-profiles, we ran scripts

that periodically connected to those accounts and checked
for activity. We decided that our accounts should act in a
passive way. Therefore, we did not send any friend requests,
but accepted all those that were received.

In a social network, the first action a malicious user would
likely execute to get in touch with his victims is to send
them a friend request. This might be done to attract the
user to the spammer’s profile to view the spam messages
(on MySpace) or to invite her to accept the friendship and
start seeing the spammer’s messages in her own feed (on
Facebook and Twitter).

After having acknowledged a request (i.e., accepted the
friendship on Facebook and MySpace or started following
the user on Twitter), we logged all the information needed
to detect malicious activity. More precisely, we logged every
email notification received from the social networks, as well
as all the requests and messages seen on the honey-profiles.
On some networks, such as Facebook, the notifications and
messages might be of different types (e.g., application and
group invitations, video posts, status messages, private mes-
sages), while on other platforms, they are more uniform
(e.g., on Twitter, they are always short text messages). We
logged all types of requests on Facebook, as well as wall
posts, status updates, and private messages. On MySpace,
we recorded mood updates, wall posts, and messages. On
Twitter, we logged tweets and direct messages.

Our scripts ran continuously for 12 months for Facebook
(from June 6, 2009 to June 6, 2010), and for 11 months
for MySpace and Twitter (from June 24, 2009 to June 6,
2010), periodically visiting each account. The visits had

3

 0

 5

 10

 15

 20

 25

08/01/09 11/01/09 02/01/10 05/01/10

N
. o

f r
eq

ue
st

s

Day

Friend Requests From Spammers
Ham Friend Requests

(a) Friend requests received.

 0

 100

 200

 300

 400

 500

 600

 700

 800

08/01/09 11/01/09 02/01/10 05/01/10

N
. o

f m
es

sa
ge

s

Day

Spam messages
Ham messages

(b) Messages received.

Figure 1: Activity observed on Facebook

to be performed slowly (approximately one account visited
every 2 minutes) to avoid being detected as a bot by the
social networking site and, therefore, having the accounts
deleted.

4. ANALYSIS OF COLLECTED DATA
As mentioned previously, the first action that a spammer

would likely execute is to send friend requests to her victims.
Only a fraction of the contacted users will acknowledge a re-
quest, since they do not know the real-life person associated
with the account used by the bot1. On Twitter, the concept
of friendship is slightly different, but the modus operandi
of the spammers is the same: they start following victims,
hoping that they will follow them back, starting to receive
the spam content. From the perspective of our analysis,
friendships and mutual follow relationships are equivalent.
When a user accepts one of the friend requests, she lets the
spammer enter her network of trust. In practice, this action
has a major consequence: The victim starts to see messages
received from the spammer in her own news/message feed.
This kind of spamming is very effective, because the spam-
mer has only to write a single message (e.g., a status update
on Facebook), and the message appears in the feeds of all

1We assume that most spam accounts are managed in an
automated fashion. Therefore, from this point on, we will
use the terms spam profile and bots interchangeably.

Network Overall Spammers
Facebook 3,831 173
MySpace 22 8
Twitter 397 361

Table 1: Friend requests received on the various so-
cial networks.

Network Overall Spammers
Facebook 72,431 3,882
MySpace 25 0
Twitter 13,113 11,338

Table 2: Messages received on the various social net-
works.

the victims. Depending on the social network, the nature
of these messages can change: they are status updates on
Facebook, status or mood updates on MySpace, and tweets
on Twitter.

During our study, we received a total of 4,250 friend re-
quests. As can be seen in Table 1, the amount of requests
varies from network to network. This might be caused by
the different characteristics of the various social networks.
As one would expect, we observed the largest amount of
requests on Facebook, since it has the largest user base.
Surprisingly, however, the majority of these requests proved
not to come from spam bots, but from real users, looking
for popularity or for real persons with the same name as one
of our honey-profiles. Another surprising finding is that, on
MySpace, we received a very low number of friend requests.
It is not clear what is the reason of the disparity between
this social network and Facebook, since MySpace also pro-
vides a mechanism to easily post messages on users’ pages.
Daily statistics for friend requests received on Facebook and
Twitter are shown in Figures 1(a) and 2(a).

Information about the logged messages is shown in Ta-
ble 2. Overall, we observed 85,569 messages. Again, there is
a big disparity between the three social networks. On Twit-
ter, interestingly, we recorded the largest amount of spam
messages. Given the smaller size of the network’s user base,
this is surprising. Daily statistics for messages received on
Facebook are shown in Figure 1(b), while those for Twitter
are reported in Figure 2(b). We do not show a graph for
MySpace because the number of messages we received was
very low.

On Facebook, we also observed a fair amount of invita-
tions to applications, groups, and events, as well as posting
of photos and videos in our honey-profiles’ feeds. However,
since none of them were spam, we ignored them for the sub-
sequent analysis.

4.1 Identification of Spam Accounts
Tables 1 and 2 show the breakdown of requests that were

received by our honey-profiles. We can see that the honey-
profiles did not only receive friend requests and messages
from spammers, but also a surprising amount from legiti-
mate accounts. Even if friend requests are unsolicited, they
are not always the result of spammers who reach out. In
particular, many social network users aim to increase their
popularity by adding as friends people they do not know. On

4

 0

 5

 10

 15

 20

 25

 30

 35

 40

08/01/09 11/01/09 02/01/10 05/01/10

N
. o

f r
eq

ue
st

s

Day

Adds by spammers
Legitimate adds

(a) Users starting following honey-profiles

 0

 50

 100

 150

 200

 250

08/01/09 11/01/09 02/01/10 05/01/10

N
. o

f m
es

sa
ge

s

Day

Spam messages
Ham messages

(b) Messages received

Figure 2: Activity observed on Twitter.

Facebook, since all our honey-profiles were members of a ge-
ographic network (as long as these were available), it is also
possible that people looking for local “friends” would have
contacted some of our accounts. In particular, we observed
that this occurs with more frequency on smaller networks (in
particular, some Middle Eastern and African ones). More-
over, since we picked random combinations of first and last
names, it happened that some of our honey-profiles had the
same name as a real person, and, as a consequence, the ac-
count was contacted by real friends of this person. Since
not all friend requests and messages are malicious, we had
to distinguish between spammers and benign users.

To discriminate between real users and spam bots, we
started to manually check all the profiles that contacted us.
During this process, we noticed that spam bots share some
common traits, and formalized them in features that we then
used for automated spam detection. We will describe these
features in detail in Section 5.

We found that, of the original 3,831 accounts that con-
tacted us on Facebook, 173 were spammers. Moreover, on
Facebook, during the last months of logging, the ratio of
spam messages compared to legitimate ones dramatically
dropped. The reason is that when a legitimate user adds
our honey-profile to her friend list, this honey-profile starts
appearing on her friends’ pages as a friend suggestion. This
leads to a number of additional friend requests (and mes-

sages) from real users. On MySpace, we detected 8 spam-
mers. On Twitter, we detected 361 spammers out of 397
contacts.

4.2 Spam Bot Analysis
The spam bots that we identified showed different levels

of activity and different strategies to deliver spam. Based on
their spam strategy, we distinguish four categories of bots:

1. Displayer: Bots that do not post spam messages, but
only display some spam content on their own profile
pages. In order to view spam content, a victim has to
manually visit the profile page of the bot. This kind of
bots is likely to be the least effective in terms of people
reached. All the detected MySpace bots belonged to
this category, as well as two Facebook bots.

2. Bragger: Bots that post messages to their own feed.
These messages vary according to the networks: on
Facebook, these messages are usually status updates,
while on Twitter these are the tweets. The result of
this action is that the spam message is distributed and
shown on all the victims’ feeds. However, the spam
is not shown on the victim’s profile when the page is
visited by someone else (i.e., a victim’s friends). There-
fore, the spam campaign reaches only victims who are
directly connected with the spam bot. 163 bots on
Facebook belonged to this category, as well as 341 bots
on Twitter.

3. Poster: Bots that send a direct message to each vic-
tim. This can be achieved in different ways, depending
on the social network. On Facebook, for example, the
message might be a post on a victim’s wall. The spam
is shown on the victims feed, but, unlike the case of a
“bragger”, can be viewed also by victim’s friends vis-
iting her profile page. This is the most effective way
of spamming, because it reaches a greater number of
users compared to the previous two. Eight bots from
this category have been detected, all of them on the
Facebook network. Koobface-related messages also be-
long to this category (see [9]).

4. Whisperer: Bots that send private messages to their
victims. As for “poster” bots, these messages have to
be addressed to a specific user. The difference, how-
ever, is that this time the victim is the only one seeing
the spam message. This type of bots is fairly common
on Twitter, where spam bots send direct messages to
their victim. We observed 20 bots of this kind on this
network, but none on Facebook and MySpace.

We then examined the activity of spam bots on different
networks. On Facebook, we observed an average of 11 spam
messages per day, while, on Twitter, the average number of
messages observed was 34. On MySpace, we did not observe
any direct spam message. The reason is that all the spam
bots on MySpace are “displayers.” The difference between
Twitter and Facebook activity is caused by the apparently
different responses of the two social networks to spam. More
precisely, we observed that Facebook seems to be much more
aggressive in fighting spam. This is demonstrated by the
fact that, on Facebook, the average lifetime of a spam ac-
count was four days, while on Twitter, it was 31 days. On

5

MySpace, no spam accounts have been deleted during our
observation.

As shown in Figures 1(a) and 2(a), many spam requests
arrived during the first days of our experiment, especially on
Facebook. All the early-days spammers have been quickly
deleted from Facebook (the one with the longest life lasted
one month), while most of the Twitter ones were deleted
only after we flagged them to their spam team.

It is also interesting to look at the time of the day when
messages and friend requests are sent. The reason is that
bots might get activated periodically or at specific times to
send their messages. Benign activity, on the other hand,
follows the natural diurnal pattern. During our observation,
we noticed that some bots showed a higher activity around
midnight (GMT -7), while in the same period of time, the
ham messages registered a low.

Another way to study the effectiveness of spam activity is
to look at how many users acknowledged friend requests on
the different networks. On Facebook, the average number
of confirmed friends of spam bots is 21, on MySpace it is 31,
while on Twitter, it is 350. We assume that the difference
in number of people reached is probably due to the differ-
ent lifetime of the bots in the different networks. The low
activity of the bots on MySpace might be the cause of both
the low numbers of bots detected on that network and their
longer lifetime.

We identified two kinds of bot behavior: stealthy and
greedy bots. Greedy ones include a spam content in every
message they send. They are easier to detect, and might lead
users to flag bots as spammers or to revoke their friendship
status. Stealthy bots, on the other hand, send messages that
look legitimate, and only once in a while inject a malicious
message. Since they look like legitimate profiles, they might
convince more people to accept and maintain friendships.

Of the 534 spam bots detected, 416 were greedy and 98
were stealthy (note that ten spam profiles were “displayers,”
and 20 were “whisperers.” These bots, therefore, did not use
updates or tweets to spam).

Another interesting observation is that spam bots are usu-
ally less active than legitimate users. This probably happens
because sending out too many messages would make detec-
tion by the social network too easy. For this reason, most
spam profiles we observed, both on Facebook and Twitter,
sent less than 20 messages during their life span.

While observing Facebook spammers, we also noticed that
many of them did not seem to pick victims randomly, but,
instead, they seemed to follow certain criteria. In particu-
lar, most of their victims happened to be male. This was
particularly true for campaigns advertising adult websites.
Since Facebook does not provide an easy way to search for
people based on gender, the only way spammers can iden-
tify their victims is by looking for male first names. This
intuition led us to another observation. The list of victims
targeted by these bots usually shows an anomalous repeti-
tion of people with the same first name (e.g., tens of profiles
with only four different given names). This might happen
because spam bots are given lists of first names to target.
In addition, Facebook people search does not make a differ-
ence between first and last name while searching. For this
reason, these gender-aware bots sometimes targeted female
users who happened to have a male name as last name (e.g.,
Wayne).

Mobile Interface.
Most social networking sites have introduced techniques

to prevent automatic account generation and message send-
ing. On Facebook, for example, a user is required to solve
a CAPTCHA [5] every time she tries to send a friend re-
quest. A CAPTCHA has to be solved also every time an
account is created. Moreover, the site uses a very compli-
cated JavaScript environment that makes it difficult for bots
to interact with the pages. On the other hand, the complex-
ity of these sites made them not very attractive to mobile
Internet users, who use less powerful devices and slower con-
nections.

To attract more users and to make their platform more
accessible from any kind of device, major social networks
launched mobile versions of their sites. These versions of-
fer the main functionality of the complete social networking
sites, but in a simpler fashion. To improve usability, no
JavaScript is present on these pages, and no CAPTCHAs
are required to send friend requests. This has made so-
cial networks more accessible from everywhere. However,
the mobile environment provides spammers with an easy
way to interact with these sites and carry out their tasks.
This is confirmed by our analysis: 80% of bots we detected
on Facebook used the mobile site to send their spam mes-
sages. However, to create an account, it is still necessary to
go through the non-mobile version of the site. For Twitter
spam, there is no need for the bots to use the mobile site,
since an API to interact with the network is provided, and,
in any case, there is no need to solve CAPTCHAs other than
the one needed to create a profile.

5. SPAM PROFILE DETECTION
Based on our understanding of spam activity in social net-

works, the next goal was to leverage these insights to develop
techniques to detect spammers in the wild. We decided to
focus on detecting “bragger” and “poster” spammers, since
they do not require real profiles for detection, but are just
detectable by looking at their feeds. We used machine learn-
ing techniques to classify spammers and legitimate users. To
detect whether a given profile belongs to a spammer or not,
we developed six features, which are:

FF ratio (R): The first feature compares the number of
friend requests that a user sent to the number of friends she
has. Since a bot is not a real person, and, therefore, nobody
knows him/her in real life, only a fraction of the profiles con-
tacted would acknowledge a friend request. Thus, one would
expect a distinct difference between the number of friend re-
quests sent and the number of those that are acknowledged.
More precisely, we expect the ratio of friend requests to ac-
tual friends to be large for spammers and low for regular
users. Unfortunately, the number of friend requests sent is
not public on Facebook and on MySpace. On Twitter, on the
other hand, the number of users a profile started to follow is
public. Therefore, we can compute the ratio R = following
/ followers (where following, in the Twitter jargon, is the
number of friend requests sent, and followers is the number
of users who accepted the request).

URL ratio (U): The second feature to detect a bot is the
presence of URLs in the logged messages. To attract users
to spam web pages, bots are likely to send URLs in their
messages. Therefore, we introduce the ratio U as:

U = messages containing urls / total messages.

6

Since, in the case of Facebook, most messages with URLs
(link and video share, group invitations) contain a URL to
other Facebook pages, we only count URLs pointing to a
third party site when computing this feature.

Message Similarity (S): The third feature consists in
leveraging the similarity among the messages sent by a user.
Most bots we observed sent very similar messages, consider-
ing both message size and content, as well as the advertised
sites. Of course, on Twitter, where the maximum size of the
messages is 140 characters, message similarity is less signifi-
cant than on Facebook and MySpace, where we logged mes-
sages up to 1,100 characters. We introduced the similarity
parameter S, which is defined as follows:

S =
P

p∈P c(p)

lalp
,

where P is the set of possible message-to-message combina-
tions among any two messages logged for a certain account,
p is a single pair, c(p) is a function calculating the number
of words two messages share, la is the average length of mes-
sages posted by that user, and lp is the number of message
combinations. The idea behind this formula is that a profile
sending similar messages will have a low value of S.

Friend Choice (F): The fourth feature attempts to de-
tect whether a profile likely used a list of names to pick its
friends or not. We call this feature F , and we define it as:

F = Tn

Dn
,

where Tn is the total number of names among the profiles’
friend, and Dn is the number of distinct first names. Our
observation showed that legitimate profiles have values of
this feature that are close to 1, while spammers might reach
values of 2 or more.

Messages Sent (M): We use the number of messages sent
by a profile as a feature. This is based on the observation
that profiles that send out hundreds of messages are less
likely to be spammers, given that, in our initial analysis,
most spam bots sent less that 20 messages.

Friend Number (FN): Finally we look at the number of
friends a profile has. The idea is that profiles with thousands
of friends are less likely to be spammers that the ones with
a few.

Given our general set of features, we built two systems to
detect spam bots on Facebook and Twitter. Since there are
differences between these two social networks, some features
had to be slightly modified to fit the characteristics of the
particular social network. However, the general approach
remains the same. We used the Weka framework [7] with a
Random Forest algorithm [11] for our classifier. We chose
this algorithm because it was the one that gave the best
accuracy and lowest false positive ratio when we performed
the cross-validation of the training set.

5.1 Spam Detection on Facebook
The main issue when analyzing Facebook is to obtain a

suitable amount of data to analyze. Most profiles are pri-
vate, and only their friends can see their walls. At the begin-
ning of this study, geographic networks were still available,
but they were discontinued in October 2009. Therefore, we
used data from various geographic networks, crawled be-
tween April 28 and July 8 2009, to test our approach.

Since on Facebook the number of friend requests sent out
is not public, we could not apply the R feature.

We trained our classifier using 1,000 profiles. We used the
173 spam bots that contacted our honey-profiles as samples
for spammers, and 827 manually checked profiles from the
Los Angeles network as samples for legitimate users. A 10-
fold cross validation on this training data set yielded an
estimated false positive ratio of 2% and a false negative ratio
of 1%. We then applied our classifier to 790,951 profiles,
belonging to the Los Angeles and New York networks. We
detected 130 spammers in this dataset. Among these, 7 were
false positives. The reason for this low number of detected
spammers might be that spam bots typically do not join
geographic networks. This hypothesis is corroborated by the
fact that among the spam profiles that contacted out honey
profiles, none was a member of a geographic network. We
then randomly picked 100 profiles, classified as legitimate.
We manually looked at them to search for false negatives.
None of them turned out to be a spammer.

5.2 Spam Detection on Twitter
On Twitter, is much easier to obtain data than on Face-

book, since most profiles are public. This gave us the pos-
sibility to develop a system that is able to detect spammers
in the wild. The results of our analysis were then sent to
Twitter, who verified that the accounts were indeed sending
spam and removed them.

To train our classifier, we picked 500 spam profiles, com-
ing either from the ones that contacted our honey profiles,
or manually selected from the public timeline. We included
profiles from the public timeline to increase diversity among
spam profiles in our training dataset. Among the profiles
from the public timeline, we chose the ones that stood out
from the average for at least one of the R, U , and S fea-
tures. We also picked 500 legitimate profiles from the public
timeline. This was a manual process, to make sure that no
spammers were miscategorized in the training set. The R
feature was modified to reflect the number of followers a
profile has. This was done because legitimate profiles with
a fairly high number of followers (e.g., 300), but following
thousands of other profiles, have a high value of R. This
is a typical situation for legitimate accounts following news
profiles, and would have led to false positives in our system.
Therefore, we defined a new feature R′, which is the R value
divided by the number of followers a profile has. We used it
instead of R for our classification.

After having trained the classifier, it was clear that the F
feature is not useful to detect spammers on Twitter, since
both spammers and legitimate profiles in the training set
had very similar values for this parameter. This suggests
that Twitter spam bots do not pick their victims based on
their name. Therefore, we removed the F feature from the
Twitter spam classifier. A 10-fold cross validation for the
classifier with the updated feature set yielded an estimated
false positive ratio of 2.5% and a false negative ratio of 3%
on the training set.

Given the promising results on the training set and the
possibility to access most profiles, we decided to use our
classifier to detect spammers in real time on Twitter. The
main problem we faced while building our system was the
crawling speed. Twitter limited our machine to execute only
20,000 API calls per hour. Thus, to avoid wasting our lim-
ited API calls, we executed Google searches for the most
common words in tweets sent by the already detected spam-
mers, and we crawled those profiles that were returned as

7

results. This approach has the problem that we can only de-
tect profiles that send tweets similar to those of previously
observed bots. To address this limitation, we created a pub-
lic service where Twitter users can flag profiles as spammers.
After a user has flagged someone as a spammer, we run our
classifier on this profile data. If the profile is detected as a
spammer, we add this profile to our detected spam set, en-
abling our system to find other profiles that sent out similar
tweets.

Every time we detected a spam profile, we submitted it
to Twitter. During a period of three months, from March
06, 2010 to June 06, 2010, we crawled 135,834 profiles, de-
tecting 15,932 of those as spammers. We sent this list of
profiles to Twitter, and only 75 were reported by them to be
false positives. All the other submitted profiles were deleted.
In order to evaluate the false negative ratio, we randomly
picked 100 profiles, classified as legitimate by our system.
We then manually checked at them, finding out that 6 were
false negatives.

To show that our targeted crawling does not affect our
accuracy or false positive ratio, but just narrowed down the
set of profiles to crawl, we picked 40,000 profiles at random
from the public timeline and crawled them. Among these,
we detected 102 spammers, with a single false positive. We
can see that our crawling is effective, since the percentage of
spammers in our targeted (crawled) dataset is 11%, whereas
in the random set, it is 0.25%. On the other hand, the false
positive ratio on in both datasets is similarly low.

5.3 Identification of Spam Campaigns
After having identified single spammers, we analyzed the

data to identify larger-scale spam campaigns. With “spam
campaign,” we refer to multiple spam profiles that act un-
der the coordination of a single spammer. We consider two

05/01/09 07/01/09 09/01/09 11/01/09 01/01/10 03/01/10 05/01/10

C
am

pa
ig

n

Day

Campaign 1
Campaign 2
Campaign 3
Campaign 4
Campaign 5
Campaign 6
Campaign 7
Campaign 8

Figure 3: Activity of campaigns over time.

bots posting messages with URLs pointing to the same site
as being part of the same campaign. Most bots hide the real
URL that their links are pointing to by using URL short-
ening services (for example, tinyurl [6]). This is typically
done to avoid easy detection by social networks administra-
tors and by the users, as well as to meet the message length
requirements of some platforms (in particular, Twitter). To
determine the actual site that a shortened URL points to, we

visited all the URLs that we observed. Then, we clustered
all the profiles that advertised the same page. We list the
top eight campaigns, based on the number of observed mes-
sages, in Table 3. Since we had most detections on Twitter,
these campaigns targeted that network. It is interesting to
notice, however, that bots belonging to three of them were
observed on Facebook as well.

Some campaigns showed a large number of bots, each
sending a few messages per day, while others send many
messages using few bots. In addition, the fact that bots of
a campaign can act in a stealthy or greedy way (see Sec-
tion 4.2) leads to significantly different outcomes. Greedy
bots that send spam with each message are easier to detect
by the social network administrators. On the other hand, a
low-traffic spam campaign is not easy to detect. For exam-
ple, the bots from Campaign 1 sent 0.79 messages per day,
while the bots from the second campaign sent 0.08 messages
per day on average. The result was that the bots from Cam-
paign 1 have an average lifetime of 25 days, while the bots of
Campaign 2 lasted 135 days on average. In addition, Cam-
paign 2 reached more victims, as shown by an average of 94
friends (victims) per bot, while Campaign 1 only reached 52.
This suggests that a relationship exists between the lifetime
of bots and the number of victims targeted. Clearly, an ef-
fective campaign should be able to reach many users, and
having bots that live longer might be a good way to achieve
this objective.

From the point of view of victims reached, stealthy cam-
paigns are more effective. Campaigns 4 and 7 both used a
stealthy approach. Of the messages sent, only 20-40% con-
tained spam content. As a result, bots from Campaign 4
had an average lifetime of 120 days, and started following
460 profiles each. Among these, 87 users on average followed
the bots back. Campaign 7 was the most effective among
Twitter campaigns, both considering the number of victims
and the average bot lifetime. To achieve this, this campaign
combined a low rate of messages per day with a stealth way
of operating. The bots in this campaign have an average
lifetime of 198 days and 1,787 victims, of which, on average,
112 acknowledged the friend request.

From the observations of the various campaigns, we de-
veloped a metric that allows us to predict the success of a
campaign. We consider a campaign successful if the bots
belonging to it have a long lifetime. For this metric, we
introduce the parameter Gc, defined as follows:

Gc =
M

−1

d
·Sd

((
q

M
−1

d
·Sd)+1)2

, 0 ≤ Gc ≤ 1.

In the above formula, Md is the average number of messages
per day sent and Sd is the ratio of actual spam messages (0 ≤
Sd ≤ 1). Empirically, we see that campaigns with a value of
Gc close to 1 have a long lifetime (for example, Campaign 7
has Gc = 0.88, while Campaign 2 has Gc = 0.60), while for
campaigns with a lower value of this parameter, the average
lifetime decreases significantly (Campaign 1 has Gc = 0.28
and Campaign 5 has Gc = 0.16). Thus, we can infer that a
value of 0.5 or higher for Gc indicates that a campaign has
a good chance to be successful. Of course, if a campaign is
active for some time, a social network might develop other
means to detect spam bots belonging to it (e.g., a blacklist
of the URLs included in the messages).

Activity of bots from different campaigns is shown in Fig-
ure 3. Each row represents a campaign. For each day in

8

SN Bots # Mes. Mes./day Avg. vic. Avg. lif. Gc Site adv.
1 T 485 1,020 0.79 52 25 0.28 Adult Dating
2 T 282 9,343 0.08 94 135 0.60 Ad Network
3 T,F 2,430 28,607 0.32 36 52 0.42 Adult Dating
4 T 137 3,213 0.15 87 120 0.56 Making Money
5 T,F 5,530 83,550 1.88 18 8 0.16 Adult Site
6 T,F 687 7,298 1.67 23 10 0.18 Adult Dating
7 T 860 4,929 0.05 112 198 0.88 Making Money
8 T 103 5,448 0.4 43 33 0.37 Ad Network

Table 3: Spam campaigns observed.

which we observed some activity from that campaign, a cir-
cle is drawn. The size of circles varies according to the num-
ber of messages observed that day. As can be seen, some
campaigns have been active over the entire period of the
study, while some have not been so successful.

We then tried to understand how bots choose their vic-
tims. The behavior seems not to be uniform for the various
campaigns. For example, we noticed that many victims of
Campaign 2 shared the same hashtag (e.g., “#iloveitwhen”)
in their tweets. Bots might have been crawling for people
sending messages with such tag, and started following them.
On the other hand, we noticed that Campaigns 4 and 5 tar-
geted an anomalous number of private profiles. Looking at
their victims, 12% of them had a private profile, while for a
random picked set of 1,000 users from the public timeline,
this ratio was 4%. This suggests that bots from these cam-
paigns did not crawl any timeline, since tweets from users
with a private profile do not appear on them.

6. CONCLUSIONS
Social networking sites have millions of users from all over

the world. The ease of reaching these users, as well as the
possibility to take advantage of the information stored in
their profiles, attracts spammers and other malicious users.

In this paper, we showed that spam on social networks is
a problem. For our study, we created a population of 900
honey-profiles on three major social networks and observed
the traffic they received. We then developed techniques to
identify single spam bots, as well as large-scale campaigns.
We also showed how our techniques help to detect spam
profiles even when they do not contact a honey-profile. We
believe that these techniques can help social networks to
improve their security and detect malicious users. In fact,
we develop a tool to detect spammers on Twitter. Providing
Twitter the results of our analysis thousands of spamming
accounts were shut down.

7. ACKNOWLEDGMENTS
This work was supported by the ONR under grant

N000140911042 and by the National Science Foundation
(NSF) under grants CNS-0845559 and CNS-0905537.

8. REFERENCES
[1] Alexa top 500 global sites.

http://www.alexa.com/topsites.

[2] Compete site comparison.
http://siteanalytics.compete.com/facebook.com+

myspace.com+twitter.com/.

[3] Facebook statistics. http:
//www.facebook.com/press/info.php?statistics.

[4] Honeypots. http:
//en.wikipedia.org/wiki/Honeypot_computing.

[5] The recaptcha project. http://recaptcha.net/.

[6] Tinyurl. http://tinyurl.com/.

[7] Weka - data mining open source program.
http://www.cs.waikato.ac.nz/ml/weka/.

[8] Sophos facebook id probe.
http://www.sophos.com/pressoffice/news/

articles/2007/08/facebook.html, 2008.

[9] J. Baltazar, J. Costoya, and R. Flores. Koobface: The
largest web 2.0 botnet explained. 2009.

[10] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All
your contacts are belong to us: Automated identity
theft attacks on social networks. In World Wide Web
Conference, 2009.

[11] L. Breiman. Random forests. In Machine Learning,
2001.

[12] G. Brown, T. Howe, M. Ihbe, A. Prakash, and
K. Borders. Social networks and context-aware spam.
In ACM Conference on Supportive Cooperative Work,
2008.

[13] T.N. Jagatic, N.A. Johnson, M. Jakobsson, and T.N.
Jagatif. Social phishing. Comm. ACM, 50(10):94–100,
2007.

[14] B. Krishnamurthy, P. Gill, , and M. Aritt. A few
chirps about twitter. In USENIX Workshop on Online
Social Networks, 2008.

[15] S. Moyer and N. Hamiel. Satan is on my friends list:
Attacking social networks. http://www.blackhat.
com/html/bh-usa-08/bh-usa-08-archive.html,
2008.

[16] Harris Interactive Public Relations Research. A study
of social networks scams. 2008.

[17] S. Webb, J. Caverlee, , and C.Pu. Social honeypots:
Making friends with a spammer near you. In
Conference on Email and Anti-Spam (CEAS 2008),
2008.

[18] S. Yardi, D. Romero, G. Schoenebeck, and D. Boyd.
Detecting spam in a twitter network. First Monday,
15(1), 2010.

9

Toward Worm Detection in Online Social Networks

Wei Xu
Pennsylvania State University
University Park, Pennsylvania

wxx104@cse.psu.edu

Fangfang Zhang
Pennsylvania State University
University Park, Pennsylvania

fuz104@cse.psu.edu

Sencun Zhu
Pennsylvania State University
University Park, Pennsylvania

szhu@cse.psu.edu

ABSTRACT
Worms propagating in online social networking (OSN) web-
sites have become a major security threat to both the web-
sites and their users in recent years. Since these worms
exhibit unique propagation vectors, existing Internet worm
detection mechanisms cannot be applied to them. In this
work, we propose an early warning OSN worms detection
system, which leverages both the propagation characteris-
tics of these worms and the topological properties of online
social networks. Our system can effectively monitor the en-
tire social graph by keeping only a small number of user
accounts under surveillance. Moreover, the system applies
a two-level correlation scheme to reduce the noise from nor-
mal user communications such that infected user accounts
can be identified with a higher accuracy. Our evaluation
on the real social graph data obtained from Flickr indicates
that by monitoring five hundreds users out of 1.8 million
users, the proposed detection system can detect the burst of
an OSN worm when less than 0.13% of total user accounts
are infected. Besides, by adopting simple countermeasures,
the detection system is also shown to be very helpful for
worm containment.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security

Keywords
Worm Detection, Online Social Networks, Decoy, Dominat-
ing Set, Early Warning

1. INTRODUCTION
The popularity of online social networking (OSN) websites

has been boosted in recent years. For example, Facebook has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

more than 400 million active users [4] worldwide, MySpace
has more than 70 million members [9] in U.S., Twitter has
more than 75 million users [13] and LinkedIn has more than
44 million members [7]. This rapid growth of OSN websites
has given rise to a number of security attacks. A represen-
tative example is a worm named Koobface, which spread
in Facebook and MySpace in August 2008 [6] [10] [14]. It
has generated 56 variants and has infected many other web-
sites such as Tagged, Friendster, MyYearBook, Fubar.com,
Hi5 and Bebo [1] [3] [8]. Besides Koobface, there are other
worms, such as Mikeyy worm [12] and Samy worm [24] that
have also caused havoc in OSN websites.

OSN websites have become an attractive target for these
worms (hereinafter referred to as OSN worms) because of
the following properties of the online social networks. First,
online social networks are small-world networks [21], which
means they have the properties of small average shortest
path length and high clustering. The small average short-
est path length property can reduce the propagation time
from one user account to another user account. Meanwhile,
the high clustering property suggests that users are tightly
connected together, which facilitates the explosion of OSN
worms. Second, online social networks are also scale-free
networks [25], which are a class of power-law networks where
high-degree nodes tend to connect with other high-degree
nodes. When an OSN worm infects the account of a popular
user (i.e., user with a large number of friends), this scale-free
property suggests that the worm can infect another popular
account shortly. As a result, the worm can achieve expo-
nential growth by propagating to the large friends set of
these popular users. Moreover, OSN worms also leverage
social engineering [6] to increase the authenticity of worm
messages.

By exploiting these properties of online social networks,
OSN worms exhibit fast spreading characteristics similar
to the ones observed in Internet worms. However, exist-
ing Internet worm detection mechanisms can not be directly
applied to detecting OSN worms. This is because Inter-
net worm detection heavily relies on the unique patterns of
worm scanning traffic or the misbehavior of infected hosts,
but neither of them can be observed in the propagation of an
OSN worm. From the perspective of OSN websites (i.e., the
server side), an infected user account does nothing but send-
ing messages or posting updates as normal users do when the
actual infection is taking place in the browser (i.e., the client
side). This makes the detection of OSN worms a new and
interesting problem.

In this paper, we propose an early warning OSN worm

11

detection system. Early warning is essential for OSN worm
detection because it provides administrators the opportunity
to apply worm containment and elimination measures with-
out affecting a large portion of user accounts. Meanwhile,
achieving early warning in the detection of fast spreading
worms is also a challenging problem [20].

Our approach leverages the properties of online social net-
works and the inherent propagation characteristics of OSN
worms. More specifically, we first build a surveillance net-
work based on the small-world and scale-free properties of
the social graph to collect suspicious worm propagation ev-
idence. We maximize the surveillance coverage by monitor-
ing only a small fraction of user accounts. These accounts
are selected by investigating the vertex properties of the so-
cial graph. We also realize that detection based on suspi-
cious evidence alone is prone to high false positives, because
worm activities are highly likely to be drown out in normal
user activities. As such, we further propose a scheme to
effectively filter out the noise in the surveillance network.
The implementation of the system is flexible, it can either
reside on a dedicated server or be distributed within the
OSN websites.

Our experimental results based on a real-life social graph
dataset consisting of over 1.8 million users and 22.6 million
friend links demonstrated the effectiveness of our detection
system. The outbreak of an OSN worm can be detected
when only 0.13% of the total user accounts are infected.
Moreover, our detection system is simple in design, like a
lightweight network intrusion detection system (NIDS), and
it only needs to process a relatively small number of (suspi-
cious) propagation evidence collected from the users in an
EDS. We believe this could be a practical and easy solution
for OSN websites that are currently struggled with OSN
worms.

The rest of the paper is organized as follows: Section 2
provides the background on various OSN worms and char-
acterizes their propagation vectors. We describe the design
of the proposed detection system in Section 3. In Section
4, we evaluate its effectiveness in worm detection. We dis-
cuss several limitations of our work in Section 5 and describe
some related works in Section 6. Finally, we conclude our
work in Section 7.

2. BACKGROUND
Various OSN worms spread themselves by exploiting dif-

ferent features of the OSN websites. Nonetheless, their prop-
agation vectors share certain similarities, which will be char-
acterized by examining two representative OSN worms: Koob-
face and Mikeyy.

Figure 1 illustrates the propagation flow of Koobface in
Facebook. User A receives a worm message from one of her
friends (step 1) after this friend was infected by Koobface.
Within this worm message, there is a link to a video clip
hosted on a fake YouTube website. When user A clicks that
link, the browser is redirected to the fake YouTube webpage
(step 2), where the user is prompted by a request to install
an update for “Adobe Flash player”plugin, which is actually
a malware. After user A installs the claimed browser plugin
(step 3), Koobface infects user A’s Facebook account and
iterate its infection cycle by sending similar worm messages
to all the friends in user A’s profile (step 4). Actually, be-
sides sending messages, Koobface also sends invitations or
composes posts, both of which contain similar worm content.

Infected

User

User A’s

Friend list

Hi, A

See you in this video.

Http://youtube.com/..

User A

Hi, B...

Hi, C...

Hi, D...

Hi, E...

1

2

3

4

Worm message

Fake “Youtube” website

Koobface

User B

User C

User D

User E

Figure 1: Koobface worm infection cycle

Mikeyy worm propagates by posting updates on an in-
fected user’s profile to encourage the “follower” (people who
can automatically receive the updates in their profiles) to
visit www.StalkDaily.com, which was owned by the attacker.
When a follower who is interested in the update clicks to see
the poster’s profile, a self-replicated JavaScript code is in-
jected into the follower’s profile. After the injection, similar
updates are posted on the infected follower’s profile to repeat
the infection cycle.

Despite the differences in the infection vectors of these two
worms (E.g., downloading malware versus self-replicating JS
code), both of them propagate following the social connec-
tions (E.g., friends or followers) of an infected account; in
other words, their propagations follow the topology of the
online social network (i.e., the social graph). One reason of
this similarity is that social connections provide worms an
opportunity to exploit social engineering such that the click-
through rate of the malicious content can be increased. Be-
sides, as mentioned before, topological properties of online
social networks (e.g., small-world) can facilitate the spread
of worms. Another similarity shared by both worms is the
generation of passively noticeable activities such as worm
messages and worm updates. This is because OSN worms
are normally generated with certain malicious purposes such
as advertising malicious websites or distributing malware.

In this paper, we limit our discussion to OSN worms that
exhibit the above two properties. That is, we aim to de-
tect worms that propagate following the social connections
and generate passively noticeable worm activities. We ac-
knowledge that not all existing OSN worms exhibit both
the above properties and future OSN worms could take dif-
ferent formats. For example, Samy worm [2], a cross-site
scripting (XSS) worm on MySpace, is one which does not
generate activities passively noticeable by friends, so it is
out of the scope of this work. We believe it would be better
addressed by solutions focused on XSS vulnerabilities [24].
Indeed, the vulnerability exploited by Samy worm has been
fixed and hence Samy worm does not work now, whereas the
OSN worms we are addressing here remain a big threat to
OSN sites.

3. SYSTEM DESIGN
In this section, we elaborate the design of the OSN worm

12

detection system, starting with a system overview.
As suggested by the high clustering property, the neigh-

borhoods (i.e., friends) of most user accounts are densely
connected. Therefore, for each neighborhood, our system
only needs to monitor the “popular” user (i.e., the one with
most friends in a neighborhood) to cover the entire neigh-
borhood. Meanwhile, the scale-free property implies that a
user with a large friend set tends to be friends with other
users with large friend sets. This indicates that not all the
popular users need to be monitored. Indeed, our system will
only select a few of such users to maintain the surveillance
coverage.

3.1 Overview
The general idea of our detection system is to deploy a

disguised surveillance network being part of the online so-
cial networks to collect worm propagation evidence and to
identify worm infections. Figure 2 illustrates the framework
of our detection system, which consists of four major com-
ponents. The configuration module retrieves from the ad-
ministrator of the OSN website the social graph, based on
which it determines where to collect evidence. The evidence
collecting module gathers suspicious worm propagation ev-
idence observed in an OSN website. The worm detection
module identifies and reports a worm infection based on the
input from the evidence collecting module. When an infec-
tion is detected, this module passes an alarm together with
the infection information to the administrator of the OSN
website via the communication module. The communication
module provides all the necessary communications between
an OSN website and the other modules. We will explain the
design details of these modules in the following subsections.

One noteworthy property of our design is that each mod-
ule only represents a combination of certain functionalities,
and these functionalities can be implemented either within
a dedicated server or in a distributed way. This property
extends the flexibility of the system implementation, and it
will be further discussed in Section 4.

Figure 2: Detection System Overview

3.2 Evidence Collecting Module
The evidence collecting module is in charge of gathering

worm propagation evidence (e.g., worm messages, worm up-
dates). However, given the huge amount of information ex-
changed in an OSN website, the challenge is how to collect
only suspicious worm evidence. Since OSN worms follow the
social connections in propagation, a friend of an infected user
account is more likely to receive worm propagation evidence.

To leverage this advantage, we adapt the idea of honeypot
here as “decoy friend”. A decoy friend is a low-interactive
honeypot, and it is created and added into a normal user’s
friends list by the detection system. When a user account is
infected by an OSN worm, decoy friends of that account can
receive worm evidence. Similar ideas have been suggested
in [30, 16] for other types of networks. In [30], the authors
assume decoys only receive malicious messages. However,
the same assumption does not hold in our work. In fact, our
system treats the collected information from decoys only as
suspicious evidence because some normal user activities can
also be observed by decoys.

Decoys form a disguised surveillance network. We assign
each decoy to be friends with several normal users so that
a decoy can not be easily spotted because of its small num-
ber of friends. In addition, there are a few practical con-
cerns regarding applying decoy friends in real world OSN
websites. The first potential concern is related to user’s
information privacy because decoys collect suspicious infor-
mation in the network. However, since users’ data are all
stored and kept in the OSN websites, we think our system
will not cause new data/information leakage. Nevertheless,
to alleviate such possible concern, our system will only keep
the suspicious information for a short period of time. The
second concern is that users might be reluctant to accept
decoy friends. As such, a website will need to consult its
users before assigning decoy friends to them. In fact, the
OSN websites could provide incentives to encourage users
to accept decoy friends. After all, both users and the OSN
websites try to avoid worm infections for their own benefits.
The third concern is on the number of decoy friends to be
deployed in an OSN website. Besides user’s reluctance, the
population of decoys may negatively impact the popularity
of an OSN website, because decoy friends do not contribute
to any interactive activities such as discussions or communi-
cations. To this end, our system strives to limit the number
of decoy friends while preserving the detection effectiveness.
We will discuss this design issue in the next section.

3.3 Configuration Module
The most important function of the configuration module

is deploying decoys, which consists of two consecutive steps:
selecting normal users and assigning decoy friends to these
users. This module also performs other functions such as
maintaining the configuration information of the system.

3.3.1 Selecting Normal Users
Because of the practical concerns on applying decoys, our

system only selects a small set of users (hereinafter referred
to as “selected users set”) to be friends with decoys. Mean-
while, the objective of early warning favors a sufficiently
large portion of users being kept under the surveillance of
our system. Hence, the question is how to choose as small
as possible a selected users set to achieve early warning. We
formalize this problem in the context of social graph: Given
a directed graph G = (V, E), where each vertex denotes a
user in the social network and each edge represents a connec-
tion between two users 1, choose a minimum set of vertices
such that each vertex either belongs to the set or there ex-

1in the case of mutual acquaintance between two users, such
as in Facebook if A is friends with B, then B is also friends
with A, this connection needs to be represented by two di-
rected edges.

13

ists a path that ends at this vertex and starts from some
vertex within the set. The length of this path is at most r
hops. This problem is also known as extended dominating
set problem [29] [19], which is NP-complete.

The choice of r affects the size of the selected users set.
Therefore, it is carefully reasoned based on the following
study of a real world social graph. Our study first confirms
that given the same number of users, a larger r can cover a
larger portion of the same social graph, so a larger r is desir-
able if at all possible. We also find that a worm starts from
a single user can infect at most 0.08% of all users in two-hop
propagation and 0.26% of all users in three-hop propagation.
If our system sets r = 3, it is very likely that by the time
worm propagation is detected, 0.26% of all users have been
infected. This exceeds the early warning criterion (0.19%)
suggested in [20], so our system sets r = 2 as the cover-
age radius. Our study also suggests that it is not necessary
to cover the entire social graph, because degree distribution
of the vertices in a social graph follows power law distri-
bution [25]. This property indicates that many vertices do
not even have any connections. For example, over 20% of
users in our evaluation data have no connections. These
vertices are very unlikely to become the victim of a worm,
and the effort of covering such vertices would produce a set
with the size comparable to the size of the graph. Based on
these studies of the properties of a social graph, we relax the
constraint about covering the entire graph and redefine the
problem as follow:

Maximum Coverage Problem: Given a social graph G =
(V, E) and a number k, choose a set of vertices with size of
at most k such that the number of other vertices that are
covered by this set with coverage radius r = 2 reaches the
maximum.

The maximum coverage problem is also NP-complete. The
previous extended dominating set problem reduces to it.
Since both the scale-free property and the power-law distri-
bution of degree suggest that high-degree vertices are more
likely to be infected by a worm than most other low-degree
vertices, these high degree vertices should be included in
the selected users set with high priority. Besides, research
on modelling epidemics in topological networks [15] [26] [31]
also indicates that the more edges a node has, with a higher
probability it will be infected quickly by an epidemic. These
results suggest the following greedy heuristic: At each step,
we add one vertex into the set such that the intersection
between this vertex’s 2-hop coverage and the remaining ver-
tices is maximum. Based on this heuristic, we design the
following approximate algorithm.

The time complexity of Algorithm 1 is O(knm2) where
n = |V | and m = |E|. In practice, our system pre-processes
the social graph to reduce the size of the graph such that the
performance of the algorithm could be improved. Besides,
since social graphs grow with time, we may run this algo-
rithm periodically(e.g., once a week) to reflect such growth.

3.3.2 Assigning Decoy Friends
After a candidate selected users set is chosen, the configu-

ration module sends the set to the OSN administrator, who
will contact these users (with incentives) and return the final
set of users that are willing to accept decoy friends. Upon
receiving the final set, this module creates decoy profiles in

Algorithm 1 Maximum Coverage Algorithm

Input: Graph G = (V, E)
Output: Monitored user set C
1: C ← ∅
2: while |C| < k and V ̸= ∅ do
3: maxcover ← 0
4: for ∀v ∈ V do
5: coverv ← 2-hops coverage of v
6: if maxcover < coverv then
7: maxcover ← coverv

8: end if
9: end for

10: C ← C
∪
{v}

11: V ← V − {v}
12: for ∀u ∈ V and (v, u) ∈ E do
13: for ∀(u, w) ∈ E do
14: V ← V − {w}
15: end for
16: V ← V − {u}
17: end for
18: Update degree of each v ∈ V
19: end while

the OSN website and associates two decoy friends to each
user by adding them into the user’s friends list (The jus-
tification of this scheme is discussed in Section 3.4). This
module also modifies the account preference of each decoy
friend (according to the setting of the OSN website) so that
information received by decoy friends can be collected by
the evidence collecting module.

3.4 Worm Detection Module
This module identifies the infected user accounts based

on the suspicious worm propagation evidence. To distin-
guish actual worm evidence from normal user communica-
tions, this module applies correlation test on the suspicious
evidence. The correlation test is based on similarities in the
content and the structure of worm propagation evidence.
One reason behind this similarity is that worm messages
or updates composed by the same worm usually serve the
same purpose (e.g., advertising a malicious link). Another
reason is that the automatic message generation algorithms
run by worms tend to reuse words and phrases because of
the limited size of their candidate words set.

In this module, we employ a two-level spatial-correlation
scheme, namely local correlation and network correlation.
To provide necessary information to correlations, our system
maintains a data structure called suspicious propagation ev-
idence list (SPEL), which is associated with each selected
user. In SPEL, every piece of evidence is stored as a {decoy
friend ID, receiving time, content} tuple.

Local Correlation: Local correlation performs similar-
ity test among suspicious evidence collected by two decoy
friends assigned to the same selected user. The purpose of
associating two decoy friends with one user is to offer a local
reference such that upon receiving any evidence from one
decoy friend, the system can search the other decoy friend’s
SPEL for similar evidence. One of the following scenarios
will happen:

1. Only one of the two decoy friends has received this
message. With a high probability, this is worm prop-

14

agation evidence because a normal user is unlikely to
send messages to one of his/her decoy friends, espe-
cially given that he/she knows which is a decoy.

2. Both decoy friends have received similar but not iden-
tical messages. With a high probability, this is worm
propagation evidence because only the infected users
send customized worm messages to each friend.

3. Both decoy friends receive the same message or up-
date 2. It could be either a group message or a worm
message with the same content. In this case, the scheme
resorts to network correlation for further identification.

Network Correlation: Network correlation is performed
with input from all decoy friends. Upon receiving the same
evidence from two decoy friends of a user, network corre-
lation searches for similar evidence by computing the sim-
ilarity score between the received evidence and any other
evidence in the SPELs of other decoys. If similar evidence
(e.g., with a similarity over 90%) is found, with high prob-
ability, both pieces of evidence can be confirmed as worm
propagation evidence. We realize that some normal com-
munications among users may have the similar propagation
pattern as worm messages. For example, the outbreak of a
large-scale event may cause similar or same messages dis-
tributed within an OSN. We will discuss this case in Section
6.

To examine the similarity between two pieces of suspi-
cious propagation evidence, our scheme applies a simple
measurement of similarity based on the metric of edit dis-
tance editDist() [23]. By this measurement, the similarity
between evidence Ea and evidence Eb can be evaluated as
follow:

sim(Ea, Eb) =
1

1 + editDist(Ea, Eb)
(1)

where editDist() follows the definition of Levenshtein edit
distance [22]. We acknowledge that more complex similarity
measurements may generate more accurate results, but since
that is not the focus of this paper, we will consider the other
metrics in our future work.

Figure 3 gives an example illustrating the mechanism of
two-level correlation. In this example, users A, B, C be-
long to the selected users set, and each of them is associated
with two decoy friends. We assume that the worm first in-
fects D, then it infects both E and A. After that, B is
infected as well. At the time A was infected, if the worm
sends customized messages to A’s decoy friends A1 and A2,
the system can identify A’s infection by local correlation
between A1 and A2 (Scenario 2). If both A1 and A2 re-
ceive the same message (or update), the system checks the
SPELs of all other selected users (e.g., B and C) and com-
pares the received suspicious evidence with stored evidence.
Because neither B or C is infected at this time, no match
is found. Therefore, the evidence received by both A1 and
A2 is stored in the SPEL of A. After B is infected, the same
procedure is preformed and a match can be found between
the evidence stored in the SPEL of A and the evidence just
received by B1 and B2. At this time, the infection of both
A and B can be identified.
2Since updates are automatically displayed to all the friends
by the OSN website, updates cannot appear in the previous
scenarios

Figure 3: An example of two level correlation

3.5 Communication Module
The communication module acts as the interface of the

detection system since it processes all necessary communi-
cations between the system and the OSN website. For exam-
ple, it coordinates the communications between the configu-
ration module with the administrator during system setting
up. It receives propagation evidence from the OSN web-
sites and passes them to the evidence collecting module. It
also sends the worm infection alarm to the administrator on
behalf of the worm detection module.

4. SYSTEM EVALUATION
In this section, we evaluate the OSN worm detection sys-

tem on the real world social graph of Flickr [5]. There
are 1,846,198 users and 22,613,981 friend links in the social
graph, and the average friend number per user is 12.24. The
data set is crawled from Flickr for a measurement study [25],

We evaluate the detection system with three objectives.
The first objective is early warning. We define early warn-
ing in terms of the number of infected accounts by the time
the worm is detected. This metric is borrowed from Internet
worm detection. As suggested in [20], a worm detection sys-
tem is deemed as an early warning system if the worm prop-
agation is detected when less than 0.19% of all vulnerable
hosts are infected. The second objective is to test the detec-
tion system under various worm propagation behaviors as
well as under practical constraints such as user reluctance.
The third objective is to examine the effectiveness of our
system in worm containment with simple countermeasures
provided.

To assess the practicability of the system design, we also
discuss the implementation of the detection system in real
world OSN websites.

4.1 Simulation Model
Our simulation model consists of four modules as shown in

Figure 4. The initialization module takes the social graph

15

as input and output the set of selected users (the default
size of the set is 500). For each selected user, this module
adds two edges in the social graph from the vertex (repre-
senting the user) to the two new vertices (representing two
decoy friends). It also creates and associates a SPEL with
each selected user. Worm propagation starts from certain
user(s). The propagation module models worm propaga-
tion by repeating two consecutive phases, namely sending
worm messages (both messages and updates are referred as
messages in evaluation) and infecting users. In the process
of sending worm messages, our simulator chooses either to
send worm messages to all the friends or to a fraction of
friends randomly chosen from the friends list of an infected
user. Each worm message is randomly selected from the
a predefined worm messages set. We assume each recipi-
ent of worm messages gets infected with a probability of
Puser. The probability is randomly assigned for each user
and keeps constant in each worm propagation. The mon-
itor module performs correlation tests on suspicious worm
messages. Once a worm infection is identified, the post-
processing module can output the infection statistic such as
percentage of infected users.

Propagation

Post-processing

Monitor

Worm
<Starting user(s), Msgs>

Choose selected user set

Selected User Set

<SIEL, neighbors>

Social

Graph

Decoy Friends

List

Users w/

Suspicious

Worm Msg.Correlation

Infection

Statistics

Send worm msg.

Infect user w/ Puser

Figure 4: OSN Worm Simulation Model

Since a few random variables are used in each propagation,
we repeat each propagation for 100 times in our evaluation
to reduce the impact of randomness. After that, we display
the results as the mean values of these iterations as well as
95% confidence intervals of the means.

4.2 Early Warning Detection
In this part of evaluation, we examine whether the de-

tection system can achieve early warning. To this end, we
test the detection system in the propagation of two repre-
sentative OSN worms, namely Koobface worm and Mikeyy
worm. A user account infected by Koobface worm sends
different (customized) messages to the its two decoy friends.
In Mikeyy worm propagation, an infected account delivers
the same message to both decoys.

A crucial factor in worm propagation is the initially in-
fected user account(s) (i.e., hitlist) because the total friend
numbers of the initial account(s) can affect the worm prop-
agation speed. To conduct a more comprehensive test, we
choose 22 accounts from the Flickr dataset with different
friend numbers (from 1 to 26,185, where 26,185 is the maxi-
mum number of friends) as initial infected user accounts and
start worm propagation from these accounts in both worm
cases. Then we measure the average infection numbers by

the time these worms are detected and the results are showed
in Table 1 and Figure 5.

Table 1 lists the average infection numbers on detection
for both worms. The maximum infection number is 2420,
which is only 0.13% of all the users. This indicates the detec-
tion system fulfills the early warning requirement. In addi-
tion, Table 1 shows the average infection number of Mikeyy
worm is larger than that of Koobface worm. This is because
the detection of Mikeyy worm infections requires both local
correlation and network correlation. Next, we will use the
Mikeyy worm propagation model for evaluation.

121116283856709313
0

20
1

39
1

42
9

53
1

68
4

80
5

96
0

1
24
6

1
76
0

4
32
6

11
04
6

26
18
5

2500

2000

1500

1000

500

0

Different Starting Users

In
fe
c
ti
o
n
 N
u
m
b
e
r
(w
h
e
n
 w
o
rm
 i
s
 d
e
te
c
te
d
)

95% CI for the Mean

2.75

(a) Koobface

121116283856709313
0

20
1

39
1

42
9

53
1

80
5

96
0

1
24
6

1
76
0

4
32
6

11
04
6

26
18
5

2500

2000

1500

1000

500

0

Different Starting Users

In
fe
c
ti
o
n
 N
u
m
b
e
r
(w
h
e
n
 w
o
rm
is
 d
e
te
c
te
d
)

2.8

95% CI for the Mean

(b) Mikeyy

Figure 5: Infection Number versus Different Initial
User Accounts

Figure 5 confirms that in general propagations starting
from “popular” users can infect more user accounts. How-
ever, we also notice that in some cases worm propagation
starting from less popular initial users can infect more user
accounts than the propagations starting from more popu-
lar initial users. For example, in both worms, propagations
starting from the user with 531 friends infects more accounts
than propagations from the user with 1246 friends. The rea-
son is that popular users are more likely to be included in
the selected users set. If a user A, who has more friends than
another user B, has decoy friends, the infection of A will be
detected faster than infection of B. Therefore, a worm start-
ing from A may infect less accounts than the same worm
starting from B. Another reason, as demonstrated in [25], is
that social graph tends to exhibit a tightly-connected “core”

16

Table 1: Infection Number on Detection for Koobface and Mikeyy Worms
Worm Type Avg. Infection # Max Infection # Min Infection #
Koobface 700 1851 2.75
Mikeyy 1023 2420 2.8

of high-degree vertices connected with each other because
of its scale-free metric and the positive assortatively coeffi-
cient. This property implies that when a “popular” user is
infected, even if it does not belong to the selected user set,
it is very likely to infect another “popular” user in a short
time and this infection can be detected because the other
“popular” user has decoy friends. This observation also jus-
tifies the heuristic we adopt in Algorithm 1, where we start
with high-degree vertices.

4.3 Impact of Worm Behavior
In this part, we evaluate the detection system under be-

havior discrepancy of OSN worms. More specifically, we
consider that an OSN worm randomly chooses a fraction of
friends of an infected user as its propagation targets. We
note current OSN worms infect all friends, making them
easier to detect. Our evaluation is to show the effective-
ness of our scheme against more intelligent worms. The im-
pact of this behavior discrepancy is that some decoy friends
may not receive propagation evidence even if the user ac-
counts to which they are attached have been infected. To
test our detection system under this assumption, we simu-
late worm propagations with usage of friend lists from 10%
to 100%. For each percentage, worm propagation starts from
the above 22 different accounts and the average results are
showed in Figure 6.

100%90%80%70%60%50%40%30%20%10%

1800

1600

1400

1200

1000

800

600

400

200

0

Percentage of a Friends List being Randomly Selected

In
fe
c
ti
o
n
 N
u
m
b
e
r
(w
h
e
n
 w
o
rm
 i
s
 d
e
te
c
te
d
)

95% CI for the Mean

Figure 6: Infection Number versus Different Per-
centages of Friends lists

In Figure 6, all the worm propagations are detected when
less than 1600 user accounts are infected. This indicates
that the detection system can still achieve early warning
when worms randomly choose targets from friend lists. We
notice that even the worms using only 10% of the friend
lists can still be detected. Hence, as long as worms have
no knowledge about the identities of decoys, shrinking the
size of target lists to reduce the probability of hitting decoys
is ineffective to the attacker. On the other hand, if some-
how worms spot some decoys, they can evade these known
decoys (we will discuss the impact of this scenario in the
next section). Another trend illustrated by Figure 6 is that

when more friends are targeted, more accounts can be in-
fected by worms. Therefore, OSN worms will tend to use as
many contacts in the friends lists as possible if their goal is
to enlarge infection.

4.4 Impact of Selected Users Set
As mentioned previously, not all the users in the selected

users set are willing to accept decoy friends. Besides, we also
consider the scenario where some of the decoys are spotted
so that worms can avoid these decoys in propagation. To
evaluate the detection system in these scenarios, we study
worm propagations where only a part (randomly chosen) of
the selected users set has decoy friends. We first choose
a selected users set of 2000 users by Algorithm 1. After
that, we randomly choose 100 to 2000 users from this set
to assign decoy friends and then run worm propagations for
each case. Again, for each set, worm propagation starts
from the previously mentioned 22 different user accounts
and the average infection numbers by the time of detection
are illustrated in Figure 7.

200015001000500400300200100

3500

3000

2500

2000

1500

1000

500

0

Size of Selected Users Set

In
fe
c
ti
o
n
 N
u
m
b
e
r
(w
h
e
n
 w
o
rm
 i
s
 d
e
te
c
te
d
)

2937.85

1806.21
1670.92

1140.26
1032.67

534.38

314.9 245.527

95% CI for the Mean

Figure 7: Infection Number versus the Size of Se-
lected Users Set

Figure 7 clearly shows that a larger set of selected users
with decoy friends can detect worms with fewer infected
user accounts. For example, 1500 selected users set can de-
tect worm propagations when only 314 user accounts are in-
fected. However. when the size of the set is smaller or equal
to 100, the infection number is larger than 3000, which im-
plies that early warning may not be fulfilled with a selected
users set at this size. On the other hand, the infection num-
bers are restrained less than 1000 when the set size is larger
or equal to 500. This result shows the effectiveness of our de-
tection system under the impact of a partial working surveil-
lance network. It also indicates that the administrator of an
OSN should encourage more users (if at all possible) to ac-
cept decoy friends, e.g., with incentives.

4.5 Containment Measures
Upon detecting a worm propagation, the system will no-

tify the administrators of OSN websites. In addition, the

17

detection system can assist in suppressing worm propaga-
tions by adopting some simple countermeasures, such as
warning the friends of infected users [11] (1-hop warning)
by decoy friends or also warning the friends of friends (2-
hops warning) if the privacy setting of a selected user allows
the decoy friends to retrieve the friends information. In this
study, we assume users will raise their vigilance after receiv-
ing the warning messages and for simplicity here we assume
they will not be affected by the worm. The following results
demonstrate the effectiveness of such warning mechanisms
in worm containment.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

Propagation Time

In
fe

c
ti
o
n
 N

u
m

b
e
r

No Warning

Warning Friends
Warning Friends of Friend

Figure 8: Worm Propagation versus Different Con-
tainment Measures

Figure 8 compares the infection numbers with and with-
out warnings (both 1-hop and 2-hops warnings). The results
are based on a setting where a set of 500 selected users are
used to detect and warn other users. Figure 8 illustrates
that warnings can effectively suppress the worm propaga-
tion. A 2-hop warning approach can limit the infected user
number to a small value compared with the case in which no
warning is issued. A 1-hop warning prevents nearly half of
the users from being infected compared with the no warning
case. These results with the simple countermeasures (e.g.,
1-hop and 2-hops warnings) indicate the detection system is
helpful in worm containment.

4.6 Example Implementation
We discuss a practical implementation of the worm de-

tection system in detail based on a realworld OSN website,
Facebook.The system can reside in a dedicated server. It
has access to the Internet so that the server can visit Face-
book and communicate with the administrator of Facebook
through a secured channel (e.g., HTTPS or SSH). The mod-
ules run as programs on the server. All the modules have
access to a database, which stores datasets such as the social
graph of Facebook, selected users set, accounts of generated
decoys and their login credentials, SPELs set, and identified
worm evidence. The configuration module retrieves the so-
cial graph from the database and outputs selected users set
to the database. It can also invoke an instance of a Web
browser to register the decoy accounts on Facebook. The

evidence collecting module is composed of an email client
and a Web browser. By configuring the preference of each
decoy account in Facebook, this program will be notified via
emails about any suspicious evidence received by decoys.
Upon the arrival of a notification email, the program of col-
lecting module logs into the decoy account through the Web
browser, retrieves the suspicious evidence and writes the ev-
idence into the corresponding user’s SPEL in the database.
After that, the program invokes the worm detection pro-
gram to process the evidence. The worm detection program
can send notification to the administrator of Facebook via
the secure channel if it identifies any infection based on the
existing evidence in the database.

Although this implementation is based on Facebook, the
features of Facebook used by the system (e.g., email notifi-
cation) are widely supported by other OSN websites. There-
fore, we believe this implementation can be adapted for
other OSN websites with a slight modification. Moreover,
our system can also be implemented in a distributed way.
For example, the detection functionalities of the system may
be distributed among decoys such that each decoy can per-
form its own worm detection by sharing suspicious evidence
with other decoys.

5. LIMITATIONS
In this section, we discuss some limitations of our detec-

tion system.
One practical concern is raised from the scenario where

normal messages spread in a worm-like pattern within an
OSN website due to the outbreak of a large-scale event. For
example, a breaking news can be broadcasted from one user
to all his friends and keep multiplying in this way. There
could be little difference between the propagation pattern
of this news and an OSN worm. Unless there exists an ap-
proach to automatically distinguish the normal news from
a worm message based on the content, little can we do to
avoid the false alarms caused by this scenario. For example,
if a posted link in a collected suspicious message is pointed
to some well-known news websites, we may ignore it. Oth-
erwise, which we believe is a very rare case, simple manual
checking of the message content by an administrator will
address the false alarm problem.

Another practical concern is in regards to the infection
speed of OSN worms. Although one characteristic of OSN
worms is fast infection, some of the worm infection cycles
may be longer than the detection time window because users
may respond to worm messages with different latencies. In
this case, the only solution is to expand the time span of
correlation. However, this could also degrade the perfor-
mance of the detection system. As such, there is a trade-off
between the computation resource and the demand of OSN
websites.

6. RELATED WORK
In the area of Internet worm early detection, various de-

tection strategies have been proposed. Gu et al. suggested
an algorithm based on local victim information [20], in which
they used destination-source correlation to capture the pat-
tern in incoming and outgoing scanning traffics of a host
before and after it is infected by a scan-based worm. They
also looked for worm’s anomalous scanning patterns, such as
high scan rate to identify the outbreak of a worm. However,

18

their approach does not apply to OSN worm detection be-
cause no such scan traffic are present. Dagon et al. proposed
a detection technique [18] using honeypot to monitor the en-
tire infection process (infection cycle) rather than just the
beginning and the end. They recorded memory event, net-
work event and disk event to perform logistic analysis look-
ing for correlation. Their approach requires no signature in
advance and has the advantage of coping with polymorphic
worms. However, lack of infection processes in OSN worms
prevent applying their approach here. In fact, due to very
limited worm activities, any approaches relying on detailed
infection procedure is not suitable here.

Bu et al. suggested a worm detection scheme [17] based
on the extraction of the alteration of arrival unsolicited scan
rates in the early stage of worm propagation. Their work
suggested a novel signal indicating the outbreak of an Inter-
net worm, but this approach suffers from the problem of too
many potential sources for false positive rate. Wagner et al.
provided an entropy based worm detection algorithm [27].
They utilized entropy to quantify the difference of random-
ness observed in worm traffic and in normal traffic. The
source IP address fields will be less random in worm traffic
than in normal traffic since the scanning hosts’ IP address
were seen more than other hosts. Their strategy offered an
alternative way to detect the propagation activities of an
Internet worm. However, both of these approaches rely on
the characteristics exhibited in worms’ scanning traffic. For
an OSN worm, no scan is necessary and the infection traf-
fics are relatively simple compared to that of internet worm.
Unlike packets with various attributes transmitted during
the propagation of Internet worms, OSN worms merely gen-
erate messages. Moreover, there is no hierarchical structure
in the organization of a social network. All peers are equal
in the social graph, which means no auxiliary information is
available for decisions of the location of a worm detector.

There are some other worm detection algorithms that are
not based on scanning traffic. Wang et al. proposed an
anomalous payload-based worm detection algorithm [28], a
worm propagation can be identified if correlation of ingress
and egress payload alerts is observed. In an OSN worm, the
actual payload is downloaded in the browser, which cannot
be observed by OSN websites. This is actually exploited by
OSN worms to bypass any filtering based detection scheme
deployed in OSN websites. However, one thing we can bor-
row from this work is the idea of correlation. As showed in
this paper, we adopt correlation in worm activities to im-
prove the detection accuracy.

7. CONCLUSIONS
In this paper, we design a system that can effectively de-

tect the propagation of OSN worms. By exploiting the prop-
erties of OSNs, we construct a surveillance network embed-
ded in the OSN websites using decoy friends. We also pro-
posal an algorithm based on the heuristic derived from the
topological properties of social graphs to keep the OSN web-
sites under surveillance by monitoring only a few hundreds
of users. We leverage both local and network correlations
of worm propagation evidence in our detection system to
achieve early warning detection.

Based on the real-world social graph of Flickr, our evalu-
ation with two known worms, Koobface and Mikeyy, shows
that the detection system can effectively detect OSN worm
propagations when less than 0.13% of total user accounts are

infected. Even taking user reluctance into consideration, our
system can still achieve early warning detection. Moreover,
the detection system is also demonstrated to applicable to
worm containment by adopting some simple countermea-
sures. This can provide valuable assistance to OSN websites
in fighting against worm propagations in future.

8. ACKNOWLEDGMENTS
We thank Alan Mislove for providing us with the social

graph data set of Flickr. We also thank the reviewers for
their valuable comments and suggestions. This work was
supported by NSF CAREER 0643906.

9. REFERENCES
[1] 56th variant of the koobface worm detected.

http://blogs.zdnet.com/security/?p=3414.

[2] Cross-site scripting worm floods myspace.

[3] Facebook security threats.
http://www.facebook.com/security?v=app\

_4949752878\&viewas=1661798617\&ref=search.

[4] Facebook statistics. http:
//www.facebook.com/press/info.php?statistics.

[5] Flickr. http://www.flickr.com/.

[6] Koobface virus hits facebook. http:
//news.cnet.com/koobface-virus-hits-facebook/.

[7] Linkedin: About us.
http://press.linkedin.com/about.

[8] Msrt august top detection reports.
http://blogs.technet.com/mmpc/archive/2009/08/

27/msrt-august-top-detection-reports.aspx.

[9] Myspace fact sheet. http:
//www.myspace.com/pressroom?url=/fact+sheet/.

[10] New worms target both myspace and facebook users.
http://www.kaspersky.com/news?id=207575670.

[11] Steps you should take.
http://www.facebook.com/security.

[12] Teen claims responsibility for disrupting twitter.

[13] Twitter users number.

[14] W32.koobface.a.
http://www.symantec.com/security_response/

writeup.jsp?docid=2008-080315-0217-99\&tabid=2.

[15] M. Boguna, R. Pastor-Satorras, and A. Vespignani.
Epidemic spreading in complex networks with degree
correlations. Lecture Notes in Pgysics: Statistical
Mechanics of Complex Networks, 625:127–147, 2003.

[16] G. Brown, T. Howe, M. Ihbe, A. Prakash, and
K. Borders. Social networks and context-aware spam.
In Proceedings of the 2008 ACM Conference on
Computer Supported Cooperative Work, San Diego,
CA, 2008.

[17] T. Bu, A. Chen, S. Vander Wiel, and T. Woo. Design
and evaluation of a fast and robust worm detection
algorithm. In Proceedings of the 25th IEEE
International Conference on Computer
Communications, Barcelona, Catalunya, Spain, 2006.

[18] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard,
J. Levine, and H. Owen. Honeystat: Local worm
detection using honeypots. In Proceedings of the 7th
International Symposium on Recent Advances in
Intrusion Detection, Sophia Antipolis, French Riviera,
France, 2004.

19

[19] Y. Fu, X. Wang, and S. Li. Construction k-dominating
set with multiple relaying technique in wireless mobile
ad hoc networks. In Proceedings of the 2009 WRI
International Conference on Communications and
Mobile Computing, Kunming, Yunnan, China, 2009.

[20] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and
G. Riley. Worm detection, early warning and response
based on local victim information. In Proceedings of
the 20th Annual Computer Security Applications
Conference, Tucson, AZ, 2004.

[21] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. In Proceedings of
the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia,
PA, 2006.

[22] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet
Physics-Doklady, 10:707–709, 1966.

[23] D. Lin. An information-theoretic definition of
similarity. In Proceedings of the 15th International
Conference on Machine Learning, Madison, WI, 1998.

[24] B. Livshits and W. Cui. Spectator: Detection and
containment of javascript worms. In Proceedings of the
2008 USENIX Annual Technical Conference, Boston,
MA, 2008.

[25] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, San
Diego, CA, 2007.

[26] Y. Moreno, R. Pastor-Satorras, and A. Vespignani.
Epidemic outbreaks in complex heterogeneous
networks. The European Physical Journal B -
Condensed Matter and Complex Systems, 26:521–529,
2002.

[27] A. Wagner and B. Plattner. Entropy based worm and
anomaly detection in fast ip networks. In Proceedings
of the 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprise, Linkoping, Sweden, 2005.

[28] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous
payload-based worm detection and signature
generation. In Proceedings of the 8th International
Symposium of Recent Advances in Intrusion Detection,
Seattle, WA, 2005.

[29] J. Wu, M. Cardei, F. Dai, and S. Yang. Extended
dominating set and its applications in ad hoc networks
using cooperative communication. IEEE Trans.
Parallel Distrib. Syst., 17(8):851–864, 2006.

[30] M. Xie, Z. Wu, and H. Wang. Honeyim: Fast
detection and suppression of instant messaging
malware in enterprise-like networks. In Proceedings of
the 23th Annual Computer Security Applications
Conference, Miami Beach, FL, 2007.

[31] C. C. Zou, D. Towsley, and W. Gong. Modeling and
simulation study of the propagation and defense of
internet e-mail worms. IEEE Trans. Dependable
Secur. Comput., 4(2):105–118, 2007.

20

Who is Tweeting on Twitter: Human, Bot, or Cyborg?

Zi Chu, Steven Gianvecchio and Haining Wang
Department of Computer Science
The College of William and Mary

Williamsburg, VA 23187, USA
{zichu, srgian, hnw}@cs.wm.edu

Sushil Jajodia
Center for Secure Information Systems

George Mason University
Fairfax, VA 22030, USA
jajodia@gmu.edu

ABSTRACT
Twitter is a new web application playing dual roles of online so-
cial networking and micro-blogging. Users communicate with each
other by publishing text-based posts. The popularity and open
structure of Twitter have attracted a large number of automated pro-
grams, known as bots, which appear to be a double-edged sword to
Twitter. Legitimate bots generate a large amount of benign tweets
delivering news and updating feeds, while malicious bots spread
spam or malicious contents. More interestingly, in the middle be-
tween human and bot, there has emerged cyborg referred to either
bot-assisted human or human-assisted bot. To assist human users in
identifying who they are interacting with, this paper focuses on the
classification of human, bot and cyborg accounts on Twitter. We
first conduct a set of large-scale measurements with a collection of
over 500,000 accounts. We observe the difference among human,
bot and cyborg in terms of tweeting behavior, tweet content, and
account properties. Based on the measurement results, we propose
a classification system that includes the following four parts: (1)
an entropy-based component, (2) a machine-learning-based com-
ponent, (3) an account properties component, and (4) a decision
maker. It uses the combination of features extracted from an un-
known user to determine the likelihood of being a human, bot or
cyborg. Our experimental evaluation demonstrates the efficacy of
the proposed classification system.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection

General Terms
Security

Keywords
Automatic Identification, Bot, Cyborg, Twitter

1. INTRODUCTION
Twitter is a popular online social networking and micro-blogging

tool, which was released in 2006. Remarkable simplicity is its dis-
tinctive feature. Its community interacts via publishing text-based
posts, known as tweets. The tweet size is limited to 140 charac-
ters. Hashtag, namely words or phrases prefixed with a # symbol,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

can group tweets by topic. For example, #Haiti and #Super Bowl
are the two trending hashtags on Twitter in January 2010. Symbol
@ followed by a username in a tweet enables the direct delivery
of the tweet to that user. Unlike most online social networking
sites (i.e., Facebook and MySpace), Twitter’s user relationship is
directed and consists of two ends, friend and follower. In the case
where the user A adds B as a friend, A is a follower of B while B
is a friend of A. In Twitter terms, A follows B. B can also add A as
his friend (namely, following back or returning the follow), but is
not required. From the standpoint of information flow, tweets flow
from the source (author) to subscribers (followers). More specifi-
cally, when a user posts tweets, these tweets are displayed on both
the author’s homepage and those of his followers.

Since 2009, Twitter has gained increasing popularity. As re-
ported in June 2010, Twitter is attracting 190 million visitors per
month and generating 65 million Tweets per day [30]. It ranks the
12th on the top 500 site list according to Alexa [5]. In November
2009, Twitter emphasized its value as a news and information net-
work by changing the question above the tweet input dialog box
from “What are you doing” to “What’s happening”. To some ex-
tent, Twitter is in the transition from a personal micro-blogging
site to an information publish venue. Many traditional industries
have used Twitter as a new media channel. We have witnessed suc-
cessful Twitter applications in business promotion [1], customer
service [3], political campaigning [2], and emergency communica-
tion [21, 35].

The growing user population and open nature of Twitter have
made itself an ideal target of exploitation from automated programs,
known as bots. Like existing bots in other web applications (i.e., In-
ternet chat [14], blogs [34] and online games [13]), bots have been
common on Twitter. Twitter does not inspect strictly on automa-
tion. It only requires the recognition of a CAPTCHA image during
registration. After gaining the login information, a bot can perform
most human tasks by calling Twitter APIs. More interestingly, in
the middle between humans and bots have emerged cyborgs, which
refer to either bot-assisted humans or human-assisted bots. Cy-
borgs have become common on Twitter. After a human registers
an account, he may set automated programs (i.e., RSS feed/blog
widgets) to post tweets during his absence. From time to time, he
participates to tweet and interact with friends. Cyborgs interweave
characteristics of both humans and bots.

Automation is a double-edged sword to Twitter. On one hand,
legitimate bots generate a large volume of benign tweets, like news
and blog updates. This complies with the Twitter’s goal of becom-
ing a news and information network. On the other hand, malicious
bots have been greatly exploited by spammers to spread spam or
malicious contents. These bots randomly add users as their friends,
expecting a few users to follow back1. In this way, spam tweets
posted by bots display on users’ homepages. Enticed by the appeal-
ing text content, some users may click on links and get redirected
to spam or malicious sites2. If human users are surrounded by ma-

1Some advanced bots target potential users by keyword search.
2Due to the tweet size limit, it is very common to use link short-
ening service on Twitter, which converts an original link to a short
one (i.e., http://bit.ly/dtUm5Q). The link illegibility favors bots to

21

licious bots and spam tweets, their twittering experience deterio-
rates, and eventually the whole Twitter community will be hurt.
The objective of this paper is to characterize the automation feature
of Twitter accounts, and to classify them into three categories, hu-
man, bot, and cyborg, accordingly. This will help Twitter manage
the community better and help human users recognize who they are
tweeting with.

In the paper, we first conduct a series of measurements to char-
acterize the differences among human, bot, and cyborg in terms
of tweeting behavior, tweet content, and account properties. By
crawling Twitter, we collect over 500,000 users and more than 40
million tweets posted by them. Then we perform a detailed data
analysis, and find a set of useful features to classify users into the
three classes. Based on the measurement results, we propose an
automated classification system that consists of four major compo-
nents: (1) the entropy component uses tweeting interval as a mea-
sure of behavior complexity, and detects the periodic and regular
timing that is an indicator of automation; (2) the machine-learning
component uses tweet content to check whether text patterns con-
tain spam or not3; (3) the account properties component employs
useful account properties, such as tweeting device makeup, URL
ration, to detect deviations from normal; (4) the decision maker is
based on Linear Discriminant Analysis (LDA), and it uses the linear
combination of the features generated by the above three compo-
nents to categorize an unknown user as human, bot or cyborg. We
validate the efficacy of the classification system through our test
dataset. We further apply the system to classify the entire dataset
of over 500,000 users collected, and speculate the current compo-
sition of Twitter user population based on our classification results.

The remainder of this paper is organized as follows. Section 2
covers related work on Twitter and online social networks. Section
3 details our measurements on Twitter. Section 4 describes our
automatic classification system on Twitter. Section 5 presents our
experimental results on classification of humans, bots, and cyborgs
on Twitter. Finally, Section 6 concludes the paper.

2. RELATED WORK
Twitter has been widely used since 2006, and there are some

related literature in twittering [24, 25, 43]. To better understand
micro-blogging usage and communities, Java et al. [24] studied
over 70,000 Twitter users and categorized their posts into four main
groups—daily chatter (e.g., “going out for dinner"), conversations,
sharing information or URLs, and reporting news—and further clas-
sified their roles by link structure into three main groups—information
source, friends, and information seeker. Their work also studied
(1) the growth of Twitter, showing a linear growth rate; (2) its net-
work properties, showing the evidence that the network is scale-
free like other social networks [27]; and (3) the geographical dis-
tribution of its users, showing that most Twitter users are from the
US, Europe, and Japan. Krishnamurthy et al. [25] studied a group
of over 100,000 Twitter users and classified their roles by follower-
to-following ratios into three groups: (1) broadcasters, which have
a large number of followers; (2) acquaintances, which have about
the same number on either followers or following; and (3) miscre-
ants and evangelists (e.g., spammers), which follow a large number
of other users but have few followers. Their work also examined
the growth of Twitter, revealing a greater than linear growth rate. In
a more recent work, Yardi et al. [43] investigated spam on Twitter.
According to their observations, spammers send more messages
than legitimate users, and are more likely to follow other spammers
than legitimate users. Thus, a high follower-to-following ratio is a
sign of spamming behavior. Kim et al. [10] analyzed Twitter lists
as a potential source for discovering latent characters and interests
of users. A Twitter list consists of multiple users and their tweets.
Their research indicated that words extracted from each list are rep-
resentative of all the members in the list even if the words are not
used by the members. It is useful for targeting users with specific
interests.

Compared to previous measurement studies on Twitter, our work

allure users.
3Spam is a good indicator of automation. Most spam messages are
generated by bots, and very few are manually posted by humans.

covers a much larger group of Twitter users (more than 500,000)
and differs in how we link the measurements to automation, i.e.,
whether posts are from humans, bots, or cyborgs. While some sim-
ilar metrics are used in our work, such as follower-to-following
ratio, we also introduce some metrics, including entropy of tweet
intervals, which are not employed in previous research. In addition
to network-related studies, several previous works focus on socio-
technological aspects of Twitter [21, 23, 32, 35, 45], such as its use
in the workplace or during major disaster events.

Twitter is a social networking service, so our work is also related
to recent studies on social networks, such as Flickr, LiveJournal,
Facebook, MySpace, and YouTube [6, 7, 27]. In [27], with over 11
million users of Flickr, YouTube, LiveJournal, and Orkut, Mislove
et al. analyzed link structure and uncovered the evidence of power-
law, small-world, and scale-free properties. In [7], Cha et al. exam-
ined the propagation of information through the social network of
Flickr. Their work shows that most pictures are propagated through
the social links (i.e., links received from friends rather than through
searches or external links to Flickr content) and the propagation is
very slow at each hop. As a result of this slow propagation, a pic-
ture’s popularity is often localized in one network and grows slowly
over a period of months or even years. In [6], Cha et al. analyzed
video popularity life-cycles, content aliasing, and the amount of il-
legal content on YouTube, a popular video sharing service. While
YouTube is designed to share large content, i.e., videos, Twitter is
designed to share small content, i.e., text messages. Unlike other
social networking services, like Facebook or YouTube, Twitter is a
micro-content social network, with messages being limited to 140
characters.

As Twitter is a text-based message system, it is natural to com-
pare it with other text-based message systems, such as instant mes-
saging or chat services. Twitter has similar message length (140
characters) to instant messaging and chat services. However, Twit-
ter lacks “presence” (users show up as online/offline for instant
messaging services or in specific rooms for chat) but offers (1)
more access methods (web, SMS, and various APIs) for reading
or posting and (2) more persistent content. Similar to Twitter, in-
stant messaging and chat services also have problems with bots and
spam [14,40]. To detect bots in online chat, Gianvecchio et al. [14]
analyzed humans and bots in Yahoo! chat and developed a clas-
sification system to detect bots using entropy-based and machine-
learning-based classifiers, both of which are used in our classifi-
cation system as well. In addition, as Twitter is text-based, email
spam filtering techniques are also relevant [17, 41, 44]. However,
Twitter posts are much shorter than emails and spaced out over
longer periods of time than for instant messages, e.g., hours rather
than minutes or seconds.

Twitter also differs from most other network services in that au-
tomation, e.g., message feeds, is a major feature of legitimate Twit-
ter usage, blurring the lines between bot and human. Twitter users
can be grouped into four categories: humans, bots, bot-assisted hu-
mans, and human-assisted bots. The latter two, bot-assisted hu-
mans and human-assisted bots, can be described as cyborgs, a mix
between bots and humans [42].

3. MEASUREMENT
In this section, we first describe the data collection of over 500,000

Twitter users. Then, we detail our observation of user behaviors and
account properties, which are pivotal to automatic classification.

3.1 Data Collection
Here we present the methodology used to crawl the Twitter net-

work and collect detailed user information. Twitter has released
a set of API functions [39] that support user information collec-
tion. Thanks to Twitter’s courtesy of including our test account to
its white list, we can make API calls up to 20,000 per hour. This
eases our data collection. To diversify our data sampling, we em-
ploy two methods to collect the dataset covering more than 500,000
users. The first method is Depth-First Search (DFS) based crawl-
ing. The reason we choose DFS is that it is a fast and uniformed
algorithm for traversing a network. Besides, DFS traversal implic-
itly includes the information about network locality and clustering.
Inspired by [15, 18], we randomly select five users as seeds. For

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

C
D

F

Tweet Count

Bot
Human
Cyborg

Figure 1: CDF of Tweet Count

each reached user, we record its follower list. Taking the follow-
ing direction, the crawler continues with the depth constraint set
as three. We customize our crawler with a core module of PHP
cURL. Ten crawler processes work simultaneously for each seed.
After a seed is finished, they move to the next. The crawl duration
lasts four weeks from October 20th to November 21st, 2009, and
429,423 users are logged.

Similar to the work in [25] and [43], we also use the public time-
line API to collect the information of active users, increasing the
diversity of the user pool. Twitter constantly posts the twenty most
recent tweets in the global scope. The crawler calls the timeline
API to collect the authors of the tweets included in the timeline.
Since the Twitter timeline frequently updates, the crawler can re-
peatedly call the timeline API. During the same time window of
the DFS crawl, this method contributes 82,984 users to the dataset.
We totally collect 512,407 users on Twitter combining both meth-
ods.

3.2 Ground Truth Creation
To develop an automatic classification system, we need a training

data set that contains known samples of human, bot, and cyborg.
Among collected data, we randomly choose different samples and
classify them by manually checking their user logs and homepages.
The training set includes one thousand users per class of human,
bot and cyborg, and thus in total there are three thousand classi-
fied samples. A test set of three thousand samples is created in a
similar way. Both sets serve as the ground truth dataset, containing
8,350,095 tweets posted by the sampled users in their account life-
time4, from which we can extract useful features for classification,
such as tweeting behaviors and text patterns.

Our log-based classification follows the principle of the Turing
test [36]. The standard Turing tester communicates with an un-
known subject for five minutes, and decides whether it is a human
or machine. Classifying Twitter users is actually more challenging
than it appears to be. For many users, their tweets are less likely to
form a relatively consistent context. For example, a series of suc-
cessive tweets may be hardly relevant. The first tweet is the user
status, like “watching a football game with my buds.” The second
tweet is an automatic update from his blog. The third tweet is a
news report RSS feed in the format of article title followed by a
shortened URL.

For every account, the following classification procedure is ex-
ecuted. We thoroughly observe the log, and visit the user’s home-
page (http://twitter.com/username) if necessary. We carefully check
tweet contents, visit URLs included in tweets (if any), and decide
if redirected web pages are related with their original tweets and
if they contain spam or malicious contents. We also check other
properties, like tweeting devices, user profile, and the numbers of
followers and friends. Given a long sequence of tweets (usually
we check 60 or more if needed), the user is labeled as a human if
we can obtain some evidence of original, intelligent, specific and
human-like contents. In particular, a human user usually records
what he is doing or how he feels about something on Twitter, as he
uses Twitter as a micro-blogging tool to display himself and inter-
44,431,923 tweets in the training set, and 3,918,172 tweets in the
test set.

act with friends. For example, he may write a post like “I just saw
Yankees lost again today. I think they have to replace the starting
pitcher for tomorrow’s game." The content carries intelligence and
originality. Specificity means that the tweet content is expressed
in relatively unambiguous words with the presence of conscious-
ness [36]. For instance, in reply to a tweet like “How you like
iPad?", a specific response made by human may be “I like its large
touch screen and embedded 3G network”. On the other hand, a
generic reply could be “I like it".

The criteria for identifying a bot are listed as follows. The first is
the lack of intelligent or original content. For example, completely
retweeting tweets of others or posting adages indicates a lack of
originality. The second is the excessive automation of tweeting,
like automatic updates of blog entries or RSS feeds. The third is
the abundant presence of spam or malicious URLs (i.e., phishing
or malware) in tweets or the user profile. The fourth is repeatedly
posting duplicate tweets. The fifth is posting links with unrelated
tweets. For example, the topic of the redirected web page does not
match the tweet description. The last is the aggressive following
behavior. In order to gain attention from human users, bots do mass
following and un-following within a short period of time. Cyborgs
are either human-assisted bots or bot-assisted humans. The crite-
rion for classifying a cyborg is the evidence of both human and bot
participation. For example, a typical cyborg account may contain
very different types of tweets. A large proportion of tweets carry
contents of human-like intelligence and originality, while the rest
are automatic updates of RSS feeds. It represents a usage model,
in which the human uses his account from time to time while the
Twitter widget constantly runs on his desktop and posts RSS feeds
of his favorite news channel. Lastly, the uncertain category is for
non-English users and those without enough tweets to classify. The
samples that are difficult and uncertain to classify fall into this cate-
gory, and are discarded. Some Twitter accounts are set as "private"
for privacy protection, and their web pages are only visible to their
friends. We do not include such type of users in the classification
either, because of their inaccessibility.

3.3 Data Analysis
As mentioned before, Twitter API functions support detailed user

information query, ranging from profile, follower and friend lists to
posted tweets. In the above crawl, for each user visited, we call API
functions to collect abundant information related with user classi-
fication. Most information is returned in the format of XML or
JSON. We develop some toolkits to extract useful information from
the above well-organized data structures. Our measurement results
are presented in the question-answer format.

Q1. Does automation generate more tweets? To answer Ques-
tion 1, we measure the number of tweets posted in a user’s life-
time 5. Figure 1 shows the cumulative distribution function (CDF)
of the tweet counts, corresponding to the human, bot and cyborg
category. It is clear that cyborg posts more tweets than human and
bot. A large proportion of cyborg accounts are registered by com-
mercial companies and websites as a new type of media channel
and customer service. Most tweets are posted by automated tools
(i.e., RSS feed widgets, Web 2.0 integrators), and the volume of
such tweets is considerable. Meanwhile, those accounts are usu-
ally maintained by some employees who communicate with cus-
tomers from time to time. Thus, the high tweet count in the cyborg
category is attributed to the combination of both automatic and hu-
man behaviors in a cyborg. It is surprising that bot generates fewer
tweets than human. We check the bot accounts, and find out the
following fact. In its active period, bot tweets more frequently than
human. However, bots tend to take long-term hibernation. Some
are either suspended by Twitter due to extreme or aggressive activi-
ties, while the others are in incubation and can be activated to form
bot legions.

Q2. Do bots have more friends than followers? A user’s tweets
can only be delivered to those who follow him. A common strategy
shared by bots is following a large number of users (either targeted
with purpose or randomly chosen), and expecting some of them
will follow back. Figure 2 shows the scatter plots of the numbers

5It is the duration from the time when his account was created to
the time when our crawler visited it.

23

���� ����� ������

����

�����

������

�

�

������

�
�
��
�
�
�
��

��	
���

��� ���� ����� ������

���

����

�����

������

�

�

����

�
�
��
�
�
�
��

����	
�

��� ���� ����� ������

���

����

�����

������

�

�

�������

�
�
��
�
�
�
��

��	
��

(a) Human (b) Bot (c) Cyborg

Figure 2: Numbers of Followers and Friends

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
D

F

Followers / Friends

Bot
Human
Cyborg

Figure 3: CDF of ratio of Followers over Friends

of followers and friends for the three categories. For better illus-
tration, the scale is chopped and a small amount of extraordinary
points are not included. In Figure 2, there are three different groups
of users: group I where the number of one’s followers is clearly
greater than the number of its friends; group II where the situation
is reverse; and group III where the nodes stick around the diagonal.

In the human category, as shown in Figure 2(a), the majority of
the nodes belong to group III, implying that the number of their
followers is close to that of their friends. This result complies with
[27], revealing that human relationships are typically reciprocal in
social networks. Meanwhile, there are quite a few nodes belonging
to group I with far more followers than friends. They are usually
accounts of celebrities and famous organizations. They generate
interesting media contents and attract numerous subscribers. For
example, the singer Justin Timberlake has 1,645,675 followers and
39 friends (the ratio is 42,197-to-1).

In the bot category, many nodes belong to group II, as shown in
Figure 2(b). Bots add many users as friends, but few follow them
back. Unsolicited tweets make bots unpopular among the human
world. However, for some bots, the number of their followers is
close to that of their friends. This is due to the following reason.
Twitter imposes a limit on the ratio of followers over friends to sup-
press bots. Thus, some more advanced bots unfollow their friends
if they do not follow back within a certain amount of time. Those
bots cunningly keep the ratio close to 1. Figure 3 shows the ratio
of followers over friends for the three categories. The human ratio
is the highest, whereas the bot ratio is the lowest.

Q3. Are there any other temporal properties of Twitter users
helpful for differentiation among human, bot, and cyborg? Many
research works like [11] and [9] have shown the weekly and diurnal
access patterns of humans in the Internet. Figures 4(a) and 4(b)
present the tweeting percentages of the three different categories
on daily and hourly bases, respectively. The weekly behavior of
Twitter users shows clear differences among the three categories.
While humans are more active during the regular workdays, from

Monday to Friday, and less active during the weekend, Saturday
and Sunday, bots have roughly the same activity level every day
of the week. Interestingly, cyborgs are the most active ones on
Monday and then slowly decrease their tweeting activities during
the week; on Saturday cyborgs reach their lowest active point but
somehow bounce back a bit on Sunday. Such a cyborg activity
trend is mainly caused by their message feeds and the high level of
news and blog activities at the start of a week. Similarly, the hourly
behavior of human is more active during the daytime, which mostly
overlaps with office hours. The bot activity is nearly even except a
little drop in the deep of night. Some more advanced bots have the
setting of “only tweet from a time point to another,” which helps
save API calls [37]. Thus, they can tweet more in the daytime to
better draw the attention of humans.

Figure 5 shows account registration dates grouped by quarter.
We have two observations from the figure. First, the majority of
accounts (80.0% of humans, 94.8% of bots, and 71.1% of cyborgs)
were registered in 2009. It confirms the dramatic growth of Twitter
in 2009. Second, we do not find any bot or cyborg in our ground
truth dataset earlier than March, 2007. However, human registra-
tion has continued increasing since Twitter was founded in 2006.
Thus, old accounts are less likely to be bots.

Q4. How do users post tweets? manually or via auto piloted
tools? Twitter supports a variety of channels to post tweets. The
device name appears below a tweet prefixed by “from.” Our whole
dataset includes 41,991,545 tweets posted by 3,648 distinct de-
vices. The devices can be roughly divided into the following four
categories. (1) Web, a user logs into Twitter and posts tweets via the
website. (2) Mobile devices, there are some programs exclusively
running on mobile devices to post tweets, like Txt for text mes-
sages, Mobile web for web browsers on handheld devices, Twit-
terBerry for BlackBerry, and twidroid for Android mobile OS. (3)
Registered third-party applications, many third-parties have devel-
oped their own applications using Twitter APIs to tweet, and reg-
istered them with Twitter. From the application standpoint, we
can further categorize this group into sub groups including website
integrators (twitpic, bit.ly, Facebook), browser extensions (Tweet-
bar and Twitterfox for Firefox), desktop clients (TweetDeck and
Seesmic Desktop), and RSS feeds/blog widgets (twitterfeed and
Twitter for Wordpress). (4) APIs, for those third-party applications
not registered or certificated by Twitter, they appear as “API" in
Twitter.

Figure 6 shows the makeup of the above tweeting device cat-
egories. Among them, the website of Twitter is the most widely
used and generates nearly half of the tweets (46.78%), followed
by third-party devices (40.18%). Mobile devices and unregistered
API tools contribute 6.81% and 6.23%, respectively. Table 1 lists
the top ten devices used by the human, bot, and cyborg categories,
and the whole dataset6.

More than half of the human tweets are manually posted via

6The whole dataset contains around 500,000 users, and the human,
bot and cyborg categories equally contain 1,000 users in the train-
ing dataset.

24

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Pr
op

or
tio

n

Weekday

Bot
Human
Cyborg

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

Pr
op

or
tio

n

Hour (Local Time)

Bot
Human
Cyborg

(a) Tweets by Day of Week (b) Hourly Tweets

Figure 4: Tweets Posted

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q1’06

Q2’06

Q3’06

Q4’06

Q1’07

Q2’07

Q3’07

Q4’07

Q1’08

Q2’08

Q3’08

Q4’08

Q1’09

Q2’09

Q3’09

Q4’09

Pr
op

or
tio

n

Quarter/Year

Bot
Human
Cyborg

Total

Figure 5: Account Registration Date (Grouped by Quarter)

Figure 6: Tweeting Device Makeup

the Twitter website. The rest of top devices are mobile applica-
tions (Tweetie, UberTwitter, Mobile web, Txt, TwitterBerry) and
desktop clients (TweetDeck, Echofon and Seesmic). In general,
tweeting via such devices requires human participation. In contrast,
the top tools used by bots are mainly auto piloted, and 42.39% of
bot tweets are generated via unregistered API-based tools. Bots
can abuse APIs to do almost everything they want on Twitter, like
targeting users with keywords, following users, unfollowing those
who do not follow back, or posting prepared tweets. Twitterfeed,
RSS2Twitter, and Proxifeed are RSS feed widgets that automati-
cally pipeline information (usually in the format of the page title
followed by the URL) to Twitter via RSS feeds. Twitter Tools and
Twitme for WordPress are popular WordPress plug-ins that inte-
grate blog updates to Twitter. Assetize is an advertising syndicator
mainly targeting at Twitter, and twitRobot is a bot tool that au-
tomatically follows other users and posts tweets. All these tools
only require minimum human participation (like importing Twitter
account information, or setting RSS feeds and update frequency),
and thus indicate great automation.

Overall, humans tend to tweet manually and bots are more likely
to use auto piloted tools. Cyborgs employ the typical human and
bot tools. The cyborg group includes many human users who ac-
cess their Twitter accounts from time to time. For most of the time
when they are absent, they leave their accounts to auto piloted tools
for management.

Q5. Do bots include more external URLs than humans? In our
measurement, we find out that, most bots tend to include URLs
in tweets to redirect visitors to external web pages. For example,
spam bots are created to spread unsolicited commercial informa-
tion. Their topics are similar to those in email spam, including
online marketing and affiliate programs, working at home, sell-

ing fake luxury brands or pharmaceutical products7. However, the
tweet size is up to 140 characters, which is rather limited for spam-
mers to express enough text information to allure users. Basically,
a spam tweet contains an appealing title followed by an external
URL. Figure 7 shows the external URL ratios (namely, the num-
ber of external URLs included in tweets over the number of tweets
posted by an account) for the three categories, among which the
URL ratio of bot is highest. Some tweets by bots even have more
than one URL8. The URL ratio of cyborg is very close to the bot’s
level. A large number of cyborgs integrate RSS feeds and blog
updates, which take the style of webpage titles followed by page
links. The URL ratio of human is much lower, on average it is only
29%. When a human tweets what is he doing or what is happen-
ing around him, he mainly uses text and does not often link to web
pages.

Q6. Are users aware of privacy and identity protection on Twit-
ter? Twitter provides a protected option to protect user privacy.
If it is set as true, the user’s homepage is only visible to his friends.
However, the option is set as false by default. In our dataset of
over 500,000 users, only 4.9% of them are protected users. Twit-
ter also verifies some accounts to authenticate users’ real identities.
More and more celebrities and famous organizations have applied
for verified accounts. For example, Bill Gates has his verified Twit-
ter account at http://twitter.com/billgates. However,
in our dataset, only 1.8% of users have verified accounts.

7A new topic is attracting more followers on Twitter. It follows
the style of pyramid sales by asking newly joined users to follow
existing users in the spam network.
8Many such accounts belong to a type of bot that always appends
a spam link to tweets it re-tweets.

25

Table 1: Top 10 Tweeting Devices
Rank Human Bot Cyborg All

#1 Web (50.53%) API (42.39%) Twitterfeed (31.29%) Web (46.78%)
#2 TweetDeck (9.19%) Twitterfeed (26.11%) Web (23.00%) TweetDeck (9.26%)
#3 Tweetie (6.23%) twitRobot (13.11%) API (6.94%) Twitterfeed (7.83%)
#4 UberTwitter (3.64%) RSS2Twitter (2.66%) Assetize (5.74%) API (6.23%)
#5 Mobile web (3.02%) Twitter Tools (1.24%) HootSuite (5.22%) Echofon (2.80%)
#6 Txt (2.56%) Assetize (1.17%) WP to Twitter (2.40%) Tweetie (2.50%)
#7 Echofon (2.22%) Proxifeed (1.08%) TweetDeck (1.54%) Txt (2.13%)
#8 TwitterBerry (2.10%) TweetDeck (0.99%) UberTwitter (1.19%) HootSuite (2.10%)
#9 Twitterrific (1.93%) bit.ly (0.91%) RSS2Twitter (1.18%) UberTwitter (1.71%)
#10 Seesmic(1.64%) Twitme for WordPress (0.84%) Twaitter (0.86%) Mobile web (1.53%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

External URL Ratio

Bot
Human
Cyborg

Figure 7: External URL ratio in tweets

4. CLASSIFICATION
This section describes our automated system for classification of

Twitter users. The system classifies Twitter users into three cat-
egories: human, bot, and cyborg. The system consists of several
components: the entropy component, the machine learning com-
ponent, the account properties component, and the decision maker.
The high-level design of our Twitter user classification system is
shown in Figure 8. The entropy component uses corrected condi-
tional entropy to detect periodic or regular timing, which is a sign
of automation. The machine learning component uses a variant of
Bayesian classification to detect text patterns of known spam on
Twitter. The account properties component uses account-related
properties to catch bot deviation from the normal human distribu-
tion. Lastly, the decision maker uses LDA to analyze the features
identified by the other three components and makes a decision: hu-
man, cyborg, or bot.

4.1 Entropy Component
The entropy component detects periodic or regular timing of the

messages posted by a Twitter user. On one hand, if the entropy or
corrected conditional entropy is low for the inter-tweet delays, it
indicates periodic or regular behavior, a sign of automation. More
specifically, some of the messages are posted via automation, i.e.,
the user may be a potential bot or cyborg. On the other hand, a high
entropy indicates irregularity, a sign of human participation.

4.1.1 Entropy Measures
The entropy rate is a measure of the complexity of a process [8].

The behavior of bots is often less complex than that of humans
[12,22], which can be measured by entropy rate. A low entropy rate
indicates a regular process, whereas a high entropy rate indicates
a random process. A medium entropy rate indicates a complex
process, i.e., a mix of order and disorder [20].

The entropy rate is defined as either the average entropy per ran-
dom variable for an infinite sequence or as the conditional entropy
of an infinite sequence. Thus, as real datasets are finite, the con-
ditional entropy of finite sequences is often used to estimate the
entropy rate. To estimate the entropy rate, we use the corrected

Figure 8: Classification System

conditional entropy [28]. The corrected conditional entropy is de-
fined as follows.

A random process X = {Xi} is defined as a sequence of random
variables. The entropy of such a sequence of random variables is
defined as:

H(X1, ..., Xm) = −
X

X1,...,Xm

P (x1, ..., xm) log P (x1, ..., xm),

(1)
where P (x1, ..., xm) is the joint probability P (X1 = x1, ...,

Xm = xm).
The conditional entropy of a random variable given a previous

sequence of random variables is:

H(Xm | X1, ..., Xm−1) = H(X1, ..., Xm)−H(X1, ..., Xm−1).
(2)

Then, based on the conditional entropy, the entropy rate of a ran-
dom process is defined as:

H(X) = lim
m→∞

H(Xm | X1, ..., Xm−1). (3)

The corrected conditional entropy is computed as a modification
of Equation 3. First, the joint probabilities, P (X1 = x1, ..., Xm =
xm) are replaced with empirically-derived probabilities. The data
is binned into Q bins, i.e., values are converted to bin numbers
from 1 to Q. The empirically-derived probabilities are then de-
termined by the proportions of bin number sequences in the data.
The entropy estimate and conditional entropy estimate, based on
empirically-derived probabilities, are denoted as EN and CE re-
spectively. Second, a corrective term, perc(Xm) · EN(X1), is
added to adjust for the limited number of sequences for increasing
values of m [28]. The corrected conditional entropy, denoted as
CCE, is computed as:

CCE(Xm | X1, ..., Xm−1) =

CE(Xm | X1, ..., Xm−1) + perc(Xm) · EN(X1),
(4)

where perc(Xm) is the percentage of unique sequences of length
m and EN(X1) is the entropy with m fixed at 1 or the first-order
entropy.

26

The estimate of the entropy rate is the minimum of the corrected
conditional entropy over different values of m. The minimum of
the corrected conditional entropy is considered to be the best esti-
mate of the entropy rate from the limited number of sequences.

4.2 Machine Learning Component
The machine learning component uses the content of tweets to

detect spam. We have observed that most spam tweets are gener-
ated by bots and only very few of them are manually posted by
humans. Thus, the presence of spam patterns usually indicates au-
tomation. Since tweets are text, determining if their content is spam
can be reduced to a text classification problem. The text classifica-
tion problem is formalized as f : T × C → {0, 1}, where f is
the classifier, T = {t1, t2, ..., tn} are the texts to be classified, and
C = {c1, c2, ..., ck} are the classes [31]. A value of 1 for f(ti, cj)
indicates that text ti belongs to class cj , whereas a value of 0 indi-
cates it does not belong to that class. Bayesian classifiers are very
effective in text classification, especially for email spam detection,
so we employ Bayesian classification for our machine learning text
classification component.

In Bayesian classification, deciding if a message belongs to a
class, e.g., spam, is done by computing the corresponding proba-
bility based on its content, e.g., P (C = spam|M), where M is a
message and C is a class. If the probability is over a certain thresh-
old, then the message is from that class.

The probability that a message M is spam, P (spam|M), is
computed from Bayes theorem:

P (spam|M) =
P (M |spam)P (spam)

P (M)
=

P (M |spam)P (spam)

P (M |spam)P (bot) + P (M |not spam)P (not spam)
.

(5)

The message M is represented as a feature vector 〈f1, f2, ..., fn〉,
where each feature f is one or more words in the message and each
feature is assumed to be conditionally independent.

P (spam|M) =

P (spam)
nQ

i=1

P (fi|spam)

P (spam)
nQ

i=1

P (fi|spam) + P (not spam)
nQ

i=1

P (fi|not spam)
.

(6)
The calculation of P (spam|M) varies in different implemen-

tations of Bayesian classification. The implementation used for
our machine learning component is CRM114 [4]. CRM114 is a
powerful text classification system that offers a variety of different
classifiers. The default classifier for CRM114 is Orthogonal Sparse
Bigram (OSB), a variant of Bayesian classification, which has been
shown to perform well for email spam filtering. OSB differs from
other Bayesian classifiers in that it treats pairs of words as features.

4.3 Account Properties Component
Besides inter-tweet delay and tweet content, some Twitter account-

related properties are very helpful for the user classification. As
shown in Section 3.3, obvious difference exists between the human
and bot categories. The first property is the URL ratio. The ra-
tio indicates how often a user includes external URLs in its posted
tweets. External URLs appear very often in tweets posted by a bot.
Our measure shows, on average the ratio of bot is 97%, while that
of human is much lower at 29%. Thus, a high ratio (e.g., close to
one) suggests a bot and a low ratio implies a human.

The second property is tweeting device makeup. According to
Table 1, about 70% tweets of human are posted via web and mobile
devices (referred as manual devices), whereas about 87% tweets of
bot are posted via API and other auto-piloted programs (referred as
auto devices). The third property is the followers to friends ratio.
Figure 3 clearly shows the difference between human and bot. The
fourth property is link safety, i.e., to decide whether external links
in tweets are malicious/phishing URLs or not. We use Google’s
Safe Browsing (GSB) API project [16], which allows us to check
URLs against Google’s constantly-updated blacklists of suspected

phishing and malware pages. The component converts each URL9

into hash values based on Google’s rules, and performs the local
lookup from the downloaded Google’s blacklists. Appearance in
Google’s blacklists raises a red flag for security breach. GSB is
also applied by Twitter for the link safety inspection [38]. The fifth
property is whether a Twitter account is verified. No bot in our
ground truth dataset is verified. The account verification suggests a
human. The last property is the account registration date. Accord-
ing to Figure 5, 94.8% of bots were registered in 2009.

The account properties component extracts these properties from
the user log, and sends them to the decision maker. It assists the en-
tropy component and the machine-learning component to improve
the classification accuracy.

4.4 Decision Maker
Given an unknown user, the decision maker uses the features

identified by the above three components to determine whether it
is a human, bot, or cyborg. It is built on Linear Discriminant Anal-
ysis (LDA) [26]. LDA is a statistical method to determine a linear
combination of features that discriminate among multiple classes
of samples. More specifically, its underlying idea is to determine
whether classes differ in light of the means of a feature (or features),
and then to use that feature (or features) to identify classes. It is
very similar to analysis of variance (ANOVA) [29] and (logistic)
regression analysis [19]. However, a big difference is that LDA has
a fundamental assumption that independent variables are normally
distributed. In other words, it is assumed that variables represent a
sample from a multivariate normal distribution. Our classification
involves three classes, human, bot and cyborg. Thus, it is a case
of multiclass LDA. Multiclass LDA has the following key steps.
First, it needs a training set and a test set that contain those samples
already classified as one of the C classes. Samples in the two sets
should not overlap with each other. Second, a discriminant model
is created to use effective features to identify classes. Choosing fea-
tures and assigning weights to features are the two important tasks
in the model creation. In the early data collection stage, one usu-
ally includes several features to see which one(s) contributes to the
discrimination. Some features are of very limited value for discrim-
ination, and should be removed from the model. Our model uses
forward stepwise analysis. In this way, the model is built step-by-
step. At each step, all the features are evaluated, and the one that
contributes the most to the discrimination is added into the model.
The selection process continues to next step. Suppose m features,
< v1, v2, ..., vm > are selected. Each class Ci has a classification
function. With those functions, we can compute the classification
score of an unknown sample for each class, by using the following
linear equation:

Si = wi0 +
nX

i=1

wi1v1 + wi2 ∗ v2 + ... + wim ∗ vm (7)

where i denotes the respective class, Si denotes the classification
score of the sample for class Ci, wi0 denotes a constant for class
Ci, and wij denotes the weight of j-th feature in class Ci.

The sample is classified into the class with the highest classi-
fication score. The model uses the training set to decide feature
weights. Every sample in the training set is already known for the
actual class it belongs to. The model keeps adjusting weights till
it reaches the maximum accuracy for the training set. Third, the
test set is used to validate the classification accuracy of the model.
Since discriminant functions are derived from the training set, it is
inappropriate to reuse it for the validation. The test set contains
new data different from the training set, and generates more accu-
rate validation results.

5. EVALUATION
In this section, we first evaluate the accuracy of our classification

system based on the ground truth set that includes both the train-
9For a shortened URL, our component uses PHP cURL to get the
original one from the redirected HTTP response header, instead of
actually visiting the page.

27

Table 2: Multi-class LDA Weights
Human Cyborg Bot

Constant -25.9879 -15.7787 -17.2416
Entropy 14.2524 9.7128 4.4136

Bayesian text -0.0018 0.0164 0.1366
URL ratio -3.4474 3.3059 8.5222

Manual device % 16.4601 13.0164 13.0950
Auto device % 8.5910 7.6849 18.3765

Followers to friends ratio 0.0007 0.0002 0.0003

ing and test datasets. Then, we apply the system to classify the
entire dataset of over 500,000 users collected. With the classifica-
tion results, we further speculate the current composition of Twitter
user population. Finally, we discuss the robustness of the proposed
classification system against possible evasions.

5.1 Methodology
As shown in Figure 8, the components of the classification sys-

tem collaborate in the following way. The entropy component cal-
culates the entropy (and corrected conditional entropy) of inter-
tweet delays of a Twitter user. The entropy component only pro-
cesses logs with more than 100 tweets10. This limit helps reduce
noise in detecting automation. A lower entropy indicates peri-
odic or regular timing of tweeting behavior, a sign of automation,
whereas a higher entropy implies irregular behavior, a sign of hu-
man participation. The machine learning component determines if
the tweet content is either spam or not, based on the text patterns
it has learned. The content feature value is set to −1 for spam but
1 for non-spam. The account properties component checks all the
properties mentioned in Section 4.3, and generates a real-number-
type value for each property. Given a Twitter user, the above three
components generate a set of features and input them into the de-
cision maker. For each class, namely human, bot and cyborg, the
decision maker computes a classification score for the user, and
classifies it into the class with the highest score. The training of the
classification system and its accuracy are detailed as follows.

5.2 Classification System Training
The classification system needs to be trained before being used.

In particular, the machine learning component and the decision
maker require training. The machine learning component is trained
on spam and non-spam datasets. The spam dataset consists of spam
tweets and spam external URLs, which are detected during the cre-
ation of the ground truth set. Some advanced spam bots intention-
ally inject non-spam tweets (usually in the format of pure text with-
out URLs, such as adages11) to confuse human users. Thus, we do
not include such vague tweets without external URLs. The non-
spam dataset consists of all human tweets and cyborg tweets with-
out external URLs. Most human tweets do not carry spam. Cyborg
tweets with links are hard to determine without checking linked
web pages. They can be either spam or non-spam. Thus, we do not
include this type of tweets in either dataset. Training the compo-
nent with up-to-date spam text patterns on Twitter helps improve
the accuracy.

The decision maker is trained to determine the weights of the
different features for classification. We use Statistica, a statistical
tool [33], to calculate the feature weights. More specifically, the
datasheet of feature values and the actual class of users in the train-

10The inter-tweet span could be wild on Twitter. An account may be
inactive for months, but suddenly tweets at an intensive frequency
for a short-term, and then enters hibernation again. It generates
noise to the entropy component. Thus, the entropy component does
not process logs with less than 100 tweets. Besides, in practice it is
nearly impossible to determine automation based on a very limited
number of tweets.

11A typical content pattern is listed as follows. Tweet 1, A friend
in need is a friend in deed. Tweet 2, Danger is next neighbor to
security. Tweet 3, Work home and make $3k per month. Check out
how, http://tinyurl.com/bF234T.

ing set are inputted into the classifier. LDA generates a weight table
(Table 2) to achieve the maximum accuracy. In other words, it in-
cludes as many users as possible, whose classified class matches
actual class. The weights are then used by the decision maker to
classify users.

The larger the (standardized) weight, the larger is the unique con-
tribution of the corresponding feature to the discrimination. Table
2 shows that, entropy, URL ratio, and manual/auto device percent-
age are the important features for the classifier. Only those shown
to be statistically significant should be used for classification, and
non-significant ones should be ignored. Thus, some features col-
lected by the account properties component in Section 4.3, includ-
ing followers to friends ratio, link safety, account verification and
registration date, are excluded from the classifier.

Here we briefly explain why several features, such as followers
to friends ratio, link safety, account verification, and registration
date, are not as important in the actual discrimination as expected.
Bots used to have more friends than followers [25], and the ratio is
less than one in this situation. However, there have emerged some
more sophisticated bots that unfollow their friends if they do not
follow back within a certain amount of time. They cunningly keep
the ratio close to one. This strategy makes the ratio feature less
useful. Most spam bots spread spam links on Twitter, instead of
phishing or malicious links which are the primary target of the link
safety inspector. Only 0.2% of the users in the training set do not
pass the link safety inspection. Thus, the link safety feature has
little weight under LDA due to its statistical insignificance. Simi-
larly, account verification has a very small weight, because it is also
quite rare. Only 1.8% of the users are verified. Lastly, account reg-
istration dates greatly overlap among bots, humans, and cyborgs,
making this feature not useful for discrimination as well.

5.3 Classification System Accuracy
To validate the accuracy of our proposed classification system,

we create a test set containing one thousand users of each class. It
does not share any samples with the training set. The confusion
matrix listed in Table 3 shows the classification results on the test
set.

The “Actual” rows in Table 3 denote the actual classes of the
users, and the “Classified” columns denote the classes of the users
as decided by the classification system. For example, 949 in the
“Human” row and column means that 949 humans are classified
(correctly) as humans, whereas 51 in the “Human” row and “Cy-
borg” column means that 51 humans are classified (incorrectly) as
cyborgs. There is no misclassification between human and bot.

We examine the logs of those users being classified by mistake,
and analyze each category as follows.

• For the human category, 5.1% of human users are classified
as cyborg by mistake. One reason is that, the overall scores of
some human users are lowered by spam content penalty. The
tweet size is up to 140 characters. Some patterns and phrases
are used by both human and bot, such as “I post my on-
line marketing experience at my blog at http://bit.ly/xT6klM.
Please ReTweet it." Another reason is that the tweeting inter-
val distribution of some human users is slightly lower than
the entropy means, and they are penalized for that.

• For the bot category, 6.3% of bots are wrongly categorized
as cyborg. The main reason is that, most of them escape the
spam penalty from the machine learning component. Some
spam tweets use very obscure text content, like “you should
check it out since it’s really awesome. http://bit.ly/xT6klM".
Without checking the spam link, the component cannot de-
termine if the tweet is spam merely based on the text.

• For the cyborg category, 9.8% of cyborgs are mis-classified
as human, and 7.4% of them are mis-classified as bot. A
cyborg can be either a human-assisted bot or a bot-assisted
human. A strict policy could categorize cyborg as bot, while
a loose one may categorize it as human.

Overall, our classification system can accurately differentiate hu-
man from bot. However, it is much more challenging for a classifi-
cation system to distinguish cyborg from human or bot.

28

Table 3: Confusion Matrix
Classified

Human Cyborg Bot Total True Pos.%
Human 949 51 0 1000 94.90%

Actual Cyborg 98 828 74 1000 82.80%
Bot 0 63 937 1000 93.70%

5.4 Twitter Composition
We further use the classification system to automatically clas-

sify our whole dataset of over 500,000 users. We can speculate the
current composition of Twitter user population based on the classi-
fication results. The system classifies 48.7% of the users as human,
37.5% as cyborg, and 13.8% as bot. Thus, we speculate the pop-
ulation proportion of human, cyborg and bot category roughly as
5:4:1 on Twitter.

5.5 Resistance to Evasion
Now we discuss the resistance of the classification system to

possible evasion attempts made by bots. Bots may deceive cer-
tain features, such as the followers to friends ratio as mentioned
before. However, our system has two critical features that are very
hard for bots to evade. The first feature is tweeting device makeup,
which corresponds to the manual/auto device percentage in Table
2. Manual device refers to web and mobile devices, while auto
device refers to API and other auto-piloted programs (see Section
4.3). Tweeting via web requires a user to login and manually post
via the Twitter website in a browser. Posting via HTTP form is con-
sidered by Twitter as API. Furthermore, currently it is impractical
or expensive to run a bot on a mobile device to frequently tweet. As
long as Twitter can correctly identify different tweeting platforms,
device makeup is an effective metric for bot detection. The second
feature is URL ratio. Considering the limited tweet length that is up
to 140 characters, most bots have to include a URL to redirect users
to external sites. Thus, a high URL ratio is another effective met-
ric for bot detection. Other features like timing entropy, bot could
mimic human behaviors but at the cost of much reduced tweeting
frequency. We will continue to explore new features emerging with
the Twitter development for more effective bot detection in the fu-
ture.

6. CONCLUSION
In this paper, we have studied the problem of automation by bots

and cyborgs on Twitter. As a popular web application, Twitter has
become a unique platform for information sharing with a large user
base. However, its popularity and very open nature have made
Twitter a very tempting target for exploitation by automated pro-
grams, i.e., bots. The problem of bots on Twitter is further com-
plicated by the key role that automation plays in everyday Twitter
usage.

To better understand the role of automation on Twitter, we have
measured and characterized the behaviors of humans, bots, and
cyborgs on Twitter. By crawling Twitter, we have collected one-
month of data with over 500,000 Twitter users with more than 40
million tweets. Based on the data, we have identified features that
can differentiate humans, bots, and cyborgs on Twitter. Using en-
tropy measures, we have determined that humans have complex
timing behavior, i.e., high entropy, whereas bots and cyborgs are
often given away by their regular or periodic timing, i.e., low en-
tropy. In examining the text of tweets, we have observed that a high
proportion of bot tweets contain spam content. Lastly, we have dis-
covered that certain account properties, like external URL ratio and
tweeting device makeup, are very helpful on detecting automation.

Based on our measurements and characterization, we have de-
signed an automated classification system that consists of four main
parts: the entropy component, the machine learning component,
the account properties component, and the decision maker. The
entropy component checks for periodic or regular tweet timing pat-
terns; the machine learning component checks for spam content;
and the account properties component checks for abnormal values
of Twitter-account-related properties. The decision maker summa-
rizes the identified features and decides whether the user is a hu-

man, bot, or cyborg. The effectiveness of the classification system
is evaluated through the test dataset. Moreover, we have applied the
system to classify the entire dataset of over 500,000 users collected,
and speculated the current composition of Twitter user population
based on the classification results.

7. REFERENCES
[1] Amazon comes to twitter.

http://www.readwriteweb.com/archives/
amazon_comes_to_twitter.php [Accessed: Dec. 20,
2009].

[2] Barack obama uses twitter in 2008 presidential campaign.
http://twitter.com/BarackObama/ [Accessed:
Dec. 20, 2009].

[3] Best buy goes all twitter crazy with @twelpforce.
http://twitter.com/in_social_media/
status/2756927865 [Accessed: Dec. 20, 2009].

[4] The crm114 discriminator.
http://crm114.sourceforge.net/ [Accessed:
Sept. 12, 2009].

[5] Alexa. The top 500 sites on the web by alexa.
http://www.alexa.com/topsites [Accessed: Jan.
15, 2010].

[6] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez,
Yong-Yeol Ahn, and Sue Moon. I tube, you tube, everybody
tubes: analyzing the world’s largest user generated content
video system. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, San Diego, CA, USA,
2007.

[7] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A
measurement-driven analysis of information propagation in
the flickr social network. In Proceedings of the 18th
International Conference on World Wide Web, Madrid,
Spain, 2009.

[8] Thomas M. Cover and Joy A. Thomas. Elements of
information theory. Wiley-Interscience, New York, NY,
USA, 2006.

[9] Marcel Dischinger, Andreas Haeberlen, Krishna P.
Gummadi, and Stefan Saroiu. Characterizing residential
broadband networks. In Proceedings of the 7th ACM
SIGCOMM conference on Internet Measurement, San Diego,
CA, USA, 2007.

[10] Il-Chul Moon Dongwoo Kim, Yohan Jo and Alice Oh.
Analysis of twitter lists as a potential source for discovering
latent characteristics of users. In To appear on CHI 2010
Workshop on Microblogging: What and How Can We Learn
From It?, 2010.

[11] Henry J. Fowler and Will E. Leland. Local area network
traffic characteristics, with implications for broadband
network congestion management. IEEE Journal of Selected
Areas in Communications, 9(7), 1991.

[12] Steven Gianvecchio and Haining Wang. Detecting covert
timing channels: An entropy-based approach. In Proceedings
of the 2007 ACM Conference on Computer and
Communications Security, Alexandria, VA, USA,
October-November 2007.

[13] Steven Gianvecchio, Zhenyu Wu, Mengjun Xie, and Haining
Wang. Battle of botcraft: fighting bots in online games with
human observational proofs. In Proceedings of the 16th ACM
conference on Computer and Communications Security,
Chicago, IL, USA, 2009.

[14] Steven Gianvecchio, Mengjun Xie, Zhenyu Wu, and Haining
Wang. Measurement and classification of humans and bots in
internet chat. In Proceedings of the 17th USENIX Security
symposium, San Jose, CA, 2008.

[15] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina
Markopoulou. Walking in facebook: A case study of
unbiased sampling of osns. In Proceedings of the 27th IEEE
International Conference on Computer Communications,
San Diego, CA, USA, March 2010.

[16] Google. Google safe browsing API. http:
//code.google.com/apis/safebrowsing/

29

[Accessed: Feb. 5, 2010].
[17] Paul Graham. A plan for spam, 2002.

http://www.paulgraham.com/spam.html
[Accessed: Jan. 25, 2008].

[18] Monika R. Henzinger, Allan Heydon, Michael
Mitzenmacher, and Marc Najork. On near-uniform url
sampling. In Proceedings of the 9th International World
Wide Web Conference on Computer Networks, Amsterdam,
The Netherlands, May 2000.

[19] Christopher M. Hill and Linda C. Malone. Using simulated
data in support of research on regression analysis. In WSC
’04: Proceedings of the 36th conference on Winter
simulation, 2004.

[20] B A Huberman and T Hogg. Complexity and adaptation.
Phys. D, 2(1-3), 1986.

[21] A. L. Hughes and L. Palen. Twitter adoption and use in mass
convergence and emergency events. In Proceedings of the
6th International ISCRAM Conference, Gothenburg,
Sweden, May 2009.

[22] H. Husna, S. Phithakkitnukoon, and R. Dantu. Traffic
shaping of spam botnets. In Proceedings of the 5th IEEE
Conference on Consumer Communications and Networking,
Las Vegas, NV, USA, January 2008.

[23] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and Abdur
Chowdury. Twitter power: Tweets as electronic word of
mouth. American Society for Information Science and
Technology, 60(11), 2009.

[24] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng.
Why we twitter: understanding microblogging usage and
communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 Workshop on Web Mining and Social
Network Analysis, San Jose, CA, USA, 2007.

[25] Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt.
A few chirps about twitter. In Proceedings of the First
Workshop on Online Social Networks, Seattle, WA, USA,
2008.

[26] G. J. McLachlan. Discriminant Analysis and Statistical
Pattern Recognition. Wiley Interscience, 2004.

[27] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi,
Peter Druschel, and Bobby Bhattacharjee. Measurement and
analysis of online social networks. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, San
Diego, CA, USA, 2007.

[28] A Porta, G Baselli, D Liberati, N Montano, C Cogliati,
T Gnecchi-Ruscone, A Malliani, and S Cerutti. Measuring
regularity by means of a corrected conditional entropy in
sympathetic outflow. Biological Cybernetics, Vol. 78(No. 1),
January 1998.

[29] P. Real. A generalized analysis of variance program utilizing
binary logic. In ACM ’59: Preprints of papers presented at
the 14th national meeting of the Association for Computing
Machinery, New York, NY, USA, 1959.

[30] Erick Schonfeld. Costolo: Twitter now has 190 million users
tweeting 65 million times a day.
http://techcrunch.com/2010/06/08/
twitter-190-million-users/ [Accessed: Sept. 26,
2010].

[31] Fabrizio Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, Vol. 34(No. 1),
2002.

[32] Kate Starbird, Leysia Palen, Amanda Hughes, and Sarah
Vieweg. Chatter on the red: What hazards threat reveals
about the social life of microblogged information. In
Proceedings of the ACM 2010 Conference on Computer
Supported Cooperative Work, February 2010.

[33] Statsoft. Statistica, a statistics and analytics software package
developed by statsoft. http://www.statsoft.com/
support/download/brochures/ [Accessed: Mar. 12,
2010].

[34] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob
Gilbert, Martin Szydlowski, Richard Kemmerer, Christopher
Kruegel, and Giovanni Vigna. Your botnet is my botnet:

analysis of a botnet takeover. In Proceedings of the 16th
ACM conference on Computer and Communications
Security, Chicago, IL, USA, 2009.

[35] J. Sutton, Leysia Palen, and Irina Shlovski. Back-channels on
the front lines: Emerging use of social media in the 2007
southern california wildfires. In Proceedings of the 2008
ISCRAM Conference, Washington, DC, USA, May 2008.

[36] Alan M. Turing. Computing machinery and intelligence.
Mind, Vol. 59:433–460, 1950.

[37] Tweetadder. Automatic twitter software.
http://www.tweetadder.com/ [Accessed: Feb. 5,
2010].

[38] Twitter. How to report spam on twitter.
http://help.twitter.com/entries/64986
[Accessed: May. 30, 2010].

[39] Twitter. Twitter api wiki.
http://apiwiki.twitter.com/ [Accessed: Feb. 5,
2010].

[40] Mengjun Xie, Zhenyu Wu, and Haining Wang. Honeyim:
Fast detection and suppression of instant messaging malware
in enterprise-like networks,. In Proceedings of the 23rd
Annual Computer Security Applications Conference, Miami
Beach, FL, USA, 2007.

[41] Mengjun Xie, Heng Yin, and Haining Wang. An effective
defense against email spam laundering. In Proceedings of the
13th ACM conference on Computer and Communications
Security, Alexandria, VA, USA, 2006.

[42] Jeff Yan. Bot, cyborg and automated turing test. In
Proceedings of the 14th International Workshop on Security
Protocols, Cambridge, UK, March 2006.

[43] Sarita Yardi, Daniel Romero, Grant Schoenebeck, and Danah
Boyd. Detecting spam in a twitter network. First Monday,
15(1), January 2010.

[44] Jonathan A. Zdziarski. Ending Spam: Bayesian Content
Filtering and the Art of Statistical Language Classification.
No Starch Press, 2005.

[45] Dejin Zhao and Mary Beth Rosson. How and why people
twitter: the role that micro-blogging plays in informal
communication at work. In Proceedings of the ACM 2009
International Conference on Supporting Group Work,
Sanibel Island, FL, USA, 2009.

30

Cujo: Efficient Detection and Prevention of
Drive-by-Download Attacks

Konrad Rieck
Machine Learning Group

Technische Universität Berlin,
Germany

konrad.rieck@tu-
berlin.de

Tammo Krueger
Intelligent Data Analysis

Fraunhofer Institute FIRST,
Germany

tammo.krueger@tu-
berlin.de

Andreas Dewald
Laboratory for Dependable

Distributed Systems
University of Mannheim,

Germany
andreas.dewald@uni-

mannheim.de

ABSTRACT

The JavaScript language is a core component of active and
dynamic web content in the Internet today. Besides its great
success in enhancing web applications, however, JavaScript
provides the basis for so-called drive-by downloads—attacks
exploiting vulnerabilities in web browsers and their exten-
sions for unnoticeably downloading malicious software. Due
to the diversity and frequent use of obfuscation in these at-
tacks, static code analysis is largely ineffective in practice.
While dynamic analysis and honeypots provide means to
identify drive-by-download attacks, current approaches in-
duce a significant overhead which renders immediate pre-
vention of attacks intractable.

In this paper, we present Cujo, a system for automatic
detection and prevention of drive-by-download attacks. Em-
bedded in a web proxy, Cujo transparently inspects web
pages and blocks delivery of malicious JavaScript code. Static
and dynamic code features are extracted on-the-fly and anal-
ysed for malicious patterns using efficient techniques of ma-
chine learning. We demonstrate the efficacy of Cujo in
different experiments, where it detects 94% of the drive-
by downloads with few false alarms and a median run-time
of 500 ms per web page—a quality that, to the best of our
knowledge, has not been attained in previous work on de-
tection of drive-by-download attacks.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.5.1 [Pattern Recognition]: Mod-
els—Statistical

Keywords

Drive-by downloads, web security, static code analysis, dy-
namic code analysis, machine learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION
The JavaScript language is a ubiquitous tool for provid-

ing active and dynamic content in the Internet. The vast
majority of web sites, including large social networks, such
as Facebook and Twitter, makes heavy use of JavaScript for
enhancing the appearance and functionality of their services.
In contrast to server-based scripting languages, JavaScript
code is executed in the web browser of the client and thus
provides means for directly interacting with the user and the
browser environment. Although the execution of JavaScript
code at the client is restricted by several security policies,
the interaction with the browser and its extensions alone
gives rise to a severe security threat.

JavaScript is increasingly used as basis for drive-by down-
loads, attacks exploiting vulnerabilities in web browsers and
their extensions for unnoticeably downloading malicious soft-
ware [see 15, 16]. These attacks take advantage of the tight
integration of JavaScript with the browser environment to
exploit different types of vulnerabilities and eventually as-
sume control of the web client. Due to the complexity of
browsers and their extensions, there exist numerous of these
vulnerabilities, ranging from insecure interfaces of third-
party extensions to buffer overflows and memory corruptions
[5, 7, 11]. Four of the top five most attacked vulnerabilities
observed by Symantec in 2009 have been such client-side
vulnerabilities involved in drive-by-download attacks [2].

As a consequence, detection of drive-by downloads has
gained a focus in security research. Two classes of defense
measures have been proposed to counteract this threat: First,
several security vendors have equipped their products with
rules and heuristics for identifying malicious code directly
at the client. This static code analysis, however, is largely
obstructed by the frequent use of obfuscation in drive-by
downloads. A second strain of research has thus studied de-
tection of drive-by downloads using dynamic analysis, for
example using code emulation [8, 17], sandboxing [4, 6, 16]
and client honeypots [14, 16, 21]. Although effective in de-
tecting attacks, these approaches suffer from either of two
shortcomings: Some approaches are limited to specific at-
tack types, such as heap spraying [e.g., 8, 17], whereas the
more general approaches [e.g., 4, 14] induce an overhead pro-
hibitive for preventing attacks at the client.

As a remedy, we present Cujo1, a system for detection
and prevention of drive-by-download attacks, which com-
bines advantages of static and dynamic analysis concepts.

1Cujo = “Classification of Unknown Javascript cOde”

31

Embedded in a web proxy, Cujo transparently inspects web
pages and blocks delivery of malicious JavaScript code to
the client. The analysis and detection methodology imple-
mented in this system rests on the following contributions
of this paper:

• Lightweight JavaScript analysis. We devise efficient
methods for static and dynamic analysis of JavaScript
code, which provide expressive analysis reports with
very small run-time overhead.

• Generic feature extraction. For the generic detection
of drive-by downloads, we introduce a mapping from
analysis reports to a vector space that is spanned by
short analysis patterns and independent of specific at-
tack characteristics.

• Learning-based detection. We apply techniques of ma-
chine learning for generating detection models for static
and dynamic analysis, which spares us from manually
crafting and updating detection rules as in current se-
curity products.

An empirical evaluation with 200,000 web pages and 600
real drive-by-download attacks demonstrates the efficacy of
this approach: Cujo detects 94% of the attacks with a false-
positive rate of 0.002%, corresponding to 2 false alarms in
100,000 visited web sites, and thus is almost on par with
offline analysis systems, such as Jsand [4]. In terms of run-
time, however, Cujo significantly surpasses these systems.
With caching enabled, Cujo provides a median run-time of
500 ms per web page, including downloading of web page
content and full analysis of JavaScript code. To the best of
our knowledge, Cujo is the first system capable of effectively
and efficiently blocking drive-by downloads in practice.

The rest of this paper is organized as follows: Cujo and its
detection methodology are introduced in Section 2 including
JavaScript analysis, feature extraction and learning-based
detection. Experiments and comparisons to related tech-
niques are presented in Section 3. Related work is discussed
in Section 4 and Section 5 concludes.

2. METHODOLOGY
Drive-by-download attacks can take almost arbitrary struc-

ture and form, depending on the exploited vulnerabilities as
well as the use of obfuscation. Efficient analysis and detec-
tion of these attacks is a challenging problem, which requires
careful balancing of detection and run-time performance.
We address this problem by applying lightweight static and
dynamic code analysis, thereby providing two complemen-
tary views on JavaScript code. To avoid manually crafting
detection rules for each of these views, we employ techniques
of machine learning, which enable generalizing from known
attacks and allow to automatically construct detection mod-
els. A schematic view of the resulting system is presented
in Figure 1.

Cujo is embedded in a web proxy and transparently in-
spects the communication between a web client and a web
service. Prior to delivery of web page data from the service
to the client, Cujo performs a series of analysis steps and
depending on their results blocks pages likely containing ma-
licious JavaScript code. To improve processing performance,
two analysis caches are employed: First, all incoming web
data is cached to reduce loading times and, second, analysis

Analysis component Caching capability Detection model

Internet

Forwarding
/ BlockingLoader

Web clientWeb services

Detection

Detection

Dynamic analysis

Static analysis

JavaScript
sandbox

Feature
extraction

JavaScript
lexer

Feature
extraction

Figure 1: Schematic depiction of Cujo.

results are cached, if all embedded and external code asso-
ciated with a web page has not changed within a limited
period of time.

2.1 JavaScript Analysis
As first analysis step, we aim at efficiently getting a com-

prehensive view on JavaScript code. To this end, we in-
spect all HTML and XML documents passing our system
for occurrences of JavaScript. For each requested document,
we extract all code blocks embedded using the HTML tag
script and contained in HTML event handlers, such as on-

load and onmouseover. Moreover, we recursively pre-load all
external code referenced in the document, including scripts,
frames and iframes, to obtain the complete code base of the
web page. All code blocks of a requested document are then
merged for further static and dynamic analysis.

As an example used throughout the following sections, we
consider the JavaScript code shown in Figure 2. The code is
obfuscated using a simple substitution cipher and contains
a routine for constructing a NOP sled, an array of NOP
instructions common in most memory corruption attacks.
Analysis reports for the static and dynamic analysis of this
code snippet are shown in Figure 3 and 4, respectively.

1 a = "";
2 b = "{@xqhvfdsh+%(x<3<3%,>zkloh+{1ohqjwk?4333,{.@{>";
3 for (i = 0; i < b.length; i++) {
4 c = b.charCodeAt(i) - 3;
5 a += String.fromCharCode(c);
6 }
7 eval(a);

Figure 2: Obfuscated JavaScript code for generating
a NOP sled.

2.1.1 Static Analysis
Our static analysis relies on basic principles of compiler

design [3]: Before the source code of a program can be inter-
preted or compiled, it needs to be decomposed into lexical
tokens, which are then fed to the actual parser. The static

32

analysis component in Cujo takes advantage of this process
and efficiently extracts lexical tokens from the JavaScript
code of a web page using a customized Yacc grammar.

The lexical analysis closely follows the language specifi-
cation of JavaScript [1], where source code is sequentially
decomposed into keywords, punctuators, identifiers and lit-
erals. As the actual names of identifiers do not contribute to
the structure of code, we replace them by the generic token
ID. Similarly, we encode numerical literals by NUM and string
literals by STR. An example of this basic decomposition is
illustrated in the following

x = foo(y) + "bar"; −→ ID = ID (ID) + STR ;

where keywords and punctuators are represented by individ-
ual tokens, while identifiers and strings are subsumed by the
generic tokens ID and STR, respectively.

To further strengthen our static analysis for detection of
drive-by-download attacks, we make two refinements to the
lexical analysis. First, we additionally encode the length of
string literals as decimal logarithm. That is, STR.01 refers to
a string with up to 101 characters, STR.02 to a string with
up to 102 characters and so on. Second, we add EVAL as a
new keyword to the analysis. Both refinements target com-
mon constructs of drive-by-download attacks, which involve
string operations and calls to the eval() function.

Although obfuscation techniques may hide code from this
static analysis, several programming constructs and struc-
tures can be distinguished in terms of lexical tokens. As an
example, Figure 3 shows an analysis report of lexical tokens
for the example code given in Figure 2. While the actual
code for generating a NOP sled is hidden in the encrypted
string (line 2), several patterns indicative for obfuscation,
such as the decryption loop (line 3–5) and the call to EVAL

(line 7), are accessible to means of detection techniques

2.1.2 Dynamic Analysis
For dynamic analysis, we adopt an enhanced version of

ADSandbox, a lightweight JavaScript sandbox developed
by Dewald et al. [6]. The sandbox takes the code associ-
ated with a web page and executes it within the JavaScript
interpreter SpiderMonkey2. The interpreter operates in
a virtual browser environment and reports all operations
changing the state of this environment. Additionally, we
invoke all event handlers of the code to trigger functional-
ity dependent on external events. As result of this dynamic
analysis, the sandbox provides a report containing all mon-
itored operations of a given JavaScript code.

To emphasize behavior related to drive-by-download at-
tacks, we extend the dynamic code analysis with abstract
operations, which represent patterns of common attack ac-
tivity. These abstract operations are encoded as regular ex-
pressions and matched on-the-fly during the monitoring of
JavaScript code. Currently, Cujo supports two of these op-
erations: First, we indicate typical behavior of heap-spraying
attacks, such as excessive allocation of memory chunks by
appending the operation HEAP SPRAYING and, second, we mark
the use of browser functions inducing a re-evaluation of strings
by the interpreter using the operation PSEUDO-EVAL. While
both abstract operations are indicative for particular at-
tacks, they are not sufficient for detection alone and a full
inspection of behavior reports is required.

2SpiderMonkey, http://www.mozilla.org/js/SpiderMonkey

1 ID = STR.00 ;
2 ID = STR.02 ;
3 FOR (ID = NUM ; ID < ID . ID ; ID ++) {
4 ID = ID . ID (ID) - NUM ;
5 ID + = ID . ID (ID) ;
6 }
7 EVAL (ID) ;

Figure 3: Example of static analysis.

1 SET global.a TO ""
2 SET global.b TO "{@xqhvfdsh+%(x<3<3%,>zkloh
3 +{1ohqjwk?4333,{.@{>"
4 SET global.i TO "0"
5 CALL charCodeAt
6 SET global.c TO "120"
7 CALL fromCharCode
8 SET global.a TO "x"
9 ...

10 SET global.a TO "x=unescape("%u9090");
11 while(x.length<1000)x+=x;"
12 SET global.i TO "46"
13 CALL eval
14 CALL unescape
15 SET global.x TO "<90><90>"
16 SET global.x TO "<90><90><90><90>"
17 ...
18 SET global.x TO "<90> ... 1024 bytes ... <90>"

Figure 4: Example of dynamic analysis.

Although this lightweight analysis provides only a coarse
view on the behavior of JavaScript code in comparison to
offline analysis [e.g., 4, 14, 21], it enables accurate detection
of drive-by downloads with a median run-time of less than
400 ms per web page, as demonstrated in Section 3.4. As an
example, Figure 4 shows a behavior report for the code snip-
pet given in Figure 2. The first lines of the report cover the
decryption of the obfuscated string, which is finally revealed
in lines 10–11. Starting with the call to eval, this string is
evaluated by the interpreter and results in the construction
of a NOP sled with 1024 bytes in line 18.

2.2 Feature Extraction
In the second analysis step, we extract features from the

analysis reports of static and dynamic analysis, suitable for
application of detection methods. In contrast to previous
work, we propose a generic feature extraction, which is in-
dependent of particular attack characteristics and allows to
jointly process reports of static and dynamic analysis.

2.2.1 Q-gram Features
Our feature extraction builds on the concept of q-grams,

which has been widely studied in the field of intrusion detec-
tion [e.g., 10, 18, 22]. To unify the representation of static
and dynamic analysis, we first partition each report into a
sequence of words using white-space characters. We then
move a fixed-length window over each report and extract
subsequences of q words at each position, so-called q-grams.
The following example shows the extraction of q-grams with
q = 3 for two code snippets of static and dynamic analysis,
respectively,

ID = ID + NUM −→ ˘
(ID = ID), (= ID +), (ID + NUM)

¯
,

SET a.b to "x" −→ ˘
(SET a.b to), (a.b to "x")

¯
.

33

As a result of this extraction, each report is represented
by a set of q-grams, which reflect short patterns and provide
the basis for mapping analysis reports to a vector space.

Intuitively, we are interested in constructing a vector space,
where analysis reports sharing several q-grams lie close to
each other, while reports with dissimilar content are sepa-
rated by large distances. To establish such a mapping, we
associate each q-gram with one particular dimension in the
vector space. Formally, this vector space is defined using the
set S of all possible q-grams, where a corresponding mapping
function for a report x is given by

φ : x → `
φs(x)

´
s∈S

with φs(x) =

(
1 if x contains the q-gram s,

0 otherwise.

The function φ maps a report x to the vector space R
|S|

such that all dimensions associated with q-grams contained
in x are set to one and all other dimensions are zero. To
avoid an implicit bias on the length of reports, we normalize
φ(x) to one, that is, we set ||φ(x)|| = 1. As a result of
this normalization, a q-gram counts more in a report that
has fewer distinct q-grams. That is, changing a constant
amount of tokens in a report containing repetitive structure
has more impact on the vector than in an analysis report
comprising several different patterns.

2.2.2 Efficient Q-gram Representation
At the first glance, the mapping φ seems inappropriate

for efficient analysis: the set S covers all possible q-grams of
words and induces a vector space of very large dimension.
Fortunately, the number of q-grams contained in a report is
linear in its length. An analysis report x containing m words
comprises at most (m− q) different q-grams. Consequently,
only (m − q) dimensions are non-zero in the vector φ(x),
irrespective of the dimension of the vector space. It thus
suffices to only store the q-grams contained in each report x
for a sparse representation of the vector φ(x), for exam-
ple, using efficient data structures such as sorted arrays [19]
or Bloom filters [22]. As demonstrated in Section 3.4, this
sparse representation of feature vectors provides the basis
for very efficient feature extraction with median run-times
below 1 ms per analysis report.

2.3 Learning-based Detection
As final analysis step of Cujo, we present a learning-based

detection of drive-by-download attacks, which builds on the
vectorial representation of analysis reports. The application
of machine learning spares us from manually constructing
and updating detection rules for static and dynamic code
analysis, and thereby limits the delay to detection of novel
drive-by downloads.

2.3.1 Support Vector Machines
For automatically generating detection models from the

reports of attacks and benign JavaScript code, we apply the
technique of Support Vector Machines (SVM) [see 13, 20].
Given vectors of two classes as training data, an SVM deter-
mines a hyperplane that separates both classes with max-
imum margin. In our setting, one of these classes is asso-
ciated with analysis reports of drive-by downloads, whereas
the other class corresponds to reports of benign web pages.
An unknown report φ(x) is now classified by mapping it to

maximum marginw

φ(x)

benign code

drive-by downloads

Figure 5: Schematic vector representation of analy-
sis reports with maximum-margin hyperplane.

the vector space and checking if it falls on either the mali-
cious or benign side of the hyperplane. This learning-based
detection of drive-by downloads is illustrated in Figure 5.

Formally, the detection model of an SVM corresponds to
a vector w and bias b, specifying the direction and offset
of the hyperplane in the vector space. The corresponding
detection function f is given by

f(x) = 〈φ(x), w〉 + b =
X
s∈S

φs(x) · ws + b.

and returns the orientation of φ(x) with respect to the hy-
perplane. That is, f(x) > 0 indicates malicious activity in
the report x and f(x) ≤ 0 corresponds to benign data.

In contrast to many other learning techniques, SVMs pos-
sess the ability to compensate a certain amount of noise in
the labels of the training data—a crucial property for prac-
tical application of Cujo. This ability renders the learning
process robust to a minor amount of unknown attacks in the
benign portion of the training data and enables generating
accurate detection models, even if some of the web pages
labeled as benign data contain drive-by-download attacks.
Theory and further details on this ability of SVMs are dis-
cussed in [13, 20].

2.3.2 Efficient Classification of Q-grams
For efficiently computing f , we again exploit the sparse

representation of vectors induced by φ. Given a report x,
we know that only q-grams contained in x have non-zero
entries in φ(x), that is, all other dimensions in φ(x) are zero
and do not contribute to the computation of f(x). Hence,
we can simplify the detection function f as follows

f(x) =
X
s∈S

φs(x) · ws + b =
X

s in x

φs(x) · ws + b,

where we determine f(x) by simply looking up the values
ws for each q-gram contained in x. As a consequence, the
classification of a report can be carried out with linear time
complexity and a median run-time below 0.2 ms per report
(cf. Section 3.4). For learning the detection model of the
SVM we employ LibLinear [9], a fast SVM library which
enables us to train detection models from 100,000 reports
in 120 seconds for dynamic analysis and in 50 seconds for
static analysis.

2.3.3 Explanation
In practice, a detection systems must not only flag ma-

licious events but also provide insights into the detection
process, such that attack patterns and exploited vulnerabil-
ities can be inspected during operation. Fortunately, we can
adapt the detection function for explaining the decision pro-
cess of the SVM. During computation of f , we additionally
store the individual contribution φs(x) ·ws of each q-gram to

34

the final detection score f(x). If an explanation is requested,
we output the q-grams with largest contribution and thereby
present those analysis patterns that shifted the analysis re-
port x to the positive side of the hyperplane. We illustrate
this concept in Section 3.3, where we present explanations
for detections of drive-by-download attacks using reports of
static and dynamic analysis.

The learning-based detection completes the design of our
system Cujo. As illustrated in Figure 1, Cujo uses two
independent processing chains for static and dynamic code
analysis, where an alert is reported if one of the detection
models indicates a drive-by download.

This combined detection renders evasion of our system
difficult, as it requires the attacker to cloak his attacks from
both, static and dynamic analysis. While static analysis
alone can be thwarted through massive obfuscation, the hid-
den code needs to be decrypted during run-time which in
turn can be tracked by dynamic analysis. Similarly, if fewer
obfuscation is used and the attacker tries to spoil the sand-
box emulation, patterns of the respective code might be vis-
ible to static analysis. Although this argumentation does
not rule out evasion in general, it clearly shows the effort
necessary for evading our system.

3. EVALUATION
After presenting the detection methodology of Cujo, we

turn to an empirical evaluation of its performance. In par-
ticular, we conduct experiments to study the detection and
run-time performance in detail. Before presenting these ex-
periments, we introduce our data sets of drive-by-download
attacks and benign web pages.

3.1 Data Sets
We consider two data sets containing URLs of benign

web pages, Alexa-200k and Surfing, which are listed in Ta-
ble 1(a). The Alexa-200k data set corresponds to the 200,000
most visited web pages in the Internet as listed by Alexa3

and covers a wide range of JavaScript code, including sev-
eral search engines, social networks and on-line shops. The
Surfing data set comprises 20,283 URLs of web pages visited
during usual web surfing at our institute. The data has been
recorded over a period of 10 days and contains individual
sessions of five users. Both data sets have been sanitized by
scanning the web pages for drive-by downloads using com-
mon attack strings and the GoogleSafeBrowsing service.
While very few unknown attacks might still be present in the
data, we rely on the ability of the SVM learning algorithm
to compensate this inconsistency effectively.

(a) Benign data sets

Data set # URLs
Alexa-200k 200,000
Surfing 20,283

(b) Attack data sets

Data set # attacks
Spam Trap 256
SQL Injection 22
Malware Forum 201
Wepawet-new 46
Obfuscated 84

Table 1: Description of benign and attack data sets.
The attack data sets have been taken from [4].

3Alexa Top Sites, http://www.alexa.com/topsites

The attack data sets are listed in Table 1(b) and have
been mainly taken from Cova et al. [4]. In total, the at-
tack data sets comprise 609 samples containing several types
of drive-by-download attacks collected over a period of two
years. The attacks are organized according to their origin:
the Spam Trap set comprises attacks extracted from URLs
in spam messages, the SQL Injection set contains drive-by
downloads injected into benign web sites, the Malware Fo-
rum set covers attacks published in Internet forums, and the
Wepawet-new set contains malicious JavaScript code sub-
mitted to the Wepawet service4. A detailed description of
these classes is provided in [4]. Moreover, we provide the Ob-
fuscated set which contains 28 attacks from the other sets
additionally obfuscated using a popular JavaScript packer5.

3.2 Detection Performance
In our first experiment, we study the detection perfor-

mance of Cujo in terms of true-positive rate (ratio of de-
tected attacks) and false-positive rate (ratio of misclassified
benign web pages). As the learning-based detection imple-
mented in Cujo requires a set of known attacks and benign
data for training detection models, we conduct the following
experimental procedure: We randomly split all data sets into
a known partition (75%) and an unknown partition (25%).
The detection models and respective parameters, such as
the best length of q-grams, are determined on the known
partition, whereas the unknown partition is only used for
measuring the final detection performance. We repeat this
procedure 10 times and average results. The partitioning
ensures that reported results only refer to attacks unknown
during the learning phase of Cujo.

For comparing the performance of Cujo with state-of-
the-art methods, we also consider static detection meth-
ods, namely the anti-virus scanner ClamAv6 and the web
proxy of the security suite AntiVir7. As ClamAv does not
provide any proxy capabilities, we manually feed the down-
loaded web pages and respective JavaScript code to the scan-
ner. Moreover, we add results presented by Cova et al. [4]
for the offline analysis system Jsand to our evaluation.

3.2.1 True-positive Rates
Table 2 and 3 show the detection performance in terms

of true-positive rates for Cujo and the other methods. The
static and dynamic code analysis of Cujo alone attain a
true-positive rate of 90.2% and 86.0%, respectively. The
combination of both, however, allows to identify 94.4% of the
attacks, demonstrating the advantage of two complementary
views on JavaScript code.

A better performance is only achieved by Jsand which is
able to almost perfectly detect all attacks. However, Jsand
generally operates offline and spends considerably more time
for analysis of JavaScript code. The anti-virus tools, Cla-
mAv and AntiVir, achieve lower detection rates of 35%
and 70%, respectively, although both have been equipped
with up-to-date signatures. These results clearly confirm
the need for alternative detection techniques, as provided
by Cujo and Jsand, for successfully defending against the
threat of drive-by-download attacks.

4Wepawet Service, http://wepawet.cs.ucsb.edu
5JavaScript Compressor, http://dean.edwards.name/packer
6Clam AntiVirus, http://www.clamav.net/
7Avira AntiVir Premium, http://www.avira.com/

35

Attack data sets Cujo
static dynamic combined

Spam Trap 96.9% 98.1% 99.4%
SQL Injection 93.8% 88.3% 98.3%
Malware Forum 78.7% 71.2% 85.5%
Wepawet-new 86.3% 84.1% 94.8%
Obfuscated 100.0% 87.3% 100.0%
Average 90.2% 86.0% 94.4%

Table 2: True-positive rates of Cujo on the attack
data sets. Results have been averaged over 10 runs.

Attack data sets ClamAv AntiVir Jsand [4]
Spam Trap 41.0% 58.2% 99.7%
SQL Injection 18.2% 95.5% 100.0%
Malware Forum 45.3% 83.1% 99.6%
Wepawet-new 19.6% 93.5% —
Wepawet-old — — 100.0%
Obfuscated 4.8% 54.8% —
Average 35.0% 70.0% 99.8%

Table 3: True-positive rates of ClamAV, AntiVir
and Jsand on the attack data sets. The Wepawet-
new data set is a recent version of Wepawet-old.

3.2.2 False-positive Rates
Table 4 and 5 show the false-positive rates on the benign

data sets for all detection methods. Except for AntiVir
all methods attain reasonably low false-positive rates. The
combined analysis of Cujo yields a false-positive rate of
0.002%, corresponding to 2 false alarms in 100,000 visited
web sites, on the Alexa-200k data set. Moreover, Cujo does
not trigger any false alarms on the Surfing data set.

The high false-positive rate of AntiVir with 0.087% is
due to overly generic detection rules. The majority of false
alarms shows the label HTML/Redirector.X, indicating a po-
tential redirect, where the remaining alerts have generic la-
bels, such as HTML/Crypted.Gen and HTML/Downloader.Gen. We
carefully verified each of these alerts using a client-based
honeypot [21], but could not determine any malicious activ-
ity on the indicated web pages.

For the false alarms raised by Cujo we identify two main
causes: 0.001% of the web pages in the Alexa-200k data set
contain fully encrypted JavaScript code with no plain-text
operations except for unescape and eval. This drastic form
of obfuscation induces the false alarms of the static analy-
sis. The 0.001% false positives of the dynamic analysis result
from web pages redirecting error messages of JavaScript to
customized functions. Such redirection is frequently used
in drive-by downloads to hide errors during exploitation of
vulnerabilities, though it is applied in a benign context in
these 0.001% cases.

Overall, this experiment demonstrates the excellent detec-
tion performance of Cujo which identifies the vast majority
of drive-by downloads with very few false alarms—although
all attacks have been unknown to the system. Cujo thereby
significantly outperforms current anti-virus tools and is al-
most on par with the offline analysis system Jsand.

3.3 Explanations
After studying the detection accuracy of Cujo, we explore

its ability to equip alerts with explanations, which provides a
valuable instrument for analysis of detected attacks. In par-

Benign data sets Cujo
static dynamic combined

Alexa-200k 0.001% 0.001% 0.002%
Surfing 0.000% 0.000% 0.000%

Table 4: False-positive rates of Cujo on the benign
data sets. Results have been averaged over 10 runs.

Benign data sets ClamAv AntiVir Jsand [4]
Alexa-200k 0.000% 0.087% —
Surfing 0.000% 0.000% —
Cova et al. — — 0.013%

Table 5: False-positive rates of ClamAV, AntiVir
and Jsand on the benign data sets.

ticular, we present explanations for the detection techniques
detailed in Section 2.3 using q-grams of static and dynamic
analysis reports, where we select the best q for each analysis
type from the previous experiment.

As the first examples, we consider the q-grams (4-grams)
reported by Cujo for the static analysis of two detected
drive-by downloads. Figure 6(a) shows the top five q-grams
contributing to the detection of a heap-spraying attack. Some
patterns indicative for this attack type are clearly visible:
the first q-grams match a loop involving strings, while the
last q-grams reflect an empty try-catch block. Both pat-
terns are regularly seen in heap spraying, where the loop
performs the actual spraying and the try-catch block is used
for inhibiting exceptions during memory corruption.

Figure 6(b) shows the q-grams reported for the static de-
tection of an obfuscated drive-by download. At the first
glance, the top q-grams indicate only little malicious ac-
tivity. However, they reveal the presence of a XOR-based
decryption routine. Patterns of a loop, the XOR operator
and a call to the EVAL function here jointly contribute to the
detection of the obfuscation.

Contribution Features
φs(x) · ws s ∈ S (4-grams)

0.044 + STR.01 , STR.01
0.043 WHILE (ID .
0.042 = ID + ID
0.039 { TRY { VAR
0.039) { } }

(a) Top q-grams of a heap-spraying attack

Contribution Features
φs(x) · ws s ∈ S (4-grams)

0.124 = ID + ID
0.121 ; EVAL (ID
0.112 (ID) ^
0.104) ; } ;
0.096 STR.01 ; FOR (

(b) Top q-grams of an obfuscated attack

Figure 6: Examples for the explanation of static de-
tection. The five q-grams with highest contribution
to the detection are presented.

As examples for the dynamic analysis, Figure 7(a) shows
the top q-grams (3-grams) contributing to the dynamic de-
tection of a heap-spraying attack. Again the attack type is
clearly manifested: the first q-gram corresponds to the ab-
stract operation HEAP SPRAYING DETECTED which is triggered

36

Contribution Features
φs(x) · ws s ∈ S (3-grams)

0.190 HEAP SPRAYING DETECTED
0.121 CALL unescape SET
0.053 SET global.shellcode TO
0.053 unescape SET global.shellcode
0.036 TO "%90%90%90%90%90%90%90...

(a) Top q-grams of a heap-spraying attack

Contribution Features
φs(x) · ws s ∈ S (3-grams)

0.036 CALL unescape CALL
0.030 CALL fromCharCode CALL
0.025 CALL eval CONVERT
0.024 parseInt CALL fromCharCode
0.024 CALL createElement ("object")

(b) Top q-grams of an obfuscated attack

Figure 7: Examples for the explanation of dynamic
detection. The five q-grams with highest contribu-
tion to the detection are presented.

by our sandbox and indicates unusual memory activity. The
remaining q-grams reflect typical patterns of a shellcode con-
struction, including the unescaping of an encoded string and
a so-called NOP sled.

A further example for dynamic detection is presented in
Figure 7(b), which shows the top five q-grams of an obfus-
cated attack. Several calls of functions typical for obfus-
cation and corresponding substitution ciphers are visible,
including eval and unescape as well as the conversion func-
tions parseInt and fromCharCode used during decryption of
the attack. The last q-gram reflects the instantiation of an
object likely related to a vulnerability in a browser exten-
sion, though the actual details of this exploitation are not
covered by the first five q-grams.

It is important to note that these explanations are specific
to the detection of individual attacks and must not be inter-
preted as stand-alone detection rules. While we have only
shown the top q-grams for explanation, the underlying de-
tection models involve several million different q-grams and
thus realize a far more complex decision function.

3.4 Run-time Performance
Given the accurate detection of drive-by downloads, it re-

mains to show that Cujo provides sufficient run-time per-
formance for practical application. Hence, we first examine
the individual run-time of each system component individ-
ually and then study the overall processing time in a real
application setting with multiple users. All run-time exper-
iments are conducted on a system with an Intel Core 2 Duo
3 GHz processor and 4 Gigabytes of memory.

3.4.1 Run-time of Components
For the first analysis, we split the total run-time of Cujo

into the contributions of individual components as depicted
in Figure 1. For this, we add extra timing information to
the JavaScript analysis, the feature extraction and learning-
based detection. We then measure the exact contributions
to the total run-time on a sample of 10,000 URLs from the
Alexa-200k data set.

Figure 8 shows the median run-time per URL in mil-
liseconds, including loading of a web page, pre-loading of

 1697 ms

 681 ms

 372 ms

Loading

Pre−Loading

Analysis

Figure 8: Median run-time of Cujo per URL on
10,000 URLs from the Alexa-200k data set.

LX FE DE SE FE DE

10
−2

10
−1

10
0

10
1

10
2

10
3

Static Dynamic

R
un
−

tim
e

pe
r

U
R

L
(m

s)

Figure 9: Statistical breakdown of run-time for
JavaScript lexing (LX), sandbox emulation (SE),
feature extraction (FE) and detection (DE).

external JavaScript code and the actual analysis of Cujo.
Surprisingly, most of the time is spent for loading and pre-
loading of content, whereas only 14% is devoted to the anal-
ysis part of Cujo. As we will see in the following section,
we can greatly benefit from this imbalance by employing
regular caching techniques.

A detailed statistical breakdown of the analysis run-time
is presented in Figure 9, where the distributions of run-time
per URL are plotted for the static and dynamic analysis sep-
arately. Each distribution is displayed as a boxplot, in which
the box itself represents 50% of the data and the lower and
upper markers the minimum and maximum run-time per
URL. Additionally, the median is given as a middle line in
each box. Except for the sandbox emulation, all components
induce a very small run-time overhead ranging between 0.01
and 10 ms per URL. The sandbox analysis requires a me-
dian run-time of 370 ms per URL which is costly but still
significantly faster then related sandbox approaches.

3.4.2 Operating Run-time
In the last experiment, we evaluate the run-time of Cujo

in a real application setting. In particular, we deploy Cujo
as a web proxy and measure the time required per delivery
of a web page. To obtain reproducible measurements, we
use the Surfing data set as basis for this experiment, as it
contains multiple surfing sessions of five individual users.
For comparison, we also employ a regular web proxy, which
just forwards data to the users. As most of the total run-time
is spent for loading and pre-loading of resources, we enable
all caching capabilities in Cujo and the regular proxy.

Results for this experiment are shown in Figure 10, where
the distribution of run-time per URL is presented as a den-

37

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Run−time per URL (ms)

P
ro

ba
bi

lit
y

de
ns

ity 50% 75% 90% Regular proxy
Cujo proxy

Figure 10: Operating run-time of Cujo and a regular
web proxy on the Surfing data set.

sity plot. As expected the regular proxy ranges in the front
part of the plot with a median processing speed of roughly
150 ms per request. The run-time of Cujo is slightly shifted
to the right in comparison with the regular proxy. However,
the median run-time lies around 500 ms per web page, thus
inducing only a minimal delay at the web client. For ex-
ample, the median run-time for visiting web pages from the
domains google.com and yahoo.com using Cujo is 460 ms
and 266 ms, respectively.

In contrast to the regular proxy, the run-time distribu-
tion of Cujo shows an elongated tail, where few web pages
require more than 3,000 ms for processing due to excessive
analysis of JavaScript code. For instance, visiting pages from
facebook.com induces a median run-time of 1,560 ms. Still,
this experiment demonstrates that Cujo strongly benefits
from caching capabilities, such that only a minor delay can
be perceived at the web client.

4. RELATED WORK
Since the first discovery of drive-by downloads, analysis

and detection of this threat has been a vital topic in se-
curity research. One of the first studies on these attacks
and respective defenses has been conducted by Provos et al.
[15, 16]. The authors inspect web pages by monitoring a web
browser for anomalous activity in a virtual machine. This
setup allows for detecting a broad range of attacks. How-
ever, the analysis requires prohibitive run-time for on-line
application, as the virtual machine needs to be restored and
run for each web page individually.

A similar approach for identification of drive-by down-
loads is realized by client-based honeypots, such as Capture-
HPC [21] and PhoneyC [14]. While Capture-HPC also re-
lies on monitoring state changes in a virtual machine, Phon-
eyC emulates known vulnerabilities to capture attacks in a
lightweight manner. Although effective in identifying web
pages with malicious content, client-based honeypots are de-
signed for offline analysis and thus suffer from considerable
run-time overhead.

In contrast to these generic techniques, other approaches
focus on identifying particular attacks types, namely heap-
spraying attacks. For example, the system Nozzle proposed
by Ratanaworabhan et al. [17] intercepts the memory man-
agement of a browser for detecting valid x86 code in heap
objects. Similarly, Egele et al. [8] instrument SpiderMon-
key for scanning JavaScript strings for the presence of ex-
ecutable x86 code. Both systems provide an accurate and
efficient detection of heap-spraying attacks, yet they fail to
identify other common types of drive-by-download attacks,
for example, using insecure interfaces of browser extensions
for infection.

Closest to our work is the analysis system Jsand devel-
oped by Cova et al. [4] as part of the Wepawet service.
Jsand analyses JavaScript using the framework HtmlUnit
and the interpreter Rhino which enable the emulation of
an entire browser environment and monitoring of sophisti-
cated interaction with the DOM tree. The recorded behavior
is analysed using 10 features specific to drive-by-download
attacks for anomalous activity. Due to its public web in-
terface, Jsand is frequently used by security researchers to
study novel attacks and has proven to be a valuable analysis
instrument. However, its broad analysis of JavaScript code
is costly and induces a prohibitive average run-time of about
25 seconds per web page [cf. 4].

Finally, the system Noxes devised by Kirda et al. [12]
implements a web proxy for preventing cross-site scripting
attacks. Although not directly related to this work, Noxes
is a good example of how a proxy system can transparently
protect users from malicious web content. Obviously, this
approach targets only cross-site scripting attacks and does
not protect from other threats, such as drive-by downloads.

5. CONCLUSIONS
In this paper, we have presented Cujo, a system for effec-

tive and efficient prevention of drive-by downloads. As an
extension to a web proxy, Cujo transparently inspects web
pages using static and dynamic detection models and allows
for blocking malicious code prior to delivery to the client.
In an empirical evaluation with 200,000 web pages and 600
drive-by-download attacks, a prototype of this system sig-
nificantly outperforms current anti-virus products and en-
ables detecting 94% of the drive-by downloads with few false
alarms and a median run-time of 500 ms per web page—a
delay hardly perceived at the web client.

While the proposed system does not generally eliminate
the threat of drive-by downloads, it considerably raises the
bar for adversaries to infect client systems. To further harden
this defense, we currently investigate combining Cujo with
offline analysis and honeypot systems. For example, mali-
cious code detected using honeypots might be directly added
to the training data of Cujo for keeping detection models
up-to-date. Similarly, offline analysis might be applied for
inspecting and explaining detected attacks in practice.

Acknowledgements

The authors would like to thank Marco Cova for providing
the attack data sets as well as Martin Johns and Thorsten
Holz for fruitful discussions on malicious JavaScript code
and its detection.

References

[1] Standard ECMA-262: ECMAScript Language Specifi-
cation (JavaScript). 3rd Edition, ECMA International,
1999.

[2] Symantec Global Internet Security Threat Report:
Trends for 2009. Vol. XIV, Symantec, Inc., 2010.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, 1985.

[4] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious

38

JavaScript code. In Proc. of the International World
Wide Web Conference (WWW), 2010.

[5] M. Daniel, J. Honoroff, and C. Miller. Engineering heap
overflow exploits with JavaScript. In Proc. of USENIX
Workshop on Offensive Technologies (WOOT), 2008.

[6] A. Dewald, T. Holz, and F. Freiling. ADSandbox:
Sandboxing JavaScript to fight malicious websites.
In Proc. of ACM Symposium on Applied Computing
(SAC), 2010.

[7] M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by
download attacks: Challenges and open problems. In
Proc. of Open Research Problems in Network Security
Workshop (iNetSec), 2009.

[8] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. De-
fending browsers against drive-by downloads: Mitigat-
ing heap-spraying code injection attacks. In Detection
of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2009.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[10] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A sense of self for Unix processes. In Proc. of IEEE
Symposium on Security and Privacy, pages 120–128,
Oakland, CA, USA, 1996.

[11] M. Johns. On JavaScript malware and related threats –
Web page based attacks revisited. Journal in Computer
Virology, 4(3):161–178, 2008.

[12] E. Kirda, C. Kruegel, G. Vigna, , and N. Jovanovic.
Noxes: A client-side solution for mitigating cross site
scripting attacks. In Proc. of ACM Symposium on Ap-
plied Computing (SAC), 2006.

[13] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and
B. Schölkopf. An introduction to kernel-based learn-
ing algorithms. IEEE Neural Networks, 12(2):181–201,
May 2001.

[14] J. Nazario. A virtual client honeypot. In Proc. of
USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET), 2009.

[15] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose.
All your iframes point to us. In Proc. of USENIX
Security Symposium, 2008.

[16] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser: Analysis
of web-based malware. In Proc. of USENIX Workshop
on Hot Topics in Understanding Botnets (HotBots),
2007.

[17] P. Ratanaworabhan, B. Livshits, and B. Zorn. Noz-
zle: A defense against heap-spraying code injection at-
tacks. Technical Report MSR-TR-2008-176, Microsoft
Research, 2008.

[18] K. Rieck and P. Laskov. Detecting unknown network at-
tacks using language models. In Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA),
pages 74–90, July 2006.

[19] K. Rieck and P. Laskov. Linear-time computation of
similarity measures for sequential data. Journal of Ma-
chine Learning Research, 9(Jan):23–48, 2008.

[20] B. Schölkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[21] C. Seifert and R. Steenson. Capture – honeypot client
(Capture-HPC). Victoria University of Wellington, NZ,
https://projects.honeynet.org/capture-hpc, 2006.

[22] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content
anomaly detector resistant to mimicry attack. In Recent
Advances in Intrusion Detection (RAID), pages 226–
248, 2006.

39

Fast and Practical Instruction-Set Randomization
for Commodity Systems

Georgios Portokalidis and Angelos D. Keromytis
Network Security Lab

Department of Computer Science
Columbia University, New York, NY, USA
{porto, angelos}@cs.columbia.edu

ABSTRACT

Instruction-set randomization (ISR) is a technique based on
randomizing the “language” understood by a system to pro-
tect it from code-injection attacks. Such attacks were used
by many computer worms in the past, but still pose a threat
as it was confirmed by the recent Conficker worm outbreak,
and the latest exploits targeting some of Adobe’s most popu-
lar products. This paper presents a fast and practical imple-
mentation of ISR that can be applied on currently deployed
software. Our solution builds on a binary instrumentation
tool to provide an ISR-enabled execution environment en-
tirely in software. Applications are randomized using a sim-
ple XOR function and a 16-bit key that is randomly gener-
ated every time an application is launched. Shared libraries
can be also randomized using separate keys, and their ran-
domized versions can be used by all applications running
under ISR. Moreover, we introduce a key management sys-
tem to keep track of the keys used in the system. To the
best of our knowledge we are the first to apply ISR on truly
shared libraries.

Finally, we evaluate our implementation using real ap-
plications including the Apache web server, and the MySQL
database server. For the first, we show that our implementa-
tion has negligible overhead (less than 1%) for static HTML
loads, while the overhead when running MySQL can be as
low as 75%. We see that our system can be used with lit-
tle cost with I/O intensive network applications, while it
can also be a good candidate for deployment with CPU in-
tensive applications, in scenarios where security outweighs
performance.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms

Security, Reliability, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Keywords

Code-injection, randomization, security, performance

1. INTRODUCTION
Instruction-set randomization [25, 4] is a technique based

on randomizing a system’s language (i.e., its instruction set)
to prevent code-injection attacks. Such attacks occur when
the attacker is able to execute arbitrary code remotely, or
locally but as a different user (e.g., a user with elevated
privileges like the administrator). They usually follow the
exploitation of buffer overflows [35, 3, 27] and other memory
corruption vulnerabilities, like dangling pointers [20, 34] and
format string attacks [39], that allow attackers to redirect
execution to the injected code.

In the past, code-injection attacks (CI) accounted for al-
most half of the advisories released by CERT [43], and were
used by many computer worms to infect new hosts [41, 11,
12, 29, 44]. More recently, they have been overshadowed
by cross-site scripting and SQL-injection attacks, but the
recent Conficker worm outbreak [36], and the multiple vul-
nerabilities discovered in Adobe’s popular software [1, 42]
came as a reminder that CI attacks still pose a significant
threat to a large number of systems.

ISR is a general approach that defeats all types of remote
code-injection regardless of the way it was injected into a
process. It operates by randomizing the instructions that
the underlying system “understands”, so that “foreign” code
such as the code injected during an attack will fail to ex-
ecute. It was initially proposed as a modification to the
processor to ensure low performance overheads, but unfor-
tunately this proposal has had little allure with hardware
vendors. Instead, software implementations of ISR on x86
emulators have been created, mainly to demonstrate the ef-
fectiveness of the approach, as they incur large runtime over-
heads [25, 4]. Software only implementations of ISR using
dynamic binary translation have been also proposed [24],
but have seen little use in practice as they cannot be di-
rectly applied to commodity systems. For instance, they do
not support shared libraries or dynamically loaded libraries
(i.e., they require that the application is statically linked),
and increase the code size of encoded applications.

This paper describes a fast and practical software imple-
mentation of ISR for commodity systems. Our implementa-
tion is based on Intel’s dynamic instrumentation tool called
PIN [26], which provides the runtime environment. Appli-
cation code is randomized using the XOR function and a
16-bit key, which is randomly generated every time the ap-

41

plication is launched to make it resistant against key guess-
ing attacks [40].

Multiple keys can be used to randomize different parts of
the application. For instance, every shared library used by
the system can be randomized using a different key, creat-
ing a randomized copy of each library. While additional disk
space will be required to store the randomized versions, dur-
ing runtime all binaries running under ISR will be using the
same randomized copy. Also, original (native) code can be
combined with randomized code. The keys used to encode
the various libraries are managed using SQLite [32], a self-
contained and serverless database engine. Libraries can be
randomized once and reused by multiple applications, while
frequently re-randomizing them also protects them against
key guessing attempts. Finally, we assume (as does past
work) that the attacker does not have access to the random-
ized code (i.e., it is a remote attacker), so a known ciphertext
attack against the key is not possible.

The main contributions of this paper can be summarized
in the following:

• We implemented instruction-set randomization for com-
modity systems using Intel’s PIN framework (our im-
plementation of ISR is freely available from https:

//sourceforge.net/projects/isrupin/)

• Our implementation operates on currently deployed bi-
naries, as it does not require recompilation, or changes
to the underlying system (i.e., the operating system
and hardware)

• Our system supports dynamically linked executables,
as well as dynamically loaded libraries. We also intro-
duce a key management scheme for storing and keep-
ing track of the keys used to randomize shared libraries
and applications. To the best of our knowledge we are
the first to apply ISR on shared libraries

• Executables are re-randomized every time they are
launched, and shared libraries are re-randomized at
custom intervals to protect the key from guessing at-
tacks such as [40]

The overhead of our implementation can be as low as 10%
compared with native execution. We are able to run popu-
lar servers such as the Apache web server, and the MySQL
database server, and show that running Apache using ISR
has negligible effect on throughput for static HTML loads,
while the overhead for running MySQL is 75%. We also
evaluate the cost of completely isolating the framework’s
data from the application. This memory protection (MP)
requires more invasive instrumentation of the target appli-
cation, and it has not been investigated by previous work on
software-based ISR, since it incurs significant overhead. We
show that adding MP over ISR does not reduce Apache’s
throughput, while it imposes an extra 57% overhead when
running MySQL.

The rest of this paper is organized as follows: Section 2
offers a brief description of ISR. Our implementation is dis-
cussed in Section 3. We evaluate the performance of our
framework in Section 4. Related work is examined in Sec-
tion 5. Finally, conclusions are in Section 6.

2. INSTRUCTION-SET RANDOMIZATION
Instruction-set randomization as a mean to thwart code-

injection attacks has been presented in detail in previous
work [25, 4]. In this section we will only briefly describe the
technique, mainly focusing on its application on binaries.

ISR is based on the observation that code-injection at-
tacks need to position executable code within the address
space of the exploited application and then redirect con-
trol to it. The injected code needs to be compatible with
the execution environment for these attacks to succeed. In
other words, the attacker needs to be able to “talk” to the
target system in its own “language”. For binary programs,
this means that the code needs to be compatible with the
processor and software running at the target. For instance,
injecting x86 code into a process running on an ARM sys-
tem will most probably cause it to crash, either because of
an illegal instruction being executed, or due to an illegal
memory access. We should note that in this example it is
possible to compose (somewhat limited) machine code able
to run without errors on both ARM and x86.

ISR builds on this observation to block attackers from ex-
ecuting code injected in vulnerable processes. An execution
environment employing a randomly generated instruction
set is used to run processes, causing injected code to fail.
While exploitation attempts will still cause a DoS by crash-
ing the targeted application, attackers are not able to per-
form any useful action such as installing malware or rootkits.
The strength of the technique lies in the difficulty of guess-
ing the instruction set used by a process. Of course, if an
attacker has access to the randomized binary, he can launch
an attack against the applied transformation to attempt to
learn the new instruction set, something that requires local
access to the target host. This work (and ISR in general)
is primarily focused on protecting against remote attacks
on network services (e.g., http, dns, ssh, etc.), where the
attacker does not have access to the target system or the
randomized binaries. Consequently, attackers cannot launch
attacks against the key that require access to the ciphertext.

However, remote attackers can still attempt to guess the
key used to randomize the instruction set [40]. Such guess-
ing attacks will cause the application to crash and restart
for each failed attempt to correctly guess the key. We can
mitigate such attacks by either using a more complicated
encoding algorithm (e.g., bit transposition, AES, etc.) and
a larger key to increase the complexity of the attack, or
by frequently re-encoding the binary using a new key every
time it is executed as we discuss below. The reader can refer
to our earlier work on ISR [25] for additional discussion on
randomization using larger keys.

2.1 ISR Operation
CPU instructions for common architectures, like x86 and

ARM, consist of two parts: the opcode and operands. The
opcode defines the action to be performed, while the oper-
ands are the arguments. For example, in the the x86 archi-
tecture a software interrupt instruction (INT) comprises of
the opcode 0xCD, followed by a one-byte operand that spec-
ifies the type of interrupt. We can create new instruction
sets by randomly creating new mappings between opcodes
and actions. We can further randomize the instruction set
by also including the operands in the transformation.

For ISR to be effective and efficient, the number of possible
instruction sets must be large, and the mapping between the

42

new opcodes and instructions should be efficient (i.e., not
completely arbitrary). We can achieve both these proper-
ties by employing cryptographic algorithms and a randomly
generated secret key. As an example, consider a generic
RISC processor with fixed-length 32-bit instructions. We
can effectively generate random instruction sets by encod-
ing instructions with XOR and a secret 32-bit key. In this
example, an attacker would have to try 232 combinations in
the worst case to guess the key. Architectures with larger in-
structions (i.e., 64 bits) can use longer keys to be even more
resistant to brute-force attacks. On the other hand, simply
increasing the length of the key used with XOR will not im-
prove security, since the key can be attacked in a piece-meal
fashion (i.e., by guessing the first 32 bits of the key that cor-
respond to a single instruction). The situation is even more
complicated on architectures with variable sized instructions
like the x86. Many instructions in the x86 architecture are
1 or 2 bytes long. This effectively splits the key in four or
two sub-keys of 8 and 16 bits respectively. Thus, it is possi-
ble that an attacker attempts to guess each of the sub-keys
independently, as shown by Sovarel et al. [40].

The deficiencies of XOR randomization on architectures
like the x86 can be overcome by using other ciphers for
randomizing instructions. For instance, bit transposition
of larger blocks (e.g., 160 bits) would greatly increase the
work factor for an attacker, and cannot be attacked in a
piece-meal fashion. Hu et al [24] propose the use of AES
encryption on blocks of 128 bits to ensure that an attacker
cannot break the randomization. In both cases larger blocks
of data need to be accessible at runtime, and more process-
ing is required to decode the instructions. We have taken
a different approach to protect the keys. First, we employ
multiple keys for the encoding of an application (i.e., a dif-
ferent key for each shared library). Second, we randomize
an application every time it is launched with a new random
key, and third we frequently re-randomize shared libraries.

Finally, we note that the security of the approach depends
on the fact that injected code will raise an exception (e.g., by
accessing an illegal address or using an invalid opcode), af-
ter it has been de-randomized by the execution environment.
While this will generally be true, there are a few permuta-
tions of injected code that will result in working code that
performs the attacker’s task. This number is statistically
insignificant [5].

2.2 ISR Runtime
A randomized process requires the appropriate execution

environment to de-randomize its instructions before they are
executed. Previous work on ISR has demonstrated that it is
possible to implement such an environment both in hardware
and software. In both cases, the environment needs access
to the key used during the randomization. The key can be
stored within the executable, or in a database. Storing it
within the application is compact and removes the need for
external storage (i.e., a DB), but could expose the key if the
application leaks information.

Additionally, programs frequently make use of libraries,
which may or may not be randomized. ISR needs to be able
to detect when execution switches from a randomized piece
of code to a plain one, and vice-versa. Detecting such con-
text switches can be complex (specially in hardware), and
in fact previous work has only handled statically linked exe-
cutables. We will show in Section 3 that our implementation

is able to handle dynamically linked applications by support-
ing multiple instruction sets per process (i.e., instructions
randomized with different keys).

3. IMPLEMENTATION
We implemented ISR in software on 32-bit Linux for dy-

namically and statically linked ELF executables and libraries.
This section describes the components of our implementa-
tion. It should be noted that while the current implementa-
tion works on Linux, it can be easily ported to other plat-
forms also supported by the runtime.

3.1 Randomization of Binaries
ELF (the executable and linking format) is a very common

and standard file format used for executables and shared li-
braries in many Unix type systems like Linux, BSD, Solaris,
etc. Despite the fact that it is most commonly found on
Unix systems, it is very flexible and it is not bound to any
particular architecture or OS. Also, the ELF format com-
pletely separates code and data, including control data such
as the procedure linkage table (PLT), making it an ideal
format for applying binary randomization.

We modified the objcopy utility, which is part of the GNU
binutils package to add support for randomizing ELF exe-
cutables and libraries. objcopy can be used to perform cer-
tain transformations (e.g., strip debugging symbols) on an
object file, or simply copy it to another. Thus, it is able
to parse the ELF headers of an executable or library and
access its code. We modified objcopy to randomize a file’s
code using XOR and a 16-bit key. We also extended objcopy

to randomize shared libraries in ELF format. Randomizing
using XOR does not require that the target binary is aligned,
so it does not increase its size or modify its layout.

While our current implementation is currently able to ran-
domize only ELF binaries, support for other binaries can be
easily added. For instance, we plan to extend objcopy to
also randomize Portable Executable (PE) binaries for Win-
dows operating systems [28].

3.2 Shared Libraries
Most executables in modern OSs are dynamically linked

to one or more shared libraries. Shared libraries are pre-
ferred because they accommodate code reuse and minimize
memory consumption, as their code can be concurrently
mapped and used by multiple applications. As a result, mix-
ing shared libraries with ISR has proven to be problematic
in past work. Our implementation of ISR supports multi-
ple instruction sets (i.e., multiple randomization keys) for
the same process, enabling us to use plain shared libraries
with a randomized executable. Furthermore, it enables us
to randomize each library with its own key, and share it
amongst all processes running under ISR like an ordinary
shared library.

We create a randomized copy of all libraries that are needed,
and store them in a shadow folder (e.g., “/usr/rand lib”).
For stronger security, each library is encoded using a dif-
ferent key, while we can also periodically re-randomize all
the libraries using new keys. When an application is loaded
in the runtime environment, we modify its environment so
it first looks for shared libraries in a shadow folder. If a
randomized version of a library is not found, it proceeds to
look for a plain version in the usual system locations (e.g.,
“/usr/lib” and “/lib” on Linux, and “c:\windows\system32”

43

for Windows). Of course, a process can be forced to only
use randomized code if that is required. Moreover, multiple
shadow folders can be used concurrently. For instance, if a
process crashes (e.g., a crash could be triggered by a failed
exploitation attempt), we may re-encode all shared libraries
to thwart key guessing attacks.

3.3 Key Management
Supporting multiple instruction sets for every process no-

tably increases the number of keys that are active in the
system at any given time. Thus, key management becomes
an important aspect of the system, and specially because
shared libraries can be randomized with their own key, and
multiple versions of the libraries may co-exist in the system.
Previous work proposed to store keys within the ELF files,
which removes the need for separate storage for the keys.
While this approach is robust, it leaves keys vulnerable to
exposure if an application leaks data because of a bug or an
error. In the past information leakage has been exploited
to bypass address space layout randomization (ASLR) [19].
Additionally, storing the key within the executable might
not be feasible when using binary formats other than ELF.

Instead, we store the keys for executables and libraries
in a database, using the sqlite database system. Sqlite is a
software library that implements a self-contained, serverless
SQL database engine. The entire database is stored in a
single file, and it is accessed directly by our tool (using the
sqlite library) without the need to run additional processes.
The keys are indexed using the library’s full path, and the
operation of retrieving a key from the DB is fast. As it is
an operation that it is only performed when an application
is launched or a dynamic library is loaded, its performance
is not critical for the system.

3.4 PIN Execution Environment
We implemented the de-randomizing execution environ-

ment using Intel’s dynamic binary instrumentation tool PIN.
PIN [26] is an extremely versatile tool that operates entirely
in user-space, and supports multiple architectures (x86, 64-
bit x86, ARM) and operating systems (Linux, Windows,
MacOS). It operates by just-in-time (JIT) compiling the tar-
get’s instructions combined with any instrumentation into
new code, which is placed into a code cache, and executed
from there. It also offers a rich API to inspect and modify
an application’s original instructions.

We make use of the supplied API to implement our ISR
runtime framework. First, we install a callback that inter-
cepts the loading of all file images. This provides us with
the names of all the shared libraries being used, as well as
the memory ranges where they have been loaded in the ad-
dress space. We use the path and name of the library to
lookup its key in the database and load it. We save the li-
brary’s key and memory address range in a hash table-like
data structure that allows us to quickly lookup a key using
a memory address. The existence of a key in the database
also indicates that the library is encoded, so no special han-
dling is required to load system libraries (i.e., not encoded
libraries).

The actual de-randomization is performed by installing
a callback that replaces PIN’s default function for fetching
code from the target process. This second callback reads
instructions from memory, and uses the memory address
to lookup the key to use for decoding. If the instruction

fetched is within the memory range of a shared library we
use its key for decoding, or assume no decoding is necessary
if no key is present. All instructions not associated with
a library are considered to be part of the executable and
are decoded using its key. To avoid performing a lookup for
every instruction fetched, we cache the last used key. During
our evaluation this simple single entry cache achieved high
hit ratios, so we did not explore other caching mechanisms.

3.5 Memory Protection (MP)
When executing an application within PIN, they both op-

erate on the same address space. This means that in theory
an application can access and modify the data used by PIN
and consequently ISR. Such illegal accesses may occur due
to a program error, and could potentially be exploited by an
attacker. For instance, an attacker could attempt to over-
write a function pointer or return address in PIN, so that
control is diverted directly into the attacker’s code in the
application. Such a control transfer would circumvent ISR
enabling the attacker to successfully execute his code. To
defend against such attacks we need to protect PIN’s mem-
ory from being written by the application.

When PIN loads and before the target application and its
libraries gets loaded, we scan the address space to identify all
memory pages used by PIN. We mark these memory pages
by asserting a flag in an array (page-map), which holds one
byte for every addressable page. For instance, in a 32-bit
Linux system, processes can typically access 3 out of the 4
GBytes that are directly addressable. For a page size of 4
KBytes, this corresponds to 786432 pages, so we allocate 768
KBytes to store the flags for the entire address space. At
runtime, when additional memory is used by PIN, we update
the flags for the newly used pages in the page-map. Memory
protection is actually enforced by instrumenting all memory
write operations performed by the application, and checking
that the page being accessed is valid according to the page-
map. If the application attempts to write to a page “owned”
by PIN, the instrumentation causes a page-fault that will
terminate it.

Introducing memory protection further hardens the system
against code-injection attacks, but incurs a substantial over-
head. However, forcing an attacker to exploit a vulnerability
in this fashion is already hardening the system considerably,
as he would have to somehow discover one of the few mem-
ory locations which can be used to divert PIN’s control flow.
Alternatively, we can use address space layout randomiza-
tion to decrease the probability of an attacker successfully
guessing the location of PIN’s control data.

3.6 ISR Exceptions
While all instructions in the application are encoded, there

are cases where certain external and unencoded instructions
need to be executed in the context of the process. For in-
stance, some systems inject code within the stack of a pro-
cess when a signal is delivered. These signal trampolines are
used to set up and clean up the context of a signal handler.
The instructions are a type of legitimate code-injection per-
formed by the system, and need special handling or their
execution will lead to a crash. Fortunately, signal trampo-
lines are very small (approximately 5-7 instructions long),
and the instructions used are fixed on every system (i.e.,
the same instructions are used for all signals in the system).
When a signal is delivered to a process, we scan the code

44

being executed to identify trampolines, and execute them
without applying the decoding function.

Moreover, modern Linux systems frequently include a read-
only virtual shared object (VDSO) in every running process.
This object is used to export certain kernel functions to user
space. For instance, it is used to perform system calls, re-
placing the older software interrupt mechanism (INT 0x80).
This object needs to be treated in the same manner as plain
shared libraries, allowing the execution of non-randomized
code. Since this is a read-only object, we can safely do so.

3.7 Startup Procedure
When a dynamically linked application is executed, the

loader looks for shared libraries in certain predefined lo-
cations (e.g., “/usr/lib”, “/lib”, etc.), as well as locations
specified in the environment (i.e., the environment variable
LD_LIBRARY_PATH). To enable the loading of the randomized
versions of shared libraries, we need to add the shadow folder
in the search path. We cannot do so by adding the folder in
the system’s library search path, as that would cause these
libraries to be used instead of the originals for all running
applications. Instead, we use LD_LIBRARY_PATH. Unfortu-
nately, as PIN itself is dynamically linked we cannot set the
variable directly. We employ a wrapper program that we
launch using PIN. The wrapper adds the shadow folder in
the library search path, and launches the target application,
which then looks for libraries in the shadow folder first.

4. PERFORMANCE
Dynamic instrumentation tools usually incur significant

slowdowns on target applications. While this is also true
for PIN, we show that the overhead is not prohibitive. We
conducted the measurements presented in this section on a
DELL Precision T5500 workstation with a dual 4-core Xeon
CPU and 24GB of RAM running Linux.

Figure 1 shows the mean execution time and standard
deviation when running several commonly used Linux util-
ities. We draw the execution time for running ls on a di-
rectory with approximately 3400 files, and running cp, cat,
and bunzip2 with a 64MB file. We tested four execution sce-
narios: native execution, execution with PIN and no instru-
mentation (PIN’s minimal overhead), our implementation of
ISR without memory protection (MP), and lastly with MP
enabled (ISR-MP). The figure shows that short-lived tasks
suffer more, because the time needed to encode the binary
and initialize PIN is relatively large when compared with the
task’s lifetime. In opposition, when executing a longer-lived
task, such as bunzip2, execution under ISR only takes about
10% more time to complete.

For all four utilities, when employing memory protection
to protect PIN’s memory from interference, execution takes
significantly longer, with bunzip2 being the worst case re-
quiring almost 4 times more time to complete. That is be-
cause memory protection introduces additional instructions
at runtime to check the validity of all memory write op-
erations. Another interesting observation is that running
bunzip2 under ISR is slightly faster from just using PIN.
We attribute this to the various optimizations that PIN in-
troduces when actual instrumentation is introduced.

We also evaluate our implementation using two of the
most popular open-source servers: the Apache web server,
and the MySQL database server. For Apache, we measure
the effect that PIN and ISR have on the maximum through-

E
xe

cu
tio

n
T

im
e

(s
ec

)

0

5

10

15

20

ls cp cat bunzip2

65

70

75

Native

PIN

ISR

ISR−MP

Figure 1: Execution time of basic Linux utilities.
The figure draws the mean execution time and stan-
dard deviation when running four commonly used
Linux utilities.

put of a static web page, using Apache’s own benchmarking
tool ab over a dedicated 1 Gb/s network link. To avoid high
fluctuations in performance due to Apache forking extra pro-
cesses to handle the incoming requests in the beginning of
the experiment, we configured it to pre-fork all worker pro-
cesses (pre-forking is a standard multi-processing Apache
module), and left all other options to their default setting.

Figure 2 shows the mean throughput and standard devi-
ation of Apache for the same four scenarios used in our first
experiment. The graph shows that Apache’s throughput
is more limited by available network bandwidth than CPU
power. Running the server over PIN has no effect on the at-
tainable throughput, while applying ISR, even with memory
protection enabled, does not affect server throughput either.

Finally, we benchmarked a MySQL database server using
its own test-insert benchmark, which creates a table, fills
it with data, and selects the data. Figure 3 shows the time
needed to complete this benchmark for the same four scenar-
ios. PIN introduces a 75% overhead compared with native
execution, while our ISR implementation incurs no observ-
able slowdown. Unlike Apache, enabling memory protection
for MySQL is 57.5% slower that just using ISR (175% from
native). As with Apache, the benchmark was run at a re-
mote client over a 1 Gb/s network link to avoid interference
with the server.

5. RELATED WORK
Instruction-set randomization was initially proposed as a

general approach against code-injection attacks by Gaurav
et al. [25]. They propose a low-overhead implementation of
ISR in hardware, and evaluate it using the Bochs x86 emula-
tor. They also demonstrate the applicability of the approach

45

R
eq

ue
st

s/
se

c

5000

5500

6000

Native PIN ISR ISR−MP

Figure 2: Apache web server throughput. The figure
draws the mean reqs/sec and standard deviation as
measured by Apache’s benchmark utility ab.

on interpreted languages such as Perl, and later SQL [9].
Concurrently, Barrantes et al. [4] proposed a similar ran-
domization technique for binaries (RISE), which builds on
the Valgrind x86 emulator. RISE provides limited support
for shared libraries by creating randomized copies of the li-
braries for each process. As such, the libraries are not ac-
tually shared, and consume additional memory each time
they are loaded. Furthermore, Valgrind incurs a minimum
performance overhead of 400% [18], which makes its use im-
practical.

The work closest to ours is by Hu et al. [24]. They also
employ a virtual execution environment based on a dynamic
binary translation framework named STRATA. Their imple-
mentation uses AES encryption with a 128-bit key, which re-
quires that code segments are aligned at 128-bit blocks. Un-
like our implementation, they do not support self-modifying
code, and they produce randomized binaries that are signifi-
cantly larger from the originals (e.g., the randomized version
of Apache was 77% larger than the original). Also, to the
best of our knowledge previous work on ISR does not ad-
dress the implications introduced by signal trampolines and
VDSO, nor does it investigate the costs involved with pro-
tecting the execution environment from the hosted process
(STRATA protects only a part of its data).

Address obfuscation is another approach based on ran-
domizing the execution environment (i.e., the locations of
code and data) to harden software against attacks [7, 33].
It can be performed at runtime by randomizing the layout
of a process (ASLR) including the stack, heap, dynamically
linked libraries, static data, and the process’s base address.
Additionally, it can be performed at compile time to also
randomize the location of program routines and variables.
Shacham et al. [38] show that ASLR may not be very ef-
fective on 32-bit systems, as they do not allow for sufficient
entropy. In contrast, Bhatkar et al. [8] argue that it is pos-
sible to introduce enough entropy for ASLR to be effective.
Meanwhile, attackers have successfully exploited ASLR en-

T
ot

al
 T

im
e

(s
ec

)

0

500

1000

1500

2000

2500

3000

Native Null ISR ISR−MP

Figure 3: MySQL test-insert benchmark. It measures
table creation, data insertion, and selection. The
figure draws total execution time as reported by the
benchmark utility.

abled systems by predicting process layout, exploiting ap-
plications to expose layout information [19], or using tech-
niques like heap spraying [16].

Hardware extensions such as the NoExecute (NX) bit in
modern processors [22, 33] can stop code-injection attacks
all together without impacting performance. This is accom-
plished by disallowing the execution of code from memory
pages that are marked with the NX bit. Unfortunately, its
effectiveness is dependent on its proper use by software. For
instance, many applications like browsers do not set it on all
data segments. This can be due to backward compatibility
constraints (e.g., systems using signal trampolines), or even
just bad developing practice.

PointGuard [14] uses encryption to protect pointers from
buffer overflows. It encrypts pointers in memory, and de-
crypts them only when they are loaded to a register. It is im-
plemented as a compiler extension, so it requires that source
code is available for recompilation. Also, while it is able to
deter buffer overflow attacks, it can be defeated by format
string attacks that frequently employ code-injection later
on. Other solutions implemented as compiler extensions in-
clude Stackguard [15] and ProPolice [21]. They operate by
introducing special secret values in the stack to identify and
prevent stack overflow attacks, but can be subverted [10].
Write integrity testing [2] uses static analysis and “guard”
values between variables to prevent memory corruption er-
rors, but static analysis alone cannot correctly classify all
program writes. CCured [30] is a source code transforma-
tion system that adds type safety to C programs, but it
incurs a significant performance overhead and is unable to
statically handle some datatypes. Generally, solutions that
require recompilation of software are less practical, as source
code or parts of it (e.g., third-party libraries) are not always
available.

Dynamic binary instrumentation is used by many other
solutions to retrofit unmodified binaries with defenses against

46

remote attacks. For instance, dynamic taint analysis (DTA)
is used by many projects [31, 17, 13, 23], and is a able to de-
tect control hijacking and code-injection attacks, but incurs
large slowdowns (e.g., frequently 20x or more). Due to their
large overhead, dynamic solutions are mostly used for the
analysis of attacks and malware [6], and in honeypots [37].

6. CONCLUSIONS
We described a fast and practical implementation of ISR

based on Intel’s dynamic instrumentation tool PIN. Our im-
plementation works on commodity systems, and does not
require the recompilation or relinking of target applications.
Binaries are randomized at execution time, while shared li-
braries can be encoded beforehand and shared between the
processes executing using ISR. Moreover, we introduce a
simple management scheme to keep track of the random-
ized shared libraries and their associated keys.

Our solution operates with relatively small overhead that
makes it an attractive countermeasure to retrofit security
sensitive applications with. Applying it on the Apache web
server has negligible effect on throughput for static HTML
loads, while MySQL performs approximately 75% slower.
Furthermore, we show that the overhead is largely attributed
to PIN, and can be easily mitigated when applied on long-
running I/O driven applications such as network services.

Acknowledgements

This work was supported by the United States Air Force Re-
search Laboratory (AFRL) through Contract FA8650-10-C-
7024 and by the National Science Foundation (NSF) through
Grant CNS-09-14845. Opinions, findings, conclusions and
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the US
Government, the Air Force, or the NSF.

7. REFERENCES
[1] Adobe. Security advisory for flash player, adobe

reader and acrobat. http://www.adobe.com/support/
security/advisories/apsa10-01.html, June 2010.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, pages 263–277, May 2008.

[3] Aleph One. Smashing the stack for fun and profit.
Phrack, 7(49), 1996.

[4] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the ACM
Conference on Computer and Communications
Security, pages 281–289, October 2003.

[5] E. G. Barrantes, D. H. Ackley, S. Forrest, and
D. Stefanović. Randomized instruction set emulation.
ACM Trans. Inf. Syst. Secur., 8(1):3–40, 2005.

[6] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In Proceedings of the 15th

European Institute for Computer Antivirus Research
(EICAR) Annual Conference, April 2006.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In Proceedings of the

12th USENIX Security Symposium, pages 105–120,
August 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In Proceedings of the 14th USENIX
Security Symposium, pages 255–270, August 2005.

[9] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D.
Keromytis, and V. Prevelakis. On the general
applicability of instruction-set randomization. IEEE
Transactions on Dependable and Secure Computing,
99, 2008.

[10] Bulba and Kil3r. Bypassing StackGuard and
StackShield. Phrack, 5(56), May 2000.

[11] CERT advisory CA-2001-19: “Code Red” worm
exploiting buffer overflow in IIS indexing service DLL.
http://www.cert.org/advisories/CA-2001-19.html,
July 2001.

[12] Cert Advisory CA-2003-04: MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.html,
January 2003.

[13] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron.
Vigilante: End-to-end containment of internet worms.
In Proceedings of the ACM Symposium on Systems and
Operating Systems Principles (SOSP), October 2005.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium, pages 91–104, August 2003.

[15] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Symposium,
January 1998.

[16] DarkReading. Heap spraying: Attackers’ latest
weapon of choice. http://www.darkreading.com/
security/vulnerabilities/showArticle.jhtml?

articleID=221901428, November 2009.

[17] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–243, 1976.

[18] V. Developers. Valgrind user manual – callgrind.
http://valgrind.org/docs/manual/cl-manual.html.

[19] T. Durden. Bypassing PaX ASLR protection. Phrack,
0x0b(0x3b), July 2002.

[20] C. W. Enumeration. CWE-416: use after free.
http://cwe.mitre.org/data/definitions/416.html,
April 2010.

[21] J. Etoh. GCC extension for protecting applications
from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/,
June 2000.

[22] E. Hardware. CPU-based security: The NX bit.
http://hardware.earthweb.com/chips/article.

php/3358421, May 2004.

[23] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. In Proceedings of the 1st ACM
EuroSys Conference, pages 29–41, April 2006.

[24] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W.
Davidson, D. Evans, J. C. Knight, A. Nguyen-Tuong,
and J. Rowanhill. Secure and practical defense against
code-injection attacks using software dynamic

47

translation. In Proceedings of the 2nd International
Conference on Virtual Execution Environments
(VEE), pages 2–12, June 2006.

[25] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security (CCS), October 2003.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Proceedings of Programming Language Design and
Implementation (PLDI), pages 190–200, June 2005.

[27] M. Conover and w00w00 Security Team. w00w00 on
heap overflows. http:
//www.w00w00.org/files/articles/heaptut.txt.

[28] Microsoft. Microsoft portable executable and common
object file format specification.
http://www.microsoft.com/whdc/system/platform/

firmware/PECOFF.mspx.

[29] D. Moore, C. Shanning, and K. Claffy. Code-Red: a
case study on the spread and victims of an Internet
worm. In Proceedings of the 2nd Internet Measurement
Workshop (IMW), pages 273–284, November 2002.

[30] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: type-safe retrofitting of legacy
software. ACM Trans. Program. Lang. Syst.,
27(3):477–526, 2005.

[31] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the 12th Annual Symposium on
Network and Distributed System Security (NDSS),
February 2005.

[32] M. Owens. Embedding an SQL database with SQLite.
Linux Journal, 2003(110):2, June 2003.

[33] PaX Home Page. http://pax.grsecurity.net/.

[34] PCWorld. Dangling pointers could be dangerous.
http://www.pcworld.com/article/134982/

dangling_pointers_could_be_dangerous.html, July

2007.

[35] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overflows. IEEE
Security & Privacy Magazine, 2(4):20–27,
July/August 2004.

[36] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C
analysis. Technical report, SRI International, 2009.

[37] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In
Proceedings of the 1st ACM EuroSys Conference, April
2006.

[38] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications
Security (CCS), pages 298–307, October 2004.

[39] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type
qualifiers. In Proceedings of the 10th USENIX Security
Symposium, pages 201–216, August 2001.

[40] A. N. Sovarel, D. Evans, and N. Paul. Where’s the
FEEB? the effectiveness of instruction set
randomization. In Proceedings of the 14th USENIX
Security Symposium, pages 145–160, August 2005.

[41] E. H. Spafford. The Internet worm program: An
analysis. Technical Report CSD-TR-823, Purdue
University, 1988.

[42] Symantec. Analysis of a zero-day exploit for adobe
flash and reader.
http://www.symantec.com/connect/blogs/

analysis-zero-day-exploit-adobe-flash-and-reader,
June 2010.

[43] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of the
Symposium on Network and Distributed System
Security (NDSS), pages 3–17, February 2000.

[44] C. C. Zou, W. Gong, and D. Towsley. Code Red worm
propagation modeling and analysis. In Proceedings of
the 9th ACM Conference on Computer and
Communications Security (CCS), pages 138–147,
November 2002.

48

G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries

Kaan Onarlioglu
Bilkent University, Ankara

onarliog@cs.bilkent.edu.tr

Leyla Bilge
Eurecom, Sophia Antipolis

bilge@eurecom.fr

Andrea Lanzi
Eurecom, Sophia Antipolis

lanzi@eurecom.fr
Davide Balzarotti

Eurecom, Sophia Antipolis
balzarotti@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis

kirda@eurecom.fr

ABSTRACT
Despite the numerous prevention and protection mechanisms that
have been introduced into modern operating systems, the exploita-
tion of memory corruption vulnerabilities still represents a serious
threat to the security of software systems and networks. A re-
cent exploitation technique, called Return-Oriented Programming
(ROP), has lately attracted a considerable attention from academia.
Past research on the topic has mostly focused on refining the orig-
inal attack technique, or on proposing partial solutions that target
only particular variants of the attack.

In this paper, we present G-Free, a compiler-based approach that
represents the first practical solution against any possible form of
ROP. Our solution is able to eliminate all unaligned free-branch
instructions inside a binary executable, and to protect the aligned
free-branch instructions to prevent them from being misused by an
attacker. We developed a prototype based on our approach, and
evaluated it by compiling GNU libc and a number of real-world
applications. The results of the experiments show that our solution
is able to prevent any form of return-oriented programming.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection

General Terms
Security

Keywords
Return-oriented programming, ROP, return-to-libc

1. INTRODUCTION
As the popularity of the Internet increases, so does the number of

attacks against vulnerable services [3]. A common way to compro-
mise an application is by exploiting memory corruption vulnerabil-
ities to transfer the program execution to a location under the con-
trol of the attacker. In these kinds of attacks, the first step requires

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

to find a technique to overwrite a pointer in memory. Overflowing
a buffer on the stack [5] or exploiting a format string vulnerabil-
ity [26] are well-known examples of such techniques. Once the
attacker is able to hijack the control flow of the application, the
next step is to take control of the program execution to perform
some malicious activity. This is typically done by injecting in the
process memory a small payload that contains the machine code to
perform the desired task.

A wide range of solutions have been proposed to defend against
memory corruption attacks, and to increase the complexity of per-
forming these two attack steps [10, 11, 12, 18, 35]. In particular,
all modern operating systems support some form of memory pro-
tection mechanism to prevent programs from executing code that
resides in certain memory regions [33]. The goal of this technique
is to protect against code injection attacks by setting the permis-
sions of the memory pages that contain data (such as the stack and
the heap of the process) as non-executable.

One of the techniques to bypass non-executable memory without
relying on injected code involves reusing the functionality provided
by the exploited application. Using this technique, which was orig-
inally called return-to-lib(c) [31], an attacker can prepare a fake
frame on the stack and then transfer the program execution to the
beginning of a library function. Since some popular libraries (such
as the libc) contain a wide range of functionality, this technique
is sufficient to take control of the program (e.g., by exploiting the
system function to execute /bin/sh).

In 2007, Shacham [29] introduced an evolution of return-to-lib(c)
techniques [23, 27, 31] called Return-Oriented Programming (ROP).
The main contribution of ROP is to show that it is possible for an
attacker to execute arbitrary algorithms and achieve Turing com-
pleteness without injecting any new code inside the application.

The idea behind ROP is simple: Instead of jumping to the be-
ginning of a library function, the attacker chains together existing
sequences of instructions (called Gadgets) that have been previ-
ously identified inside existing code. The large availability of gad-
gets in common libraries allows the attacker to implement the same
functionality in many different ways. Thus, removing potentially
dangerous functions (e.g., system) from common libraries is in-
effective against ROP, and does not provide any additional security.

ROP is particularly appealing for rootkit development since it
can defeat traditional defense techniques based on kernel data in-
tegrity [36] or code verification [24, 28]. Another interesting do-
main is related to exploiting architectures with immutable mem-
ory protection (e.g., to compromise electronic voting machines as
shown in [7]). ROP was also recently adopted by real attacks ob-
served in the wild as a way to bypass Windows’ Data Execution
Prevention (DEP) technology [2].

49

The great interest around ROP quickly evolved into an arms race
between researchers. On the one side, the basic attack technique
was extended to various processor architectures [6, 7, 14, 15, 34]
and the feasibility of mounting this attack at the kernel level was
demonstrated [19]. On the other side, ad-hoc detection and protec-
tion mechanisms to mitigate the attack were proposed [9, 13, 16,
22]. To date, existing solutions have focused only on the basic at-
tack, by detecting, for instance, the anomalous frequency of return
instructions executed [9, 16], or by removing the ret opcode to
prevent the gadget creation [21]. Unfortunately, a recent advance-
ment in ROP [8] has already raised the bar by adopting different
instructions to chain the gadgets together, thus making all existing
protection techniques ineffective.

In this paper, we generalize from all the details that are specific
to a particular exploitation technique to undermine the foundation
on top of which return-oriented programming is built: the avail-
ability of instruction sequences that can be reused by an attacker.
We present a general approach for the IA-32 instruction set that
combines different techniques to eliminate all possible sources of
reusable instructions. More precisely, we use code rewriting tech-
niques to remove all unaligned instructions that can be used to link
the gadgets. Moreover, we introduce a novel protection technique
to prevent the attacker from misusing existing return or indirect
jump/call instructions.

We implemented our solution under Linux as a pre-processor
for the popular GNU Assembler. We then evaluated our tool on
different real-world applications, with a special focus on the GNU
libc (glibc) library. Our experiments show that our solution
can be applied to complex programs, and it is able to remove all
possible gadgets independently from the mechanism used to con-
nect them together. A program compiled with our system is, on
average, 26% larger and 3% slower (when all the linked libraries
are also compiled with our solution). This is a reasonable overhead
that is in line with existing stack protection mechanisms such as
StackGuard [11].

This paper makes the following contributions:

• We present a novel approach to prevent an attacker from
reusing fragments of existing code as basic blocks to com-
pose malicious functionality.

• To the best of our knowledge, we are the first to propose
a general solution to defeat all forms of ROP. That is, our
solution can defend against both known variations and future
evolutions of the attack.

• We developed G-Free, a proof-of-concept implementation to
generate programs that are hardened against return-oriented
programming. Our solution requires no modification to the
application source code, and can also be applied to system
applications that contain large sections of assembly code.

• We evaluated our technique by compiling gadget-free ver-
sions of glibc and other real-world applications.

The rest of the paper is structured as follows: In Section 2, we
analyze the key concepts of return-oriented programming.In Sec-
tion 3, we summarize proposed defense techniques against memory
corruption attacks and ROP. In Section 4, we present our approach
for compiling gadget-free applications. In Section 5, we describe
our prototype implementation. In Section 6, we show the results of
the experiments we conducted for evaluating the impact and per-
formance of our system. Finally, in Section 7, we briefly conclude
the paper.

2. GADGETS
Before presenting the details of our approach, we establish a

more precise and general model for the class of attacks we wish
to prevent. Therefore, we generalize the concept of return-oriented
programming by abstracting away from all the details that are spe-
cific to a particular attack technique.

2.1 Programming with Gadgets
The core idea of return-oriented programming is to “borrow” se-

quences of instructions from existing code (either inside the ap-
plication or in the linked libraries) and chaining them together in
an order chosen by the attacker. Therefore, in order to use this
technique, the attacker has to first identify a collection of useful
instruction sequences that she can later reuse as basic blocks to
compose the code to be executed. A crucial factor that differenti-
ates return-oriented programming from simpler forms of code reuse
(such as traditional return-to-lib(c) attacks) is that the collection of
code snippets must provide a comprehensive set of functionalities
that allows the attacker to achieve Turing completeness without in-
jecting any code [29]. The second step of ROP involves devising
a mechanism to manipulate the control flow in order to chain these
code snippets together, and build meaningful algorithms.

Note that these two requirements are not independent: To allow
the manipulation of the control flow, the instruction sequences must
exhibit certain characteristics that impose constraints on the way
they are chosen. For example, sequences may have to terminate
with a return instruction, or they may have to preserve the content
of a certain CPU register. In this paper, we use the term Gadget to
refer to any valid sequence of instructions that satisfies the control
flow requirements.

In a traditional ROP attack, the desired control flow is achieved
by placing the addresses of the gadgets on the stack and then ex-
ploiting ret instructions to fetch and copy them to the instruction
pointer. In other words, if we consider each gadget as a mono-
lithic instruction, the stack pointer plays the role of the instruction
pointer in a normal program, transferring the control flow from one
gadget to the next. Consequently, gadgets are initially defined by
Shacham as useful snippets of code that terminate with a ret in-
struction [29].

However, the use of ret instructions is just one possible way
of chaining gadgets together. In a recent refinement of the tech-
nique [8], Checkoway and Shacham propose a variant of ROP in
which return-like instructions are employed to fetch the addresses
from the stack. Because these sequences are quite rare in regular
binaries, indirect jumps (e.g., jmp *%eax) are used as gadget ter-
minators to jump to a previously identified return-like sequence. In
theory, it is even possible to design control flow manipulation tech-
niques that are not stack-based, but that store values in other mem-
ory areas accessible at runtime by an attacker (e.g., on the heap or
in global variables).

As a result, in order to find a general solution to the ROP threat,
we need to identify a property that all possible variants of return-
oriented programming have in common. Kornau [34] identified
such a property in the fact that every gadget, in order to be reusable,
has to end with a “free-branch” instruction, i.e., an instruction that
can change the program control flow to a destination that is (or that
can be under certain circumstances) controlled by the attacker. Ac-
cording to this definition, in each gadget, we can recognize two
parts: the code section that implements the gadget’s functionality
and the linking section that contains the instructions used to trans-
fer the control to the next gadget. The linking section needs to end
with a free branch, but it can also contain additional instructions.
For instance, a possible linking section could be the following se-

50

Figure 1: Examples of different gadgets that can be extracted from a real byte sequence

quence: pop %ebx; call *%ebx.

2.2 Gadget Construction
In the x86 architecture, gadgets are not limited to sequences of

existing instructions. In fact, since the IA-32 instruction set does
not have fixed length instructions, the opcode that will be executed
depends on the starting point of the execution in memory. There-
fore, the attacker can build different gadgets by jumping inside ex-
isting instructions.

Figure 1 shows how, depending on the alignment of the first and
last instruction, it is possible to construct three different kinds of
gadgets. Gadget1 is an aligned gadget that only uses “intended”
instructions already present in the function code. Gadget2 is a
gadget that contains only “unaligned” instructions ending with the
unintended call *%eax. Finally, Gadget3 starts by using an
unintended add instruction, then re-synchronizes with the normal
execution flow, and ends by reaching the function return. This ex-
ample demonstrates how a short sequence of 14 bytes can be used
for constructing many possible gadgets. Considering that a com-
mon library such as libc contains almost 18K free branch in-
structions and that each of them can be used to construct multiple
gadgets, it is not difficult for an attacker to find the functionality he
needs to execute arbitrary code.

If we can prevent the attacker from finding useful instruction
sequences that terminate with a free branch, we can prevent any
return-oriented programming technique. We present our approach
to reach this goal in Section 4.

3. RELATED WORK
Several defense mechanisms attempt to detect memory exploits

which represent a fundamental basic block for mounting return-to-
lib(c) attacks. StackGuard [11] and ProPolice [18] are compile-
time solutions that aim at detecting stack overflows. PointGuard
encrypts pointers stored in memory to prevent them from being cor-
rupted [10]. StackShield [35] and StackGhost [17] use a shadow re-
turn address stack to save the return addresses and to check whether
they have been tampered with at function exits. A complete survey
of traditional mitigation techniques together with their drawbacks
is presented in [12]. Our solution, in order to avert ROP attacks,
prevents tampering with the return address as well; but it does not
target other memory corruption attacks.

One of the most effective techniques that hamper return-to-lib(c)
attacks is Address Space Layout Randomization (ASLR) [32]. In
its general form, this technique randomizes positions of stack, heap,
and code segments together with the base addresses of dynamic li-
braries inside the address space of a process. Consequently, an
attacker is forced to correctly guess the positions where these data
structures are located to be able to mount a successful attack. De-
spite the better protection offered by this mechanism, researchers
showed that the limited entropy provided by known ASLR imple-
mentations can be evaded either by performing a brute-force attack
on 32-bit architectures [30] or by exploiting Global Address Table

and de-randomizing the addresses of target functions [25].
Various approaches proposed by the research community aim

at impeding ROP attacks by ensuring the integrity of saved return
addresses. Frantsen et al. [17] presented a shadow return address
stack implemented in hardware for the Atmel AVR microcontroller,
which can only be manipulated by ret and call instructions.
ROPdefender [22] uses runtime binary instrumentation to imple-
ment a shadow return address stack where saved return addresses
are duplicated and later compared with the value in the original
stack at function exits. Even though ROPdefender is suitable for
impeding basic ROP attacks, it suffers from performance issues
due to the fact that the system checks every machine instruction
executed by a process.

Another method, called program shepherding [20], can prevent
basic forms of ROP as well as code injection by monitoring control
flow transfers and ensuring library code is entered from exported
interfaces.

Other approaches [9, 13] aim to detect ROP-based attacks rely-
ing on the observation that running gadgets results in execution of
short instruction sequences that end with frequent ret instructions.
They proposed to use dynamic binary instrumentation to count the
number of instructions executed between two ret opcodes. An
alert is raised if there are at least three consecutive sequences of
five or fewer instructions ending with a ret.

The most similar approach to ours is a compiler-based solution
developed in parallel to our work by Li et al. [21]. This system
eliminates unintended ret instructions through code transforma-
tions, and instruments all call and ret instructions to imple-
ment return address indirection. Specifically, each call instruction
is modified to push onto the stack an index value that points to a re-
turn address table entry, instead of the return address itself. Then,
when a ret instruction is executed, the saved index is used for
looking up the return address from the table. Although this system
is more efficient compared to the previous defenses, it is presented
as a solution specifically tailored for gadgetless kernel compilation,
and it exploits characteristics of kernel code for gadget elimination
and increased performance. Moreover, the implementation requires
manual modifications to all the assembly routines.

It is important to note that none of the defenses proposed so far
can address more advanced ROP attacks that utilize free-branch
instructions different from ret. The solution we present in this
paper is the first to address all free-branch instructions, and the first
that can be applied at compile-time to protect any program from
ROP attacks.

4. CODE WITHOUT GADGETS
Our goal is to provide a proactive solution to build gadget-free

executables that cannot be targeted by any possible ROP attack. In
particular, we strive to achieve a comprehensive, transparent, and
safe solution. By comprehensive, we mean that we would like our
solution to eliminate all possible gadgets by removing the linking

51

mechanisms that are necessary to chain instruction sequences to-
gether. Transparent means that this process must require no inter-
vention from the user, such as manual modifications to the source
code. Finally, we would like to present a solution that is safe: That
is, it should preserve the semantics of the program, be compatible
with compiler optimizations, and support applications that contain
routines written in assembly language.

In order to reach our goals, we devise a compiler-based approach
that first eliminates all unaligned free-branch instructions inside
a binary executable, and then protects the aligned free-branch in-
structions to prevent them from being misused by an attacker.

We achieve the first point through a set of code transformation
techniques that ensure free-branch instructions never appear inside
any legitimate aligned instruction. This leaves the attacker with
the only option of exploiting existing ret and jmp*/call* in-
structions. To eliminate this possibility, we introduce a mechanism
that protects these potentially dangerous instructions by ensuring
that they can be executed only if the functions in which they reside
were executed from their entry points.

Consequently, an attacker can only execute entire functions from
the start to the end as opposed to running arbitrary code. This ef-
fectively de-generalizes the threat to a traditional return-to-lib(c)
attack, eliminating the advantages of achieving Turing complete-
ness without injecting any code in the target process.

Our approach uses a combination of techniques, namely align-
ment sleds, return address encryption, frame cookies and code rewrit-
ing. The rest of this section describes each technique in detail.

4.1 Free Branch Protection
The first set of techniques aim to protect the aligned free-branch

instructions available in the binary. These include the actual ret
instructions at the end of each function and the jmp*/call* in-
structions that are sometimes present in the code.

Unfortunately, these instructions cannot be easily eliminated with-
out altering the application’s behavior. In addition, replacing them
with semantically equivalent pieces of code is likely not going to
solve the problem because the attacker could still use the replace-
ments to achieve the same functionality.

Therefore, we propose a simple solution inspired by existing
stack protection mechanisms (e.g., StackGuard [11]). The goal is
to instrument functions with short blocks of code to ensure that
aligned free-branch instructions can only be executed if the running
function has been entered from its proper entry point. In particu-
lar, we employ two complementary techniques: an efficient return
address encryption to protect ret instructions, and a more sophis-
ticated cookie-based technique we additionally apply only to those
functions that contain jmp*/call* instructions. In Section 4.3,
we discuss the possibility that an attacker attempts to exploit these
protection blocks, and in Section 5.5 we show how we avoid this
threat in our prototype.

Finally, we prepend the code performing the checks with align-
ment sleds. Alignment sleds are special sequences of bytes by
which we enforce aligned execution of a set of critical instruc-
tions. In particular, we use this technique to prevent an attacker
from bypassing our free branch protection code by executing it in
an unaligned fashion.

4.1.1 Alignment Sleds
An alignment sled is a sufficiently-long sequence of bytes, en-

coding one or more instructions that have no effect on the status
of the execution. Its length is set to ensure that regardless of the
alignment prior to reaching the sled, the execution will eventually
land on the sled and execute it until the end. Even if an attacker

Figure 2: Application of an alignment sled to prevent executing
an unaligned ret (0xc3) instruction

jumps into the binary at an arbitrary point and executes a number
of unaligned instructions, when she reaches the sled, the execution
will be forced to realign with the actual code. Thus, it will never
reach any unintended opcode present in the instructions following
the sled.

The simplest way to implement an alignment sled is to use a
sequence of nop instructions (see Figure 2 for an example). The
number of nop instructions must be determined by taking into con-
sideration the maximum number of consecutive nop bytes (0x90)
that can tail a valid instruction. If we set the length to anything
less than that, an attacker could find an unintended instruction that
encompasses the whole sled and any number of bytes from the fol-
lowing instruction, in which case the execution will continue in an
unaligned fashion. In the IA-32 architecture, the longest such se-
quence becomes possible when we have both an address displace-
ment and an immediate value entirely composed of 0x90 bytes [4],
which makes a total of 8 bytes. Additionally, we can have either a
ModR/M byte, a SIB byte or an opcode with the value 0x90 (but
only one of them at a time). As a result, we can safely set the
number of nop instructions in our sled to 9.

Note that the sled length calculation presented in this section is
an over-approximation: By also taking into account the bytes pre-
ceding the sled and which instructions they can possibly encode, it
is possible to automatically compute the required sled length case-
by-case.

Finally, we prepend the sled with a relative jump instruction to
skip over the sled bytes. Consequently, if the execution is already
aligned it will hit the jump and not incur the performance penalty
of executing the sequence of nop instructions.

4.1.2 Return Address Protection
This technique involves instrumenting entry points of the func-

tions that contain ret instructions with a short header that encrypts
the saved return address stored on the stack. Before ret instruc-
tions, we then insert a corresponding footer to restore the return
address to its original value. If an attacker jumps into a function
at an arbitrary position and eventually reaches our footer, the de-
cryption routine processes the unencrypted return address provided
by the attacker, computes an invalid value and the following ret
instruction attempts to transfer the execution flow to an incorrect
address that the attacker cannot control. This technique is similar
to the random XOR canary implemented by StackGuard [11].

The encryption method we utilize is a simple exclusive-or of the
return address with a random key. Since this solution does not af-
fect the layout of the stack in any way, it does not require any fur-
ther modifications to the function code.

4.1.3 Frame Cookies
In order to prevent the attacker from using existing jmp*/call*

instructions, we need to adopt another protection mechanism. To

52

ModR/M Operand 1 Operand 2
0xc2 %eax, %ax, %al %edx, %dx, %dl
0xc3 %eax, %ax, %al %ebx, %bx, %bl
0xca %ecx, %cx, %cl %edx, %dx, %dl
0xcb %ecx, %cx, %cl %ebx, %bx, %bl

SIB Base Scaled Index
0xc2 %edx %eax*8
0xc3 %ebx %eax*8
0xca %edx %ecx*8
0xcb %ebx %ecx*8

Table 1: ModR/M and SIB values encoding ret opcodes
this end, we instrument entry points of the functions that contain
jmp*/call* instructions with an additional header to compute
and push a random cookie onto the stack. This cookie is an exclusive-
or of a random key generated at runtime and a per-function constant
generated at compile time. The constant is used for uniquely iden-
tifying the function and it does not need to be kept secret.

Then, we prepend all the jmp*/call* instructions with a val-
idation block which fetches the cookie, decrypts it, and compares
the result with the per-function constant. If the cookie is not found
or the values do not match, we invalidate the jump/call destination
causing the application to crash. Finally, in the function footer, we
insert a simple instruction to remove the cookie from the stack.

A significant consequence of this technique is that it alters the
layout of the stack by storing an additional value. This requires us
to fix the memory offsets of some of the instructions that access
the stack according to the location where we store the cookie (we
discuss the details of this issue in Section 5).

4.2 Code Rewriting
The second set of techniques we adopt in our approach focus on

removing any unaligned free-branch instructions.
In the IA-32 architecture, instructions consist of some or all of

the following fields: instruction prefixes, an opcode, a ModR/M
byte, a SIB (Scale-Index-Base) byte, an address displacement, and
finally, an immediate value. A ret instruction can be encoded with
any of the 0xc2, 0xc3, 0xca or 0xcb bytes, and, as such, can be
part of any of the instruction fields (excluding the prefixes). On the
other hand, jmp*/call* instructions are encoded by two-byte
opcodes: an 0xff followed by an ModR/M byte carrying certain
three-bit sequences. Hence, in addition to appearing inside a single
instruction, they can also be obtained by a combination of two bytes
coming from two consecutive instructions.

In this section, we discuss the various cases and describe the code
rewriting techniques we use to eliminate all unintended free-branch
opcodes.

4.2.1 Register Reallocation
The ModR/M and the SIB bytes are used for encoding the ad-

dressing mode and operands of an instruction. The use of certain
registers as operands cause either the ModR/M or the SIB byte to
be set to a value that corresponds to a ret opcode. The possi-
ble undesired encodings of these bytes are shown in Table 1. For
instance, an instruction that specifies %eax as the source operand
and %ebx as the destination, such as movl %eax, %ebx, as-
signs the value 0xc3 to the ModR/M byte. Similarly, using %edx
as the base and (%ecx * 8) as the scaled index, the instruction
addl $0x2a,(%edx,%ecx,8) contains 0xca in its SIB byte.

In order to eliminate the unintended ret opcodes that result
from such circumstances, we must avoid all of the undesired reg-
ister pairings listed in Table 1. We achieve this by manipulating
the register allocation performed during compilation to ensure that

those pairs of registers never appear together in a generated instruc-
tion. When we detect such an instruction, we can perform the com-
piler’s register allocation stage again, this time enforcing a differ-
ent register assignment. As an alternative, we can perform a local
reallocation by temporarily swapping the contents of the original
operand with a new register, and then rewriting the instruction with
this new register as its operand. In this way, we can bring forth an
acceptable register pairing for the same instruction.

Finally, in some cases, the ModR/M byte could be used to spec-
ify an opcode extension and a single register operand. Sometimes,
it is possible to rewrite these instructions using the same techniques
described above to replace the register operand with a different one.
However, floating point instructions can use implicit operands that
cannot be substituted with others (e.g, fld %st(2)). Since all
these instructions can have the ret opcode only in their second
byte, we instead prepend them with an alignment sled. This leaves
to the attacker only one byte (the opcode that specifies the FPU in-
struction) before the unaligned ret, and it is therefore impossible
to use this byte to create any gadget.

4.2.2 Instruction Transformations
ret bytes appear in opcodes encoding movnti (0x0f 0xc3)

and bswap (0x0f 0xc8+<register_identifier>) in-
structions. In the first case, movnti acts like a regular mov oper-
ation except that it uses a non-temporal hint to reduce cache pol-
lution. Thus, we can safely replace it with a regular mov without
any significant consequence. For the second, the opcode is deter-
mined according to the operand register and can encode a ret byte
when certain registers are specified as the operand; therefore, as
described in the previous section, we can perform a register real-
location to choose a different operand and obtain a safe bswap
opcode.

4.2.3 Jump Offset Adjustments
Jump and call instructions may contain free-branch opcodes when

using immediate values to specify their destinations. For instance,
jmp .+0xc8 is encoded as “0xe9 0xc3 0x00 0x00 0x00”.

A free-branch opcode can appear at any of the four bytes con-
stituting the jump/call target. If the opcode is the least significant
byte, it is sufficient to append the forward jump/call with a single
nop instruction (or prepend it if it is a backwards jump/call) in or-
der to adjust the relative distance between the instruction and its
destination:

jmp .+0xc8 ⇒ jmp .+0xc9
nop

However, when the opcode is at a different byte position, the
number of nop instructions we need to insert increase drastically
(256 for the second, 64K for the third and 16M for the last byte).

Fortunately, it is highly uncommon to have a free-branch opcode
in one of the most significant bytes. For example, a jump offset
encoded by “0x00 0x00 0xc3 0x00” indicates a 12MB for-
ward jump. Considering the fact that jump instructions are ordinar-
ily used for local control flow transitions inside a function, a 12MB
offset would be infeasible in practice. Even if we were to come
across such an offset, it is still possible to relocate the functions or
code chunks addressed by the instruction to remove the opcodes.

4.2.4 Immediate and Displacement Reconstructions
Several arithmetic, logic and comparison operations can take im-

mediate values as an operand, which may contain free-branch in-
struction opcodes. We can remove these by substituting the instruc-
tion with a sequence of different instructions that construct the im-
mediate value in steps while carrying the same semantics. The fol-

53

lowing examples demonstrate the reconstruction process, assuming
that %ebx is free or has been saved beforehand:

addl $0xc2, %eax ⇒ addl $0xc1, %eax
inc %eax

xorb $0xca, %al ⇒
movb $0xc9, %bl
incb %bl
xorb %bl, %al

Instructions that perform memory accesses can also contain free-
branch instruction opcodes in the displacement values they specify
(e.g., movb %al, -0x36(%ebp) represented as “0x88 0x45
0xca”). In such cases, we need to substitute the instruction with a
semantically equivalent instruction sequence that uses an adjusted
displacement value to avoid the undesired bytes. We achieve this by
setting the displacement to a safe value and then compensating for
our changes by temporarily adjusting the value in the base register.
For example, we can perform a reconstruction such as:

movb $0xal, -0x36(%ebp) ⇒
incl %ebp
movb %al, -0x37(%ebp)
decl %ebp

4.2.5 Inter-Instruction Barriers
Unintended jmp*/call* opcodes can result from the combi-

nation of two consecutive instructions. This happens when the last
byte of an instruction is 0xff and the first byte of the following
instruction encodes a suitable opcode extension. We can remove
these unintended jmp*/call* opcodes by inserting a barrier be-
tween two such instructions, effectively separating them and de-
stroying the unintended opcode. For the barrier, the trivial choice
of a nop instruction is not suitable since an 0xff followed by a
0x90 still encodes an indirect call. Thus, we have to choose a safe
nop-like alternative, such as “movl %eax, %eax”.

4.3 Limitations of the Approach
By applying the techniques presented in this section, it is possi-

ble to remove all unaligned free-branch instructions from a binary,
and to protect the aligned ones from being misused by an attacker.
However, since our protection mechanism does not remove the free
branches, but prepends a short piece of code to protect them, the
result of the compilation will still contain some gadgets.

In fact, an attacker may skip the alignment sled by directly jump-
ing into the return address or indirect jump/call protection blocks.
This may result in executing a useful instruction sequence (intended
or unintended) which terminates at the free-branch instruction we
intend to protect.

However, since our approach only requires inserting two very
short pieces of code, the number of possible gadgets that can be
built is very limited and the gadget sizes are restricted to few in-
structions. By keeping this issue in mind, it is, therefore, possi-
ble to specifically craft the return address and indirect jump/call
protection blocks to make sure they do not contain any convenient
gadgets.

In particular, we discuss the techniques we used in our prototype
implementation and the number and type of gadgets that are left in
the applications compiled by our tool in Section 5.5.

5. IMPLEMENTATION
Our implementation efforts primarily focus on creating a fully-

automated system that would not require any modifications to the
program’s source code or to the existing compilation tools. Un-
fortunately, system-wide libraries, which are the primary targets of
ROP attacks, often rely on hand-tuned assembly routines to per-
form low-level tasks. This makes a pure compiler-based solution

unable to intercept part of the final code. Therefore, we imple-
mented our prototype in two separate components: an assembly
code pre-processor designed to work as a wrapper for the GNU
Assembler (gas), and a simple binary analyzer responsible
for gathering some information that is not available in the assem-
bly source code.

In this section, we describe G-Free, a prototype system we de-
veloped based on the techniques presented in Section 4, and we
discuss some of the issues we encountered while compiling glibc
using our prototype.

5.1 Assembly Code Pre-Processor & Binary
Analyzer

The assembly code pre-processor intercepts the assembly code
generated by cc1 (the GNU C compiler included in the GNU
Compiler Collection) or coming directly from an assembly
language source file. It then performs the required modifications to
remove all the possible gadgets, and finally passes the control to the
actual gas assembler. We must stress that in this implementation
we modify neither the compiler nor the assembler; both are com-
pletely oblivious to the existence of our pre-processing stage. We
only replace the gas executable with a small wrapper responsible
for invoking our pre-processor before executing the assembler.

Our system successfully handles assembly routines written using
non-standard programming practices. It supports position indepen-
dent code (PIC) and compiler optimizations, including all of the
GCC standard optimization levels (in fact, glibc does not com-
pile if GCC optimizations are disabled).

There is one significant implication of directly working with as-
sembly code: Our pre-processor is not exposed to the numeric val-
ues of immediate operands and memory displacements since these
are often represented by symbolic values until linkage. Thus, it is
not possible for us to identify all of the instructions that contain un-
intended free-branch opcodes just by looking at the assembly code.
In order to address this issue, we use a two-step compilation ap-
proach. First, our system compiles a given program without doing
any modifications to the original code. During this compilation, our
pre-processor tags each of the instructions that contain immediate
values or displacements with unique symbols. This information is
then exported in the final executable’s symbol table. In a second
step, we use a binary analyzer to read the symbol table of the exe-
cutable and check whether any of the instructions pointed to by our
tagged symbols needs to be rewritten because it contains unaligned
free-branch instructions. This analysis produces a log of the tags
corresponding to the instructions we need to modify. This log is
consumed by the pre-processor during a second compilation phase
in order to provide it with the previously missing information.

Unfortunately, inserting a nop at a certain position to fix a jump
offset may actually affect the offsets of many other jumps since it
alters the whole address space of the binary. Our prototype binary
analyzer does not consider the overall structure of the binary file
when reporting the instructions to fix. Therefore, while fixing a
set of jump offsets, several other offsets may start to contain free-
branch opcodes. This makes it necessary to perform several com-
pilations until all the offsets are fixed. Note that in this process, we
may need to fix a single jump instruction several times. However,
since inserting nop instructions between a jump and its destination
can only increase the offset but never decrease it, we are sure to
find a safe offset after a finite number of iterations.

A more optimized analyzer that can perform a global analysis
and take into account the target of every jump instruction would
eliminate this problem. It would also produce smaller executables
since recompilations insert otherwise unnecessary nop bytes.

54

5.2 Random Keys
As described in Section 4, our approach requires a random value

to encrypt both the return address and the cookie stored on the
stack. For this purpose, our prototype inserts a key generation rou-
tine at the beginning of the program’s entry point (or initialization
routine if it is a library). In our prototype, this routine simply reads
a 32-bit random value from the Linux special file /dev/random and
stores the value in a global memory location.

If the attacker has a way to read arbitrary memory locations be-
fore performing the actual attack, he could be able to fetch the
per-process random key and use it to craft the required values on
the stack to defeat our implementation. This limitation is com-
mon to many canary-based stack protection mechanism such as
StackGuard [11] and ProPolice [18]. However, this problem can
be avoided by substituting the per-process random key with a per-
function key computed at runtime in the function headers.

5.3 Stack Reference Adjustments
We store our cookie just above the saved return address in the

stack, shifting the frame base upwards by 4 bytes. Since a function
usually uses the %ebp register to reference the stack relative to
the frame base, and our cookie is located below the frame base,
references to the stack local variables remain unchanged. On the
contrary, references to function parameters which are stored below
the frame base, and therefore below our cookie, need to be adjusted
by 4 bytes.

We achieve this by simply correcting each positive displacement
to %ebp by adding to it the size of our cookie:

movl 0x8(%ebp), %eax ⇒ movl 0xc(%ebp), %eax

Note that compiler optimizations that adopt Frame Pointer Omis-
sion (FPO) use the stack pointer to reference arguments and local
variables. In this case, we need to compute the displacement of
the stack pointer to the function’s frame at any given position in
the function in order to identify and fix the references and locate
our cookie in the stack. This requires a comprehensive stack depth
analysis. We have designed our pre-processor to perform this anal-
ysis on the fly without the need for any extra pass over the source
file, even when the execution flow of the processed function is non-
linear. We keep track of push & pop operations and arithmetic
computations on the stack pointer and update the system’s view of
stack depth accordingly. Depending on the state of the stack, we
can then decide whether a stack access (e.g., 120(%esp)) points
to a local variable or to a function’s parameter, so that we can apply
the displacement adjustment where appropriate.

5.4 Conditional Code Rewriting
Our prototype implements all immediate and displacement re-

construction strategies we described in Section 4. However, to
reduce the performance overhead, we apply those transformations
only when absolutely necessary. Otherwise, we use a faster approx-
imate solution. In particular, during the first compilation phase, we
prepend each instruction that contains free-branch opcodes among
its immediate or displacement fields with an alignment sled. The
sled protects the instruction, but does not actually remove the free
branch from the code. Therefore, an attacker can sometimes build
very short gadgets that fit the few bytes between the end of the sled
and the unaligned free-branch instruction.

Our system automatically checks these bytes after the compila-
tion. If it detects that they do indeed contain valid instructions,
it falls back to the safer (but slightly less efficient) immediate or
displacement reconstruction methods.

5.5 Return Address and Indirect Jump/Call
Protection Blocks

As previously explained in Section 4, our solution protects
aligned free-branch instructions by introducing two short blocks of
code: the return address protection block and the indirect jump/call
protection block (the current implementations are shown in Fig-
ure 3). These two pieces of code are the only ones in the final
executable that can still contain gadgets and, therefore, they must
be carefully designed to prevent any possible attack.

The return address protection code is 11 bytes long and all bytes
are under our control, with the exception of the 4-byte address of
the random key, which could change for each compiled program
and for shared libraries at each relocation. To ensure that the code
is safe to use, we need to prevent this value from containing po-
tentially dangerous instructions. In our implementation, we control
the least significant two bytes by automatically inserting appropri-
ate alignment directives into the assembled code when defining the
key storage location, ensuring that the address always ends with the
innocuous “0xf0 0x00” sequence. In addition, according to the
Linux process memory layout, the most significant address byte of
the .bss section (where we store our random key) is limited in
practice to 0x08 for regular ELF executables and 0xb* for shared
libraries 1. Therefore, it encodes either a variation of a load imme-
diate into register instruction (e.g., mov $IMM, %reg), or an or
instruction between two 8-bit operands.

The indirect jump/call protection block is 19 bytes long and con-
tains an additional 4-byte-long dynamic section, the per-function
constant identifier we generate at compile time to compute the
cookie. The example shown in Figure 3 (that uses a 0x0f0f1f76
function identifier) is entirely gadget-free because it contains no
aligned or unaligned instruction sequences that would make it pos-
sible for an attacker to reach jmp *%edx without invalidating its
contents. In fact, any logic/arithmetic operation that does not yield
a result of zero (e.g., incl %ebp, unless %ebp overflows) clears
the zero flag in the processor and prevents the use of the conditional
jump jz .+4 (this instruction only jumps if the zero flag is set in
the processor). Consequently, the value inside %edx is cleared.

Different values of the function identifier could potentially in-
troduce a new and useful gadget; but since these constants can be
arbitrarily chosen and do not need to be kept secret, we can easily
work around problematic cases. In order to minimize the risk in the
first place, we use simple heuristics such as using bytes that repre-
sent invalid opcodes (e.g., 0x0f 0x0f) and avoiding dangerous
opcodes such as those encoding mov or free-branch instructions.

Figure 4 shows all the gadgets that can be extracted from our
current system implementation. As can be seen, apart from the
ability to load the %eax with a controlled value (popl %eax),
the gadgets have no value.

5.6 Compiling glibc

During our case study of compiling glibc using G-Free, we
have encountered several issues requiring particular care. These
were mostly related to unconventional programming practices used
for dealing with low-level tasks, or manually optimized assembly
code. This section explains our observations in this regard, and
explains how we cope with these special cases.

Multiple Entry Points: We have come across various functions in
glibc that include more than one possible entry point. Our system
1The Linux process memory layout dictates that dy-
namic shared libraries are loaded at the address range
0xc0000000-0x40000000, starting from higher addresses.
As a result, in practice almost any shared library has 0xb* as the
most significant address byte of its .bss section.

55

50 pushl %eax
a1 00 f0 fd b7 movl 0xb7fdf000, %eax
31 44 24 04 xorl %eax, 0x4(%esp)
58 popl %eax

Return address protection code 50 pushl %eax
a1 00 f0 fd b7 movl 0xb7fdf000, %eax
35 76 1f 0f 0f xorl $0x0f0f1f76, %eax
39 45 04 cmpl %eax, 0x4(%ebp)
58 popl %eax
74 02 jz freebranch
31 d2 xorl %edx, %edx
freebranch:
ff e2 jmp *%edx

Indirect jump/call protection code

Figure 3: Code inserted to protect the aligned return and indirect jump/call instructions

00 f0 addb %dh, %al
fd std
b7 31 movb $0x31, %bh
44 incl %esp
24 04 andb $0x04, %al
58 popl %eax

Gadget A.1

f0 fd lock std
b7 31 movb $0x31, %bh
44 incl %esp
24 04 andb $0x04, %al
58 popl %eax

Gadget A.2

04 58 addb $0x58, %al

Gadget A.3

45 incl %ebp
04 58 addb $0x58, %al
74 02 jz freebranch
31 d2 xorl %edx, %edx
freebranch:
ff e2 jmp *%edx

Gadget B.1

Figure 4: Gadgets available in the return address (A) and in the indirect jump/call (B) protection blocks

successfully detects such functions and instruments all entry points
with the appropriate headers. Additionally, we prepend each header
that lies in the execution path of other entry points with a jump
instruction to skip over the header, ensuring that only one header is
executed per function call.

Functions that Access the Saved Return Address: In glibc, we
have encountered a single function, namely setjmp that accesses
the saved return address on the stack. setjmp, together with the
function longjmp, is used for implementing non-local jumps: a
call to setjmp saves the current stack context to restore it after-
wards when longjmp is invoked. This behavior conflicts with our
return address protection scheme. Since the return address is stored
in an encrypted form on the stack, a call to setjmp saves the en-
crypted return address and a subsequent call to longjmp results
in an illegal memory access. In order to solve this problem, we
modified our prototype to detect when the saved return address is
moved to a register and perform the decryption on the duplicated
value to ensure correct functionality.

Jumps between Functions: In numerous cases, a function di-
rectly jumps to another one without saving the return address, es-
sentially making that jump an exit point. During compilation, we
check every jump destination to recognize jumps outside the cur-
rent function and treat them as regular exit points for inserting the
necessary footers. These footers are not meant to protect a free-
branch instruction, since none follows, but to restore the return ad-
dress to its original value before transferring the execution flow to
another function.

6. EVALUATION
The main goal of our evaluation is to show that our technique can

be applied to compile real-world applications and produce gadget-
free executables. To demonstrate that we are able accomplish this

goal, we performed a set of experiments in which we measured the
impact of our code transformations in terms of performance and
size overheads of the binaries produced by our tool.

In our tests, we combined the G-Free pre-processor with gas
2.20 and GCC 4.4.3. All the experiments were performed on
a 2GHz Intel Core 2 Duo T7300 machine with 2GB of memory,
running Arch Linux (i686) with Linux kernel 2.6.33.

6.1 Compilation Results
Since ROP attacks usually extract their gadgets from common

libraries, we focus our evaluation on glibc version 2.11.1. The
original version compiled without G-Free contains 9921 ret in-
structions (6106 of which unaligned) and 8018 jmp*/call* in-
structions (6602 of which unaligned). This sums up to almost 18K
free-branch opcodes, each of which can be potentially used by an
attacker to build many different gadgets.

After we compiled glibc using our system, all unintended ret
and jmp*/call* instructions were either removed or made inef-
fective by prepending them with an alignment sled. In addition,
all aligned free-branch instructions were protected by adding our
return and indirect jump/call protection blocks. As a result, the li-
brary compiled with G-Free contained only the four type of gadgets
we present in Figure 4.

However, due to the newly inserted code and instruction rewrit-
ing techniques, the size of the gadget-free version of the library
increased by 30%. Although this value might appear to be high,
one third of the overhead is caused by nop instructions included
in the alignment sleds. As already discussed in Section 5, most of
these could be eliminated by a more optimized implementation.

Unfortunately, providing a gadget-free version of glibc is not
sufficient to completely prevent ROP attacks, since the attacker
could still build the gadget set from other libraries or the appli-
cation binary itself. Therefore, to achieve a complete protection

56

Program Name Original G-Free Size Unaligned Unaligned Number of Number of
and Version Size(KB) (Overhead) ret jmp*/call* functions with RAP functions with JCP
glibc 2.11.1 1320.4 1728.4 (30.9%) 6106 6602 2817 827
gzip 1.4 72.7 92.4 (27.0%) 433 410 122 10
grep 2.6.3 86.3 106.3 (23.2%) 523 369 174 20
dd coreutils-8.5 48.0 57.9 (20.6%) 252 181 95 8
md5sum coreutils-8.5 30.9 37.7 (22.1%) 203 86 68 3
ssh-keygen openssh-5.5p1 140.6 182.5 (29.7%) 607 712 271 20
lame 3.98.3 322.6 406.6 (26.0%) 2228 1342 669 28

Table 2: Statistics on binaries compiled with G-Free (RAP=Return Address Protection, JCP=indirect Jump/Call Protection)

Execution Time (seconds)
Program Name Test case Original Version G-Free Version (Overhead)
gzip Compress a 2GB file 66.5 68.4 (2.9%)
grep Search in a 2GB file 81.3 82.9 (2.0%)
dd Create a 2GB zero-filled file 86.6 88.9 (2.6%)
md5sum Compute hash of a 2GB file 82.5 82.9 (0.6%)
ssh-keygen Generate 100 2048-bit RSA keys 51.2 53.6 (4.6%)
lame Encode a 10 min long wav file 115.5 122.0 (5.6%)

Table 3: Performance comparisons when the application and all the linked libraries are compiled with G-Free

against ROP, it is necessary to compile the entire application and
all the linked libraries with our technique. To demonstrate that our
tool can be applied to this more general scenario, we include in our
evaluation a number of common Linux applications.

Table 2 shows statistics about the binaries compiled with G-Free.
Our tool was able to successfully remove all unintended instruc-
tions and protect the aligned ones with an average size increase of
25.9% (more than half of which were caused by redundant nop in-
structions). The last two columns show that most of the functions
can be protected by our very efficient return address encryption
technique while very few of them required the more complex in-
direct jump/call protection block. This is a consequence of the fact
that, according to what we observed in our experiments, programs
rarely use jmp*/call* instructions.

6.2 Performance Measurements
Table 3 shows the performance overheads we measured by run-

ning the different applications compiled with our prototype (this in-
cludes the gadget-free versions of the programs and all their linked
libraries). For each application, we designed a set of program-
specific test cases, summarized in Column 2 of the table. The av-
erage performance overhead was 3.1% – a value comparable with
the overhead caused by well known stack protection systems such
as StackShield [35] and StackGuard [11].

Since a library cannot be run as a standalone program, we evalu-
ated the performance overhead of our gadget-free version of glibc
using a set of well-known benchmarks. In particular, we down-
loaded and installed the Phoronix Test Suite [1] which provides one
of the most comprehensive benchmark sets for the Linux platform.
Table 4 lists a sample of the benchmarks that represent different
application categories such as games, mathematical and physical
simulations, 3D rendering, disk and file system activities, compres-
sion, and well-known server applications. The results indicate that
the performance overhead of an application using our gadget-free
version of glibc is on average 1.09%.

7. CONCLUSIONS
Return-oriented programming is an attack technique that recently

attracted significant attention from the scientific community. Even
though much research has been conducted on the topic, no compre-
hensive defense mechanism has been proposed to date.

In this paper we propose a novel, comprehensive solution to de-
fend against return-oriented programming by removing all gadgets
from a program binary at compile-time. Our approach targets all
possible free-branch instructions, and, therefore, is independent
from the techniques used to link the gadgets together. We im-
plemented our solution in a prototype that we call G-Free, a pre-
processor for the GNU Assembler. Our experiments show that
G-Free is able to remove all gadgets at the cost of a very low per-
formance overhead and an acceptable increase in the file size.

8. ACKNOWLEDGMENTS
The research leading to these results was partially funded from

the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement nř 257007. This work has also been
supported in part by the European Commission through project
IST-216026-WOMBAT funded under the 7th framework program.
This publication reflects the views only of the authors, and the
Commission cannot be held responsible for any use which may be
made of the information contained therein. We would also like to
thank Secure Business Austria for their support for this research.

9. REFERENCES
[1] Phoronix test suite.

http://www.phoronix-test-suite.com/.
[2] Rop attack against data execution prevention technology, 2009.

http://www.h-online.com/security/news/item/
Exploit-s-new-technology-trick-%
dodges-memory-protection-959253.html.

[3] Symantec: Internet Security Threat Report.
http://www4.symantec.com/Vrt/wl?tu_id=
jLac123913792490340803, 2009.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manuals.
http:
//www.intel.com/products/processor/manuals/,
2010.

[5] Aleph One. Smashing the stack for fun and profit. In Phrack
Magazine n.49, 1996.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to
RISC. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS), 2008.

[7] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W.
Felten, and H. Shacham. Can DREs Provide Long-Lasting Security?
The Case of Return-Oriented Programming and the AVC Advantage.

57

Benchmark Orig. Libc G-Free (Overhead)
FS-Mark (Files/s) 15.1 14.9 (1.3%)
IOzone-write (MB/s) 22.8 22.6 (0.4%)
IOzone-read (MB/s) 23.0 22.7 (1.4%)
Dbench (MB/s) 83.7 82.0 (2.0%)
Minion (s) 250.2 250.7 (0.2%)
Sudokut (s) 97.1 100.4 (3.5%)
TSCP (Nodes/s) 224642.0 224385.0 (0.1%)
GMPbench (Score) 2955.5 2954.5 (0.03%)
BYTE (Lines/s) 7288371.3 6948792.8 (4.6%)
PyBench (s) 6791.0 6959.0 (2.5%)
PHP Comp (s) 102.9 107.3 (4.3%)
7-Zip (MIPS) 2822.0 2802 (0.7%)
Unpack Linux Kernel (s) 30.30 31.01 (2.3%)
LZMA (s) 291.67 291.86 (0.01%)
BZIP2 (s) 65.63 65.84 (0.3%)
FLAC Audio Encoding (s) 12.96 13.09 (1.0%)
Ogg Encoding (s) 27.14 27.20 (0.2%)
Himeno (MFLOPS) 152 151.44 (0.4%)
dcraw (s) 52.68 52.99 (0.6%)
Bullet Physics Engine (s) 39.58 39.74 (0.4%)
Timed MAFFT (s) 52.48 52.55 (0.1%)
PostgreSQL (Trans/s) 155.24 156.66 (0.9%)
SQLite (s) 189.09 191.78 (1.4%)
Apache(Requests/s) 7129.05 6836.24 (4.1%)
x2642009 (Frames/s) 13.72 13.62 (0.7%)
GtkPerf (s) 20.89 20.49 (1.9%)
x11perf (Operations/s) 912000 912000 (0.0%)
Urban Terror (Frames/s) 34.20 34.05 (0.9%)
OpenArena (Frames/s) 46.93 46.67 (0.6%)
C-Ray (s) 553.7 554.0 (0.05%)
FFmpeg (s) 24.93 25.02 (0.4%)
GraphicsMagick (Iter/min) 45 44 (2.2%)
OpenSSL (Signs/s) 25.28 25.28 (0.0%)
Gcrypt Library (micros) 6963 6983 (0.3%)
John The Ripper (Real C/S) 1854667 1857333 (0.1%)
GnuPG (s) 20.46 20.67 (1.0%)
Timed HMMer Search (s) 88.93 89.31 (0.4%)
Bwfirt (s) 284.9 285.3 (0.2%)
Average: 1.09%
Std: 1.27

Table 4: Performance comparison of the original and G-Free
glibc using benchmarks from the Phoronix Test Suite

In Proceedings of EVT/WOTE 2009. USENIX/ACCURATE/IAVoSS,
2009.

[8] S. Checkoway and H. Shacham. Escape from return-oriented
programming: Return-oriented programming without returns (on the
x86). Technical report, 2010.

[9] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop:
Detecting return-oriented programming malicious code. In Lecture
Notes in Computer Science, 2009.

[10] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard:
Protecting Pointers from Buffer Overflow Vulnerabilities. In
Proceedings of the 12th Usenix Security Symposium,, 2003.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceedings
of the 7th USENIX Security Symposium, USA, 1998.

[12] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: Attacks and Defenses for the Vulnerability of the Decade.
In Proceedings of the DARPA Information Survivability Conference
and Exposition,, 2000.

[13] L. Davi, A. R. Sadeghi, and M. Winandy. Dynamic integrity

measurement and attestation: Towards defense against
return-oriented programming attacks. In Proceedings ACM workshop
on Scalable trusted computing, 2009.

[14] Felix Lidner. Confidence 2.0,. Developments in Cisco IOS forensics.
[15] A. Francillon and C. Castelluccia. Code injection attacks on

harvard-architecture devices. In Proceedings of CCS, 2008.
[16] A. Francillon, D. Perito, and C. Castelluccia. Defending embedded

systems against control flow attacks. In Proceedings of the first ACM
workshop on Secure execution of untrusted code, 2008.

[17] M. Frantsen and M. Shuey. Stackghost: Hardware facilitated stack
protection. In Proceedings of USENIX security, 2001.

[18] Hiroaki Etoh. GCC Extension for Protecting Applications from
Stack-Smashing Attacks (ProPolice). In
http://www.trl.ibm.com/projects/security/ssp/, 2003.

[19] R. Hund, T. Holz, and F. Freiling. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In
Proceedings of the 18th USENIX Security Symposium, USA, 2009.

[20] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution
via program shepherding. In Proceedings of the 11th USENIX
Security Symposium, pages 191–206, Berkeley, CA, USA, 2002.
USENIX Association.

[21] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
Return-Oriented Rootkits with Return-less Kernels. In Proceedings
of the 5th ACM SIGOPS EuroSys Conference, 2010.

[22] M. W. Lucas Davi, Ahmad-Reza Sadeghi. Ropdefender: A detection
tool to defend against return-oriented programming attacks.
Technical report, Technical Report HGI-TR-2010-001.

[23] Nergal. The advanced return-into-lib(c) exploits. In Phrack Magazine
n.58, 2001.

[24] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing. In RAID ’08:
Proceedings of the 11th international symposium on Recent
Advances in Intrusion Detection, pages 1–20, Berlin, Heidelberg,
2008. Springer-Verlag.

[25] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically
returning to randomized lib(c). In Proceedings of the 25th Annual
Computer Security Applications Conference (ACSAC), Honolulu,
Hawaii, USA., pages 60–69. IEEE Computer Society, Dec. 2009.

[26] Scut, Team Teso. Exploiting format string vulnerabilities. 2001.
[27] Sebastian Krahmer. x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique, 2005.
http://www.suse.de/~krahmer/no-nx.pdf.

[28] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity
oses. In Proceedings of Operating System Symposium SOSP, 2007.

[29] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In Proceedings
of the 14th ACM Conference on Computer and Communications
Security (CCS), 2007.

[30] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM Conference on Computer and
Communications Security (CSS), 2004.

[31] Solar Designer. return-to-libc attack. Technical report, bugtraq, 1997.
[32] The PaX Team. Pax address space layout randomization. Technical

report, http://pax.grsecurity.net/docs/aslr.txt.
[33] The PaX Team. Pax non-executable pages. Technical report,

http://pax.grsecurity.net/docs/noexec.txt.
[34] Tim Kornau. Return oriented programming for the arm architecture.

Technical report, Master’s thesis, Ruhr-Universität Bochum, 2010.
[35] Vendicator. Stackshield: A “stack smashing” technique protection

tool for linux. Technical report,
http://www.angelfire.com/sk/stackshield/.

[36] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits
with lightweight hook protection. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS, 2009.

58

Towards Practical Anonymous Password Authentication

Yanjiang Yang, Jianying Zhou, Jun Wen Wong, Feng Bao
Institute for Infocomm Research

Singapore 138632
{yyang,jyzhou,jwwong,baofeng}@i2r.a-star.edu.sg

ABSTRACT
The conventional approach for anonymous password authen-
tication incurs O(N) server computation, linear to the total
number of users. In ACSAC’09, Yang et al. proposed a new
approach for anonymous password authentication, breaking
this lower bound. However, Yang et al.’s scheme has not con-
sidered membership withdrawal and online guessing attacks,
two issues must be addressed before anonymous password
authentication is acceptable for practical use. Thus our main
thrust in this work is to provide solutions to these issues.
We do not just work upon Yang et al.’s scheme; rather, we
use a set of different primitives, and as a result, our scheme
has much better performance. We prove the security of our
scheme. Furthermore, we empirically evaluate the efficiency
of our scheme, and implement a proof-of-concept prototype.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security

Keywords
password authentication, anonymity, guessing attack

1. INTRODUCTION
To meet the growing need for protection of individual pri-

vacy, recently anonymous password authentication has been
proposed to reinforce regular password authentication with
additional protection of user privacy, such that logins made
by the same user cannot be linked by the server. An inher-
ent drawback of anonymous password authentication in the
conventional setting, where the server keeps a password file
containing N user passwords, is that the server has to per-
form O(N) computation in responding to a login request.
This clearly makes the system unscalable when the number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

of registered users is large. To get over this barrier, in AC-
SAC’09 Yang et al. [36] proposed a new approach to achieve
anonymous password authentication.
At the core of Yang et al.’s approach stands the concept

of password-protected credentials. In particular, a user is is-
sued a credential to be used for authentication, and she pro-
tects the credential with a password; subsequently to log-in
with the server, the user first releases the credential from her
password-protected credential using the password, and then
engages in the authentication process with the server using
the credential. With this approach, the cost incurred upon
the server is to check the validity of the user’s credential,
thus constant. It can be seen that Yang et al.’s approach
actually trades portability of password for server efficiency.
Thus for the approach to be useful, the password-protected
credentials must not require any secure facility for storage,
and they can be entrusted to any portable devices, even
public directories.
Yang et al.’s approach indeed makes a step forward over

the conventional approach for anonymous password authen-
tication [36]. However, that scheme is still far from being
of practical use. (1) It has no support of membership with-
drawal. In practical applications, from time to time the
server often needs to revoke some users’ access right under
certain circumstances. (2) It does not consider online guess-
ing attacks. In fact, none of the other existing anonymous
password authentication schemes [1, 31, 34, 35] has ever
considered this issue. Indeed, it turns out that online guess-
ing attacks become particularly troublesome in the setting
of anonymous password authentication. On the one hand,
the server needs to discern users in case of attacks, so as to
take system-level measures as in regular password authenti-
cation, e.g., block the victim user’s account. On the other
hand, discrimination of users is not allowed in order to pre-
serve user privacy, and worse yet, there does not always exist
a TTP (Trusted Third Party) to help revoke user anonymity.
This contrasts sharply to other privacy preserving primitives
(e.g., group signature and anonymous credential) where a
TTP is often assumed for anonymity revocation.
Our Contributions. To advance anonymous password au-
thentication a step further towards practicality, in this work
we attempt to solve the above problems existed in Yang et
al.’s scheme. Specifically, our contributions are summarized
below.
- We adopt the BBS signature [5, 2] (in place of the CL

signature [16] in Yang et al.’s scheme) to establish a basic
scheme, which is comparable to Yang et al.’s scheme. Our
scheme has considerably better efficiency in terms of both

59

computation and communication.

- We then extend the basic scheme to support membership
withdrawal, by employing the dynamic accumulator [24].
We stress that while the idea of using dynamic accumu-
lator to facilitate membership withdrawal is not a surprise,
considering the fact that such a tool has been commonly
used in group signature and alike, we must be very careful
in handling the witnesses (resulted from the accumulator)
amid the password protected credentials, so as not to inflict
offline guessing attacks.

- We are the first to consider online guessing attacks in
anonymous password authentication. In fact, addressing on-
line guessing attacks in this setting poses tremendous chal-
lenges. In particular, we discuss various methods, and our fi-
nal countermeasure is a virtual TTP (vTTP) based anonymity
revocation strategy, where the server and a number of (e.g.,
t-out-of-N) users form a virtual TTP, such that TTP-based
anonymity revocation is enabled.

- We formulate and analyze the security of our scheme.
Furthermore, we empirically evaluate the performance of our
scheme, and obtain promising experimental results. We also
implement a simple proof-of-concept prototype to illustrate
the usage of our scheme in practice.

Organization. The rest of the work is organized as fol-
lows. In Section 2, we review the related work, followed by
Section 3 which provides an overview of the main crypto-
graphic primitives to be used in our constructions. In Sec-
tion 4, we propose a basic scheme using the BBS signature,
which is then extended to support membership withdrawal.
We discuss to address online guessing attacks in Section 5.
Security definition and analysis of our scheme are presented
in Section 6. Section 7 reports the results of experimen-
tal performance evaluation and proof-of-concept prototype
implementation, and Section 8 concludes the work.

2. RELATED WORK
Password authentication is an intensively explored field

in the literature, e.g., [7, 8, 10, 11, 21, 23, 26]. It is well
known that the best a password authentication protocol can
achieve (in terms of the security of user passwords) is that
an attacker has no way to validate his guesses of password
unless interacts online with the server and sees the server’s
accept/reject feedbacks. Such online guessing attacks are
inherent because of the low entropy of passwords, and can
only be addressed by complementary system-level measures,
e.g., locking one’s account once the number of failed login
attempts made in the name of a user exceeds a threshold.
It is also clear that in general, password authentication

does not protect user privacy. Anonymous password au-
thentication is a primitive strengthening password authenti-
cation with the protection of user privacy. The first anony-
mous password authentication scheme was proposed in [34],
which combines a password-only protocol with a PIR (Pri-
vate Information Retrieval) protocol, with the former gen-
erating a shared key between the user and the server, and
the latter achieving user privacy protection. Afterwards,
several schemes that improve [34] in one way or another
were presented [31, 35]. In addition, [1] considered anony-
mous password authentication in a three-party scenario (i.e.,
user-gateway-server). The server computation in all of these
schemes [1, 34, 31, 35] is O(N), linear to the total number
of N users. This is not surprising, and it can be shown

that O(N) is the lower bound in achieving anonymous pass-
word authentication in the conventional setting where the
server holds a password file containing all user passwords.
To break this bound, in ACSAC’09 Yang et al. [36] pro-
posed a new approach of password-protected authentication
credentials. However, Yang et al.’s scheme does not support
membership withdrawal and does not consider online guess-
ing attacks, two issues must be addressed for anonymous
password authentication to be useful in reality.
We all know that safe management of private keys is fun-

damental to the use of public key primitives. Although
smartcards can be used to store private keys, it is not con-
venient, as smartcards need the supporting infrastructure
(e.g, smartcard reader) to operate. The concept of password-
enabled PKI [30] has been proposed to solve this issue, with
the private keys being protected by passwords. There are
two general approaches for password-enabled PKI: (1) to
store a private key on a trusted storage facility, and when
needed, the owner retrieves the private key after authenti-
cating to the facility using password [27, 32]; (2) to split
a private key into two parts, where the owner holds a part
derived from her password, and a trusted facility holds the
other part; a use of the private key requires the two parts to
cooperate. A concern of both approaches is that the storage
facility must be trusted, as it learns the private keys.
The software smartcard [22] can be viewed as a special

case of password-enabled PKI, without requiring the pres-
ence of a trusted facility. Its main idea is to encrypt pri-
vate keys with passwords, and an encrypted private key does
not need further protection. For such password-encrypted
private keys to be secure against offline guessing attacks,
the corresponding public keys must be hidden; otherwise,
the relationship between public/private keys allows for of-
fline guessing attacks. This, however, contradicts the main
advantage of PKI that the public keys are public. As a
matter of fact, the situation faced by password-encrypted
private keys is quite similar to that confronted by password-
protected credentials. However, as the credentials are to
be used upon a server only, it is not an issue to hide the
verifiability of credentials from other subjects.
In [4], an approach was proposed on how to store/retrieve

a password-scrambled credential on/from a storage facility,
while without letting the facility learn the password/credential.
This actually amounts to the very first element of our whole
approach, namely, a password-protected credential can be
placed to any facility. It is simply assumed in [4] that no
external information (e.g., from the protocol where a cre-
dential is used) is available to assist offline guessing attacks,
while we are going far beyond that by looking into the harder
situation of concretizing this assumption.

3. PRELIMINARIES

3.1 Notations
Bilinear Pairings. LetG1, G2, GT be cyclic groups of prime

order q. A bilinear map e : G1 ×G2 → GT has the following
properties.

- Bilinear: ∀u ∈ G1, v ∈ G2 and x, y ∈R Zq, e(u
x, vy) =

e(u, v)xy. Throughout the paper, a ∈R S means a is
randomly chosen from S.

- Non-degenerate: let g be a generator of G1, and h be
a generator of G2, e(g, h) 6= 1.

60

3.2 Building Primitives
BBS Signature. Boneh et al. [5] proposed short group

signature (BBS signature for short), and later [2] transferred
the BBS signature into a signature with efficient protocols,
like [16]. Let e : G1×G2 → GT be a bilinear map as defined
above, and h be a generator of G2. The public key of the
BBS signature is (W = hχ, h ∈ G2, a, b, d ∈ G1), and the
private key is (χ ∈ Zq). A BBS signature signed upon a
message m is defined to be (M,k, s), where k, s ∈R Zq, and

M = (am · bs · d)
1

k+χ ∈ G1.
Signature Verification: A BBS signature (M,k, s,m) can

be verified with respect to the public key as e(M,W · hk) =
e(a, h)m · e(b, h)s · e(d, h). This verification procedure can
be carried out in a zero-knowledge proof protocol that en-
ables the holder of the signature to prove the possession
of (M,k, s,m) to a verifier, while without revealing any
information on the signature. For brevity, we denote the
zero-knowledge proof by PoK{(M,k, s,m) : e(M,W · hk) =
e(a, h)m · e(b, h)s · e(d, h)}, and the details can be found in
[2].
Dynamic Accumulator. Dynamic accumulator is a primi-
tive allowing a large set of values to be accumulated into a
single quantity, the accumulator; and for each value, there
exists a witness, which is the evidence attesting that the
value is indeed contained in the accumulator. The proof
of showing that a value is accumulated in an accumulator
can be zero-knowledge, which reveals nothing to the verifier
on the value and the witness. A concrete construction of
dynamic accumulator is due to Nguyen [24], with the de-
tails as follows. Let e : G1 × G2 → GT be a bilinear map,
and ḡ, ~ be generators of G1, G2, respectively. The pub-
lic parameters include (Wacc = ~

χacc , ~), and the private
key is (χacc ∈ Zq). The accumulator for a set of values

(v1, v2, · · · , v`) is defined as Λ = ḡ
∏`
j=1(vj+χacc). For vi, the

witness is wi = ḡ
∏`
j=1,j 6=i(vj+χacc). As such, (wi, vi) satisfies

wvi+χacci = Λ, which can be verified by e(wi,Wacc · ~
vi) =

e(Λ, ~) using the public information. For brevity, the zero-
knowledge proof showing that vi is accumulated in Λ is de-
noted by Πacc = PoK{(wi, vi) : e(wi,Wacc · ~

vi) = e(Λ, ~)},
with the details in [2, 24].

4. A SCHEME WITH SUPPORT OF MEM-
BERSHIP WITHDRAWAL

In this section, we first present a basic scheme, which is
comparable to Yang et al.’s scheme in [36]. We then extend
the scheme to support membership withdrawal.

4.1 Overview
Recall that in Yang et al.’s scheme, a password-protected

credential essentially consists of two parts: one is a symmet-
ric encryption of certain elements of the user credential with
password, while the other is an encryption of other elements
under the server’s homomorphic encryption. The password-
protected credential does not solicit further protection, as
the homomorphic encryption part has broken the verifiable
structure of the credential with respect to outsiders, and
achieves limited verifiability to the server only. Moreover, to
withstand offline guessing attacks, the elements encrypted
by password themselves must not have recognizable pat-
terns, and should be uniformly random in the domains where

they are drawn1. In Yang et al.’s scheme, the CL signature
[16] is used to instantiate user credentials, and the Paillier
encryption [28] is used to implement the server’s homomor-
phic encryption. This combination actually yields a very
expensive scheme: the Paillier encryption works in a group
of Z∗

n2 (where n is a RSA-type modulus), while the CL sig-
nature involves costly zero-knowledge range proofs , e.g., [3].
Aimed at better performance, we choose the BBS signa-

ture [5, 2] in our construction to replace the CL signature.
On the one hand, the BBS signature does not invoke any
range proof; on the other hand, this allows us to evade the
Paillier encryption and to use more efficient multiplicative
homomorphic encryption (e.g., the ElGamal encryption).
Better yet, to achieve the same level of security, the required
length of the group elements in G1 of the BBS signature is
much shorter than that in the RSA-type group of the CL
signature, which results in much shorter protocol transcript
in our scheme. For concreteness, a performance comparison
is provided shortly. In particular, a user’s credential is de-
fined to be a BBS signature (M,k, s) signed on the user’s

identity u, subject to M = (au · bs · d)
1

k+χ (see above).
R-BBS Signature. We still follow Yang et al.’s rationale

in achieving limited verifiability: the server holds homomor-
phic encryption, and users partially encrypt their credentials
to break the public verifiability of the credentials. But the
homomorphic encryption used here is multiplicative, satis-
fying E(m1) · E(m2) = E(m1 · m2), where E(.)/D(.) denote
encryption/decryption, respectively. The reason for multi-
plicative homomorphic encryption is that there exist efficient
schemes, e.g., the standard ElGamal encryption.
In particular, we choose to encrypt s, and a user’s password-

protected credential is 〈u, [M,k]pw, E(s)〉. To avoid linkage
by the server, each time in using the credential, the user first
randomizes E(s) by computing s∗ = E(r) · E(s) = E(r · s),
where r ∈R Zq. Then the user sends s∗ to the server,
who decrypts and computes B = br·s. Since the user does
not know r.s, she cannot perform PoK{(M ′, k, u′, s′, r) :

e(M ′,W · hk) = e(a, h)u
′

· e(b, h)s
′

· e(d, h)r}, where M ′ =
Mr, u′ = r · u, s′ = r · s. Fortunately, since it holds that

e(M,W ·hk) = e(a, h)u ·e(B, h)r
−1

·e(d, h), the user can per-
form PoK{(M,k, γ, u) : e(M,W · hk) = e(a, h)u · e(B, h)γ ·

e(d, h)}, where γ = r−1 (mod q) (Note that although the
user does not know r · s, she can still compute e(B, h) from
the equation). This proof is essentially a variant of the
original BBS signature, by proving a randomization of the
original signature (M,k, s, u). We thus refer to it as R-
BBS signature. The reason why the server accepts this
proof is due to the obvious reduction from R-BBS signature
to BBS signature: a forger that produces a R-BBS signa-
ture (M,k, γ, u) and r · s clearly generates a BBS signature
(M,k, r · s · γ, u).
Instantiation of R-BBS Signature. To be specific, below

we give an instantiation of R-BBS, denoted by ΠR-BBS. Recall
that the prover has in possession M,k, γ, and e(B, h). The
prover begins by committing to M as T1 =M · gα0 , T2 = gα1 ,
where g0, g1 ∈ G1 are pre-defined parameters, and α ∈R Zq.

1In Yang et al.’s scheme, the elements encrypted by pass-
word are v, k, s2. While Yang et al. did not specify how the
encryption proceeds, it should be clear that direct encryp-
tion of k is not secure, as k in the CL signature [16] is of a
particular length. Hence, k must be left in the clear amid
the password-protected credential in their scheme.

61

Then, the following holds:

e(T1,W · hk) = e(T1,W) · e(T1, h)
k

= e(M,W · hk) · e(gα0 ,W · hk)

= e(a, h)u · e(B, h)γ · e(d, h) · e(g0,W)α ·

e(g0, h)
α·k (1)

Let α̃ = α · k. From Equation (1), the user clearly needs to
prove the knowledge of u, k, γ, α, α̃, subject to the following
relations:

e(T1,W)

e(d, h)
=

(
1

e(T1, h)

)k
· e(a, h)u · e(B, h)γ · e(g0,W)α ·

e(g0, h)
α̃,

T2 = gα1 , 1 = (
1

T2
)k · gα̃1 (2)

The proof of knowledge of u, k, γ, α, α̃ proceeds as follows.
The user picks random ru, rk, rγ , rα, rα̃ ∈R Zq, and com-
putes the following:

R1 =

(
1

e(T1, h)

)rk
· e(a, h)ru · e(B, h)rγ · e(g0,W)rα ·

e(g0, h)
rα̃ ,

R2 = grα1 , R3 = (
1

T2
)rk · grα̃1 (3)

We define {T1, T2, R1, R2, R3} = Cmt(ΠR-BBS). The prover
sends Cmt(ΠR-BBS) to the verifier, who sends back a random
challenge c ∈ Zq. Upon receipt of the challenge, the prover
continues to compute (modulo q):

su = ru + c · u sγ = rγ + c · γ sk = rk + c · k

sα = rα + c · α sα̃ = rα̃ + c · α̃ (4)

Let {su, sγ , sk, sα, sα̃} = Res(ΠR-BBS). The prover sends Res(ΠR-BBS)
to the verifier, who accepts if all the following hold:

R2 · T
c
2 = gsα1 (5)

R3 = (
1

T2
)sk · gsα̃1 (6)

R1 ·

(
e(T1,W)

e(d, h)

)c
=

(
1

e(T1, h)

)sk
· e(a, h)su · e(B, h)sγ ·

e(g0,W)sα · e(g0, h)
sα̃ (7)

For this instantiation, we have the following theorem, and
the proof is not included herein due to the limited space.

Theorem 1. The above instantiation, ΠR-BBS, is honest-
verifier zero-knowledge proof of knowledge of a tuple (M,k, γ, u),
subject to

e(M,W · hk) = e(a, h)u · e(B, h)γ · e(d, h)

4.2 Details of Basic Scheme
Based on the above discussions, we present a basic scheme

as follows.

Setup: To set up the system parameters, the server does
the following:
(A) determines a bilinear map e : G1 × G2 → GT as

defined earlier, and sets up the public key for the BBS sig-
nature as (W = hχ ∈ G2, h ∈ G2, a, b, d ∈ G1), and the
private key as (χ ∈ Zq);
(B) publishes g ∈ G1 as part of the public information;

(C) selects a public/private key pair for ElGamal encryp-
tion, with E(.)/D(.) denoting encryption/decryption, respec-
tively;
(D) picks a hash function H : {0, 1}∗ → {0, 1}κ0 , and

a MAC MAC : {0, 1}κ1 × G2
1 → {0, 1}κ1 , where κ0, κ1 are

appropriate numbers.

Registration: Users need to register to the server in
advance, each getting an authentication credential. The
server issues each user a credential, which is a BBS signature
(M,k, s) signed upon the user identity u. Upon receipt of
her credential, the user protects (M,k) using a symmetric
key encryption with a key derived from her password pw,

i.e, ĉred1 = [M,k]pw; encrypts s using the server’s public

key, i.e., ĉred2 = E(s). The complete password-protected

credential is 〈u, ĉred1, ĉred2〉. Finally, the user puts the
password-protected credential to her preferred storage, e.g.,
handphone, USB flash memory, or a public facility.

Authentication Protocol: Suppose a user u already has

her password-protected credential 〈u, ĉred1, ĉred2〉 available
at the point of login. The authentication protocol between
the user and the server is as follows.

Step 1. The user does the following:

(1) recovers (M,k) by opening ĉred1 with her password
pw;

(2) picks random r ∈R Zq to randomize ĉred2 by com-
puting s∗ = E(r) · E(s) = E(r · s);

(3) picks x ∈R Zq, and computes X = gx;
(4) picks NA ∈R {0, 1}κ1 , and computes N∗

A = E(NA).
(5) constructs Cmt(ΠR-BBS) using the above R-BBS signa-

ture instantiation over (M,k, γ = r−1 (mod q), u);
Finally sends s∗, X,N∗

A, Cmt(ΠR-BBS) to the server as
a login request:

User −→ Server: s∗, X,N∗

A, Cmt(ΠR-BBS)

Step 2. Upon receipt of the login request, the server does
the following:

(1) computes, in turn, s′ = D(s∗), and B = bs
′

;
(2) picks y ∈R Zq and computes Y = gy;
(3) computes N ′

A = D(N∗

A), and computes Mac =
MAC(N ′

A, Y,X);
(4) picks NB ∈R Zq, and sends back NB , Y, Mac to the

user:

Server −→ User: NB , Y, Mac

Step 3. The user does the following:

(1) validates Mac, and aborts if invalid;
(2) taking NB as challenge, constructs and sends

Res(ΠR-BBS) to the server;
(3) ends the protocol by computing a shared key sk =

H(NA, NB , Y
x).

User −→ Server: Res(ΠR-BBS)

Step 4. The server computes sk = H(NA, NB , X
y) upon

verification of Res(ΠR-BBS).

It is not necessary to elaborate on the protocol step by
step, as the description is already clear. We only point out
that the user authenticates to the server by showing the
possession of a valid credential, while authentication of the
server to the user is by the fact that only the server can
correctly decrypt N∗

A.
Performance Comparison. To be specific on the performance
advantages of our scheme, below we report an analytic per-

62

Table 1: Performance Comparison

Computationa Communication

User Server (bits)

Yang et al.’s scheme 48 · EXPN + 4 · EXPN2 55 · EXPN + 2 · EXPN2 33|GN |+ 2|GN2 |

Our Scheme 11 · EXPG1
+ 5 · EXPGT 7 · EXPG1

+ 6 · EXPGT 7|G1|+ |GT |+ 6|q|
+2 · PAIRINGb +4 · PAIRINGb

a We mainly count # of EXPonentiations; besides, a multi-exponentiation is treated as multiple EXPs (e.g.,
gx0 g

y
1
is counted as 2 EXPs).

b We treat e(a, h), e(d, h), e(g0, h) as part of the public system parameters, as they are fixed quantities.

formance comparison between our scheme and Yang et al.’s
scheme. For fairness, let the two schemes achieve the same
level of security, e.g., 80 bits, then |q| = 160 bits, |G1| = 171,
|G2| = |GT | = |GN | = 1024 bits (see, e.g., [20]); moreover,
the following relation holds for computation cost, 1·EXPG1

≈

1.EXPGT ≈ 1.EXPGN ≈ 0.25 · EXPG
N2 ≈ 0.25 · PAIRING. As

such, it can easily see that our scheme is considerably supe-
rior to Yang et al.’s scheme in terms of both computation
and communication, according to Table 1.

4.3 Support of Membership Withdrawal
We next extend the above scheme to support membership

withdrawal. Once a user withdraws, her credential must be
revoked by the server. To this end, we employ the dynamic
accumulator in [24]. In particular, the server accumulates
k’s of all valid credentials (recall that a user’s credential is
(M,k, s)), and each user is issued a corresponding witness;
in authentication, a user needs to show that the k element
of her credential is contained in the server’s accumulator
with the help of the witness. We stress that while the idea
of using dynamic accumulator to accommodate membership
withdrawal is straightforward, care must be taken in han-
dling the witness amid the password-protected credential,
so as not to incur offline guessing attacks. Below we outline
the extensions to be made to the above basic scheme.
In the Setup phase, the server also sets up public key

(Wacc = ~
χacc , ~ ∈ G2) and private key (χacc ∈ Zq) for

the dynamic accumulator, under the same bilinear map e :
G1 × G2 → GT of the BBS signature. In the Registra-
tion phase, the server accumulates k’s of all users, and

publishes an accumulator Λ = ḡ
∏`
j=1(kj+χacc) at the end

of the registration phase. Accordingly, a user u is given a
witness w, along with the credential (M,k, s). We must
be very careful in protecting w amid the password pro-
tected credential. Specifically, since w, k form a verifiable
pair, i.e., e(w,Wacc · ~

k) = e(Λ, ~), neither of them can
be protected by password; otherwise, offline guessing at-
tacks apply. Hence both will be left in the clear. Thus

a user’s password-protected credential is 〈u, k, w, ĉred1 =

[M]pw, ĉred2 = E(s)〉. Note that revelation of both w and k
is not an issue, because they alone do not suffice for authen-
tication, and their role is simply to vouch for the validity
of the credential in use. In the Authentication Protocol,
the user needs to extend ΠR-BBS in the basic scheme to include
Πacc = PoK{(w, k) : e(w,Wacc · ~

k) = e(Λ, ~)}. We denote
the resulting proof as Π1, where Π1 = PoK{(M,k, s, u, w) :
e(M,W · hk) = e(a, h)u · e(b, h)s · e(d, h)

∧
e(w,Wacc · ~

k) =
e(Λ, ~)}. We omit the details, as it is a direct combination
of ΠR-BBS and Πacc.
In case of user dynamics, e.g., an existing user withdraws

or a new user enrols in, each valid user can generate a new

witness by herself, with the help of her old witness, her own
k, together with the new accumulator Λ and the event trig-
ger k (that causes the update) published by the server. The
details can be found in [2, 24].

5. COUNTERMEASURES TO ONLINE GUESS-
ING ATTACKS

Recall that online guessing attack is inherent, impossible
to be eliminated at the protocol level, due to the low en-
tropy of passwords. However, in regular password authenti-
cation, system-level measures, e.g., freezing a victim user’s
account, are effective. In contrast, online guessing attack
becomes particularly troublesome in anonymous password
authentication (both the password-protected credential ap-
proach and the conventional approach), where discrimina-
tion of users is not allowed. In this section, we propose a
virtual TTP (vTTP) based strategy to counter against on-
line guessing attacks.

5.1 Intuitions
To lead to the final vTTP-based method, we begin with a

discussion of several potential methods that may be useful
in mitigating online guessing attacks in certain applications.
This also serves to help better understand the challenges
posed by online guessing attacks in the setting of anonymous
password authentication.
All-Or-Nothing Method. Without being able to discern in-

dividual users, a straightforward method is to freeze all user
accounts in case of online guessing attacks. In particular,
the server counts failed login attempts, and locks all users’
accounts as long as the total number of failures thus far
suffices to endanger a user’s password (assuming all failed
logins are targeted at the same user). However, this all-or-
nothing method is clearly not satisfactory, as it affects all
users.
Enforcement of Short-term Credentials. An alternative method

is to alleviate the consequences of online guessing attacks
even when they succeeded. The idea is to enforce short-
term credentials, such that even if an attacker recovers a
user’s password and credential by online guessing attacks,
he cannot use the credential for long. Specifically, we man-
date that a user credential is valid only for a limited pe-
riod of time, and it expires after the period. Technical
details follow. A credential has a expiry time τ , so the
credential for user u is a BBS signature (M,k, s), where

M = (au0 · aτ1 · bs · d)
1

k+χ , and a0, a1 ∈ G1 are public pa-
rameters of the BBS signature. Consequently, τ is also left
un-protected in the password-protected credential, which is

then 〈u, k, w, τ, ĉred1 = [M]pw, ĉred2 = E(s)〉. At the time of
login, Π1 is extended to be PoK{(M,k, s, u, w, τ) : e(M,W ·

63

hk) = e(a0, h)
u
·e(a1, h)

τ
·e(b, h)s ·e(d, h)

∧
e(w,Wacc ·~

k) =
e(Λ, ~)

∧
τ ≥ T}, where T is current time.

However, the main problem with this method is how to
determine an appropriate validity period for a credential: if
too short, then the user would be forced to frequently update
credentials; if too long, the intended goal of damages-control
would be constrained.
TTP-based Anonymity Revocation. Following other pri-

vacy preserving primitives such as group signature and anony-
mous credential (e.g., [15, 17]), another alternative is to al-
low the server to revoke user anonymity in case of attacks,
so that the server can inform the victim user or withdraw
her credential. Anonymity revocation is normally performed
by a TTP in other privacy-preserving primitives. We ob-
serve that in some applications of password authentication,
a TTP-based structure indeed exists. For example, in a
federated enterprise composed of a headquarter and many
branches, it is reasonable to expect the headquarter to be
the TTP for its subsidiaries.
We thus give a method, assuming the presence of a (off-

line) TTP for anonymity revocation. Suppose that the TTP
holds public key encryption, e.g., ElGamal encryption, where
ETTP (.)/DTTP (.) denote encryption/decryption, respectively.
Then at the time of login, the user additionally sends E =
ETTP (ξ

u) to the server in step 1, where ξ ∈ G1, and Π1 is ex-
tended to be PoK{(M,k, s, u, w) : e(M,W · hk) = e(a, h)u ·

e(b, h)s ·e(d, h)
∧
e(w,Wacc ·~

k) = e(Λ, ~)
∧
E = ETTP (ξ

u)}.
Consequently, when online guessing attacks arise, the server
asks the TTP to recover ξu from E.
Here ξu is called identity tag, from which the owner u can

be located. To facilitate mapping from ξu to u, the server
maintains a table of pairs of (ξu, u) for all users. Note that
the reason why we choose to“identity escrow”ξu rather than
u is simply for ease of zero-knowledge proof.

5.2 Details of vTTP
The above TTP-based method is promising, provided that

a TTP presents. However, in the setting of password authen-
tication, there does not always exist a TTP. Without the
assistance of TTPs for anonymity revocation, an alternative
in the literature is “self-enforcing” anonymity revocation, in
the sense that the server itself can revoke user anonymity,
in case unusual events occur. We have checked some of the
primitives of this nature in the literature, e.g., [2, 13, 33],
among many others, and found that their techniques cannot
be applied in our case. The reason is that in their systems, to
enable self-enforceable anonymity revocation, some elements
of a user credential must be committed to deterministically
in the zero-knowledge proof of credential showing. However,
in our case since the server knows all credentials, every ele-
ment of a credential must be committed to in a randomized
form (e.g., T1, T2 in ΠR-BBS); otherwise, the server can enu-
merate all credentials against the commitment to determine
the actual credential in question. Although we do not know
for sure whether deterministic commitment is a necessary
condition to achieve self-enforcing anonymity revocation, it
seems the case!
Virtual TTP. Our final strategy is virtual TTP (vTTP)

based anonymity revocation, enlisting the help of users for
anonymity revocation. In particular, the server and users
form a virtual TTP, replacing the real TTP in the above
TTP-based method. The basic idea is to secret-share the
private key of TTP among the server and all N users, such

that the server together with a number of users (e.g., t-out-
of-N) can open identity escrow. Indeed, users have motive
in participating in anonymity revocation, as any one of them
can be the victim. For this method to work, the following
properties must be satisfied:

P1. The server alone cannot revoke user anonymity.

P2. Even if all users collude, they cannot revoke user anonymity.

Key Generation. To fulfil the above properties, we need a
public key encryption: (1) there is no trusted “dealer” that
helps distribute shares of the private key to the sharehold-
ers; (2) the private key should not be reconstructed on any
entity at any time. The dynamic threshold cryptosystems,
e.g., [18, 19, 25, 29], have these features. The ElGamal-type
schemes in [29, 25] fit our context. The major issue to be
addressed is how to generate the key pair for the vTTP,
to meet P1 and P2. Suppose each user has a key pair
(pki, ski) = (gxi ∈ G1, xi ∈ Zq) for ElGamal encryption2;
also, suppose the server re-uses his ElGamal encryption, and
let the key pair be (PKServer = gxS , SKServer = xS). The
idea of generating the key pair (PKvTTP, SKvTTP) for the
vTTP is depicted in Figure 1(a): first, the N users (who are
willing to participate in anonymity revocation) coordinate
to generate the public key PKU = gxU using the dynamic
threshold encryption scheme (e.g.,[25]), such that t-out-of-N
users can decrypt ciphertexts generated under PKU, while
without construction of SKU = xU

3. Then the server com-
putes PKvTTP = PKSever · PKU = gxS+xU . The corre-
sponding SKvTTP should be xS + xU , but it is never really
computed. With the presence of PKvTTP, the authentica-
tion protocol between a user and the server remains the same
as in the above TTP-based method, with the only exception
of vTTP replacing TTP.
In principle, dynamic threshold cryptosystems allow for

user withdrawal/enroment, but that involves all users to
update their key shares. To mitigate this issue, an alter-
native key generation strategy is depicted in Figure 1(b): N
users are partitioned into t groups, and each group generates
a key pair (PKi, SKi), i = 1, 2, · · · , t, under the dynamic
threshold encryption scheme. Then PKvTTP = PKServer ·

PK1 · · ·PKt, and SKvTTP = SKServer + SK1 + · · · + SKt.
Anonymity revocation requires a cooperation among the server
and the t groups. In this method, update of key shares due
to user dynamics is restricted to a particular group, without
affecting other groups. Again, do not confuse user dynamics
in this context with that in password authentication, and
they are not necessarily relevant: a user can be permitted
to remain on board for anonymity revocation as long as she
are still happy to do so, even she has withdrawn from the
password authentication system; and vice versa (see also
footnote 2).
Abuse of Anonymity Revocation. An issue remains to be

discussed is how to prevent the server from abusing this

2 We remind not to confuse this key held by a user with
her credential. This key is independent of password au-
thentication, and it should be managed in a secure facility.
This, however, does not negate the portability of password-
protected credential, as the key is not used for authentica-
tion. Indeed, if a user is not willing to help in anonymity
revocation, then she does not need to have this key.
3In fact, to decrypt a ciphtertext, each user generates a par-
tial ciphertext by applying her own private key, and t or
more partial ciphertexts appropriately combined together
yields the plaintext.

64

������

��������

��� ��� ��	��	
�

���

��

������

��������

���� ���	

��

��� ��	 ����� ���

��������

���

Figure 1: Key Generation Strategies

anonymity revocation mechanism, e.g., the server asks to
open the identity escrow of a valid login. A simple solution
is mandating the server to publish all revealed user identi-
ties, together with the corresponding protocol transcripts, in
a public directory where all users are free to access. As such,
abuses by the server can be found out by users. This will be-
come clearer shortly in our proof-of-concept implementation
(see Section 7).
Discussions (Weakness of vTTP). We remark that a weak-

ness of this vTTP-based anonymity revocation is that it re-
quires timely assistance from users. Thus in practice, the
promptness of anonymity revocation cannot always be guar-
anteed. We leave it as an open problem to find more effective
countermeasures than the vTTP-based method.

6. SECURITY DEFINITION AND ANALY-
SIS

In this section, we formulate the security notions for password-
protected credentials, and then analyze the security of our
scheme.
Adversary Model. Two types of adversaries are consid-
ered: outsiders and the server, with respect to different se-
curity objectives defined below. An outsider adversary is
defined to be a coalition of any entities (including especially
other valid users), other than the server and the user who is
under attack.
Security Definition. The following security notions are
defined for password-protected credential systems.
Security of Password. The adversary that is interested in

acquiring user passwords is outsiders. Indeed, it is not pos-
sible to prevent the server from learning user passwords by
offline guessing attacks, given the verifiability of credentials
to the server. However, exposure of user passwords to the
server is not an issue in the context of password authentica-
tion. We distinguish between passive and active/malicious
outsider adversary. The foremost security requirement for
password-protected credentials is that by offline guessing at-
tacks, a passive outsider adversary learns nothing on the un-
derlying password from a password-protected credential, as
well as by eavesdropping on the authentication protocol be-
tween the (credential) owner and the server. This notion is
captured by a simulator S which can interact with the adver-
sary, in disguise of the owner, although it has no knowledge
of her password-protected credential and password. For-

mally, we play a game between a challenger and a PPT
(Probabilistic Polynomial Time) adversary. The challenger
C sets up the system by invoking Setup, and enrols users
by executing Registration. Afterwards, C gives the public
system parameters and all but uj ’s password-protected cre-
dentials to the adversary A, who is also offered the following
oracles:
GetCred(i): C returns to A the credential of user ui, for any
i 6= j .
ExeAuth(j): C tosses a coin to decide whether to use uj or
S. If the former, C simply invokes Authentication Protocol
between uj and the server, and sends the protocol script to-
gether with uj ’s password-protected credential to A. Other-
wise, C returns to A the simulated transcript by S, which in-
cludes the simulated authentication protocol transcript and
a simulated password-protected credential. We say that a
system achieves security of password with respect to passive
outsider adversary, if A cannot distinguish whether C is us-
ing uj or S.
For an active outsider adversary, we know that an un-

avoidable attack is that the adversary A first obtains a “cre-
dential” by opening the password-protect credential with a
guessed password; then engages in Authentication Proto-
col with the server using the “credential”, and validates the
guess by seeing the accept/reject feedback from the server.
We say that a system achieves security of password with re-
spect to active outsider adversary, if the best A can achieve
in validating its guesses of password is by taking advantage
of such online guessing attacks.

Unlinkability. The adversary against unlinkability is the
server. It requires that the server cannot link different logins
by the same user. This notion is, again, captured by a game
between a challenger and a PPT adversary as below. The
challenger C sets up the system and enrols users by executing
Setup and Registration, respectively, and gives all generated
information, be it public or private, including all user cre-
dentials to the server adversary AS (except the private key
of vTTP). Afterwards, for a challenge user uj , C uses either
uj or a simulator S, depending on a coin toss, to engage
in Authentication Protocol with AS . We say that a system
achieves unlinkability, if AS cannot distinguish whether C is
using uj or S.

Authenticated Key Exchange. The adversary against the
Authentication Protocol is clearly outsiders. An outsider ad-
versary can try to attack entity authentication or key secrecy

65

of the protocol, other than exposing user password. In the
literature, formulation of such authenticated key exchange
protocols is well studied, e.g., [6, 9, 12, 14], to name but
a few. It is not hard to adapt these existing models such
as [6] to our case, and the details are omitted due to the
limited space. However, an important note is that session

corruption is not allowed in our model: if, by corrupting a
session, the adversary learns the random coins used in the
commitments of credential elements, then the adversary can
de-randomize the commitments and in turn perform offline
guessing attacks against the de-randomized quantities.

Security Analysis. We analyze the security of our fi-
nal scheme (i.e., basic scheme + membership withdrawal +
vTTP-based anonymity revocation), and have the following
theorem.

Theorem 1. Our scheme achieves security of password,
unlinkability, and authenticated key exchange.

Proof. (Sketch) (1) Security of Password: For passive
adversary, it suffices to show how to construct the sim-
ulator. Let Π2 = PoK{(M,k, s, u, w) : e(M,W · hk) =
e(a, h)u · e(b, h)s · e(d, h)

∧
e(w,Wacc · ~

k) = e(Λ, ~)
∧
E =

EvTTP (ξ
u)}, which is the zero-knowledge proof by the user

in our scheme. The real transcript (between a user and
the server) that the challenger gives to the adversary is
[s∗, X,N∗

A, EvTTP (ξ
u), Cmt(Π2), NB , Y, Mac, Res(Π2), 〈u, k, w,

[M]pw, E(s)〉]. To imitate the transcript, the simulator se-
lects s̄∗ ∈R G2

1, X̄ ∈R G1, N̄
∗

A ∈R G2
1, Ē ∈R G2

1, Ȳ ∈R

G1, Mac ∈R {0, 1}κ1 ,M ∈R [.], sE ∈R G2
1, and invokes the

simulator of Π2 to generate Cmt(Π2), c̄, Res(Π2). In addi-
tion, the simulator also generates a pair (w̄, k̄) by invoking
the extractor of Πacc. Then the output of the simulator is
[s̄∗, X̄, N̄∗

A, Ē, Cmt(Π2), c̄, Ȳ , Mac, Res(Π2), 〈u, k̄, w̄,M, sE〉]. We
show that the simulator’s output is computationally indis-
tinguishable from the real transcript. Due to the semantic
security of ElGamal encryption, s̄∗, N̄∗

A, Ē, s̄E is computa-
tionally indistinguishable from s∗, N∗

A, EvTTP (ξ
u), E(s); sim-

ilarly, other elements can also be shown indistinguishable
under appropriate (computational) assumptions. Of special
attention is M and [M]pw: we must guarantee that M is
uniformly random over G1, and the distribution of [M]pw
is uniform over the range of [.] for all possible pw. Indeed,
the former is the case due to the BBS signature, and for the
latter, any practical symmetric key encryption scheme has
that property.
For active adversary, we argue that in our protocol the

only potential leakage of the credential information is through
s∗ and Π2. As such, active attacks are no better than passive
eavesdropping, and thus the only way left for the adversary
to validate his guesses of the target password is by interact-
ing online with the server.
(2) Unlinkability: Given the above proof, how to construct

the simulator is straightforward, and we omit the details.
We just want to stress that the server adversary is much
more powerful than the above outsider adversary, as it has
been given virtually all system information (public and pri-
vate), including especially the challenge user’s credential.
The insight why such a powerful adversary still cannot dis-
tinguish is that every element of the user credential is com-
mitted to in a randomized form, e.g., T1, T2 in ΠR-BBS, which
makes a PPT adversary unable to distinguish without the
knowledge of the random coins.
(3) Authenticated Key Exchange: We can prove this prop-

erty in a weaker variant of the model [6] by not allowing for
session corruption. Our Authentication Protocol essentially
is a combination of the signature based authenticator and
the (public key) encryption based authenticator in [6]. Secu-
rity of our protocol (in terms of authenticated key exchange)
thus follows from the security of the two authenticators, ac-
cording to the rationale of the modular protocol design and
analysis [6]4. It should be noted that the encryption based
authenticator is proven secure in [6], given that the encryp-
tion is CCA2 secure; while in our protocol, the ElGamal
encryption (i.e., E(.)) is only CPA secure. This is not an
issue, as session corruption is not allowed in our model and if
both entities immediately erase their local states (e.g., NA),
once the shared key is established.

7. IMPLEMENTATION RESULTS
We have two objectives for our implementation: (1) em-

pirically evaluate the efficiency of our scheme; (2) provide
a proof-of-concept prototype, illustrating the usage of our
proposal in practice.

7.1 Performance Evaluation
We conducted extensive experiments on the efficiency of

our (final) scheme. The programs were written in C/C++,
and the underlying elliptic curves and pairing operations
were implemented based on the Miracl library5. In particu-
lar, we used DDH-hard subgroups of an MNT elliptic curve
with pairings, where |q| = 159 bits, and the curve has an em-
bedding degree of 6. Our implementation also made use of
HMAC, SHA-1, PRNG (Pseudorandom Number Generator)
in the Miracl library, and our own codes of ElGamal-type
encryption. For the experiments, the client program runs
on a Fujitsu notebook, Intel Core2 Duo CPU, 2.53GHz, OS
Windows XP, and the server program runs on a PC, Dell
Dimension 9150, Intel 3.0 GHz CPU, 1GB RAM, OS Win-
dows XP. We experimented with different number of users
simultaneously authenticating with the server, and the av-
erage time it takes for a user, respectively, and the server to
complete the authentication protocol is reported below.

User Server

Timing (ms) 385 430

The results indicated that our scheme has high efficiency,
should be acceptable for practical applications.

7.2 Proof-of-Concept Prototype
For the prototype, we mainly provide Web-based inter-

faces to implement the vTTP-based anonymity revocation.
It is our hope that the prototype can serve as a simple demon
to illustrate how our proposal can be used in practice.

Login interface. To participate in anonymity revocation,
a user first logs in to the system through the login interface
shown in Figure 2(a), where the user needs to provide her
identity, her share of the vTTP public key, together with
a short (zero-knowledge) proof of the corresponding private
key. At the server side, the server keeps a repository of all
public keys whose owners have agreed to offer assistance for
anonymity revocation.

4We noticed that some (minor) attacks have been found
against the two authenticators, but incidentally, all are due
to session corruption.
5M.Scott. Indigo software: http://indigo.ie/∼mscott.

66

��� ��� ���

Figure 2: User Interfaces

Ask-for-Help list. Once her login request is verified, the
user is navigated to the Ask-for-Help interface, shown in
Figure 2(b), which lists all the protocol transcripts that need
the user’s help for anonymity revocation. Notice that each
entry is succeeded by the number of partial ciphertexts that
have already been collected; also, the user is offered the
option to select which entries she is interested in. The user
then retrieves her private key from the storage and clicks
the “Yes” button to start decryption of the selected protocol
transcripts one by one. Each resulting partial ciphertext
will be sent to the server, who then updates the Bulletin
(see below). The user can immediately check the bulletin to
see whether her results are correctly reflected in the bulletin.

Public bulletin. The bulletin is free of access to the pub-
lic, and it consists of a Completed List and a Pending List,
as shown in Figure 2(c). The completed list contains the set
of protocol transcripts, wherein the involved user identities
have been successfully revealed. The pending list shows the
protocol transcripts that have not collected sufficient num-
ber of partial ciphertexts from users. For each pending item,
all of its collected partial ciphertexts are displayed below it.
This facilitates users who have contributed to anonymity
revocation to check whether their partial ciphertexts are
correctly handled by the server. Once there are sufficient
number of partial ciphertexts, the server performs the final
decryption and moves the item to the completed list. The
pending list serves as an important deterrence to discourage
the server from abuses of anonymity revocation.

8. CONCLUSION AND FUTURE WORK
We addressed two issues (membership withdrawal and on-

line guessing attacks) which have not been considered in
Yang et al.’s anonymous password authentication scheme,
thus advancing the primitive of anonymous password au-
thentication a step further towards practicality. We adopted
a set of different building primitives in our scheme, and
achieved much better efficiency (both analytically and em-
pirically). We proved the security of our scheme, and imple-
mented a proof-of-concept prototype.
Recall that as in [36], we still relied on the server side’s

homomorphic encryption to achieve limited verifiability of

user credentials. An alternative we have in mind (which
can avoid the use of homomorphic encryption) is that the
server does not publish the public key of the BBS signature,
so that the signatures cannot be publicly verified. We have
checked several options (e.g., keeping secret W , or a, b, d, or
h), and some of them seem work. As a future direction, we
will continue to explore along this line.

9. ACKNOWLEDGMENTS
This work is supported by the A*STAR project SEDS-

0721330047. We thank Huang Xinyi for his comments on
the use of ElGamal homomorphic encryption in our case.

10. REFERENCES
[1] M. Abdalla, M. Izabachene, and D. Pointcheval.

Anonymous and transparent gateway-based
password-authenticated key exchange. In Proc.
International Conference on Cryptology and
Network Security, CANS’08, pages 133-148, 2008.

[2] M.H. Au, W. Susilo, and Y. Mu. Constant-size
dynamic k-TAA. In Proc. Security and
Cryptography for Networks, SCN’06, LNCS 4116,
pages 111-125, 2006.

[3] F. Boudot. Efficient proofs that a committd number
lies in an interval. In Proc. Advances in Cryptology,
Eurocrypt’00, LNCS 1807, pages 431-444, 2000.

[4] X. Boyen. Hidden credential retrieval from a
resuable password. In Proc. ACM. Symposium on
Information, Computer and Communications
Security, ASIACCS’09, pages 228-238, 2009.

[5] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In Proc. Advances in Cryptology,
Crypto’04, LNCS 3152, pages 41-55, 2004.

[6] M. Bellare, R. Canetti, and H. Krawczyk. A
modular approach to design and analysis of
authentication and key exchange protocols. In Proc.
ACM. Annual Symp. on Theory of Computing,
ToC’98, pages 419-428, 1998.

[7] E. Bresson, O. Chevassut, and D. Pointcheval.
Security proofs for an efficient password-based key

67

exchange. InProc. ACM. Computer and
Communication Security, CCS’03, pages 241-250,
2003.

[8] S. Bellovin, and M. Merritt. Encrypted key
exchange: password-based protocols secure against
dictionary attacks. In Proc. IEEE Symposium on
Research in Security and Privacy, S&P’92, pages
72-84, 1992.

[9] S. Blake-Wilson, and A. Menetzes. Entity
authentication and authenticated key transport
protocol employing asymmetric techniques. In Proc.
Security Protocols Workshop, LNCS 1361, pages
137-158, 1997.

[10] V. Boyko, P. Mackenzie, and S. Patel. Provably
secure password-authenticated key exchange using
Diffie-Hellman. In Proc. Advances in Cryptology,
Eurocrypt’00, LNCS 1807, pages 156-171, 2000.

[11] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against
dictionary attacks. In Proc. Advances in Cryptology,
Eurocrypt’00, pages 139-155, 2000.

[12] M. Bellare, and P. Rogaway. Entity authentication
and key distribution. In Proc. Advances in
Cryptology, Crypto’93, LNCS 773, pages 232-249,
1993.

[13] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Compact e-cash. In Proc. Advances in Cryptology,
Eurocrypt’05, LNCS 3494, pages 302-321, 2005.

[14] R. Canetti, and H. Krawczyk. Analysis of key
exchange protocols and their use for building secure
channels. In Proc. Advances in Cryptology,
Eurocrypt’01, LNCS 2045, pages 451-472, 2001.

[15] J. Camenisch, and A. Lysyanskaya. Efficient
non-transferable anonymous multi-show credential
system with optional anonymity revocation. In
Proc. Advances in Cryptology, Eurocrypt’01, LNCS
2045, pages 93-118, 2001.

[16] J. Camenisch, and A. Lysyanskaya. A signature
scheme with efficient protocols. In Proc. Security
and Cryptography for Networks, SCN’02, LNCS
2576, pages 268-289, 2002.

[17] J. Camenisch, and M. Stadler. Efficient group
signature schemes for large groups. In Proc.
Advances in Cryptology, Crypto’97, LNCS 1296,
pages 410-424, 1997.

[18] C. Delerabl, and D. Pointcheval. Dynamic threshold
public-key encryption. In Proc. Advances in
Cryptology, Crypto’08, LNCS 5157, pages 317-334,
2008.

[19] R. Gennaro, S. Halevi, H. Krawcyzk, and T, Rabin.
Threshold RSA for dynamic and ad-hoc groups. In
Proc. Advances in Cryptology, Eurocrypt’08, LNCS
4965, pages 88-107, 2008.

[20] S.D. Galbraith, K.G. Paterson, and N.P. Smart.
Pairings for cryptographers. Cryptology ePrint
Archive: http://eprint.iacr.org/2006/165, 2006.

[21] S. Halevi, and H. Krawczyk. Public-key
cryptography and password protocols. In Proc.
ACM. Computer and Communication Security,
CCS’98, pages 122-131, 1998.

[22] D. Hoover, and B. Kausik. Software smart cards via
cryptographic camouflage. In Proc. IEEE

Symposium on Security and Privacy, S&P’99, pages
02-08, 1999.

[23] J. Katz, R. Ostrovsky, and M. Yung. Efficient
password-authenticated key exchange using
human-memorable passwords. In Proc. Advances in
Cryptology, Eurocrypt’01, LNCS 2045, pages
475-494, 2001.

[24] L. Nguyen. Accumulators from bilinear pairings and
applications. In Proc. CT-RSA’05, LNCS 3376,
pages 275-292, 2005.

[25] N. Noack, and S. Spit. Dynamic threshold
cryptosystem without group manager. Network
Protocols and Alorithms, 1(1): 108-121, 2009.

[26] M. H. Nguyen, and S. P. Vadhan. Simpler
session-key generation from short random
passwords. In Proc. Theory of Cryptography,
TCC’04, pages 428-445, 2004.

[27] R. Perlman, and C. Kaufman. Secure
password-based protocols for downloading a private
key. In Proc. Network and Distributed Systems
Security Symposium, NDSS’99, 1999.

[28] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proc.
Advances in Cryptology, Eurocrypt’99, pages
223-238, 1999.

[29] T.P. Pedersen. A threshold cryptosystem without a
trusted party. In Proc. Advances in Cryptology,
Eurocrypt’91, pages 522-526, 1991.

[30] R. Sandhu, M. Bellar, and R. Ganesan. Password
enabled PKI: virtual smartcards vs. virtual soft
tokens. In Proc. 1st Annual PKI Research
Workshop, pages 89-96, 2002.

[31] S. Shin, K. Kobara, and H. Imai. A secure
construction for threshold anonymous
password-authenticated key exchange. IEICE
Transactions on Fundamentals, E91-A(11):
3312-3323, 2008.

[32] J. Tardo, and K. Alagappan. SPX: global
authenticaiton using public key certificate. In Proc.
IEEE Sysmposium on Security and Privacy,
S&P’91, pages 232-244, 1991.

[33] P. Tsang, M. Au, A. Kapadia, and S.W. Smith.
Blacklistable anonymous credentials: blocking
misbehaving users without TTPs. In Proc. ACM.
Computer and communications security, CCS’07,
pages 72-81, 2007.

[34] D. Q. Viet, A. Yamamura, and T. Hidema.
Anonymous password-based authenticated key
exchange. In Proc. Advances in Cryptology,
Indocrypt’05, LNCS 3797, pages 233-257, 2005.

[35] J. Yang, and Z. Zhang. A new anonymous
password-based authenticated key exchange
protocol. In Proc. Advances in Cryptology,
Indocrypt’08, LNCS 5365, pages 200-212, 2008.

[36] Y.J. Yang, J.Y. Zhou, J. Weng, and F. Bao. A new
approach for anonymous password authentication.
In Proc. 25th Annual Computer Security
Applications Conference, ACSAC’09, pages 199-208,
2009.

68

Securing Interactive Sessions Using Mobile Device
through Visual Channel and Visual Inspection

Chengfang Fang
School of Computing

National University of Singapore
Singapore

c.fang@comp.nus.edu.sg

Ee-Chien Chang
School of Computing

National University of Singapore
Singapore

changec@comp.nus.edu.sg

ABSTRACT

Communication channel established from a display to a de-
vice’s camera is known as visual channel, and is helpful in
securing key exchange protocol [16]. In this paper, we study
how visual channel can be exploited by a network terminal
and mobile device to jointly verify information in an inter-
active session, and how such information can be jointly pre-
sented in a user-friendly manner, taking into account that
the mobile device can only capture and display a small re-
gion. Motivated by applications in Kiosk computing and
multi-factor authentication, we consider three security mod-
els: (1) the mobile device is trusted, (2) at most one of the
terminal or the mobile device is dishonest, and (3) both the
terminal and device are dishonest but they do not collude
or communicate. We give a few protocols and investigate
them under the abovementioned models. We point out a
form of replay attack that renders some other straightfor-
ward implementations cumbersome to use. To enhance user-
friendliness, we propose a solution using visual cues embed-
ded into the 2D barcodes and incorporate the framework
of “augmented reality” for easy verifications through visual
inspection. We give a proof-of-concept implementation to
show that our scheme is feasible in practice.

Keywords

Visual channel, Sub-region authentication, 2D-barcodes, User-
friendly verification.

1. INTRODUCTION
Securing connection to a server through an untrusted net-

work terminal is challenging even if the user has additional
factor for authentication like one-time-password token, smart-
card, or a mobile phone. One of the hurdles is the difficulty
in securely passing information from the terminal to the de-
vice, and presenting the jointly verified authentic informa-
tion to the user in a user friendly manner. Using traditional
channel to connect the device and the terminal, like wire-
less connection or plug-and-play connection, are subjected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

to various man-in-the-middle attacks. Even if a secure chan-
nel can be established, it is still not clear how the additional
device can help in authenticating subsequent messages ren-
dered on the untrusted terminal’s display.

A number of recent works utilize cameras in the mobile
devices to provide an alternative realtime communication
channel from a display unit to a mobile device: messages
are rendered on the display unit in a form of, say 2D bar-
codes, which are then captured and decoded by the mo-
bile device via its camera. Although such visual channel
could be eavesdropped by “over-the-shoulder” attacks, it is
arguably impossible to modify or insert messages, and thus
secure against man-in-the-middle attack. Visual channel has
been exploited in a few works in verifying the session key
exchanged over an unsecured channel, for instance seeing-
is-believing proposed by McCune et al. [16]. There are also
proposals on verifying untrusted display, for example, Clarke
et al. propose verifying the display screen using stabilized
camera device [5]. In this paper, we take a step further by in-
vestigating authentication of interactive sessions, with con-
sideration that most cameras are unable to cover the whole
screen in a single view with sufficient precision. An example
of interactive session is online banking application where a
user can browse and selectively view pervious transactions,
and carry out new transactions. A typical screenshot would
contain important information like the user’s account infor-
mation, and less sensitive information like advertisements,
help information, and navigation information, as shown in
Figure 1(a).

During an interaction session, after a session key ks has
been securely established between the server and the mobile
device (could be established using seeing-is-believing [16]),
there could be many subsequent communication messages
that require protection by ks. These messages may need to
be rendered over different pages, or in a scrolling webpage
where not all of them are visible at the same time. We re-
mark that it is not clear how to protect them. For instance,
one may render the messages as 2D barcodes, each protected
by the same ks. To view the message in a 2D barcode, the
user moves the mobile device over the barcode, and the de-
vice will capture, authenticate and display the message on
its display panel. However, as there are many barcodes as-
sociated with the same key, it is possible for a dishonest ter-
minal to perform “rearrangement” attack: replays barcodes
or shows barcodes in the wrong order.

The above attack arises due to the limitation that the
camera is unable to capture the whole screen with sufficient
precision. We treat the problem as the authentication of

69

messages rendered in a sequence of large 2D regions, where
only region in a small rectangular window can be captured
at one time. There are a few straightforward methods to
overcome the rearrangement attack. For instance, one may
prevent the attack by requiring the user to scan all the bar-
codes with his mobile device, and all the messages will be
authenticated and rendered by the mobile device. However,
it is troublesome for the user to scan all the barcodes, and
there are situations where the user only wants to view some,
but not all, of the messages. In addition, it is less preferred
to navigate and browse the messages (e.g. a large table of
transactions) within the relatively small display panel. In
Section 6, we will discuss a few other straightforward meth-
ods and their limitations.

Our solution is to use a barcode scheme that given a mes-
sage m and a visual cue v, is able to produce a barcode
image that not only carries m as its payload, but also vi-
sually appears as v (see examples in Figure 1(b) and Fig-
ure 1(c)). Our paper realizes such barcode scheme using
technique borrowed from fragile image watermarking [15],
where the visual cue is the “host” image, and the payload
is embedded as the “watermark”. To embed a long mes-
sage into several barcodes, our main idea is to have a visual
cue on each barcode indicating its position. By visually in-
specting the visual cues, the user can readily verify that the
barcodes are in the correct arrangement. For example, in
Figure 1(b), the visual cues are numeric numbers increasing
by 1 from left to right, top to bottom. The black dot beside
the number “2” indicates that the barcode is at the end of
the row, and the black block beside the number“8” indicates
that it is the last (i.e. bottom-right) barcode. With the ar-
rangement of barcodes verified, the user can then browse
selective barcodes independently with his mobile device.

In our security analysis, we consider the four parties set-
ting where a user, who has a mobile device, wants to interact
with a server via a network terminal. We focus on three se-
curity models. In the first model, the network terminal, in-
cluding its CPU, keyboard and display unit, is untrusted by
the user, whereas the mobile device is trusted. This model is
motivated by the challenging problem in securing Kiosks [11,
13], where Kiosks are untrusted public network terminal like
workstations in Internet café.

In the second model, motivated by two-factor authentica-
tion, we consider scenarios where both the mobile and the
terminal are not trusted by the user, but at least one of the
terminal or mobile carries out the protocol honestly. This is
to reflect the concern that either the terminal or the mobile
could be, but less likely both are, compromised. We found
that under the first model, it is possible to provide both
confidentiality and authenticity; whereas under the second
model, although authenticity can be achieved, it is not clear
how to achieve confidentiality.

In the third model, we take one step further and con-
sider a tricky setting where both the terminal and mobile
device could be dishonest, but they do not collude in the
sense that they do not know how to communicate with each
other. This model is motivated by scenarios where the termi-
nal and mobile device are compromised, but independently
by two different adversaries, for instance, a dishonest mobile
device that always says “authentic” for whatever authenti-
cation it is supposed to carry out, and a network terminal
which is remotely controlled by a malicious party who wants
to deceive the user to accept a particular message. To detect

such dishonest mobile device, our proposed method requires
the mobile device to extract and produce a human readable
proof from the authentication tag. A corresponding proof
is also shown in the terminal’s display and hence the user
can visually verify whether they are consistent, as shown in
Figure 1(c).

In addition to security requirements, user experience is
also important. Requiring the user to take snapshot of the
screen is rather disruptive from the user’s point of view.
We employ augmented reality to provide better user expe-
rience in verification. The design of our 2D barcode and
the subregion authentication takes usability into considera-
tion and fits nicely in the framework of augmented reality.
One example is as shown in Figure 1(b). The screenshot
displayed by the terminal is a combination of sensitive data
and non-sensitive data like advertisement and menu. The
sensitive data are replaced by 2D barcodes with visual cue
as described before. The user treats the mobile device as
an inspection device and places the mobile phone over the
region to be inspected. In realtime, the mobile device cap-
tures and verifies the 2D barcode. If it is authentic, the
decrypted message is displayed. The non-sensitive portion
of the screenshot is also displayed as it is to help the user to
navigate. We give a proof-of-concept system implemented
on Android mobile phones and evaluate its performance to
show the feasibility of our methods.

Organization
We formally define our problem and three adversary mod-

els in Section 2. Assuming the existence of a barcode scheme
that is secure against rearrangement attack, we propose two
protocols and analyze them under the three adversary mod-
els in Section 3. We give a construction for the required
barcode scheme using visual cues in Section 4 and discuss
the design of visual cue symbols in Section 5. We com-
pare our solutions with possible alternative methods in Sec-
tion 6. We describe our proof-of-concept implementation in
Section 7 and measure its performance in Section 8. A dis-
cussion of existing work is given in Section 9. Section 10
gives a conclusion of our paper.

2. MODELS AND FORMULATION
There are four parties involved in our problem: the user,

the server, the mobile device and the network terminal. Let
us call them User, Server, Mobile, and Terminal respec-
tively. In our framework, the term “user” literately refers to
a person, and the mobile device is equipped with a camera,
input device, a small display unit and sufficient computing
power.

A summary of our notations is given in Table 1 and the
communication channels among the four parties are as shown
in Figure 2. Note that there is no direct communication link
between Mobile and Server. With 3G mobile network and
WiFi connection widely available, one may argue that the
model should consider such a link. Nevertheless, there are
situations where the connection is not available due to cost
or other constrains. In addition, there are also security con-
cerns if the mobile device has Internet connection during
the transactions: if Mobile can directly communicate with
a remote malicious party, it may collude and conduct coor-
dinated attack with Terminal and the malicious party.
We consider the following security models for the channel

between Server and User:

70

(a) A bank transaction webpage. (b) Method 1: mobile device is trusted. (c) Method 2: mobile device could be dis-
honest.

Figure 1: Illustration of our schemes: Figure 1(a) is the bank transaction screenshot which contains a sensitive
transaction table to be protected. Figure 1(b) illustrates method 1 where the sensitive table is replaced by
barcodes; and the mobile device captures, verifies and decodes part of the table. Figure 1(c) illustrates
method 2 where the sensitive table is displayed with barcodes; the user compares the tables on both the
terminal and mobile.

1. Model 1: Terminal is not trusted by User, but Mobile
is trusted and we want to protect both confidentiality
and authenticity.

2. Model 2: At least one of Terminal and Mobile is hon-
est and we want to protect authenticity.

3. Model 3: Both Terminal and Mobile could be dishon-
est but they do not collude and we want to protect
authenticity.

In Model 3, we treat the dishonest Terminal and Mobile

as two different adversaries AT and AM with two different
goals. AT is the dishonest terminal and its intension is to
trick the user to believe that a given messagem′ is authentic.
The actual value of m′ is not determined prior to the connec-
tion. We can view it as a randomly chosen message that is
passed to the AT. The adversary AM is the dishonest mobile
and has an easier goal: it is free to construct any message
and trick the user to wrongly believe that it is authentic.
An example of AM is one who always accepts whatever veri-
fication it is tasked to do. To capture the notion that they
do not collude, we impose the restriction that AT and AM

do not know how to communicate with each other, and the
forge message m′ is randomly chosen. Hence, we exclude
the attack where AT covertly sends the message m′ to AM

through the visual channel.

Mobile Device

Public Network Display Unit

Input Device

User

Input Device
Display UnitVisual Channel

Network TerminalServer

Figure 2: The communication channels among the
four parties.

3. PROTOCOLS
We now give our proposed protocols for securing the com-

munication between Server and User assuming we have a
barcode embedding technique that can protect the integrity
and confidentiality of its payload, and visible visual cue can
be rendered onto the barcode to indicate the barcode loca-
tion as in Figure 1(b). Given a message m, a visual cue v,
and a session key ks, let us write the barcode (represented
as images) as B(ks,m, v). For clarity in presentation, we
first consider the case where the message can be embedded
into one barcode block whose size is small enough to be en-
tirely captured by Mobile’s camera with sufficient precision.
Thus, we take the visual cue v as a single dot, indicating to
the user that there is only a single barcode to be read. We
will later study the case for multiple messages in Section 4
and Section 5.

We assume that Server has already established a long
term shared key with Mobile when the user registers an
account with the server. In additional, for model 2 and
3, we assume that User has established a password with
Server which is secret to Mobile. Before each interactive
session, Server authenticates User and Mobile to get a ses-
sion key ks, which is to be kept secret from Terminal. A
secure key exchange can be derived from modified seeing-
and-believing [16] and combination of the proposed method
in this section. Due to space constrain, we do not include
details on key exchange in this paper.

3.1 Server to User
Consider the case where Server wants to send a message

mS to User. We propose two methods, denoted MS1 and
MS2 (message from server), where method MS1 is more user-
friendly compared to MS2, but it requires that Mobile is
trusted.

MS1. To send a message mS to User, the following steps
are carried out. (1) Server generates a barcode image B(ks,

71

Table 1: Summary of Notations.
mU The message from User to Server.
mS The message from Server to User.
kT The key for message authentication scheme.
kE The key for encryption.
kV The key for embedding visual cue.
ks The session key where ks = (kT, kE, kV).
v A visual cue symbol.
B(ks,m, v) A barcode image encoding a message m and visual cue v under key ks.
TkT(m) An authentication tag of a message m under key kT.
EkE(m) An encryption of a message m under key kE.
ECC(m) An error correcting encoding of a message m.
A → B : m The entity A sends a message m to another entity B.

A
C−→ B : m The entity A sends a message m to B using C as a relay point.

mS, v) and sends the barcode to Terminal. Recall that ks is
the established session key, and v is the appropriate visual
cue. (2) Terminal displays the barcode. (3) User inspects
and verifies the visual cue is valid. (4) Mobile captures the
barcode. (5) If Mobile successfully verifies the payload mS

embedded in the barcode, it displays mS. If Mobile fails to
verify mS, then it displays an error message e.

Below is a summary for MS1:

1. Server → Terminal: B(ks,mS, v);

2. Terminal → User: v;

3. User verifies the visual cue v;

4. Terminal → Mobile: B(ks,mS, v);

5. Mobile → User: mS if mS is authentic, e otherwise.

MS2. The main difference in this method from the pre-
vious MS1 is that, the message mS is displayed by both
Terminal and Mobile, and thus User is able to detect if one
of them is dishonest. (1) Server first generates a barcode
image B(ks,mS, v), then it sends both the barcode image
and the message mS to Terminal. (2) Terminal displays the
barcode, side-by-side with mS. (3) User inspects and verifies
the visual cue. (4) Mobile captures the barcode and rejects
if the barcode is not authentic, otherwise, displays mS. (5)
User reads mS from Mobile’s display panel and Terminal’s
display. (6) User accepts mS if the mS in step (2) is consis-
tent with mS in step (4). Below is a summary for MS2:

1. Server → Terminal: B(ks,mS, v), mS;

2. Terminal → User: v, mS1;

3. User verifies v;

4. Terminal → Mobile: B(ks,mS, v);

5. Mobile → User: mS2;

6. User accepts mS1 if mS1 = mS2.

3.2 User to Server
Now we consider the following methods MU1 and MU2

(message from user) for sending the message mU to Server.
Method MU1 protects both confidentiality and authentic-
ity of the message, whereas method MU2 protects only the
authenticity but involves less user operation.

MU1. MU1 consists of the following steps to send a mes-
sage mU to Server. (1) User enters mU to Mobile. (2) Mo-
bile computes and shows User the encrypted form EkE(mU)‖
TkT(EkE(mU)) in readable characters (for e.g. using uuen-

code). (3) User sends displayed string to Server through
Terminal’s input device. (4) Server accepts mU if the tag is
valid. Below is a summary for MU1:

1. User → Mobile: mU;

2. Mobile → User: EkE(mU)‖TkT(EkE(mU));

3. User
Terminal−→ Server: EkE(mU)‖TkT(EkE(mU));

4. Server accepts mU if the tag TkT(EkE(mU)) is valid.

MU2. In scenarios where the confidentiality of mU is
not required, we can employ a more user friendly protocol
MU2 as follow: (1) User enters mU through Terminal’s input
device, and Terminal forwards mU to Server. (2) Server

generates a barcode B(ks,mU‖c, v), where c is a randomly
generated nonce. Server sends the barcode to Terminal.
(3) Terminal displays the barcode, and User visually veri-
fies that the visual cue v is correct. (4) Mobile captures the
barcode and rejects if the barcode is not authentic. (5) Mo-
bile renders the message mU and the nonce c on its display.
(6) If mU is consistent with the message User entered in step
(1), User enters c to Terminal, and Terminal forwards it to
Server. (7) Server rejects if the nonce c is wrong.

Although involves more steps, MU2 is less tedious from
the user’s point of view, since User does not need to enter
mU using Mobile’s input device. The corresponding steps
for MU2 are summarized below:

1. User
Terminal−→ Server: mU;

2. Server → Terminal : B(ks,mU‖c, v);
3. Terminal → User: v;

4. Terminal → Mobile: B(ks,mU‖c, v);
5. Mobile → User: mU, c;

6. User
Terminal−→ Server: c;

7. Server accepts mU if c is consistent, rejects otherwise.

3.3 Analysis
In this section, we analyze our methods under different

adversary models.

72

Model 1 (Mobile is trusted)
In Model 1, we use MU1 for sending message to Server,

and use MS1 for Server to send message to User to achieve
confidentiality and authenticity of the communication chan-
nel.

For both methods, Terminal plays the role of a relay point
for passing message and thus a malicious Terminal is the
man-in-the-middle. Hence, this is the classical setting where
the two end points (Server and Mobile) having a shared key
want to communicate over a public channel. The crypto-
graphic technique (encryption and message authentication
code) can secure the channel and provide both confidential-
ity and authenticity.

It is clear that MU2 and MS2 cannot protect the confi-
dentiality under this model as the messages are sent in clear
through Terminal, and thus they are not suitable in this
model.

Model 2 (At least one is honest)
In Model 2, we use MU2 to send message to Server, and

use MS2 for Server to send message to User. We want to
achieve authenticity of the message mS. We are not inter-
ested in confidentiality here. It is an interesting future work
to investigate whether confidentiality can be achieved under
this model.
Suppose Terminal is dishonest. In both directions of the

communication, we can treat the barcode as the MAC of
the message, mU and mS respectively. Since Terminal does
not have the key used in generating the barcode, this is a
classical setting and the authenticity of the message inherit
from the MAC we used in the barcode construction.
On the other hand, let us consider the case where the

Mobile is dishonest. In MU2, Terminal is honest and will
forward mU to Server as it is, thus, it is impossible for Mo-
bile to modify mU without Server notices. Similarly, in
MS 2, since the actual message mS is displayed by the hon-
est Terminal, User can compare the displayed message and
thus any modification can be detected.
Note that MU1 and MS1 is not secure in this model: if

Mobile is dishonest and change the message to m′, there is
no way for User or Server to verify it.

Model 3 (No collusion)
It turns out that the protocol we used in method 2, i.e.

MU2 and MS2, can achieve authenticity in this model as
well.
Let us first analyze MU2. Recall that the goal of a dis-

honest Terminal is to trick Server to accept a message m′
U.

To do so Terminal must send Server the message m′
U, and

obtain a barcode b contains m′
U and c. Server accepts m′

U

only if the verification code c is presented. Since c is ran-
domly chosen, Terminal is unlikely to succeed in guessing c.
Therefore, he needs to get c from user. Without any hint
from Terminal, Mobile is not able to display the message
that the user is expecting.
Now let us analyze MS 2. In this case the dishonest Ter-

minal wants to trick User into accepting a message m′
S. To

achieve the goal, it must display m′
S side-by-side with the

barcode. As Terminal does not know the key ks he is unable
to forge the barcode. Now, consider the dishonest Mobile.
Recall that there is no communication from the Terminal

to Mobile, the Mobile is unable to display the message m′
S

which is required to trick User to accept m′
S.

Table 2 summarizes the security and user friendliness of
our methods under different models.

4. VISUAL CHANNEL
A main component in building our visual channel is the

construction of 2D barcode with visual cues: given a secret
key ks = (kT, kE, kV), a message m, and a visual cue symbol
v we want to produce a 2D barcode B(ks,m, v) such that
the cue v is clearly visible, and the message m can be ex-
tracted under noise. On the other hand, there are security
requirements on the confidentiality of m and integrity of m
and v. Any modification on m and v must be detected with
high probability.

4.1 Construction Overview
There are a number of stages in constructing the visual

channel:

1. (Encryption-then-MAC): Given m, and the keys kE, kT,
the message m is protected using encryption and MAC
with key kE and kT respectively, and getm0 = EkE(mU)‖
TkT(EkE(mU)).

2. (Error correcting): Error correcting code is then ap-
plied on the result m0, and get ECC(m0), let us call
this m1.

3. (Embedding visual cue): Given a message m1, a key
kV, and a visual cue v represented as a 2D array of
bits, the m1 is embedded into a larger 2D array of bits
I which visually appear as v, Section 4.2 gives details
on the embedding process.

4. (Adding control point and rendering): A set of control
points(red dots in Figure 1(b)) is then added around
I for image registration purpose.

Thus, our barcode is a black and white image with red
pixels.

4.2 Encoding with Visual Cue
When a message is too large, multiple barcodes are re-

quired to encode it. As mentioned in the introduction, mul-
tiple barcodes protected by a single session key are sub-
jected to “rearrangement” attack. To detect the attack, we
propose binding location information to the barcode using
visual cue. This section gives a method in embedding the
visual cue. Note that the process of embedding a visual cue
to a barcode can be viewed as the embedding process in dig-
ital watermarking, where the visual cue is the host, and the
barcode is a message to be “watermarked” to the host.

Given a n-bits message m1, let us arrange it as a x by
y binary matrix where n = x · y and x is even. Let us
assume that the given visual cue is a x/2 by y pixels image
where each pixel is either 0 (representing a black pixel) or
1 (representing a white pixel). Therefore, every 2 bits in
m is associated with 1 pixel of the visual cue, and together
they can be represented with 3 black-and-white pixels in the
final barcode. The 3 pixels are arranged in a “L”-shape as
shown in Figure 3(a). Let us call the 3 pixels as a L-block.
The 23 combination of values in a L-block is divided into
two groups: W and B. The L-blocks in W have more white
pixels and thus the L-blocks appear as “white”. Conversely,
the L-blocks in B will appear as “black”.
Given a binary value v1 ∈ {0, 1} of a pixel of the visual

cue image, we want to encode two bits 〈b1, b2〉 into a three

73

Table 2: Summary of Methods.
MU 1 MU 2 MS 1 MS 2

Model 1 C, A, U1 A, U1, U2 C, A, U1, U2 A, U1, U2
Model 2 N A, U1, U2 N A, U2
Model 3 N A, U1, U2 N A, U2

Note: C, A, N are related to security goals and U1, U2 are related to usability.
C: confidentiality is achieved; A: authenticity is achieved; N: none of C and A can be achieved.

U1: no user comparison of messages is required; U2: no user input via Mobile’s input device is required.

(a) Two groups of L-blocks.

(b) Tile up with L-blocks.

Figure 3: L-blocks for constructing visual cues

pixels L-block, such that the brightness of the L-block can
be adjusted according to v1. For instance, if v1 = 1, the
encoding outputs only elements in W . Since there are 4
elements in W , it is possible to encode the two bits b1 and
b2. Beside for the value of v1, there is no further constraint
on how the encoding of 〈b1, b2〉 to the 4 elements in W is to
be done. In order to prevent the adversary from modifying
the appearance of the visual cue, the mapping from the 2
bits 〈b1, b2〉 to the three pixels of the associated L-block,
〈p1, p2, p3〉, has to be kept secret. Hence, the key space for
encoding a bit pair is 4!× 4! = 576.

To decode a barcode, Mobile applies the decoding and
decryption functions in a reverse order and ignore the bit
v1. That is, it first extracts the bit pairs from every L-
blocks, and get the message m′. Next, error correcting is
applied and the authenticity of the message can be verified.

4.3 Security Analysis
We would like our barcode scheme to achieve the following

properties: (1)authenticity and confidentiality of mS and (2)
the integrity of visual cue.

Authenticity and confidentiality of message
The authenticity and confidentiality of the message embed-

ded in our barcode scheme rely on the security of the under-
lying encryption and message authentication scheme. Bel-

lare et al. [2] show that when the encryption EkE achieve in-
distinguishability under chosen-plaintext attack (IND-CPA),
and the message authentication scheme TkT is strongly un-
forgeable (SUF-CMA), then the Encrypt-then-MAC com-
position method achieves IND-CPA, INT-CTXT (integrity
of ciphertexts) and IND-CCA ((adaptive) chosen ciphertext
attack).

Integrity of visual cue
An adversary may try to modify some L-shape blocks

such that the visual cue on two barcode blocks are swapped,
and thus, he can rearrange the two blocks without being
detected. As discussed in Section 4.2, any modification of
an L-shape block’s brightness will have 1

4
chance of not being

detected. Suppose at least β number of L-shape blocks have
to be modified in order to deceive the user, then the chances
of not being detected will be (1

4
)β , where β depends on the

size of a barcode block, and the visual cue design.
However, the above analysis does not hold when we con-

sider the whole process of decoding, where the error correc-
tion is included. Recall that, due to inevitable noise, we need
to apply error correcting before extracting EkE(mS). There-
fore, when small number of L-shape blocks are corrupted,
the payload m1 can still be correctly decoded. Hence, the
choice of error-correction and the design of the cues cannot
be done separately. Furthermore, some error-correction code
can correct more errors than its guaranteed level in some sit-
uations. Due to the concern of forgery, it is important not
to correct those errors.

To prevent an adversary from making small changes that
can deceive the user and yet get verified, one design con-
sideration of the visual cue is to choose symbols with large
mutual Hamming distance from each other. In our imple-
mentation to be described in Section 7, we use numerical
digits as visual cue, where the minimum hamming distance
for two symbols is 14 “L-blocks” (for example, the number
“1” and “7”, “0” and “8”). We choose parameters of error
correcting code that is able to tolerate 4 bits noise for ev-
ery 63 bits. Note that modifying a “L-blocks” may result in
two bits flipped, thus, the probability that an attacker can
modify the visual cue of a barcode to another is less than
Φ(3; 14, 0.75) = 3.98% where Φ is the cumulative distribu-
tion function of the binomial distribution B(14, 0.75).

Modifying control points
The adversary may try to modify the control points and

this may cause failure in decoding, giving a string of “ran-
dom” bits which is unlikely to pass the MAC authentica-
tion check. Hence, modifications of control points at most
amount to a denial of service attack, which is not our main
concern.

74

5. VISUAL CUES FOR VERIFICATION OF

MULTIPLE BARCODES
In this section, we discuss a few designs of visual cue, in

particular, for barcodes appeared in a linear sequence, and
barcodes rendered as table. Recall that the main purpose
of the visual cue is to bind location information to the bar-
codes, so that User can visually verify that the barcodes are
in the correct arrangement.

Linear Sequential Barcodes.
Consider a sequence of barcodes appearing in the order B1,

B2, . . . , Bn. The order of appearance gives implicit structure
of the encoded message. For instance, the message could be
a string divided into substrings where each substring is en-
coded in a single barcode. Hence, it is important to protect
the order of appearance, even if the user may not be inter-
ested in viewing all of them. A natural visual cue would be
a counter, starting from 1, that is, the visual cue of block
Bi is i. To indicate the end of the sequence, the last block
contains a special symbol, say“.” in our example, to indicate
end of sequence.

Barcodes in Table Structure.
Consider a table of messages where each message is en-

coded in a barcode. The barcodes are depicted in the natural
table arrangement: for any 2 messages in the same row, the
corresponding barcodes are also in the same row, and like-
wise for columns. To protect the arrangement, we propose
the following rules of assigning the visual cue:

R1 The numerical value of the visual cue symbol on the
top row, leftmost block is 1. The value increments
by 1 from left to right. At the end of the row, the
increment process continues at the leftmost block of
the row below if any.

R2 The rightmost block in each row has the additional cue
which is a black dot indicating this is the end of row.

R3 The rightmost block in the bottom row has an addi-
tional large black rectangle indicating this is the last
block.

Figure 1(b) shows an example of such barcode table. To
verify that a table of barcodes are in the correct arrange-
ment, User simply needs to verify the continuity of the
counter, every but the last row ends with a small dot, and
the last barcode ends with a big dot. It is easy to verify
that by imposing the above rules, any insertion, deletion
or rearrangement of the barcodes can be detected by visual
inspection.

6. ALTERNATIVE METHODS
Besides using visual cues, there are other techniques to

ensure that the barcodes are in correct order. This section
compares our scheme with a few alternatives. In general, our
scheme uses more pixels to carry the visual cue symbols.
On the other hand, it has the advantage of requiring less
user involvement, incurring less disruption and exploiting
the terminal’s large display panel. A brief illustration of the
alternative methods is given in Figure 4.

(a) Mobile captures every blocks, then verifies
and renders the whole message.

(b) Mobile displays the location(row/column)
information encoded in the barcodes.

Figure 4: Illustration of alternative methods (for
simplicity, only the barcodes and mobile device are
shown here).

Embedding a HMAC of all blocks.
In this method, given a long message mS, Server computes

a HMAC for the whole mS and embeds mS and its tag into
a few barcodes. During authentication, the user first scans
across all the barcodes, then Mobile responds whether the
HMAC agree with the content in the barcodes (Figure 4(a)).
If so, Mobile renders the long message and user navigates
to obtain the required information. The advantages of this
method are (1) the user does not need to verify the visual
cue, and (2) the barcode is more efficient in the sense that
it does not need to embed the visual cue.

However, there are a few disadvantages of this method.
Firstly, the scanning process could be less preferred when
the user only want to browse a subset of the message (e.g.
a user who wants to check a particular record from a list
of transactions). Secondly, it is not easy to navigate using
the relatively smaller display panel in the mobile device.
Furthermore, it is not clear how to extend this method to
cater for the setting where Mobile is not trusted: one could

75

display the message in both Terminal and Mobile, but it is
not easy for the user to verify that the displayed messages
are consistent when the message is long.

Encoding location hints in barcode.
When the message can be represented as a form of table,

one may try to secure the authenticity by using the row and
column attributes as location information: Given a tablemS,
Server first divides it into sub-tables, then it encodes each
sub-table together with the corresponding row and column
attributes into barcodes. When Mobile decodes the barcode,
it shows the corresponding attributes of the sub-table as
shown in Figure 4(b).

The advantage of this method is that it does not require
the user to scan barcodes or verify visual cues, and the user
can readily browse a sub-table of interest. While rearrange-
ment attack can be prevented as the row and column in-
formation are encoded in the barcode, this method is still
subjected to deletion attacks: the adversary may remove or
duplicate an entire row of barcode without being detected.
Although the“deletion attack”could be patched by encoding
more information, for example, by indicating the total num-
ber of barcodes, the user is required to be involved in tedious
verification, like counting the number of barcode blocks.

7. IMPLEMENTATION
The usability of our proposed method can be improved us-

ing“augmented reality”as described in the introduction. We
implemented a proof-of-concept system using mobile phones
and personal computers.

Deploying Machines and Softwares.
We implemented our method on Android API targeting

at OS version v1.6 (Donut), and tested on three mobile de-
vices: (1) a Acer Liquid mobile phone running on Android
OS v1.6 with a 3.5 inches 480 × 800 TFT display screen,
256MB RAM, 768 MHz processor, video streaming maxi-
mum rate at 20 fps; (2) a Motorola Milestone XT mobile
phone running on Android OS v2.1-update1 with a 3.7 in
480 × 854 FWVGA display screen, 256MB RAM, 720 MHz
processor and video streaming maximum rate of 24 fps; and
(3) a HTC Legend mobile phone running on Android OS
v2.1 with 3.2 inches 320 × 480 HVGA display screen, 384
MB RAM, 600 MHz processor, video streaming maximum
rate at 30 fps. Let us call these three mobile phones phone
1, phone 2 and phone 3 respectively. We tested the sys-
tem on three different display units: (1) a 19 inch flat TFT
monitor in Dell model Optiplex 755; (2) a 13.3 inch display
of a Toshiba portege M900 laptop; and (3) a 15 inch Dell
CRT monitor. All configuration of the display units such
as brightness resolution are reset to the default setting. Let
us call these three display units monitor 1, monitor 2 and
monitor 3 respectively. Figure 5 shows an example of our
experiment settings.

Choice of Parameters.
We use AES with 128 bit key for encryption scheme,

HMAC based on SHA1 for message authentication code, and
calculator fonts of numeric digits as visual cues symbols. We
use a (63, 36, 11)-BCH error correcting code [3] to correct
errors. That is, for every 36 bits, we add 27 redundant bits
and we are able to correct 5 error bits.

Figure 5: An example of our experiment: browse
and verify information on monitor 2 using phone 1.

Image Processing Issues.
We use oversampling technique to reduce the noise of a

captured image: one bit in the barcode is rendered using
2 × 2 pixels. Let us call a group of 2 × 2 pixels a “super-
pixel”. Such oversampling can reduce the noise due to mis-
alignment and mitigating other artifacts, but it also reduce
the channel capacity by a factor of 4. For image registra-
tion, each barcode has four 5×5 red dots at the four corners,
helping the mobile phone recognize the starting and ending
of each barcode. When two barcode are next to each other,
we combine the adjacent red dots.

8. PERFORMANCE
In this section we measure the performance of our proof-

of-concept implementation in terms of error rate, frame rate
and channel capacity.

Error Rate.
We measure the average error rate in reading superpixels
with different phones on different monitor. A block 50 by
50 superpixels, together with the 4 red control points are dis-
played and captured by the mobile device. The errors could
be due to motion blur, lens distortion, monitor’s refreshing
rate, inaccurate image registration, aliasing, and incorrect
white balance or focus. Figure 6 shows the result of bit er-
ror rates of the barcodes when the four red control points are
correctly detected, where the crosses are the bit error rate
of a particular captured barcode, the blue plus symbols are
the average bit error rates of different phone and monitor,
and the red boxes cover the regions between first quartile
and third quartile. Although the error rate is affected by
the aforementioned factors, Figure 6 shows that the average
error rate is acceptable for error correcting to be carried out.

Frame Rate and Decoding Rate.
Our implementation incorporates the framework of “aug-

mented reality”: we display the captured video stream as
it is, and render the decoded message on top of the video
in a separate thread. While the video stream is rendered
close to the maximum frame rate of the phone model, the
decoding and displaying of message run at a lower rate. The

76

Figure 6: The bit error rate of the three phones
capturing barcodes on different monitors.

average decoding rate of our implementation is over 5 cycles
per second running on all the three mobile phones.

Capacity of Visual Channel.
We now give calculation for the size of payload (size of mS,

the message Server sends to User) that can be embedded
in a block that occupies 10000 pixels (2500 superpixels) of
Terminal’s display unit. Recall that we used 2× 2 pixels to
encode 1 bit of the barcode, employed a (63, 36, 11) BCH er-
ror correcting code, and used L-block to preserve the related
location. Thus the payload is 10000× 1

4
× 36

63
× 2

3
= 952 bits

for such a block.

9. RELATED WORK
There is an extensive amount of literatures exploiting the

camera as an additional visual channel for communication.
Jacobs et al. [12] gave a method that establishes a chan-
nel from a controllable light source to a camera. McCune
et al. proposed seeing-is-believing [16], which carries out
authentication and key-exchange over a visual channel es-
tablished between a device’s display and another device’s
camera. Clarke et al. [5] described a protocol to verify the
content on the untrusted terminal by pixel mapping or op-
tical character recognition with a mobile device. Wong et
al. [24] built a prototype on a Nokia Series 60 handphone
that provides 46 bits for authentication over the visual chan-
nel. Sharp et al. [20] gave a system where the sensitive
information displayed in the public terminal is blurred or
redacted, whereas the mobile device displays the content
in the subregion around terminal’s mouse pointer in clear.
However, the location of the mouse is sent by the termi-
nal and hence potentially a malicious terminal could send
the wrong location without begin detected, and thus com-
promise message integrity. Garriss et al. [10] proposed a
protocol that a user can leverage his mobile device to iden-
tify, verify Kiosk and submit VM to Kiosk for the user to
work on.

Data can be transmitted to a camera effectively using

2D barcodes. There are many 2D barcode designs, for ex-
ample, QR code [1] and the High Capacity Color Barcode
(HCCB) [18] that uses colored triangles. Many barcodes
are designed to encode data in printed copies. There are
also proposals that use other types of sources in the visual
channel. Collomosse et al. proposed “Screen codes” [6] for
transferring data from a display to a camera-equipped mo-
bile device, where the data are encoded as a grid of lumi-
nosity fluctuation within an arbitrary image. A challenging
hurdle in using hand-held cameras to establish the channel
is motion blur. A few stabilization algorithms are developed
for handheld camera [21, 17], and for 2D barcodes [4].

Similar to our scheme, Costanza et al. [7] suggested a tech-
nique to embed designs into barcodes to increase the expres-
siveness and to bring visually meaning to them. These sys-
tems recognize the barcodes based on the topology, rather
than geometry, of the codes [8], and were initially devel-
oped for tracking objects in tangible user interfaces and aug-
mented reality applications [9]. Augmented reality has been
exploited to enhance user experience on many applications
including education [14], gaming [22], outdoor activities [23].
Rekimoto et al. [19] Using 2D barcodes as the visual tags in
the augmented reality environment, where a camera can cap-
ture the barcode on physical object and link them to their
information.

10. CONCLUSION
In this paper, we investigated how visual channel can be

deployed to enhance security of the communication between
server and user in various settings. We pointed out that al-
though authentication of an individual barcode can be easily
carried out, the interesting technical challenge is in the ver-
ification of the relationships among several barcodes. This
leads us to look into the problem of “subregion authentica-
tion” where a user wants to verify selective small pieces of
data within a large dataset. Although there are a few meth-
ods to overcome the problem, they introduce disruptions
during the interactive session and are thus less user-friendly.
To achieve seamless interactions, we proposed using visual
cue to bind location information to the barcode, so as to aid
the user in visually verifying the data.

Our protocols demonstrated that, the visual channel “en-
hanced” with the visual cue, together with the mobile de-
vice’s input/output device, jointly provide more flexibility
in designing secure protocols. Viewing from another per-
spective, our investigation highlights limitations of visual
channel, for instance, the observation that confidentiality is
difficult to achieve under the setting where either the mo-
bile device or the terminal could be dishonest. Our solution
serves as an interesting example where security is achieved
by coupling computer’s processing power with human per-
ceptual system. The design of our barcode also serves as an
interesting application of fragile watermark.

To illustrate the concept, we implemented the framework,
tested on three mobile devices and evaluated it with three
types of monitors. The performance of our system is promis-
ing and the usability is enhanced with “augmented reality”.

Acknowledgement. This work is partially supported by
Grant R-252-000-413-232/422/592 from TDSI.

77

11. REFERENCES
[1] QR Code (2000). International Organization for

Standarization: Information Technology-Automatic
Identification and Data Capture Techniques-Bar Code
Symbology-QR Code. 2000.

[2] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of
the generic composition paradigm. Journal of
Cryptology, pages 469–491, 2008.

[3] R.C. Bose and D.K. Ray-Chaudhuri. On a class of
error correcting binary group codes. Information and
control, pages 68–79, 1960.

[4] C.H. Chu, D.N. Yang, and M.S. Chen. Image
stablization for 2d barcode in handheld devices. In
Proceedings of the 15th international conference on
Multimedia, pages 706–715, 2007.

[5] D.E. Clarke, B. Gassend, T. Kotwal, M. Burnside,
M. Dijk, S. Devadas, and R.L. Rivest. The untrusted
computer problem and camera-based authentication.
In Proceedings of the First International Conference
on Pervasive Computing, pages 114–124, 2002.

[6] J.P. Collomosse and T. Kindberg. Screen codes: visual
hyperlinks for displays. In workshop on Mobile
computing systems and applications, pages 86–90,
2008.

[7] E. Costanza and J. Huang. Designable visual markers.
In Proceedings of the 27th international conference on
Human factors in computing systems, pages
1879–1888, 2009.

[8] E. Costanza and J. Robinson. A region adjacency tree
approach to the detection and design of fiducials.
Vision, Video and Graphics, pages 63–70, 2003.

[9] E. Costanza, S.B. Shelley, and J. Robinson.
Introducing audio d-touch: A tangible user interface
for music composition and performance. In
Proceedings of the International Conference on Digital
Audio Effects, pages 8–11, 2003.

[10] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van
Doorn, and X. Zhang. Trustworthy and personalized
computing on public kiosks. In Proceeding of the 6th
international conference on Mobile systems,
applications, and services, pages 199–210, 2008.

[11] S. Garriss, R. Sailer, R. Caceres, L. van Doorn,
S. Berger, and X. Zhang. Towards trustworthy kiosk
computing. In Workshop on Mobile Computing
Systems and Applications, pages 41–45, 2007.

[12] M.A. Jacobs and M.A. Insero. Method and apparatus
for downloading information from a controllable light
source to a portable information device, 1996. US
Patent 5,535,147.

[13] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proceedings of 16th USENIX security
symposium on usenix security symposium, pages 1–9,
2007.

[14] E. Klopfer and K. Squire. Environmental
detectives ↪a�lthe development of an augmented reality
platform for environmental simulations. Educational
Technology Research and Development, pages 203–228,
2008.

[15] C.Y. Lin and S.F. Chang. Semi-fragile watermarking
for authenticating JPEG visual content. In Proceedings
of SPIE, volume 3971, pages 140–151, 2000.

[16] J.M. McCune, A. Perrig, and M.K. Reiter.
Seeing-is-believing: using camera phones for
human-verifiable authentication. In IEEE Symposium
on Security and Privacy, pages 110–124, 2005.

[17] E.M. Or and D. Pundik. Hand motion and image
stabilization in hand-held devices. IEEE Transactions
on Consumer Electronics, pages 1508–1512, 2007.

[18] D. Parikh and G. Jancke. Localization and
segmentation of a 2d high capacity color barcode. In
IEEE Workshop on Applications of Computer Vision,
pages 1–6, 2008.

[19] J. Rekimoto and Y. Ayatsuka. Cybercode: designing
augmented reality environments with visual tags. In
Proceedings of DARE 2000 on Designing augmented
reality environments, pages 1–10, 2000.

[20] R. Sharp, J. Scott, and A.R. Beresford. Secure mobile
computing via public terminals. Pervasive Computing,
pages 238–253, 2006.

[21] M. Sorel and J. Flusser. Blind restoration of images
blurred by complex camera motion and simultaneous
recovery of 3d scene structure. In Signal Processing
and Information Technology, pages 737–742, 2005.

[22] K. Squire and M. Jan. Mad city mystery: Developing
scientific argumentation skills with a place-based
augmented reality game on handheld computers.
Journal of Science Education and Technology, pages
5–29, 2007.

[23] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong,
W.C. Chen, T. Bismpigiannis, R. Grzeszczuk,
K. Pulli, and B. Girod. Outdoors augmented reality
on mobile phone using loxel-based visual feature
organization. pages 427–434, 2008.

[24] F.L. Wong and F. Stajano. Multi-channel protocols.
In Security protocols: 13th international workshop,
pages 112–127, 2007.

78

Exploring Usability Effects of Increasing Security
in Click-based Graphical Passwords

Elizabeth Stobert, Alain Forget, Sonia Chiasson,
P.C. van Oorschot, Robert Biddle

Carleton University, Ottawa, Canada
estobert@connect.carleton.ca, aforget@scs.carleton.ca, chiasson@scs.carleton.ca,

paulv@scs.carleton.ca, robert_biddle@carleton.ca

ABSTRACT

Graphical passwords have been proposed to address known
problems with traditional text passwords. For example,
memorable user-chosen text passwords are predictable, but
random system-assigned passwords are difficult to remem-
ber. We explore the usability effects of modifying system
parameters to increase the security of a click-based graphi-
cal password system. Generally, usability tests for graphical
passwords have used configurations resulting in password
spaces smaller than that of common text passwords. Our
two-part lab study compares the effects of varying the num-
ber of click-points and the image size, including when differ-
ent configurations provide comparable password spaces. For
comparable spaces, no usability advantage was evident be-
tween more click-points, or a larger image. This is contrary
to our expectation that larger image size (with fewer click-
points) might offer usability advantages over more click-
points (with correspondingly smaller images). The results
suggest promising opportunities for better matching graph-
ical password system configurations to device constraints,
or capabilities of individual users, without degrading usabil-
ity. For example, more click-points could be used on smart-
phone displays where larger image sizes are not possible.

1. INTRODUCTION
The problems of knowledge-based authentication, typi-

cally text-based passwords, are well known. Users often
create memorable passwords that are easy for attackers to
guess, but strong system-assigned passwords are difficult for
users to remember [25]. Users also tend to reuse passwords
across many accounts [17] and this increases the potential
impact if one account is compromised. Alternatives such as
graphical passwords [4, 26] use images instead of text for
authentication. They attempt to leverage the pictorial su-
periority effect [23] which suggests that humans are better
able to remember images than text. Some graphical pass-
word systems also provide cueing [9], whereby a memory
retrieval cue is provided to help users remember and distin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

guish their passwords. In this paper we explore methods to
increase the security of cued-recall graphical passwords1.

We chose to study Persuasive Cued Click-Points (PCCP),
a click-based graphical password system in which users select
click-points on more than one image [6]. PCCP has been
shown to have good usability, while avoiding hotspots that
have been shown to affect the security of other click-based
graphical password systems [7].

We address the threat of guessing attacks. This danger
arises when the total number of possible passwords is small,
or when attackers can predict likely passwords. The design
of PCCP reduces the predictability of passwords by influenc-
ing users during password creation. The number of possible
passwords with its standard configuration is 243, slightly less
than that of 7-character random text passwords. A gap in
previous literature is that usability tests for graphical pass-
word schemes (in general) have only been tested for config-
urations with password spaces smaller than that of common
text passwords. To address this, we explored increasing se-
curity in PCCP, conducting a study modifying two param-
eters: the size of the images presented, and the number of
click-points in each password. The study included 82 par-
ticipants who completed two sessions scheduled two weeks
apart. Our results show that both manipulations affect the
usability of the system and memorability of the passwords.
Moreover, when adjusted to provide the same level of secu-
rity, both manipulations have similar effects on usability and
memorability. This suggests that when increasing security,
constraints of devices and user preferences might be accom-
modated. For example, when designing for mobile devices,
smaller images and more click-points might be used due to
smaller screen sizes.

The remainder of this paper is organized as follows: we
first provide some general background on graphical pass-
words, and more detail on PCCP. We then introduce our
study methodology, and its results. Finally, we discuss the
implications of the results and offer our conclusions.

2. BACKGROUND
Graphical password systems [4, 26] are a type of knowledge-

based authentication that rely on the human ability to bet-
ter recognize and remember images than textual or verbal
information [23]. They fall into three main categories:

Recall: (also known as drawmetric [11]) Users recall and
reproduce a secret drawing on a blank canvas (which may

1An early version of part of this work was an extended ab-
stract in the ACM CHI 2010 student research competition.

79

include grid-lines for guidance). Example systems include
Draw-A-Secret [20] and Pass-Go [27].

Recognition: (also known as cognometric [11] or search-
metric [24]) Users recognize and identify images from a pre-
viously memorized portfolio from a larger set of decoy im-
ages. Example systems include PassFaces [10] and Déjà
Vu [13].

Cued-recall: (also known as locimetric [11]) Users iden-
tify and target previously selected locations within one or
more images. The images act as memory cues to help recall
these locations. Example systems include PassPoints [31]
and Persuasive Cued Click-Points [6].

Other approaches to authentication are token-based sys-
tems and biometrics. While applicable in some cases, these
have potential drawbacks, such as risks of loss, and privacy
implications [21]. Password managers have also been pro-
posed, but usability issues and the dangers of centralization
remain unsolved problems [8].

In cued-recall click-based graphical passwords [4, 31], pass-
words consist of clicking on specific locations on one or more
images. To log in, the user must click on these previously
selected locations. The user is not expected to repeat ex-
act pixel selections. In most systems, an invisible tolerance
square is defined around each click-point so that any of the
enclosed pixels are considered acceptable. Alternatively, a
grid may be visible to users [3].

In this paper, we focus on Persuasive Cued Click-Points
(PCCP) [6]. In PCCP, a user is presented with a number
of images in sequence, and must choose one click-point per
image. The first image is assigned by the system, but each
subsequent image is determined by the user’s previous click.
In other words, clicking on different locations on an image
results in different next images. This provides users with
feedback about the correctness of their password entry at-
tempt — if they see the correct image, they can be fairly
certain they have selected the correct click-point on the pre-
vious image. However, this implicit feedback is not useful to
attackers who do not know the correct sequence of images.

Earlier click-based password schemes have a security weak-
ness which makes passwords easier for attackers to predict.
Users tend to select similar locations on images, forming
hotspots [19, 15, 30, 29]. They also tend to select their click-
points in predictable geometric patterns [7, 29]. To help
create more secure passwords, PCCP includes “persuasive”
elements. As shown in Figure 1, the system assists users
only during password creation by providing a viewport that
highlights a random part of the image. Users must select
a click-point within this viewport. If users are unable to
find a memorable point in the current viewport, they may
press the shuffle button to randomly reposition the view-
port. Studies [6, 7] show that this viewport, together with
the shuffle button, causes click-points to be more randomly
distributed, addressing the predictability problem seen in
earlier schemes.

PCCP is stronger against password-guessing attacks than
other click-based password systems and also maintains login
times and success rates comparable to text passwords [6].
However, to be seriously considered as a replacement for text
passwords, PCCP needs to be at least as secure as standard
text passwords. We can adjust the security of PCCP by ma-
nipulating several parameters, which in turn affect the size
of the theoretical password space. However, little research
of this nature has been undertaken.

Table 1: Theoretical password space for different
text passwords.

Number of Characters n Password Space (bits)
95 6 39
95 8 53
95 10 66

Table 2: System parameters for the six experimental
conditions and distribution of participants (N).

Click- Condition Password
w h points Name Space N

(in bits)
Small 451 331 5 S5 44 14

451 331 6 S6 53 14
451 331 7 S7 61 14

Large 800 600 5 L5 52 14
800 600 6 L6 63 12
800 600 7 L7 73 14

The theoretical password space for a password system is
the total number of unique passwords that could be gener-
ated according to the system specifications. Ideally, a larger
theoretical password space lowers the likelihood that any
particular password may be guessed. For text passwords,
the theoretical password space is typically reported as 95n,
where n is the length of the password, and 95 is the number
of typeable characters on the US English keyboard. Table 1
gives the theoretical password space for text passwords of
different lengths. For PCCP, the theoretical password space
is calculated as: ((w × h)/t2)c, where the size of the im-
age in pixels (w × h) is divided by the size of a tolerance
square (t2, typically 192), to get the total number of tol-
erance squares per image, then is raised to the power of
the number of click-points (c). Table 2 shows the theoret-
ical password space for PCCP with different parameters.
As shown in the tables, the theoretical password space for
PCCP can be adjusted to approximate the space of text
passwords of varying lengths. For example, an 8-character
text password has approximately the same password space
(253 or 53 bits) as a PCCP password with a small image size
(451 × 331 pixels) and 6 click-points, or a large image size
(800 × 600 pixels) and 5 click-points.

The effective password space represents the set of pass-
words that users are likely to create. For example, in the
absence of enforced rules, users of text passwords typically
include only lowercase letters, limiting the effective password
space to 26n. For an 8-character password, this would result
in a password space of 38 bits. Only rough estimates of the
effective password space are available because user choice
is based on personal preference rather than mathematical
principles. Commonly available text password attack tools
such as John the Ripper [12] include dictionaries of up to 40
million entries, or 25 bits. Similarly, hotspots and patterns
reduce the effective password space in click-based graphical
passwords. Since PCCP significantly reduces the occurrence
of hotspots and patterns, its effective password space ap-
proaches the theoretical password space. By matching the
theoretical password space of PCCP to that of text pass-
words, the corresponding effective password space of PCCP
is at least as large (and likely larger) than for text passwords.

80

Figure 1: User interface for password creation for
the small and large image sizes in PCCP.

3. STUDY
Our study explored ways of increasing the password space

of PCCP by changing the configuration of the system. With
PCCP, three parameters can be manipulated: the image
size, the number of click-points per password, and the size of
the tolerance square. In this study, we increased the number
of click-points in each password and increased the size of
the images presented. Our goal was to determine which
manipulation resulted in better usability and memorability
for approximately equivalent password spaces (as a proxy for
security). We chose to keep the size of the tolerance square
constant (set to 19×19 as determined in previous studies [31,
5]) because its size is constrained by human visual acuity [16]
and fine motor control. We had three hypotheses:

Hypothesis 1(a): Increasing the number of click-points
will decrease usability (as defined below).

Hypothesis 1(b): Increasing the size of the image will
decrease usability.

Hypothesis 2: For conditions with approximately com-
parable theoretical password spaces, the condition with the
larger image size will have better usability (i.e., L5 would
have better usability than S6, and L6 would have better
usability than S7).

Our rationale for hypothesis 2 was that conditions with
fewer click-points would have better usability because we
speculated that the cognitive load and the physical task of
entering another click-point would dominate the inspection
task of finding a click-point on a larger image.

Our independent variables were the image size and the
number of click-points. As shown in Table 2, there were six
experimental conditions: S5 (small image, 5 click-points);
S6 (small image, 6 click-points); S7 (small image, 7 click-
points); L5 (large image, 5 click-points); L6 (large image, 6
click-points); and L7 (large image, 7 click-points). The small
image size was 451×331 pixels (the size used in the original
PCCP study [6]) and the large image size was 800×600 pixels
(standardizing to a 4:3 aspect ratio). These specific settings
were chosen to approximate the theoretical password space
of text passwords. Our dependent variables concerned us-
ability, and were success rates, duration of password entry,
and number of errors. Conditions with shorter durations,
fewer errors and higher success rates were judged to have
better usability. The level of security was based on the the-
oretical password space as determined by the independent
variables. We also intended to explore the effects of the dif-
ferent conditions on user behaviour in click-point selection,
possibly resulting in clustering which reduces the effective
password space.

A between-subjects design was used, and the 82 partic-
ipants (47 females and 35 males) were randomly assigned
to one of six study conditions. All participants were regu-
lar computer users accustomed to using text passwords. The
majority of the participants were university undergraduates,
but no participants were studying computer security.

Participants took part in two one-on-one sessions with
the experimenter, scheduled approximately two weeks apart.
The sessions were 1 hour and 30 minutes long, respectively.
Based on previous data, we anticipated that users would
be very successful at remembering their passwords during
their first session. We had participants wait two weeks be-
fore their second session in an effort to counteract ceiling
effects and provide measurable differences. Previous studies
have shown ceiling effects where participants are extremely
successful at remembering their passwords within an hour
of creating them, and thus most success rates are close to
100%, providing no measurable differences when in fact dif-
ferences between conditions may be present.

In their first session, participants initially practiced cre-
ating and re-entering passwords for two fictitious accounts,
a blog and an online gaming account. This was used to ex-
plain the experimental process and familiarize participants
with the system. The practice data was discarded and par-
ticipants did not need to remember these passwords later on.
Next, participants created and re-entered PCCP passwords
for six fictitious accounts (library, email, bank, online dat-
ing, instant messenger, and work). In their second session,
participants tried to re-enter these same six passwords.

The experiment used a custom stand-alone J# applica-
tion running on a Windows desktop computer. A set of
465 images was used, and no images were repeated between
or within passwords for a given user. The small and large
image conditions shared the same images except that they
were displayed at different resolutions. Figure 1 shows the
user interface for creating passwords with the two differ-
ent image sizes. The size of the viewport during password
creation was kept consistent at 75× 75 pixels across all con-
ditions. Similarly, the tolerance square during all password
re-entry phases was 19 × 19 for all conditions. There were
five experiment phases over the two sessions. In the first ses-
sion, participants completed the create, confirm, login and
recall-1 phases. In the second session, participants com-

81

Table 3: Success rates on first attempt, within 3 attempts and multiple attempts (eventual success) per phase.
First Attempt Within 3 Attempts Eventual Success

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2
Condition Login Recall-1 Recall-2 Login Recall-1 Recall-2 Login Recall-1 Recall-2
S5 91% 87% 25% 100% 95% 37% 100% 99% 42%
S6 83% 89% 28% 99% 93% 40% 100% 93% 48%
S7 92% 85% 18% 99% 91% 32% 100% 96% 42%
L5 91% 82% 18% 100% 94% 33% 100% 94% 45%
L6 94% 93% 18% 98% 97% 27% 100% 100% 36%
L7 92% 82% 5% 100% 96% 14% 100% 100% 36%

pleted the recall-2 phase, and were debriefed and compen-
sated for their time. Descriptions of the experiment phases
are given below. For each of the six accounts:

Create Phase (Session 1): Participants selected points
on images to create their password.

Confirm Phase (Session 1): Participants re-entered
the same password to make sure they remembered it. They
could re-try as many times as necessary and could reset their
password if it was forgotten.

Login Phase (Session 1): Participants attempted to
log in to the account using the same password. They could
re-try as many times as necessary and could reset their pass-
word if it was forgotten.

Once the user had created all their passwords:
Recall-1 Phase (Session 1): Participants attempted to

log in to each account in a shuffled order. Multiple attempts
were allowed and participants could say they had forgotten
a password to move to the next account.

Recall-2 Phase (Session 2): Two weeks later, partici-
pants attempted to log in to their accounts in the same shuf-
fled order. Multiple attempts were allowed and participants
had the option of saying they had forgotten a password to
move to the next account.

4. RESULTS
In this section, we report on the effects of the indepen-

dent variables (number of click-points and image size) on
success rates, errors and durations of password entry. We
used statistical analysis to determine whether differences in
the data were likely to reflect actual differences between con-
ditions or whether these might reasonably have occurred by
chance. Specific tests will be described throughout the sec-
tion as they are reported. In all cases, we regard a value of
p < .05 as indicating statistical significance. In such cases
there is less than a 5% probability that these results oc-
curred by chance. In the tables reporting statistics, results
in bold are statistically significant. Several figures in this
section show boxplots to illustrate distributions. Boxplots
show the median, the inner quartiles (as a box), and the
outer quartiles (as whiskers).

We report on each dependent variable individually, assess-
ing each in relation to the two hypotheses. The phases from
Session 1 (create, confirm, login, recall-1) provide a measure
of usability in the short-term, while Session 2’s recall-2 phase
provides a measure of usability after two weeks. Results for
each hypothesis are summarized at the end of this section.

Since each user had six separate passwords, we aggregated
the data by users to ensure independence in the data. For
success rates, we tabulated the number of successful pass-
word entries per user, giving a number between 0 and 6.

Table 4: Regression tests for success rates for each
phase, only the most relevant measure is reported.

First Within 3
Attempt Attempts
Session 1 Session 2

Login Recall-1 Recall-2
Number of p = 0.906 p = 0.762 p = 0.043
Click-points
Image p = 0.914 p = 0.643 p = 0.017
Size

For durations, we took the mean of successful password en-
try times for each user. For errors, we again calculated the
mean number of errors for successful password entries.

To test hypotheses 1(a) and 1(b), statistical tests evalu-
ating for main effects of number of click-points and image
size were necessary. For statistical tests exploring the ef-
fect of number of click-points, we created three distributions
grouped on the number of click-points and ignoring image
size (i.e., one distribution combining S5 and L5 data, one
including S6 and L6, and one including S7 and L7). Sim-
ilarly, to explore the effect of image size, we created two
distributions based solely on image size (i.e., one distribu-
tion including S5, S6, and S7, and one distribution including
L5, L6, and L7).

g , , , g
L5, L6, and L7).

5 6 7

0
1

2
3

4
5

6

Click-points

s
u
c
c
e
s
s
e
s

451x331 800x600

0
1

2
3

4
5

6

Image Size

s
u
c
c
e
s
s
e
s

Figure 2: Recall-2 number of successes per user by
click-points (left) and by image size (right).

4.1 Success Rates
We report success rates at three different levels: first time

success, success within three attempts, and eventual success.
First time success occurs when the password is entered cor-
rectly on the first attempt, with no mistakes or restarts.
Success rates within three attempts indicate that fewer than
three mistakes or restarts occurred. Eventual success rates
indicate that the participant made multiple attempts, but
was eventually successful. Mistakes occur when the partic-
ipant presses the Login button but the password entry is

82

Table 5: Mean times in seconds and two-way ANOVA results comparing all 6 conditions for each phase.
Session 1 Session 2

Condition Create (s) Confirm (s) Login (s) Recall-1 (s) Recall-2 (s)
S5 66.9 21.2 16.1 21.5 50.5
S6 109.1 23.3 19.6 20.9 61.5
S7 81.1 28.6 20.8 25.0 75.1
L5 106.2 24.1 18.1 19.3 74.3
L6 103.8 30.2 20.8 23.7 90.5
L7 95.1 32.7 22.0 27.9 81.0

Number of F (2, 76) = 0.99, F(2,76) = 4.56 F(2,76) = 5.46 F (2, 76) = 2.40 F (2, 57) = 0.98
Click-points p = 0.375 p = 0.013 p = 0.006 p = 0.097 p = 0.382
Image Size F (1, 76) = 1.68 F(1,76) = 4.39 F (1, 76) = 1.73 F (1, 76) = 0.24 F (1, 57) = 3.51

p = 0.200 p = 0.039 p = 0.193 p = 0.623 p = 0.066

incorrect. Restarts occur when the participant presses the
Reset button midway through password entry and restarts
password entry. They are analogous to pressing delete while
entering text, except that PCCP’s implicit feedback helps
users detect and correct mistakes during login.

Success rates were examined for the login, recall-1 and
recall-2 phases. For hypotheses 1(a) and 1(b), linear re-
gressions were used to look for significant effects of num-
ber of click-points and image size. In hypothesis 2, we
used Wilcoxon (Mann-Whitney) tests to compare the dis-
tributions of the conditions with similar levels of security.
Wilcoxon tests are similar to independent sample t-tests,
but make no assumptions about the distributions of the
compared samples, which is appropriate to the count data
in these individual conditions. During the first session (lo-
gin and recall-1), we consider success on first attempt to be
the most important measure of success since users’ memory
of the password will still be fresh. For recall-2, occurring
after two weeks, we consider success within 3 attempts as
the most appropriate measure since it most closely reflects
account lockout practices for real systems. Results of statis-
tical tests in this section are based these two choices.

Table 3 reports success rates for the login, recall-1 and
recall-2 phases. Success rates were very high in Session 1,
indicating that participants were very successful at remem-
bering their passwords after a short time period. Success
rates after two weeks were much lower, reflecting the diffi-
culty of the memory task. For clarity, Table 3 shows per-
centages, but the statistical tests were based on the count of
successes per user over the six accounts, yielding a number
from 0 to 6. Figure 4 shows boxplots indicating the ranges
of these counts, distinguishing the different ranges by both
click-points and image sizes. Table 4 shows the results of sta-
tistical tests using regression to determine whether the dif-
ferences between the ranges might have occurred by chance.

Hypothesis 1(a): Table 4 shows that in Session 1, nei-
ther the login or recall-1 phases showed any significant ef-
fects for the number of click-points. For recall-2, there was a
significant effect of number of click-points (p = 0.043) when
considering success within three attempts. This evidence
supports hypothesis 1(a) with respect to success rates.

Hypothesis 1(b): As shown in Table 4, varying the im-
age size did not lead to any significant effects in the login
or recall-1 phases. In the recall-2 phase, there was a signifi-
cant effect of image size (p = 0.017). This evidence supports
hypothesis 1(b) with respect to success rates.

Hypothesis 2: Wilcoxon tests showed no significant dif-
ferences between S6 and L5 in any phase. Similarly, no
significant differences in success rates were found between
S7 and L6. Therefore, we have no evidence that having a
larger image or more click-points had a larger impact on
participants’ ability to remember their passwords, offering
no support for hypothesis 2.
participants’ ability to remember their passwords, offering
no support for hypothesis 2.

5 6 7

5
0

1
0
0

1
5
0

2
0
0

Click-points

s
e
c
o
n
d
s

451x331 800x600

5
0

1
0
0

1
5
0

2
0
0

Image Size

s
e
c
o
n
d
s

Figure 3: Recall-2 times per user by click-points
(left) and by image size (right).

Table 6: t-tests for times: Hypothesis 2
Session Phase S6 vs. L5 S7 vs. L6

Session 1

Create t(25) = 0.108 t(16) = −1.426
p = 0.915 p = 0.173

Confirm t(23) = −0.319 t(24) = −0.362
p = 0.753 p = 0.720

Login t(26) = 1.058 t(15) = 0.018
p = 0.300 p = 0.986

Recall-1 t(14) = 0.851 t(21) = 0.303
p = 0.409 p = 0.765

Session 2 Recall-2 t(8) = −0.790 t(2) = −0.049
p = 0.453 p = 0.965

4.2 Times
Times were measured for each password entry from when

the first image appeared on the screen until the participant
successfully logged in. This included the time to enter their
username, as well as any time making mistakes (pressing
the login button and having the system say that the pass-
word is incorrect) or resulting from restarts (analogous to
pressing the backspace key when entering a text password).
All eventually successful password attempts were included

83

in the time calculations. We ran two-way ANOVAs to ex-
amine the main effects of number of click-points and image
size. ANOVAs compare variance of the means for multiple
samples and identify whether any of the samples are likely
to come from different distributions. We used independent
samples t-tests to test for significant differences in times be-
tween S6 and L5, and between S7 and L6. These tests com-
pare variance of the means between two distributions.

Mean times for each phase are reported in Table 5 and the
distributions for recall-2 are seen in Figure 3. No clear pat-
tern emerges in the mean times taken to create passwords,
but a general increase in median times can be seen in other
phases as more click-points or larger images are used. As
should be expected, participants took much longer to re-
enter their passwords after two weeks (recall-2), but as in-
tended, this allows comparison between conditions. Table 5
also displays the two-way ANOVA results for main effects of
number of click-points and image size.

Hypothesis 1(a): As seen in Table 5, only the confirm
and login phases show statistically significant differences for
number of click-points. These duration results provide little
evidence to support hypothesis 1(a).

Hypothesis 1(b): During recall-2, small increases in me-
dian times can be seen in Figure 3 as larger images are used.
The only statistically significant effect of image size is seen
in the confirm phase. These results offer very little evidence
that image size affects time for password entry, and do not
support hypothesis 1(b).

Hypothesis 2: As shown in Table 6, no significant dif-
ferences in durations were seen for S6 vs. L5 or for S7 vs.
L6. Participants in conditions with comparable theoreti-
cal password spaces could create and recall their passwords
equally quickly. We therefore found no evidence to support
hypothesis 2 with respect to times.hypothesis 2 with respect to times.

5 6 7

0
2

4
6

8
1
0

Click-points

e
r
r
o
r
s

451x331 800x600

0
2

4
6

8
1
0

Image Size

e
r
r
o
r
s

Figure 4: Recall-2 number of errors per user by
click-points (left) and by image size (right).

4.3 Errors
An error was recorded every time a participant restarted

their password attempt or failed to login because their pass-
word was incorrect. Since error distributions were non-
normal, we used several non-parametric tests for analysis.
When comparing across all conditions, we ran Kruskal-Wallis
tests (conventionally reported as χ2), which are similar to
ANOVAs, but used when the distribution of the samples is
skewed, as is common with error counts. When compar-
ing two specific conditions, we conducted Wilcoxon (Mann-
Whitney) tests to check for significant differences.

Table 7: Mean number of errors per phase.
Session 1 Session 2

Condition Confirm Login Recall-1 Recall-2
S5 0.43 0.17 0.49 1.33
S6 0.28 0.29 0.05 1.08
S7 0.35 0.11 0.33 2.40
L5 0.45 0.10 0.12 1.79
L6 0.35 0.10 0.17 4.88
L7 0.75 0.10 0.48 4.28

Participants in all conditions made very few errors when
entering their passwords during Session 1. For the confirm,
login and recall-1 phases, the mean number of errors per ac-
count for each phase was less than 1 (Table 7). After two
weeks (recall-2), participants made many more errors, as re-
flected in means ranging between 1.08 and 4.88 errors. This
contributed to the longer recall-2 times seen in Section 4.2.
The boxplots in Figure 4 show the mean number of errors
per user in the recall-2 phase.

Hypothesis 1(a): Kruskal-Wallis tests showed no effect
of number of click-points on errors in any phase, therefore
offering no support for hypothesis 1(a).

Hypothesis 1(b): In Session 1, increasing the image
size had no significant effect on errors. However, there was
a significant effect of image size (χ2(1, n = 63) = 8.846, p =
0.003) in the recall-2 phase, indicating that having larger
images caused participants to make more errors after two
weeks. This result supports hypothesis 1(b), which stated
that increasing image size would decrease usability.

Hypothesis 2: Wilcoxon tests were used to compare the
number of errors between S6 and L5 and between S7 and
L6. Results showed no significant differences in any phases,
providing no evidence to support hypothesis 2.

4.4 Summary of Results
We chose three measures of usability: success rates, times

and number of errors. As we describe above, phases from the
first session (create, confirm, login, and recall-1) use success
on first attempt as the measure of success. Recall-2 uses
success within 3-attempts instead. Times and errors include
all activity until successful login.

Hypothesis 1(a): Increasing the number of click-points
will decrease usability. We found partial support for hypoth-
esis 1(a). Although several results indicate a trend towards
decreased usability with additional click-points, few statis-
tically significant results were found. The statistically sig-
nificant differences were in the recall-2 success rates, and in
the times taken to confirm and login with passwords.

Hypothesis 1(b): Increasing the size of the image will
decrease usability. We found evidence supporting hypothesis
1(b). Significant effects of image size were seen in the recall-2
phase for both successes and errors. Users with large images
had lower success rates and made more errors than those
with small images. A similar trend was seen in recall-2 time
results, but statistical tests were not significant.

Hypothesis 2: For conditions with approximately com-
parable theoretical password spaces, the condition with the
larger image size will have better usability. There were no
significant differences for success rates, times, or number of
errors. Our results provide no support for hypothesis 2.

84

J(9)
●

●

● ●

●

●

●

●

●

●

● ●
● ●

●

●

● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

5 click−points
6 click−points
7 click−points

al
ph

am
at

ba
ng

le
s

be
nt

o
bu

sy
m

ap
ca

na
l

ca
rs

cd
co

ve
rs

ch
in

at
ow

n
cla

ss
ro

om
cli

m
b

du
ck

s
ea

st
er

eg
gs

fa
ce

s
fa

lle
nd

ow
n

go
ld

en
pi

gs
ha

rb
ou

r
isp

y
m

on
op

ol
y

m
ur

al
no

tic
eb

oa
rd

pa
pe

rc
lip

s
ph

ila
de

lp
hi

a
pi

nk
m

ap
po

ol
po

rc
h

sm
ar

tie
s

st
at

ue
te

ap
ot

s
tri

ba
l

tru
ck

0.0

0.5

1.0

1.5

Figure 5: J-statistics for distributions of 5, 6, or 7
click-points. Data from the larger image is scaled to
allow for aggregation.

5. CLICK-POINT CLUSTERING
During PCCP password creation, users pressed the shuf-

fle button when they were unable or unwilling to select a
click-point within the currently highlighted viewport. We
expect fewer shuffles to lead to more randomly distributed
passwords, and hence greater security. In this study, there
was large variability in the number of shuffles but no clear
pattern emerged. The median number of shuffles per pass-
word for all conditions is less than five, indicating that most
participants pressed the shuffle button less than once per
image (passwords consisted of between 5 and 7 images).

Passwords should be as random as possible while still
maintaining memorability. Clustering of click-points on an
image across users creates what are known as hotspots. At-
tackers who can determine likely hotspots (through image
analysis or by gathering a sample of passwords from even a
small number of people [30]) would be better positioned to
launch an effective dictionary guessing attack. Ideally, a sys-
tem would minimize the occurrence of hotspots. PCCP at-
tempts to accomplish this through the randomly-positioned
viewport, however, users may shuffle the viewport to find a
memorable location. We explored whether either image size
or number of click-points had an effect on user choice.

To analyze the randomness and clustering of our two-
dimensional spatial data, we turned to point pattern analy-
sis [14] commonly used in biology and earth sciences. Our
analysis used spatstat [2], a spatial statistics package for the
R programming language.

We used the J-statistic [28] as a measure of click-point
clustering on a subset of images for which we had sufficient
data. Our system ensured that 30 of the images were shown
to every participant, giving enough data points for anal-
ysis on these particular images. To measure the cluster-
ing of points in a dataset, the J-statistic combines nearest-
neighbour calculations and empty-space measures for a given
radius r. When J(r) = 0, it indicates that all points cluster
at the same location. When J(r) = 1, the points are ran-
domly dispersed across the space. Finally, when J(r) > 1,
the points are uniformly distributed. For passwords, we
want results closer to J(r) = 1 since this would be least
predictable by attackers. We examined clustering at J(9).
A radius of 9 approximates the size of the 19× 19 tolerance
squares used by our system during password re-entry.

Figure 5 shows the level of clustering for the 30 images,
with image names on the x-axis. This figure illustrates the

J(9)

451×331
800×600 Scaled

al
ph

am
at

ba
ng

le
s

be
nt

o
bu

sy
m

ap
ca

na
l

ca
rs

cd
co

ve
rs

ch
in

at
ow

n
cla

ss
ro

om
cli

m
b

du
ck

s
ea

st
er

eg
gs

fa
ce

s
fa

lle
nd

ow
n

go
ld

en
pi

gs
ha

rb
ou

r
isp

y
m

on
op

ol
y

m
ur

al
no

tic
eb

oa
rd

pa
pe

rc
lip

s
ph

ila
de

lp
hi

a
pi

nk
m

ap
po

ol
po

rc
h

sm
ar

tie
s

st
at

ue
te

ap
ot

s
tri

ba
l

tru
ck

0.0

0.5

1.0

1.5

Figure 6: J-statistic for distributions of small and
large images. Data from the larger images is scaled
to allow generation of comparable J-statistics.

effects of the number of click-points on clustering. Points
on each line contain statistics for passwords created using
either 5, 6, or 7 click-points. The J-statistic for each image
is distinct; the connecting lines are only included for read-
ability. As with earlier analysis in this paper, data from the
small (451× 331) and large (800× 600) images are grouped
together based on the number of click-points per password.
For example, the 5 click-point line represents all passwords
containing 5 click-points regardless of whether they were cre-
ated on small or large images. The point coordinates on the
large images are re-scaled to the coordinate system of the
small image so that all data is presented at 451×331 dimen-
sions. This aligns features on the small and large versions of
the same images. The lines on the graph do not show any
consistent relationship between each other.

To our knowledge, there is no statistical test to compare
sets of J-statistics to each other. If we regard the data as
categorical, we can identify six categories stemming from
the possible orderings: 5-6-7, 5-7-6, 6-5-7, 6-7-5, 7-5-6, 7-6-
5. For example, in Figure 5 the alphamat image falls in the
5-7-6 category because J(9) for 5 click-points is larger than
J(9) for 7 click-points, which is larger than J(9) for 6 click-
points. We can then apply a chi-squared test between the
observed results and the expected results (equal probability
for each category). This test shows no significant differences
(χ2(5, n = 60) = 5.675, p = 0.339). We therefore find no
evidence for a difference in clustering between the different
numbers of click-points.

Figure 6 shows the level of clustering for the 30 images,
distinguishing the effects of image size. Each line contains
the statistics for passwords created on either the small or
large images. For each of the two cases, data from 5, 6, and 7
click-points are combined. In other words, all passwords cre-
ated on large images (regardless of how many click-points)
are grouped together, and all passwords created on small
images (regardless of how many click-points) form a second
group. The data from the large images are again scaled to
ensure comparability of the J-statistic.

For most images, the graph indicates that the larger im-
ages have less clustering (J(9) closer to 1) than the smaller
images. If we regard the data as categorical, we could dis-
tinguish two categories representing whether the small or
large image size has stronger clustering. We applied a chi-
squared test between the observed results and the expected
results (equal probability for each category). This test shows

85

a significant difference in clustering for the small and large
images (χ2(1, n = 60) = 9.603, p = 0.002), indicating that
larger images have significantly less clustering.

In summary, from Figure 5 it appears that additional
click-points do not lead to user behaviour resulting in more
clustering. However, larger images appear to influence user
choice towards less clustering. This is probably due to the
relatively smaller size of the viewport on the larger images.
This result suggests that PCCP’s shuffle mechanism and
viewport (if kept at the same size) is more effective in reduc-
ing clustering, and therefore promoting security, when used
with larger images.

6. DISCUSSION
We did not see large differences in how the number of

click-points and image size affected usability. We expected
that increasing the image size would have little or no effect
on usability and memorability but we found that it had a
similar effect to increasing the number of click-points.

This presents an opportunity, suggesting that other con-
siderations can be taken into account when increasing se-
curity. In a situation where choosing a click-point is com-
paratively difficult (as for a person with a poor fine motor
control), this might be accommodated by having fewer click-
points, but larger images. More click-points might be appro-
priate in a situation where screen size was limited, such as on
a mobile device. The equivalent demands on usability when
increasing security thus give increased flexibility in design.

The conditions under which participants created and used
their passwords are clearly artificial. In real life, it is ex-
tremely unlikely that a user would create six passwords in a
row, then not see them again for two weeks, until they tried
to log into all six accounts. The design of our study was
meant to emphasize differences between the six conditions
by making the task harder. The results of the study for
the create, confirm, and login phases are similar to results
seen in an earlier study of PCCP [6] and are consistently
good, with only small differences between conditions. Fur-
ther work is needed to confirm real-life usability. We have
developed a web-based infrastructure that will allow us to
conduct such tests in the near future.

Table 8: Image sizes required, by space and clicks.
Bits Clicks X(pixels) Y(pixels) X(cm) Y(cm)
52 6 442 332 11 9
52 5 806 605 21 16
52 4 1986 1489 51 38
52 3 8916 6687 229 171
52 2 179727 134795 4608 3456
62 6 788 591 20 15
62 5 1613 1210 41 31
62 4 4723 3542 121 91
62 3 28305 21229 726 544
62 2 1016688 762516 26069 19552

Multiple passwords are an important issue in authenti-
cation. Users typically have many different accounts and
are asked to remember many different passwords [17]. This
places an increased memory burden on users, and can lead
to security and usability problems such as forgetting pass-
words, and confusing passwords across accounts [18]. Re-

membering a password for one account can disrupt the mem-
ory of a password for another account. This psychologi-
cal phenomenon is known as interference [1]. In our study,
participants each created six passwords, each of which was
only tenuously linked to a user account. These accounts
(library, email, bank, blog, online dating, instant messen-
ger, and work) were denoted only by coloured banners on
the login screen (see Figure 1). Although we attempted to
emphasize to the user that each account was distinct, there
was no practical difference between them. In real life, ac-
counts would be separated from each other by appearance
of the website, or created at different times. Participants
likely had a hard time distinguishing their passwords from
each other, and this interference might have led to more
difficulty in remembering them after two weeks.

Although our study focused on several specific configu-
rations of PCCP, it is important to consider the general
underlying principles involved.

Image Size: The size of the images shown in each pass-
word seems to relate to several human factors. The user
likely responds to the appearance of the image with a quick
visual survey of the image. While principles of visual at-
tention apply to this survey, the nature of the survey may
change with familiarity, or even with exposure to other im-
ages or events that relate to the image. The human vi-
sual system involves several approaches, including taking in
the overall impression, and responding to various attractors.
Our initial speculation was that these might be the domi-
nant factors, and we did not expect them to vary much with
image size.

For closer inspection of an image, however, the eye will
be directed to specific parts of the image. Such close vi-
sual inspection requires high acuity vision using the fovea,
the area of the retina with a high density of photoreceptor
cells [16]. The size of the fovea limits foveal vision to an an-
gle of approximately 1◦ within the direct line to the target
of interest. At a normal viewing distance for a computer
screen, say 60cm, this results in sharp vision over an area of
approximately 4cm2. The size of the image, and the number
of attractors, will then determine the number of foveal areas
the user will inspect, and the distance of the saccades as
they move from one target to another will also be a factor.

Several factors will affect how PCCP users survey an im-
age. PCCP is a cued-recall scheme, so users will be looking
for cues to remind them where to click. PCCP also gives im-
plicit feedback with each image about the previous click, by
displaying the correct image if user choose the correct click-
point. This means that the user will be assessing whether or
not the current image is familiar to them. Then, once users
have recognized the image and found their click-point, they
must position the cursor correctly using a mouse, touchpad
or other pointing device. The time taken to position the
cursor may be predicted by Fitts’ Law, which determines
targeting time from the distance and target size [22]. How-
ever, we typically observe users moving the cursor to follow
their gaze as they examine the image, so the final movement
to a click-point is typically very short.

Click-points: The number of click-points in a PCCP
password requires a repetition of all the elements involved in
finding and clicking on a single point. We initially assumed
this repetition would make the number of click-points a more
important factor than the size of the image in determining
the usability, but the study results did not support this. In

86

a pure-recall system, we would expect to see serial memory
effects, which cause people to better remember the items
at the beginning and end of an ordered list. With PCCP’s
cued-recall, however, we expect milder serial memory effects,
because participants respond to each picture as an individ-
ual cue. However, it is certainly possible that users begin
to learn the pattern of click-points and anticipate where to
focus their gaze, and move their cursor. This anticipation
may reduce the work needed per image in ways that have
not yet been fully explored.

Table 9: Click numbers required, by space and size.

Bits X(pixels) Y(pixels) Tolerance Clicks
52 800 600 19 5
52 451 331 19 6
52 320 480 38 8
52 240 320 38 9
52 80 120 38 19
62 800 600 19 6
62 451 331 19 7
62 320 480 38 9
62 240 320 38 11
62 80 120 38 23

Alternative Configurations: It appears that factors
such as increasing the number of click-points or image size
balance each other out, at least for the settings in our study.
To consider the general underlying principles, we might spec-
ulate about more extreme possibilities. In our study, the two
image sizes used were 451 × 331 pixels and 800 × 600 pix-
els. The tolerance region of the scheme was 19 × 19 pixels,
which meant that the images had approximately 414 and
1330 click areas distinguishable to the system, respectively.
Our LCD display measured 43cm (17in) diagonally with a
resolution of 1280× 1024 pixels. The small image measured
about 12cm × 9cm, or 84cm2, and the large image about
21cm × 16cm or 336cm2. Our study showed that users can
cope with inspecting and selecting click-points on images of
both sizes within a reasonable amount of time: mean lo-
gin times were approximately 20 seconds, including entry of
username and all click-points.

In our S6 and L5 conditions, the theoretical password
space is approximately 52 bits. In S7 and L6, it is about
62 bits. Knowing that the image sizes in these conditions
were usable, we explore larger sizes in order to decrease the
number of click-points while keeping the password space the
same. Table 8 shows some possibilities. For example, even
requiring only 3 clicks and keeping the aspect ratio the same
would require an image size of 8916×6687 pixels for 52 bits,
and 28305×21229 pixels for 62 bits. These would seem to be
unreasonable sizes for graphical password images, and would
involve a very large number of areas to be inspected. As the
number of click-point required decreases, the size of the im-
ages implied must grow exponentially, and quickly reaches
the bounds of usability. We do navigate on very large virtual
displays when using cartographic browsers such as Google
Earth. This is only manageable, however, through the use
of the zoom and pan capabilities, and so the interaction in
fact involves a number of clicks.

Implications for Mobile Devices: Our participants
managed well with passwords of 5, 6, and 7 click-points in
length, so an alternative exploration might be to consider
more click points, and allow the image size to be reduced
while still maintaining a large password space. Table 9 shows
possibilities, using typical small sizes on mobile devices. For
example, a small mobile phone might have 120 × 80 pixels,
whereas a Blackberry Curve 8300 has 320×240 pixels, while
the Blackberry Bold and the Apple iPhone have 480 × 320
pixels. Mobile devices sometimes involve a touchscreen in-
stead of a stylus, and often use a dense pixel pitch so images
appear physically smaller than the equivalent dimensions on
a computer screen. In the table, we accommodate this by
using a tolerance region for the mobile devices of 38 × 38:
the size of square onscreen keyboard elements on an iPhone.
For the iPhone screen, this would require 8 clicks for a 52
bit password space. These numbers seem potentially accept-
able, especially as we frequently type words of that many
characters. This suggests that a graphical password scheme
such as PCCP might be usable on mobile devices. The small
screens will not be compatible with the current viewport be-
cause its current size highlights too much of the image to
effectively reduce clustering. We are currently exploring a
redesigned viewport mechanism. The increasing use of mo-
bile devices for secure online transactions indicates a need
for more secure passwords than simple screen unlock mecha-
nisms, and we believe a system such as PCCP has potential
for both usability and security.

7. CONCLUSION
In this paper, we explored the issue of how increasing the

security of a click-based graphical password scheme would
affect usability and memorability. We tested PCCP with
different parameters in order to evaluate its usability when
the theoretical password space is increased. We found that
increasing the number of click-points or increasing the image
size both have usability and memorability impacts. While
varying parameters to hold constant the size of the theoret-
ical password space, we found no evidence of differences be-
tween configurations varying the number of click-points and
image size. Additionally, we explored the effects of number
of click-points and image size on user behaviour resulting in
clustering of click-points. We found no evidence that the
number of click-points had an effect, but it appeared that
larger images led to less clustering.

These results have important implications for practical
configuration of graphical password schemes in various con-
texts. For example, the results suggest that for mobile de-
vices with small screens, it might be possible to increase se-
curity by using smaller images and more click-points while
retaining usability and memorability. Conversely, larger im-
ages appear to lead to less clustering, suggesting an issue
that should be considered in future research.

8. ACKNOWLEDGMENTS
The second author acknowledges NSERC Postgraduate

Scholarship funding. The fourth author is Canada Research
Chair in Internet Authentication and Computer Security,
and acknowledges NSERC funding of this chair, a Discovery
Grant, and a Discovery Accelerator Supplement. The fifth
author acknowledges funding of an NSERC Discovery Grant.
Partial funding from the NSERC Internetworked Systems
Security Network (ISSNet) is also acknowledged.

87

9. REFERENCES
[1] M. Anderson and J. Neely. Interference and inhibition

in memory retrieval. In E. Bjork and R. Bjork,
editors, Handbook of Perception and Cognition, pages
237–313. Academic Press, 1996.

[2] A. Baddeley and R. Turner. R. Spatstat: An R
package for analyzing spatial point patterns. Journal
of Statistical Software, 12(6):1–42, 2005.

[3] K. Bicakci, M. Yuceel, B. Erdeniz, H. Gurbaslar, and
N. Atalay. Graphical Passwords as Browser Extension:
Implementation and Usability Study. In Third IFIP
WG 11.11 International Conference on Trust
Management, Purdue University, USA, June 2009.

[4] R. Biddle, S. Chiasson, and P. C. van Oorschot.
Graphical passwords: Learning from the first
generation. Technical Report TR-09-09, Computer
Science, Carleton University,
www.scs.carleton.ca/research/tech_reports, 2009.

[5] S. Chiasson, R. Biddle, and P. C. van Oorschot. A
second look at the usability of click-based graphical
passwords. In 3rd Symposium on Usable Privacy and
Security (SOUPS), July 2007.

[6] S. Chiasson, A. Forget, R. Biddle, and P. C. van
Oorschot. Influencing users towards better passwords:
Persuasive Cued Click-Points. In Human Computer
Interaction (HCI), British Computer Society, 2008.

[7] S. Chiasson, A. Forget, R. Biddle, and P. C. van
Oorschot. User interface design affects security:
Patterns in click-based graphical passwords.
International Journal of Information Security,
8(6):387–398, 2009.

[8] S. Chiasson, P. C. van Oorschot, and R. Biddle. A
usability study and critique of two password
managers. In 15th USENIX Security Symposium.
Usenix, August 2006.

[9] R. G. Crowder and R. L. Greene. Serial Learning:
Cognition and Behaviour. In E. Tulving and F. I.
Craik, editors, The Oxford Handbook of Memory,
chapter 8. Oxford University Press, 2000.

[10] D. Davis, F. Monrose, and M. Reiter. On user choice
in graphical password schemes. In 13th USENIX
Security Symposium, August 2004.

[11] A. De Angeli, L. Coventry, G. Johnson, and
K. Renaud. Is a picture really worth a thousand
words? Exploring the feasibility of graphical
authentication systems. International Journal of
Human-Computer Studies, 63(1-2):128–152, 2005.

[12] S. Designer. John the Ripper password cracker.
http://www.openwall.com/john/.

[13] R. Dhamija and A. Perrig. Déjà Vu: A user study
using images for authentication. In 9th USENIX
Security Symposium, August 2000.

[14] P. Diggle. Statistical Analysis of Spatial Point
Patterns. Academic Press: New York, NY, 1983.

[15] A. Dirik, N. Menon, and J. Birget. Modeling user
choice in the Passpoints graphical password scheme.
In 3rd ACM Conference on Symposium on Usable

Privacy and Security (SOUPS), July 2007.

[16] A. Duchowski. Eye Tracking Methodology: Theory and
Practice. Springer, 2nd edition, 2007.

[17] D. Florencio and C. Herley. A large-scale study of
WWW password habits. In 16th ACM International
World Wide Web Conference (WWW), May 2007.

[18] S. Gaw and E. Felten. Password management
strategies for online accounts. In 2nd Symposium On
Usable Privacy and Security (SOUPS), July 2006.

[19] K. Golofit. Click passwords under investigation. In
12th European Symposium On Research In Computer
Security (ESORICS), LNCS 4734, September 2007.

[20] I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and
A. Rubin. The design and analysis of graphical
passwords. In 8th USENIX Security Symposium,
August 1999.

[21] L. Jones, A. Anton, and J. Earp. Towards
understanding user perceptions of authentication
technologies. In ACM Workshop on Privacy in
Electronic Society, 2007.

[22] I. S. MacKenzie. Fitts’ law as a research and design
tool in human-computer interaction.
Human-Computer Interaction, 7(1):91–139, 1992.

[23] D. Nelson, V. Reed, and J. Walling. Pictorial
Superiority Effect. Journal of Experimental
Psychology: Human Learning and Memory,
2(5):523–528, 1976.

[24] K. Renaud. Guidelines for designing graphical
authentication mechanism interfaces. International
Journal of Information and Computer Security,
3(1):60 – 85, June 2009.

[25] M. A. Sasse, S. Brostoff, and D. Weirich.
Transforming the ‘weakest link’ – a human/computer
interaction approach to usable and effective security.
BT Technology Journal, 19(3):122–131, July 2001.

[26] X. Suo, Y. Zhu, and G. Owen. Graphical passwords:
A survey. In Annual Computer Security Applications
Conference (ACSAC), December 2005.

[27] H. Tao and C. Adams. Pass-Go: A proposal to
improve the usability of graphical passwords.
International Journal of Network Security,
7(2):273–292, 2008.

[28] M. van Lieshout and A. Baddeley. A nonparametric
measure of spatial interaction in point patterns.
Statistica Neerlandica, 50(3):344–361, 1996.

[29] P. C. van Oorschot, A. Salehi-Abari, and J. Thorpe.
Purely automated attacks on passpoints-style
graphical passwords. IEEE Trans. Info. Forensics and
Security, 5(9):393–405, 2010.

[30] P. C. van Oorschot and J. Thorpe. Exploiting
predictability in click-based graphical passwords.
Journal of Computer Security, to appear, 2011.

[31] S. Wiedenbeck, J. Waters, J.-C. Birget, A. Brodskiy,
and N. Memon. Authentication using graphical
passwords: Effects of tolerance and image choice. In
1st Symposium on Usable Privacy and Security
(SOUPS), July 2005.

88

Security Analysis of a Fingerprint-protected USB Drive

Benjamin Rodes
Department of Computer Science

James Madison University
Harrisonburg, VA 22807

benjaminrodes@gmail.com

Xunhua Wang
∗

Department of Computer Science
James Madison University
Harrisonburg, VA 22807

wangxx@jmu.edu

ABSTRACT

Fingerprint-protected Universal Serial Bus (USB) drives have
seen increasing deployment recently to protect mobile data.
Compared to regular USB drives, a fingerprint-protected
USB drive has an integrated optical scanner and a private

partition/drive (for example, drive G: on MS Windows),
which is not accessible before a successful fingerprint au-
thentication.
This paper studies the security of a representative fingerprint-

protected USB drive called AliceFDrive. Our results are
twofold. First, through black-box reverse engineering and
manipulation of binary code in a DLL, we bypassed AliceF-
Drive’s fingerprint authentication and accessed the private
drive without actually presenting a valid fingerprint. This
authentication bypass is a class attack in that the modified
DLL can be distributed to any naive users to bypass AliceF-
Drive’s fingerprint authentication.
Second, in our security analysis of AliceFDrive, we devel-

oped a program to automatically recover fingerprint refer-
ence templates from AliceFDrive, which may make AliceF-
Drive worse than a regular USB drive: when Alice loses her
fingerprint-protected USB drive, she does not only lose her
data, she also loses her good-quality fingerprints, which are
hard to recover as Alice’s fingerprints do not change much
over a long period of time.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-

cess controls, authentication, cryptographic controls; K.6.3
[Management of Computing and Information Sys-
tems]: Security and Protection—Authentication, unautho-

rized access

General Terms

Security

∗Corresponding author. Send all correspondence to
wangxx@jmu.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Keywords

fingerprint authentication, fuzzy vault, USB drive

1. INTRODUCTION
There have been several highly publicized security breaches

of data on mobile storage devices, including the theft of
a portable hard disk, owned by a US Department of Vet-
eran Affairs employee, that had confidential data of about
26.5 millions of people [Electronic Privacy Information Cen-
ter(2006)]. As a result, people have rushed to various secu-
rity solutions for mobile data, including fingerprint-protected
Universal Serial Bus (USB) flash drives. For example, the
National Institutes of Health (NIH) has been providing its
employees fingerprint-protected USB drives to protect mo-
bile clinical trial data.

A fingerprint-protected USB flash drive (called fingerprint
USB drive hereafter) looks like a regular USB drive, except
that it has an integrated fingerprint scanner. When a finger-
print USB drive is plugged into a computer running MSWin-
dows, a new read-only default drive (for example, drive F:)
will appear, on which a program can be found. This program
may be automatically run to, among several other things,
request fingerprint-based user authentication. (When the
fingerprint-protected USB drive is used the first time, its
owner can enroll one or more fingerprints.) If the finger-
print authentication succeeds, a new private drive/partition
(for example, drive G:) will show up, on which the owner
can write and read data. This new private drive will not be
accessible if the fingerprint authentication fails.

A fingerprint USB drive has good usability as the owner
does not have to remember any reusable passwords. If the
drive is stolen/lost, supposedly, an adversary will still not
be able to read the data on the private drive, due to the
lack of appropriate fingerprints.

As a biometric, fingerprint authentication has been first
used by government systems and commercial systems that
require high-level security (such as a nuclear plant). It has
also appeared in many popular Hollywood spy movies such
as The Bourne Identity, The Bourne Ultimatum, and En-
emy of the State. This history might give ordinary users
a perception that fingerprint-protected USB drives offer a
high-level security.

In this paper, we explore the following questions: does a
fingerprint-protected USB drive really provide better secu-
rity than a regular USB drive? How hard is it to break the
fingerprint protection? Our study is performed on a rep-
resentative fingerprint-protected USB drive, called AliceF-

Drive2 — standing for Alice’s Fingerprint Drive — through-

89

out this paper. This pseudonym is used to avoid identify-
ing a specific fingerprint USB drive manufacturer or brand
name, as it is not our intention to malign the particular fin-
gerprint USB manufacturer and brand that we tested. Al-
iceFDrive is chosen randomly from its many peers on the
market for no particular reason.
Our security analysis focuses on AliceFDrive’s software.

We treat the AliceFDrive’s hardware as a black box and
leave it untouched. Unlike a hardware vulnerability, a soft-
ware vulnerability is suspectable to class attacks: software-
based exploits for a software vulnerability can be down-
loaded and used by naive users without knowledge of the
vulnerability or the exploit; hence, they are more severe.
Our study uses publicly available information only, includ-
ing AliceFDrive’s user’s manual, disassembler and debug-
ging toolkits IDA Pro 4.9 [Hex-Rays(2007)] and Ollydbg 1.10
[Yuschuk(2004)], and documents accessible on the web.
The discoveries of this study on AliceFDrive are twofold.

First, we demonstrate that, contrary to our initial expec-
tations, it is straightforward to modify the binary code of
AliceFDrive to bypass its fingerprint authentication and ac-
cess its private drive. This modified binary code can be
used by other naive AliceFDrive users to circumvent AliceF-
Drive’s fingerprint authentication. Second, we first reverse
engineered the format of AliceFDrive’s fingerprint minutia
points and then developed a program to automatically re-
trieve fingerprint minutia templates from AliceFDrive. From
these fingerprint minutia templates, using fingerprint re-
covery techniques from the research community [Cappelli
et al.(2007)Cappelli, Lumini, Maio, and Maltoni, Cappelli
et al.(2006)Cappelli, Lumini, Maio, and Maltoni, Hill(2001),
Blomme(2003)], we could reconstruct Alice’s fingerprints.
This may make fingerprint USB drives worse than regular
USB drives: when AliceFDrive is stolen, Alice does not only
lose her data on the drive, she also loses her good-quality
fingerprints, which are hard to recover as her fingerprints
remain unchanged in a long period.
The remainder of this article is organized as follows. In

Section 2, we give some background information on finger-
print authentication. In Section 3 we describe, from a user’s
perspective, AliceFDrive and give our initial analysis. In
Section 4, we describe our security analysis on AliceFDrive,
including methods to bypass the fingerprint authentication,
the fingerprint minutia format used by AliceFDrive, and de-
tails on recovering fingerprint minutia templates from Al-
iceFDrive. Further discussions on the security of AliceF-
Drive are given in Section 5. Concluding remarks are given
in Section 6.

2. BACKGROUND ON FINGERPRINT AU-

THENTICATION
Human fingers have friction ridges that are necessary for

hands to hold objects firmly [Maltoni et al.(2009)Maltoni,
Maio, Jain, and Prabhakar]. The spaces between ridges are
called valleys. These friction ridges and valleys form finger-

prints and it is believed that fingerprints exhibit individual
patterns for both identification and entity authentication.
There are several levels of fingerprint patterns, namely

2The name of Alice follows the traditional setting of commu-
nication security, where Alice is always the message sender
and Bob is the receiver. For USB storage security, only one
party, Alice, is involved.

global, local, and very fine levels. At the global level, finger-
prints are categorized in terms of their overall shape, includ-
ing left loop, right loop, whorl, arch and tented arch. Global
level fingerprint characteristics are often not sufficient to dif-
ferentiate people. Local level fingerprint characteristics con-
sider minute ridge details called minutia points, including
ridge ending, bifurcation, lake, independent ridge, point or
island, spur, and crossover. Among these minutia points,
ridge ending and bifurcation are the most popular and can
be well captured by most scanners on the market. Fur-
ther fine-grained ridge details, including sweat pores, skin
creases, scars, and others, have also potential for identifica-
tion and authentication but they require very high-quality
scanner to capture. Minutia-based fingerprints are the most
popular these days.

In a fingerprint authentication system, Alice first enrolls
her fingerprint with an authentication server, which captures
Alice’s fingerprints, extracts the minutia points, generates a
reference template and stores it. Later, when an entity wants
to be authenticated as Alice, a fresh fingerprint image is cap-
tured and it is compared by the authentication server against
the stored reference template. Various minutia point-based
fingerprint matching algorithms have been developed and
they are often threshold based: the fresh fingerprint image
is considered genuine as long as it has a threshold or more
common minutia points with the reference template. As
a result, unlike password or cryptographic key-based com-
parison, fingerprint matching is close, not exact, matching.
The selection of a threshold value depends on the security
requirement level.

3. ALICEFDRIVE

3.1 A user’s perspective
AliceFDrive comes with a user’s manual that describes,

from an end user’s perspective, AliceFDrive’s features. Al-
iceFDrive’s main feature is to protect files stored on the pri-
vate drive/partition. In addition to regular files, Alice can
also store both favorite web site URLs (i.e., the favorites in
Internet Explorer and the bookmarks in Firefox) and confi-
dential website log-in information (such as user names and
passwords) to AliceFDrive. Access to these files on AliceF-
Drive requires fingerprint authentication.

When AliceFDrive is plugged for the first time into a com-
puter running MS Windows, a program automatically runs
and it prompts Alice to enroll her fingerprints. Alice can
enroll up to ten fingerprints.

After one or more fingerprints are enrolled, when AliceF-
Drive is plugged into a computer, two new drives appear, a
read-only default drive that contains one executable and a
public USB drive. (This public drive acts like regular USB
drive and is not discussed in Section 1, as it is not security-
sensitive.) The executable on the default drive will auto-
matically run for fingerprint authentication. If fingerprint
authentication succeeds, the public drive will disappear and
a private drive containing confidential data will show up.

Alice can back up her enrolled fingerprints and other user
credentials to a file.

Other than claiming AES-256 based “fingerprint encryp-
tion,” AliceFDrive’s user manual does not provide details
about its security design and implementation.

3.2 Structure of authentication programs

90

The read-only default drive of AliceFDrive has only one
program, AutoRun.exe, which automatically runs when Al-
iceFDrive is plugged. On Windows XP, an observance on
this program shows that AutoRun.exe copies some authenti-
cation programs, from an unknown source, to C:\Documents
and Settings\All Users\Application Data\AliceFDrive. These
fingerprint authentication programs include one executable
(AliceFDrive.exe, 2716 kilobytes) and five Dynamic Link Li-
brary (DLL) files:
PTSDK4 SS500A PTFV.dll (32 kilobytes), PTFVLib.dll (20 kilo-
bytes), LTTS1NDUT176.dll (912 kilobytes), LTTUSB.dll (232
kilobytes), and PasswordBank.dll (372 kilobytes).

Both the executable and the DLLs are called a module. The
first step of our security analysis is to find the calling relationship
among these modules.

3.2.1 Static module analysis
With IDA Pro [Hex-Rays(2007)], we observed that AliceF-

Drive.exe imports some functions from PTSDK4 SS500A PTFV.dll
and the names of these functions start with bAPI4 . For example,
there are two functions bAPI4 HMFVEnroll and bAPI4 HMFV-
Verify. (bAPI may stand for biometric Application Programming
Interface (API) [ANSI/INCITS(2002)].)

AliceFDrive.exe also imports some functions from Password-
Bank.dll, with function names such as iGetOpenIE , iOpenUrl ,
and iSaveFormData. These names suggest that PasswordBank.dll
is responsible for storing mobile URL favorites and user pass-
words.

Further analysis with IDA Pro indicates that PTSDK4 SS500-
A PTFV.dll statically imports some functions from PTFVLib.dll
and some other functions, through dynamic loading, from LTTS1-
NDUT176.dll . Also through dynamic loading, LTTS1NDUT176.dll
imports some functions from LTTUSB.dll .

In AliceFDrive, the functions imported by one module from an-
other tend to have meaningful names, such as bAPI4 HMFVEnroll .
These function names suggest their purposes. However, the types
of these functions’ parameters are not known and without them,
one would have to study assembly code to understand how AliceF-
Drive’s functions/modules are implemented. This can be a huge
task, as AliceFDrive’s modules/functions are fairly complex. For
example, AliceFDrive.exe has 2845 internal functions – functions
defined and used in the same module, PTFVLib.dll has 161 in-
ternal functions, LTTS1NDUT176.dll has 550 internal functions,
and LTTUSB.dll has 273 internal functions. In other words, with-
out parameter types, it would be very hard to study AliceFDrive’s
security mechanisms.

3.2.2 Using Google
We next used help from Google by searching those meaningful

function names such as bAPI4 HMFVEnroll . Google only re-
turned two results and we ended up with a Programmer’s Guide
for Fingerprint’s SDK [Wison Technology Corp.(2009)]. This
manual describes a product, Wison Technology OR 200 Opti-
cal Sensor and this name does not match AliceFDrive. However,
the functions described in the manual bear the same names as
those exported from PTSDK4 SS500A PTFV.dll . For example,
this manual describes bAPI4 HMFVEnroll , bAPI4 HMFVVerify,
and bAPI4 GetImage as

bAPI4_HMFVEnroll(int iResolution, int iWidth, int iHeight,
BYTE * pFingerImage, BYTE *pEnrolledFeatures,
DWORD *pwEnRetSize, int *piStatus)

bAPI4_HMFVVerify(int iResolution, int iWidth, int iHeight,
BYTE *pFingerImage, BYTE **ppEnrolledfeatures,
int iEnrolledNum, int *piMatchedID,
int *piStatus)

bAPI4_GetImage (BYTE *picture, int timeout, int iResolution,
int *piWidth, int *piHeight)

This manual also describes that

• bAPI4 HMFVEnroll generates, from a given image (stored

in buffer pFingerImage), a fingerprint reference template
(stored in buffer pEnrolledFeatures);

• bAPI4 HMFVVerify verifies a given image (stored in buffer
pFingerImage) against a given set of fingerprint reference
templates (stored in buffer ppEnrolledFeatures) and returns
a matching result. bAPI4 HMFVVerify returns 0 if the ver-
ification process fails and returns 1 if the process succeeds.
The matching result is stored in piStatus and a value of 2
indicates success, a value of 1 indicates failure. If a match
is indeed found, piMatchedID stores the ID of the matched
reference template.

• bAPI4 GetImage calls the optical scanner to get an image
and stores the result in buffer picture.

This manual helps our study in two ways. First, with the
functions’ parameter types, we can now debug the fingerprint
authentication code in a more guided manner. Second, it allows
us to develop our own code to call AliceFDrive’s DLLs directly,
which introduces a lot of flexibility in our study.

It is worth noting that the information provided by this man-
ual is not complete. For example, in what format is the image
returned by bAPI4 GetImage? It is not clear from the manual
and we have to reverse engineer that by ourselves.

4. SECURITY ANALYSIS
In our security analysis, we consider the following scenario:

Alice loses her AliceFDrive to Bob, who does not have any a
priori information about Alice’s fingerprints. Bob’s goal is to
access AliceFDrive’s private drive without actually presenting a
valid fingerprint and if possible, recover Alice’s fingerprints from
AliceFDrive. Bob may purchase from the market a brand-new
fingerprint-protected USB of the same type as AliceFDrive. Such
a new USB drive will be called BobFDrive and Bob enrolls his own
fingerprints on it. Note that BobFDrive has the same software
programs as AliceFDrive. In the following description, we use
“we” and “Bob” interchangeably.

Our security analysis of AliceFDrive consists of three steps.
First, we shall investigate how hard it is to circumvent AliceF-
Drive’s fingerprint authentication. Second, we will figure out the
format of AliceFDrive’s fingerprint reference templates, if they
are stored on AliceFDrive at all. Third, we will try to recover
Alice’s fingerprints from AliceFDrive.

4.1 Bypassing fingerprint authentication
Function bAPI4 HMFVVerify described in Section 3.2.2 takes

a fresh fingerprint image and compares it against a set of finger-
print reference templates enrolled earlier. Understandably, this
method is likely called before AliceFDrive’s private drive is avail-
able. One way to bypass AliceFDrive’s fingerprint authentication
is to modify bAPI4 HMFVVerify’s binary code so that, regard-
less of the given fresh fingerprint sample, this function returns 1,
*piStatus always returns 2, and its matching ID *piMatchedID
always returns 0.

To find the details of the required changes, the following anal-
ysis was performed on BobFDrive. Within IDA Pro, we ran Al-
iceFDrive.exe and set a breakpoint at bAPI4 HMFVVerify. We
then stepped into function bAPI4 HMFVVerify, which actually
calls function bPTFVVerify () of PTFVLib.dll .

We ran AliceFDrive.exe twice, one with a correct fingerprint
and the other with an incorrect fingerprint. We then found that
inside bPTFVVerify () of PTFVLib.dll , another function is called
and after this call, there is a conditional jump (instruction JZ/JE
in assembly language, which has opcode value 0x74) on register
EAX. It jumps when the fresh fingerprint is valid and does not
jump under an invalid fingerprint.

To bypass fingerprint authentication, we modified this condi-
tional jump to an unconditional jump (instruction JMP in as-
sembly language, with opcode value 0xEB). A test with this
modification in memory succeeded. IDA Pro 4.9 does not sup-
port changing binary code persistently. We used OllyDbg 1.10
[Yuschuk(2004)] to save the change back to PTFVLib.dll. We
then tested this modified PTFVLib.dll on AliceFDrive on an-
other computer. With the modified DLL, when provided a non-

91

matching fingerprint, AliceFDrive’s authentication program re-
ported an authentication success and mounted the private drive.

A further inspection of function bPTFVVerify () (of PTFVLib.dll)
reveals that the above change works only when there are more
than one enrolled reference templates. If AliceFDrive has only
one enrolled reference template, another subroutine is called and
its return value (stored in register EAX) is inspected with in-
struction TEST EAX, EAX. When EAX has a non-zero value,
the given fresh fingerprint is considered non-matching and the ex-
ecution path jumps to a new location with instruction “JNZ”. To
bypass fingerprint authentication for this case, we simply modified
“TEST” (with opcode value 0x85) to “SUB” (with opcode value
0x2B) and this change worked. We used OllyDbg to save this
modification persistently back to PTFVLib.dll and the modified
PTFVLib.dll was tested successfully.

The above binary code modification is a class attack and a
user without any knowledge about fingerprint authentication or
binary code analysis can use the modified DLL to bypass the
fingerprint authentication and access the private drive of an Al-
iceFDrive USB.

This two-byte change of PTFVLib.dll, from 0x74 to 0xEB and
from 0x85 to 0x2B respectively, surprised us a little bit. AliceF-
Drive is a security-related product and we did not expect the
authentication bypass to be this easy.

4.2 Recovering minutia templates from AliceF-
Drive

An attack perhaps more serious than the circumvention of fin-
gerprint authentication on AliceFDrive is to retrieve Alice’s fin-
gerprints. A person’s fingerprints do not change much over a
long period of time and thus cannot be simply revoked. If Bob
can reconstruct Alice’s fingerprints from AliceFDrive, it would be
very hard to recover from this attack and this may raise serious
security and privacy concerns. (It is controversial whether finger-
prints are fully secret data [O’Gorman(2003)], as Alice may leave
her fingerprints here and there such as on a water bottle and a
desk, but it is more in agreement that fingerprints should be kept
as private as possible.)

Our initial thought on this attack is encouraged by the format
of function bAPI4 HMFVVerify, which takes a fresh fingerprint
image and a set of reference templates. This implies that the ref-
erence templates must exist, in the clear, somewhere in memory.
In what format are these reference templates? Can we develop
our own program to directly retrieve these reference templates
from AliceFDrive?

4.2.1 Determining minutia template format
To reverse engineer the format of the fingerprint minutia used

by AliceFDrive, we developed a program to call the bAPI4 Enroll()
function, which takes a fingerprint picture (stored in buffer pFin-
gerImage) and returns the corresponding reference template in
pEnrolledFeatures. (This method has to be called three consec-
utive times (with the same or close image) to get a reference
template.)

Before we can call bAPI4 Enroll(), we need to figure out the
format of the image in pFingerImage, which is not described by
the SDK manual of Section 3.2.2. Using IDA Pro, we followed
a normal authentication and dumped the image to a file, which
has 89600 bytes, and then analyzed the file. The image is not
in JPG, BMP or any other popular graphic formats. Since the
resolution of the scanner is 280 by 320 and 89600 = 280 × 320,
we guessed that each pixel is represented by one byte. We then
treated the dumped file as a text file and broke it into lines of
280 bytes. The resulting file was opened in a text editor and it
looked like a fingerprint. We then inferred that the image is in
raw format and this guess was confirmed when we converted it to
an image file and viewed it.

Next, we selected a high-quality fingerprint image (see Figure
1), in which minutiae points are clearly identifiable. This finger-
print image comes from [Maio and Maltoni(1997)] and it has been
processed with binarization so that it should be easy for any fin-
gerprint enrollment algorithm, including AliceFDrive, to extract
reference templates.

Afterward, we created several variants of this high-quality im-
age through some minor changes, such as removing a ridge that
has two minutia points and connecting two ridges to change a
minutia point. By enrolling these variants, we hope to infer useful
information about the format of AliceFDrive’s minutia template
format.

For example, when we removed a ridge with two minutia points,
we noticed that the sixth byte of the reference template (returned
by bAPI4 Enroll()) decremented by two (from 24 to 22) and the
overall size of the reference template decreased by 12 (from 151
to 139). We then inferred that that the sixth byte must be part of
a field indicating the number of minutia points in the fingerprint
and each minutia point is represented by six (i.e., 12

2
) bytes. This

also lets us infer that a reference template has a header of seven
bytes (i.e., (151− 24× 6)).

For this seven-byte header, the first byte is 0x09 in most sit-
uations and the meaning of the second byte is still unknown to
us. The sixth and the seventh bytes together, in the little endian
format, denote the number of minutia points in the fingerprint.
We will explain the third, fourth and fifth bytes shortly.

For each minutia point, in what format are its six bytes? We
checked several standards for minutia point representation, in-
cluding ANSI/INCITS 378-2004 [ANSI/INCITS(2004)], ANSI/NIST-
ITL1-2007 [NIST(2007)], CDEFF [NIST(2009), Podio et al.(2004)Podio,
Dunn, Reinert, Tilton, Struif, Herr, et al.], and ISO IEC 19794-2
[ISO/IEC(2005)]. None of them work for AliceFDrive. This made
us think that AliceFDrive uses a proprietary format.

Figure 1: A fingerprint picture after binarization.
Reprinted with permission from [Maio and Mal-
toni(1997)]. c© 1997 IEEE.

To determine the format of the six bytes for a single minutia
point, we followed the execution of bAPI4 HMFVEnroll , which is
the most labor-intensive step in this study. Our study shows that
bAPI4 HMFVEnroll first processes, in many complex steps, the
given fingerprint image into a global structure. bAPI4 HMFVEnroll
then processes this global structure into a flat structure and re-
turns it in pEnrolledFeatures. In this flattening operation, four
variables are packaged to a 32-bit word, where the first 11 bits
of the 32-bit word comes from the first variable, the next 11 bits
from the second variable, the next 2 bits from the third variable
and the remaining 8 bits from the fourth variable. This 32-bit
word is then saved in little endian format.

We guessed that these four variables might represent the coor-
dinates, including x and y, the type, and the angle of the minutia
point respectively. To verify this guess, we interpreted the refer-
ence template returned by bAPI4 HMFVEnroll as guessed above

92

0 50 100 150 200 250

0

50

100

150

200

250

300

Figure 2: Recovered minutia template
Figure 3: Picture marked with
recovered minutia points, after
some transformations

to get a set of minutia points and then drew a figure with the
minutia points in terms of their coordinates (x, y), types and an-
gles (see Figure 2); we next tried to match this figure with the
enrolled fingerprint image (that is, Figure 1). If our guess is cor-
rect, we should be able to superimpose the figure on the original
fingerprint image. There was no immediate matching between
the figure and the image. However, when the image was rotated
180 degrees and flipped, we could match the figure and the image
after three transformations (see below for more details on these
transformations). The result is depicted in Figure 3, where red
circles denote minutia points of type ridge ending, blue diamonds
denote minutia points of type bifurcation, and arrows denote an-
gles of the minutia points.

In Figure 3, three transformations are used in the drawing of
minutia points. First, the origin of the natural coordinate system
for the minutia points is located at the left bottom and its y axis
of the coordinate system grows upward; in contrast, the origin
of the image is located at the upper left corner and its y axis
grows downward. To superimpose the figure with the image, in
Figure 3, the minutia points’ y coordinates are adjusted toward
the image’s coordinate system. Second, in the reference templates
returned by bAPI4 HMFVEnroll , the coordinates of all minutia
points are relative to a fixed point, whose location is determined
by the third, the fourth, and the fifth bytes of the seven-byte
header of the reference template. More specifically, the third
byte is the y coordinate of the fixed point and the x coordinate
of the fixed point is stored in the fourth and fifth bytes in little
endian format. This relative adjustment is used in generating
Figure 3. Third, each minutia point’s angle uses one byte and
its value ranges from 0 to 255. To represent any degrees between
0 and 359, a multiplication factor of 360

256
is used when the byte

value is interpreted as degrees.
The quality of Figure 3 gives us high confidence that our inter-

pretation of the reference template is correct. Our next task is to
study how to retrieve reference templates from AliceFDrive.

4.2.2 Retrieving minutia templates from AliceFDrive
The parameters of bAPI4 HMFVVerify imply that AliceFDrive’s

reference templates exist in the clear in memory and we have
confirmed this by running AliceFDrive’s authentication program
within IDA Pro. However, reading memory of a computer pro-
gram usually requires some expertise and may be a daunting task
for ordinary users. An even better break is to develop a com-

puter program to automatically retrieve reference templates from
AliceFDrive directly.

In our tracing of AliceFDrive’s authentication program, we no-
ticed a call to function bAPI4 ReadSecureArea with three pa-
rameters (dst, 40, 0), where dst is a buffer of 0x5000 bytes. After
this call, the retrieved data is then processed and immediately
afterward, the reference templates appear in cleartext in mem-
ory. The processing subroutines look fairly complex but their pro-
gram structure does look like an Advanced Encryption Standard
(AES) T-box-based implementation [Daemen and Rijmen(2002),
National Institute of Standards and Technology(2001)], where
AES T-box is generated beforehand and is used in decryption.
The processing subroutines comprise a subroutine that looks like
AES key scheduling and it takes 16 bytes of 0xff, which might
be the AES key.

To verify this observation, we developed a program that first
calls bAPI4 ReadSecureArea to read data and then decrypts it
with AES-128 with 16 bytes of 0xff as the key.

The decrypted text consists of several parts: it starts with a
16-byte ASCII string, “AliceFDrv AESKEY”, followed by some
fields and a set of user profiles, including user names, passwords
and their Windows domain names. The decrypted text ends with
a binary string, which looks like a set of reference templates. We
then interpreted the reference template section with the refer-
ence template structure obtained in Section 4.2.1 and the second
reference templates is depicted in Figure 4.

To verify our interpretation of minutia points retrieved from Al-
iceFDrive, we talked to Alice and obtained an image of her second
enrolled fingerprint. Figure 5 was drawn by superimposing Figure
4 on Alice’s fingerprint image with a shifting of (x = 20, y = 50).
(This shifting is necessary due to the displacements of Alice’s fin-
ger in two different scans, namely her enrollment scan and the
later scan.)

The high quality of Figure 5 further confirms our interpretation
of AliceFDrive’s reference templates. Once we have recovered Al-
ice’s fingerprint minutia templates, we may be able to reconstruct
Alice’s fingerprints with existing techniques of fingerprint recon-
struction from minutia templates [Galbally et al.(2008)Galbally,
Cappelli, Lumini, Maltoni, and Fierrez, Cappelli et al.(2007)Cappelli,
Lumini, Maio, and Maltoni, Cappelli et al.(2006)Cappelli, Lu-
mini, Maio, and Maltoni, Ross et al.(2007)Ross, Shah, and Jain].
This will allow us to impersonate Alice for a very long time.

AliceFDrive also supports user profile backup and with the

93

0 50 100 150 200 250

0

50

100

150

200

250

300

Figure 4: A minutia template retrieved from
AliceFDrive

0 50 100 150 200 250

0

50

100

150

200

250

300

Figure 5: Retrieved minutia template on a
fresh fingerprint, after alignment

same techniques described above, we decrypted the backup file
and recovered Alice’s minutia points from it.

4.3 Summary
In this section, we described two ways to break AliceFDrive.

First, through two byte changes to the PTFVLib.DLL, AliceF-
Drive’s fingerprint authentication was bypassed and its private
drive was accessed without ever presenting a valid fingerprint.
This is a class attack as the modified DLL can be downloaded
and used by any naive users to bypass AliceFDrive’s fingerprint
authentication.

Second, we developed a program that can automatically re-
trieve reference templates from AliceFDrive. Using existing tech-
niques of fingerprint reconstruction from minutia points, we could
reconstruct Alice’s fingerprints from a lost AliceFDrive. This
poses serious security and privacy concern as now Alice does not
only lose her private data, but also her good-quality fingerprints,
which remains unchanged for a long period and cannot be simply
revoked.

5. DISCUSSIONS
As shown in Section 4, AliceFDrive, as a security product,

is highly vulnerable to authentication bypass and its fingerprint
minutia templates can be recovered from the drive. In this sec-
tion, we shall discuss how these vulnerabilities can be fixed or at
least, mitigated to improve AliceFDrive’s security.

5.1 Program structure and code/API obfusca-
tion

The security analysis of AliceFDrive can be made more difficult
in several ways.

First, the structure of AliceFDrive’s authentication programs
can be made less obvious. Our security analysis was greatly aided
by the simple calling relationship among AliceFDrive’s six mod-
ules (i.e., one executable and five DLLs), the meaningful function
names exported by these modules, and the document found by
Google on these functions and their parameters.

The location of code of interest for authentication bypass can
be made hard to find if the function names are scrambled and
the code is obfuscated. Also, anti-debugging techniques can be

employed to foil debugging of the authentication programs. This
would not stop a committed attacker, but it would increase the
time and effort necessary for the attack.

5.2 Using fuzzy vault and some problems
The security improvements discussed in Section 5.1 are heuris-

tic in that they are theoretically breakable: given enough efforts
and time, they can always be broken.

An ultimate secure solution to fingerprint-protected USB drive
is to derive a consistent cryptographic key from close fingerprints
and use it to encrypt all data on the private drive [Juels and Su-
dan(2002), Juels and Sudan(2006)]. In this way, the fingerprint-
based authentication can not be bypassed: an adversary can ma-
nipulate the authentication program’s execution path but with-
out a valid fingerprint, the same cryptographic key can not be
reconstructed and consequently, the encrypted data on the pri-
vate drive cannot be decrypted. Also, in this solution, no plain
reference template is stored on AliceFDrive and thus an adversary
can not reconstruct it from a stolen/lost AliceFDrive.

Since fingerprints captured from the same finger are often close,
but not exactly the same, due to a lot of environmental factors
(such as the quality of the scanner, moisture, and scratches), the
main challenge of this approach is to extract the same cryp-
tographic key from close-but-not-exactly-the-same fingerprints.
More specifically, for minutia-based fingerprints that are repre-
sented by a set of minutia points, how to extract consistent cryp-
tographic keys from close sets?

The concepts of fuzzy extractor [Dodis et al.(2004)Dodis, Reyzin,
and Smith, Dodis et al.(2008)Dodis, Ostrovsky, Reyzin, and Smith]
and fuzzy vault [Juels and Sudan(2002), Juels and Sudan(2006)]
have been developed to address this problem. There have been a
couple of set-based fuzzy extractor/vault constructions, including
the one by [Juels and Sudan(2002), Juels and Sudan(2006)] and
its improvement by [Dodis et al.(2004)Dodis, Reyzin, and Smith,
Dodis et al.(2008)Dodis, Ostrovsky, Reyzin, and Smith], which
are based on the set difference metric. A construction based on
the set intersection and its improvement can be found in [Socek

et al.(2007)Socek, Božović, and Ćulibrk, Wang et al.(2008)Wang,
Huff, and Tjaden]. These constructions allow fuzzy comparison
of close sets in the “encrypted” form and assume that the compar-
ison of elements in the close sets is either exact (i.e., an element

94

from one set is considered in another close set if and only if the
element itself — not a close copy — appears in the second set) or
very close. (Exact element-level comparison is required when an
existing fuzzy vault scheme does not use chaff points and when
chaff points are indeed used, element-level comparison should be
very close.) These fuzzy extractor/vault schemes provide prov-
able security. However, requiring element-level exact or very-close
comparison makes them not practicable for minutia point-based
fingerprints. Given two minutia-based fingerprints from the same
finger, due to displacement, rotation, and distortion, before align-
ment, a minutia point in one fingerprint can be pretty far from
its matching point in the close fingerprint.

To use these existing fuzzy vault schemes, a fresh fingerprint
has to be pre-aligned before it is used by a fuzzy vault scheme.
This pre-alignment would require AliceFDrive to store some helper
data about the fingerprint and this help data may leak informa-
tion about the fingerprint, making the system less secure or even
insecure. In other words, the provable security provided by the
original fuzzy extractor/vault scheme is lost. Nandakumar et al.
implements such a tradeoff and stores curvature of the fingerprint
as helper data [Nandakumar et al.(2007)Nandakumar, Jain, and
Pankanti]. The exact security of this implementation remains to
be studied.

5.3 Integrating a processor to the fingerprint
USB drive

AliceFDrive uses a host computer to run its program for finger-
print enrollment and fingerprint verification, making it suscepti-
ble to this security analysis. One natural security improvement
is to integrate to AliceFDrive a tamper-resistant microprocessor
and have it perform the fingerprint enrollment and verification
function. In this way, fingerprint authentication cannot be sim-
ply bypassed and fingerprint reference templates can be better
protected.

One challenge facing such a microprocessor integration design is
that the fingerprint enrollment and verification procedures are of-
ten computation-intensive and an embedded microprocessor with
limited computation power may not handle these computations
very well.

6. CONCLUSION
USB drives with large storage capacity support data mobility

and improve productivity. They also pose serious security chal-
lenges. Fingerprint-protected USB drives protect a private USB
partition with fingerprint authentication and have been increas-
ingly popular. This paper analyzes the security of AliceFDrive, a
representative fingerprint-protected USB drive.

In our study, we showed that it is straightforward — just the
change of two bytes in a DLL of the authentication programs —
to bypass AliceFDrive’s fingerprint authentication. This authen-
tication bypass is a class attack, as any naive users can download
the modified DLL and bypass AliceFDrive’s fingerprint authenti-
cation.

In this study, we also developed our own program to auto-
matically recover fingerprint reference templates from AliceF-
Drive. With existing techniques of reconstructing fingerprints
from minutia point templates, we could reconstruct Alice’s fin-
gerprints and impersonate Alice for a long period of time.

It is our hope that this study will inspire the information se-
curity community to search for better solutions to improve the
security of fingerprint-protected USB drives.

7. ACKNOWLEDGMENTS
The authors would like to thank Brett Tjaden for reviewing

earlier draft of this paper and Florian Buchholz for helpful dis-
cussions. We’d also like to thank the anonymous reviewers for
constructive comments and for suggesting Section 5.3.

8. REFERENCES
[ANSI/INCITS(2002)] ANSI/INCITS. Information technologoy

- BioAPI specification. ANSI/INCITS 358-2002, February
2002. Version 1.1.

[ANSI/INCITS(2004)] ANSI/INCITS. Finger minutiae fomat
for data interchange. ANSI/INCITS 378-2004, 2004.

[Blomme(2003)] J. Blomme. Evaluation of biometric security
systems against artificial fingers. LITH-ISY-EX-3514-2003,
Department of Electrical Engineering, Linköping
University, Linköping, Sweden, October 2003.

[Cappelli et al.(2006)Cappelli, Lumini, Maio, and Maltoni]
R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Can
fingerprints be reconstructed from ISO templates? In
Proceedings of the International Conference on Control,
Automation, Robotics and Vision (ICARCV2006),
December 2006.

[Cappelli et al.(2007)Cappelli, Lumini, Maio, and Maltoni]
R. Cappelli, A. Lumini, D. Maio, and D. Maltoni.
Fingerprint image reconstruction from standard templates.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(9):1489 – 1503, Sept. 2007.

[Daemen and Rijmen(2002)] J. Daemen and V. Rijmen. The
design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2.

[Dodis et al.(2004)Dodis, Reyzin, and Smith] Y. Dodis,
L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data.
In C. Cachin and J. Camenisch, editors, Advance in
Cryptology — EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 523–540, 2004.

[Dodis et al.(2008)Dodis, Ostrovsky, Reyzin, and Smith]
Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy
extractors: How to generate strong keys from biometrics
and other noisy data. SIAM Journal on Computing, 38(1):
97–139, 2008. URL
http://link.aip.org/link/?SMJ/38/97/1.

[Electronic Privacy Information Center(2006)] Electronic
Privacy Information Center. Veterans affairs data theft,
July 2006. URL http://epic.org/privacy/vatheft/.

[Galbally et al.(2008)Galbally, Cappelli, Lumini, Maltoni, and Fierrez]
J. Galbally, R. Cappelli, A. Lumini, D. Maltoni, and
J. Fierrez. Fake fingertip generation from a minutiae
template. In Proceedings of the 2008 International
Conference on Pattern Recognition (ICPR08), pages 1–4,
2008.

[Hex-Rays(2007)] Hex-Rays. IDA Pro 4.9 freeware, February 11
2007. URL
http://www.hex-rays.com/idapro/idadownfreeware.htm.

[Hill(2001)] C. Hill. Risk of masquerade arising from the storage
of biometrics. BSc Honours Thesis, Department of
Computer Science, Australian National University,
November 2001.

[ISO/IEC(2005)] ISO/IEC. Information technology - biometric
data interchange format - part 2: Finger minutiae data.
ISO/IEC 19794-2, 2005.

[Juels and Sudan(2002)] A. Juels and M. Sudan. A fuzzy vault
scheme. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2002), Lausanne,
Switzerland, 2002.

[Juels and Sudan(2006)] A. Juels and M. Sudan. A fuzzy vault
scheme. Designs, Codes, and Cryptography, 38(2):237–257,
2006.

[Maio and Maltoni(1997)] D. Maio and D. Maltoni. Direct
gray-scale minutiae detection in fingerprints. IEEE
Transactions on Pattern Analysis and Machine Learning,
19(1):27–40, January 1997.

[Maltoni et al.(2009)Maltoni, Maio, Jain, and Prabhakar]
D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar.
Handbook of Fingerprint Recognition. Springer, 2nd
edition, 2009. ISBN 978-1-84882-253-5.

[Nandakumar et al.(2007)Nandakumar, Jain, and Pankanti]
K. Nandakumar, A. K. Jain, and S. Pankanti.
Fingerprint-based fuzzy vault: Implementation and
performance. IEEE Transactions on Information Forensics
and Security, 2(4):744–757, December 2007.

[National Institute of Standards and Technology(2001)]

95

National Institute of Standards and Technology.
Specification for the Advanced Encryption Standard
(AES). Federal Information Processing Standards
Publication 197, 2001. URL
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[NIST(2007)] NIST. Data format for the interchange of
fingerprint facial, & other biometric information - part 1.
NIST Special Public Report: 500-271, May 2007. URL
http://fingerprint.nist.gov/standard/Approved-
Std-20070427.pdf.

[NIST(2009)] NIST. Data format for the interchange of
extended friction ridge features. Proposed
Addendum/Revision to ANSI/NIST-ITL 1-2007,
WORKING DRAFT Version 0.4, June 2009. URL
http://fingerprint.nist.gov/standard/cdeffs/Docs/CD-
EFFS_DraftStd_v04_2009-06-12.pdf.

[O’Gorman(2003)] L. O’Gorman. Comparing passwords, tokens,
and biometrics for user authentication. Proc. IEEE, 91(12):
2019–2040, Dec. 2003.

[Podio et al.(2004)Podio, Dunn, Reinert, Tilton, Struif, Herr, et al.]
F. L. Podio, J. S. Dunn, L. Reinert, C. J. Tilton, B. Struif,
F. Herr, J. Russell, M. P. Collier, M. Jerde, L. O’Gorman,
and B. Wirtz. CBEFF common biometric exchange formats
framework. NISTIR 6529-A, April 5th 2004. URL
http://csrc.nist.gov/publications/nistir/NISTIR6529A.pdf.

[Ross et al.(2007)Ross, Shah, and Jain] A. Ross, J. Shah, and
A. K. Jain. From template to image: Reconstructing
fingerprints from minutiae points. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(4):544–560,
April 2007.

[Socek et al.(2007)Socek, Božović, and Ćulibrk] D. Socek,

V. Božović, and D. Ćulibrk. Practical secure biometrics
using set intersection as a similarity measure. In
Proceedings of International Conference on Security and
Cryptography (SECRYPT 2007), Barcelona, Spain, July
28-31 2007. INSTICC.

[Wang et al.(2008)Wang, Huff, and Tjaden] X. Wang, P. D.
Huff, and B. Tjaden. Improving the efficiency of
capture-resistant biometric authentication based on set
intersection. In Proceedings of the 24th Annual Computer
Security Applications Conference (ACSAC 2008), pages
140–149, Anaheim, CA, December 8-12 2008. IEEE
Computer Society Press.

[Wison Technology Corp.(2009)] Wison Technology Corp.
Programmer’s guide for fingerprint’s SDK, April 2009. URL
http://www.wison.com.tw/cht/document/Wison2/DOC/OR2-
00_ProgrammerGuide.pdf.

[Yuschuk(2004)] O. Yuschuk. Ollydbg 1.10. Freeware, 2004.
URL http://www.ollydbg.de/.

96

A Quantitative Analysis of the Insecurity of Embedded
Network Devices: Results of a Wide-Area Scan

Ang Cui and Salvatore J. Stolfo
Department of Computer Science, Columbia University

{ang,sal}@cs.columbia.edu

ABSTRACT
We present a quantitative lower bound on the number of
vulnerable embedded device on a global scale. Over the
past year, we have systematically scanned large portions of
the internet to monitor the presence of trivially vulnerable
embedded devices. At the time of writing, we have iden-
tified over 540,000 publicly accessible embedded devices
configured with factory default root passwords. This consti-
tutes over 13% of all discovered embedded devices.These de-
vices range from enterprise equipment such as firewalls and
routers to consumer appliances such as VoIP adapters, cable
and IPTV boxes to office equipment such as network print-
ers and video conferencing units. Vulnerable devices were
detected in 144 countries, across 17,427 unique private
enterprise, ISP, government, educational, satellite provider
as well as residential network environments. Preliminary re-
sults from our longitudinal study tracking over 102,000 vul-
nerable devices revealed that over 96% of such accessible
devices remain vulnerable after a 4-month period. We be-
lieve the data presented in this paper provides a conservative
lower bound on the actual population of vulnerable devices
in the wild. By combining the observed vulnerability dis-
tributions and its potential root causes, we propose a set of
mitigation strategies and hypothesize about its quantitative
impact on reducing the global vulnerable embedded device
population. Employing our strategy, we have partnered with
Team Cymru to engage key organizations capable of signifi-
cantly reducing the number of trivially vulnerable embedded
devices currently on the internet. As an ongoing longitudi-
nal study, we plan to gather data continuously over the next
year in order to quantify the effectiveness of community’s
cumulative effort to mitigate this pervasive threat.

1. INTRODUCTION
Embedded network devices have become an ubiquitous

fixture in the modern home, office as well as in the global
communication infrastructure. Routers, NAS appliances,
home entertainment appliances, wireless access points, web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

cams, VoIP appliances, print servers and video conferencing
units reside on the same networks as our personal comput-
ers and enterprise servers and together form our world-wide
communication infrastructure. Widely deployed and often
misconfigured, embedded network devices constitute highly
attractive targets for exploitation.

Although common wisdom enforces the suspicion that em-
bedded devices tend to be less secure then general purpose
computers and often trivial to exploit, evidence of such in-
securities is mostly anecdotal. To fully appreciate the scope
and scale of the embedded threat, we must move beyond
analysis of individual embedded devices and their vulner-
abilities. In order to formulate realistic and effective mit-
igation strategies against current and next generation em-
bedded device exploitation, we first pose and answer several
fundamental questions:

– How have embedded devices been exploited in the past?
How feasible is large scale exploitation of embedded
devices? (Section 2)

– How can we quantitatively measure the level of em-
bedded device insecurity on a global scale? (Section
3)

– How can compromised embedded devices be used to
benefit malicious attackers? (Section 4)

– How many vulnerable embedded devices are there in
the world? What are they? Where are they? (Section
5)

– What are the most efficient methods of securing vul-
nerable embedded devices? (Section 6)

The purpose of our project is to quantify and trend the
level of insecurity of embedded devices currently in the wild.
To this end, we first establish an observed lower bound on
the number of trivially vulnerable embedded devices on the
internet. We do this by assuming the role of the least so-
phisticated malicious attacker (See Section 3.1), who only
tries to log into publicly reachable embedded devices us-
ing well known default root credentials. Section 3 de-
scribes the default credential scanner we developed using
standard tools such as nmap, which positively identified
over 540,000 wide open embedded devices.

Vulnerable devices were detected in 144 countries, in
enterprise, ISP, government, educational, satellite provider
as well as residential network environments1. We discov-

1Military networks are intentionally excluded from our scan,
although a collaborative effort is currently underway to carry
out the same scan on US military networks.

97

Total IPs
Scanned

Devices
Targeted

Vulnerable
Devices

Vulnerability
Rate

3,223,358,720 3,912,574 540,435 13.81%

Table 1: Scale and Result of the Latest Global De-
fault Credential Scan.

ered vulnerable devices across a diverse spectrum of prod-
uct types, including consumer appliances, home networking
devices, office appliances, enterprise and carrier network-
ing equipment, data-center power management devices, net-
work security appliances, server lights-out-management con-
trollers, IP camera surveillance systems, VoIP devices, video
conferencing appliances as well as ISP issued modems and
set-top boxes. Section 5 presents detailed analysis of the
data collected by our default credential scanner.

Figure 1: Distribution of Vulnerable Embedded De-
vices in IPv4 Space. Total Number of Vulnerable
Devices Found: 540,435.

While the observed quantity and distribution of embedded
devices configured with default root passwords demonstrate
a global, pervasive phenomenon, we believe the data pre-
sented in this paper represent a conservative lower bound
on the actual population of vulnerable devices in the wild.
Evidence suggests that this lower bound can be raised sig-
nificantly by slightly escalating the level of sophistication of
our assumed attacker [11].

1.1 Contributions
We present the first quantitative measurement of embed-

ded device insecurity on a global scale, along with prelimi-
nary results from an ongoing longitudinal study of the same
subject. By assuming the role of the least sophisticated
attacker (see Section 3.1), we present an observed lower

bound on the distribution of trivially exploitable network
embedded devices over functional (Section 5.1), spatial (Sec-
tion 5.2), organizational (Section 5.3) and temporal (Section
5.5) domains.

The embedded device default credential scanner created
for this experiment is designed to identify efficiently and
safely the vulnerable embedded devices on the network. It
does this by testing whether one can remotely login into a
device using well known default root credentials. The veri-
fication process is designed to use minimal resources on the
target embedded device. The scanner currently supports
73 unique embedded device types including consumer appli-
ances, home networking devices, office appliances, enterprise
and carrier networking equipment, data-center power man-
agement devices, network security appliances, server lights-
out-management controllers, IP camera surveillance systems,
VoIP devices, video conferencing appliances as well as ISP
issued modems and set-top boxes.

While the embedded security threat has been generally
known for some time, the data presented in this paper pro-
vides a real-world quantitative assessment of the scale and
scope of the embedded threat on a global level. Analy-
sis of our results yields several interesting features within
the observed vulnerability distributions. The features pre-
sented in Section 5 presents insights into the root causes of
the existence of vulnerable embedded devices. By combin-
ing the observed vulnerability distributions and its potential
root causes, we formulate a set of mitigation strategies and
hypothesize about its quantitative impact on reducing the
global vulnerable device population.

Many forces will undoubtably change the observable lower
bound of embedded device insecurity as time goes on. For
example, the out-of-the-box security of new embedded prod-
ucts may change. Network operators controlling large homo-
geneous sets of devices may improve their security, as may
small and medium size organizations like private enterprises
and educational organizations. The level of malicious ex-
ploitation will also indirectly contribute to the overall effort
dedicated to improving embedded device security. Lastly,
it is our hope that the data and mitigation strategies re-
ported in this paper will generate more awareness of this
pervasive threat. In order to quantify the scope of the em-
bedded device insecurity threat over time and detect such
forces at work, we plan to continue our scanning activities
to conduct an ongoing longitudinal study over the next year.
Section 5.5 discusses the preliminary results of our longitu-
dinal study over the past four months.

1.2 Outline
The remainder of this paper is organized as follows: Sec-

tion 2 surveys recent developments related to embedded de-
vice insecurity in white-hat and black-hat communities as
well as popular literature. Section 3 describes our method-
ology with emphasis on the steps taken to ensure a safe and
ethical experimental protocol. Section 4 describes a variety
of novel malicious uses of the vulnerable devices discovered
by our scanner. Section 5 presents the analysis of data gath-
ered from our latest global scan as well as preliminary results
from our ongoing longitudinal study. Section 6 presents a
set of remediation strategies, along with an quantitative es-
timates of its potential effect with respect to the global vul-
nerable device population. We conclude in Section 7 with a
summary of our contributions.

98

2. RELATED WORKS
Evidence of embedded device insecurity and exploitation

has been presented in both white-hat and black-hat venues
for quite some time. The creation and propagation charac-
teristics of hypothetical malnets exploiting vulnerable wire-
less routers have been described by several researchers [10,
19]. For example, Traynor et al. showed that an adversary
can potentially compromise over 24,000 routers in Manhat-
tan in less than 2 hours [19]. The data from our scan in-
dicates that trivially exploitable embedded devices exist in
sufficient quantity and concentration for such hypothetical
attacks to be feasible. Our data also corroborates that phish-
ing attacks using compromised consumer electronics such as
home routers [20] can be carried out on a large scale by
technically unsophisticated attackers.

Existing evidence clearly reenforces the common wisdom
that embedded devices are generally less secure then general
purpose computers and are often trivial to exploit. However,
the available literature tends to focus on specific vulnerabil-
ities or vulnerable devices.

For example, a recent Wired.com article [9] announced
a vulnerability found on the administrative interface of the
SMC8014 series cable modem, potentially affecting 65,000
Time Warner customers. Numerous research projects [18,
11] targeting specific device types have demonstrated that
large numbers of vulnerabilities within ubiquitous embed-
ded device types. According to Bojinov et al., an audit of
common embedded administrative interfaces from 16 major
manufacturers yielded significant vulnerabilities from all of
the 21 devices considered [11].

The evolution of embedded device exploitation tools and
techniques demonstrate an accelerating maturation of ma-
licious attacks against embedded devices. While proof of
concept Cisco IOS exploits and shellcode have been publicly
available since 2003 [13, 16], recent evidence suggests that
attackers are scanning for and exploiting consumer routers
to build modest size bot-nets, mainly for DDOS purposes.
The appearance of tutorials [5] and simple to use tools to
find and control specific consumer routers indicate that em-
bedded device exploitation techniques are beginning to dif-
fuse out of research circles, and into the general black-hat
community.

To the best of our knowledge, the first consumer router
botnet, psyb0t, was reported by Dronebl.org in 2008 [6].
While no detailed analysis of the bot was published, we
do know that it primarily targeted mipsel OpenWRT and
DD-WRT devices using default passwords. It is suspected
that the psyb0t botnet observed in 2008 was a proof of con-
cept test of the technology [7], as the botnet was quickly
shutdown by its operators following Dronebl.org’s public an-
nouncement of its existence.

The current generation of embedded device malcode may
be related to existing unix tools like Kaiten.c [1]. A sur-
vey of black hat literature circa 2008 shows at least one
document describing the process of compromising similar
consumer routers using password guessing and existing unix
IRC bots [5]. This may help to explain why the majority
of victim embedded devices exploited thus far have been
unix-based consumer routers. For example, psyb0t targeted
only home routers and heavily leveraged the unix-like oper-
ating environment found on its victim devices. Specifically,
psyb0t used commands like wget and chmod to download
its payload onto victim devices and used iptables to block

all administrative interfaces to protect the device from other
attackers.

2.1 Next Generation Embedded Malcode
Existing embedded device malcode such as psyb0t de-

pend heavily on its victim devices’ similarity to traditional
unix systems. While development of such malcode is rela-
tively straightforward, it constrains the vulnerable popula-
tion to low-end consumer appliances running unix-like oper-
ating systems. For example, enterprise networking devices
like Cisco routers and switches run on proprietary operat-
ing systems like IOS, which do not resemble traditional unix
architecture. However, recent advancements in exploitation
and root-kitting techniques for proprietary operating sys-
tems like Cisco IOS [17, 14] could allow attackers to com-
promise high-end enterprise devices like backbone routers
and firewalls. It is highly likely that the next generation of
embedded device malcode will have greater ability to com-
promise heterogeneous device types, stealthier and more so-
phisticated command and control channels, as well as other
malicious capabilities aside from DDOS.

Furthermore, as data presented in Section 5 suggest, the
current population of trivially vulnerable embedded devices
is quite high. Therefore, the next generation of malcode ca-
pable of compromising heterogeneous device types will easily
be able to infect significantly more devices then psyb0t and
kaiten.c in their current state.

3. EXPERIMENTAL METHODOLOGY
The default credential scanner is designed to quickly sweep

large portions of the internet. Each scan takes approxi-
mately four weeks and involves two or three sweeps of the
entire monitored IP space (Section 3.4 discusses how the
monitored IP ranges are selected.)

Multiple sweeps across the same IP space is desirable for
two reasons. First, embedded devices on residential net-
works have unpredictable availability. Therefore, multiple
sweeps increase the scanner’s probability of observing a vul-
nerable device when it is connected to the network. Second,
multiple sweeps across the same address space over months
and years allow us to conduct a longitudinal study on the
vulnerability rates of embedded devices around the world.

In Section 5, we present the results of our latest scan, con-
taining over 540,000 observed vulnerable devices, as well as
analysis of preliminary data gathered by tracking approxi-
mately 102,000 vulnerable embedded devices over a span of
four months in Section 5. This is an ongoing study, and we
plan to publish the results of a detailed longitudinal study
over the next year when the data becomes available.

3.1 Threat Model
For the sake of establishing a lower bound on the state of

embedded device insecurity in the wild, we assume the role
of the least sophisticated malicious attacker. The attacker
has unrestricted access to the internet but is unable to ex-
ploit any vulnerabilities found on any devices. Instead, the
attacker has access to the network scanner nmap and a list
of well known factory default root credentials for popular
network embedded devices.

For the remainder of the paper, we define a vulnerable
device as any device that is reachable on the internet and
allows the attacker to gain root privileges by using factory
default credentials.

99

User Access Verification

Username:

Figure 2: Common Cisco Telnet Login Prompt.

3.2 Default Credential Scanner: A Three Phase
Process

The default credential scan process is straightforward and
can be broken down into three sequential phases: recogni-
zance, identification, and verification.

Recognizance: First, nmap is used to scan large portions
of the internet for open TCP ports 23 and 80. The
results of scan is stored in a SQL database.

Identification: Next, the device identification process con-
nects to all listening Telnet and HTTP servers to re-
trieve the initial output of these servers2. The server
output is stored in a SQL database then matched against
a list of signatures to identify the manufacturer and
model of the device in question (See 3.3).
For example, Figure 2 shows a telnet login prompt
common to Cisco routers and switches.

Verification: Once the manufacturer and model of the de-
vice are positively identified, the verification phase uses
an automated script to attempt to log into devices
found in the identification phase. This script uses only
well known default root credentials for the specific de-
vice model and does not engage in any form of brute
force password guessing. We create a unique device
verification profile for each type of embedded device
we monitor. This profile contains all information nec-
essary for the verification script to automatically ne-
gotiate the authentication process, using either the de-
vice’s Telnet or HTTP administrative interface. Fig-
ure 3.2 shows two typical device verification profiles,
one for the administrative Telnet interface for Cisco
switches and routers, the other for the HTTP adminis-
trative interface for Linksys WRT routers using HTTP
Basic Authentication. Each device verification profile
contains information like the username and password
prompt signatures, default credentials as well as au-
thentication success and failure conditions for the par-
ticular embedded device type. Once the success or
failure of the default credential is verified, the TCP
session is terminated and the results are written to an
encrypted flash drive for off-line analysis. (See 3.5).

2In case of HTTP, we issue the ’get /’ request

Total IPs Scanned Number of Coun-
tries Scanned

Number of Orga-
nizations Scanned

3,223,358,720 193 17,427

Most Heavily Scanned Countries
US CN JP
1,477,339,136 217,273,088 177,494,016
GB DE CN
111,457,280 107,387,648 77,328,896

Table 2: Key Statistics on the Scope and Geograph-
ical Distribution of the IP Ranges Currently Moni-
tored by the Default Credential Scanner.

3.3 Device Selection
The full list of devices currently monitored by our default

credential scanner can be found on our project webpage3.
In order for an embedded device to be included in this list,
its default root credentials must be well known and obtain-
able through either manufacturer documentation or simple
search engine queries. The default credential scanner does
not engage in any form of brute force password guessing.

The device selection process is manual and iterative. We
begin by analyzing data gathered by the recognizance phase
of our scanner, which collects the initial output from ac-
tive Telnet and HTTP servers found by NMAP. We main-
tain three sets of signatures: non-embedded devices, non-
candidate embedded devices and candidate embedded de-
vices. Signatures of non-embedded devices include those of
popular HTTP servers such as Apache and IIS as well as
Telnet common authentication prompts of general purpose
operating systems. Signatures of non-candidate embedded
devices include those that do not ship with a well known de-
fault credential4. Signatures of candidate embedded devices
include string patterns that positively identify the device as
one that we are actively monitoring. After the recognizance
data is tagged using these three signature sets, we manually
inspect the remaining records, tagging, creating new signa-
tures and device verification profiles.

3.4 Network Range Selection
We initially directed our scan towards the largest ISPs

in North and South America, Europe and Asia. As we it-
eratively refined our scanning infrastructure, we gradually
widened the scope of our scan to include select geographical
locations within the United States. After testing our de-
fault credential scanner for over six months to ensure that it
caused no harm to the scanned networks, we finally allowed
the scanner to operate globally. Using a reverse lookup of
the MaxMind GeoIP database [2], we included every /24 net-
work in the IPv4 space which is associated to a geographical
location. Table 2 shows some key metrics on the scope of
the IP ranges which we currently monitor.

3.5 Ethical Considerations and Due Diligence
The technical methodology of our project is straightfor-

ward. However, the necessary means of gathering real-world
data on the vulnerability rates of embedded device have
raised an ethical debate.

3http://www.hacktory.cs.columbia.edu
4For example, the Polycom VSX 3000 video conferencing
unit uses the device’s serial number as the default password.

100

On one hand, the simple act of port scanning a remote net-
work across the internet can be construed as a hostile and
malicious attack. On the other hand, we can not move be-
yond vague and anecdotal suspicions of the embedded device
security problem unless we gather large scale, quantitative
evidence of the problem currently in the wild.

As advocated in a recent position paper on the ethics of
security vulnerability research [15], this line of proactive vul-
nerability research serves an important social function and
is neither unethical nor illegal with respect to US
law.

The experimental results contain sensitive information on
a large number of vulnerable devices in the world, some of
which reside in sensitive environments. Therefore it is the
responsibility of the research team to uphold a high stan-
dard for ethical behavior and due diligence when engaging
in such sensitive research. The operating environment must
be isolated and fortified against compromise and data ex-
filtration. Furthermore, each member of the research team
must agree to adhere to a clear experimental protocol to
ensure that no harm is done.

A trivial network scanner can be implemented with little
work. However, using such a scanner openly on a global
scale is irresponsible and ethically unacceptable. Therefore
we have invested a large portion of of energy to create a
secure research environment and a responsible experimental
protocol in order to ensure that our activities cause no harm:

Doing no harm. Bound by the ethics principal of the duty
not to harm, we have taken numerous steps to ensure
that our research activities do not interfere with the
normal operations of the networks we monitor. To
this end, the default credential scanner is designed to
use minimal external resources in order to accurately
verify device vulnerability. We scan target networks
in /24 blocks in non-sequential order in order to min-
imize the number of incoming TCP requests destined
to any individual organization. Detailed activity logs
are kept to ensure that no device or network is un-
necessarily probed multiple times during a single scan.
Overall, non-embedded devices and non-candidate em-
bedded devices will receive at most 6 TCP packets over
a period of several minutes. The scanner’s outbound
packet-rate is policed and monitored in order not to
overwhelm any in-path networking devices. Lastly,
each IP address used by our scanner runs a pubic
webpage describing the intention and methodology of
our project [3]. This page also provides instructions
for permanently opting-out of the scan. (See Table
6). Such requests are monitored by both our research
team as well as the Columbia University NOC, and are
promptly honored without question.

Implementing a secure research environment. The scan
system is contained in a DMZ network behind a Cisco
ASA firewall. Scanning nodes are isolated from the
university network. Inbound access to this protected
network can only be established by using IPSec VPN.
Outbound access by the scanning nodes are limited
to the ports which they are scanning (Telnet, HTTP,
etc).

Compartmentalization of access to sensitive information.
VPN access to the scan system DMZ is granted only
to active members of the research team. New students

participating in research are first given access to a sep-
arate DMZ containing a development copy of the scan
system with no sensitive data. Access to the produc-
tion environment is given to students only after they
have acknowledged and demonstrated understanding
of the experimental protocol.

Proper handling of sensitive data at rest. Sensitive ex-
perimental data is purged from the production database
regularly, then transferred to an IronKey [4] USB stick
for encrypted offline storage. This is done to minimize
the amount of data available for exfiltration in case of
a compromise of the research environment.

Notifications of vulnerabilities through trusted channels.
Significant vulnerabilities are reported to Team Cymru,
who brokers communications between our research team
and the appropriate contacts. Sensitive information
detailing the vulnerable devices is either physically handed
off to Team Cmyru members or transferred using en-
crypted channels.

4. MALICIOUS POTENTIAL OF EMBED-
DED DEVICE EXPLOITATION

This section discusses several novel ways of exploiting vul-
nerable embedded devices due to their unique functions and
hardware capabilities. After auditing the functional capabil-
ities of many different embedded devices, we have concluded
that the attacks described below are trivially possible among
a majority of embedded devices within the appropriate func-
tional categories. All attacks discussed below can be carried
out through legitimate manipulation of the administrative
interface. More importantly, as the data presented in Sec-
tion 5 illustrate quantitatively, there exists a large popula-
tion of embedded devices vulnerable to each of the attacks
discussed below. Although DDOS attacks using embedded
devices have certainly been carried out on a relatively large
scale, most of the other attacks described in this section have
not. However, considering the data presented in Section 5,
we posit that it is only a matter of time before such attacks
are carried out systematically on a large scale.

We have engaged several major organizations to mitigate
some of the issues discussed below. Therefore, specific de-
tails regarding organization names and device model infor-
mation are withheld when appropriate.

4.1 Massive DDOS Potential
The heterogeneous nature of embedded administrative in-

terfaces makes orchestrating large DDOS attacks using em-
bedded devices a logistic challenge. Vulnerable embedded
devices clearly exist in large numbers in the wild. However,
it is often believed that embedded operating systems are
too diverse; and capturing the long tail of this diversity is
required to carry out large scale exploitation. Data gathered
by our default credential scanner reveal that many large vul-
nerable homogenous device groups exist in the wild. In fact,
the top 3 most vulnerable device types represent over 55%
of all vulnerable devices discovered by our latest scan. In
other words, there exists at least 300,000 vulnerable embed-
ded devices which can be controlled via 3 similar Telnet-
based administrative interfaces. The exact model of these
three device groups have been anonymized. However, these
three device groups are centrally managed by various service
providers around the world, and thus can be systematically

101

Figure 3: Distribution of Vulnerable Devices Across
Unique Device Types. The Top 3 Device Types Con-
stitute 55% of the Entire Vulnerable Device Popu-
lation.

secured in a feasible manner. Figure 3 shows the distribu-
tion of the top 12 most frequently encountered vulnerable
embedded device types.

4.2 VoIP Appliance Exploitation
VoIP adapters like the Linksys PAP2, Linksys SPA and

Sipura SPA are consumer appliances, which provide a gate-
way between standard analog telephones and VoIP service
providers. In many cases, the publicly accessible HTTP in-
terface of such devices will display diagnostic information
without requiring any user authentication. This informa-
tion usually includes the name of the customer, their phone
number(s), a log of incoming and outgoing calls, and rel-
evant information regarding the SIP gateway to which the
device is configured to connect. Once authenticated as the
administrative user, an attacker can usually retrieve the cus-
tomer’s SIP credentials, either by exploiting trivial HTTP
vulnerabilities5 or redirecting the victim to a malicious SIP
server.

4.3 Data Leakage via Office Appliance Exploita-
tion

Enterprise printers servers and digital document stations
are ubiquitous in most work environments. According to
our data, network printers also constitute one of the most
vulnerable types of embedded devices. For example, our
default credential scanner identified over 44,000 vulnerable
HP JetDirect Print Servers in 2,505 unique organizations
worldwide. Since high-end print servers and document sta-
tions often have the capability of digitally caching the doc-
uments it processes, we posit that an attacker can use such
devices not only to monitor the flow of internal documents,
but also to exfiltrate them as well.

5Credentials are sometimes displayed in clear-text within
HTML password fields. While this appears to hide the pass-
words in the web browser, it does not hide it in the HTML
source.

4.4 Enterprise Credential Leakage via Acci-
dental Misconfiguration

It is common practice for organizations that operate large
homogenous collections of networking equipment to apply
the same set of administrative credentials to all managed
devices. While this significantly reduces the complexity and
cost of managing a large network, it also puts the network
at risk of total compromise. Using a single master root pass-
word for all networking devices is safe so long as every device
is correctly configured at all times, and the master password
is not leaked. If an enterprise networking device is brought
online with both factory default credentials, as well as the
master credentials of the organization, an attacker can eas-
ily obtain the master root password for the entire network.
While this event is unlikely, the probability of such a mis-
configuration quickly increases with the size and complexity
of the organization, specially when human error is taken into
account. We have not verified that such an attack is feasi-
ble; however, our data indicate that enterprise networking
devices residing within large homogenous environments have
been misconfigured with default root credentials.

5. ANALYSIS OF RESULTS

Figure 4: Embedded Device Vulnerability Rates of
Monitored Countries (Threshold = 2%).

In this section we present latest data gathered by our de-
fault credential scanner as well as preliminary results from
our ongoing longitudinal study, tracking approximately 102,000
vulnerable devices over a span of four months. We also
present statistics on the level of human and organizational
responses received by Columbia University regarding our
scanning activities. Figure 4 shows a heat map of embedded
device vulnerability rates across monitored countries.

Section 5.1 shows the breakdown of vulnerable embed-
ded devices across 9 functional categories; Enterprise
Devices, VoIP Devices, Home Networking Devices, Cam-
era/Surveillance, Office Appliances, Power Management Con-
trollers, Service Provider Issued Equipment, Video Confer-
encing Units, and Home Brew Devices. Section 5.2 shows
the breakdown of vulnerable embedded devices across 6 con-
tinents. Section 5.3 shows the breakdown of vulnerable de-
vices across 5 types of organizations; Educational, ISP,
Private Enterprise, Government, and Unidentified.

102

5.1 Breakdown of Vulnerable Devices by Func-
tional Categories

Figure 5: Discovered Candidate Devices (Top) and Vul-

nerable Devices (Bottom) By By Organization Type.

We organized 73 unique embedded device types monitored
by our scan into 9 functional categories. Detailed catego-
rization of monitored devices can be found on our project
webpage6. Figure 5 shows the distribution of all discovered
candidate embedded devices (top) and the distribution of
vulnerable embedded devices (bottom) across the different
functional categories. Table 3 shows the total number can-
didate embedded devices discovered within each functional
category as well as their corresponding vulnerability rate.

– While Service Provider Issued Equipment accounts
for only 35% of all discovered candidate embedded de-
vices, it represents 68% of all vulnerable embedded
devices.

– While Enterprise Networking Equipment accounts
for 43% of all discovered candidate embedded devices,
it only represents 6% of all vulnerable embedded de-
vices.

6http://www.hacktory.cs.columbia.edu

5.2 Breakdown of Vulnerable Devices by Ge-
ographical Location

Figure 6: Discovered Candidate Devices (Top) and Vul-

nerable Devices (Bottom) By Geographical Distribution.

Using the MaxMind GeoIP database[2], we categorized all
discovered candidate and vulnerable embedded devices ac-
cording to the continent in which they are located. Figure
6 shows the distribution of all discovered embedded devices
(top) and the distribution of vulnerable embedded devices
(bottom) across 6 continents. Table 4 shows the total num-
ber of candidate embedded devices as well as the correspond-
ing vulnerability rate within each continent.

– Asia represents the continent with the most number
of candidate embedded devices and accounts for ap-
proximately 80% of all discovered vulnerable embed-
ded devices.

– South Korea contains the largest number vulnerable
embedded devices out of all monitored nations.

– While 33% of all discovered candidate embedded de-
vices reside within North America, only 12% of all
vulnerable embedded devices are found there.

103

5.3 Breakdown of Vulnerable Devices by Or-
ganizational Categories

Figure 7: Discovered Candidate Devices (Top) and Vul-

nerable Devices (Bottom) By By Organization Type.

Using the MaxMind GeoIP Organization database[2], we
categorized all monitored network ranges into 17,427 indi-
vidual organizations. This was then divided into 4 general
organization types; Educational, Internet Service Provider
(ISP), Private Enterprise, and Government. 9118 organi-
zations could not be accurately classified, and were left in
Unidentified category. Figure 7 shows the distribution of all
discovered embedded devices (top) and the distribution of
vulnerable embedded devices (bottom) across the 5 organi-
zation types. Table 5 shows the total number of candidate
embedded devices as well as the corresponding vulnerability
rate within each organization type.

– ISP networks contain the most number of candidate
embedded devices and house over 68% of all discovered
vulnerable embedded devices.

– While Educational networks contain only a modest
number of candidate embedded devices, it has the high-
est per category vulnerability rate of 32.83%

Vul. Rate Total Devices
Enterprise Devices 2.03% 1,689,245
VoIP Devices 15.34% 104,827
Home Networking 7.70% 445,147
Camera/Surveillance 39.72% 5,080
Office Appliances 41.19% 132,991
Power Management 7.23% 7,429
Service Provider Issued 27.02% 1,362,347
Video Conferencing 55.44% 43,349
Home Brew 4.93% 122,159

Table 3: Vulnerability Rate by Device Category.

Vul. Rate Total Devices
Africa 5.36% 19,363
Asia 21.69% 1,731,089
Europe 4.76% 450,019
North America 4.12% 1,335,575
South America 0.37% 402,163
Oceania 17.98% 85,941

Table 4: Total Discovered Candidate Embedded De-
vices and Corresponding Vulnerability Rates By Ge-
ographical Location (Continental).

Unique
Orgs

Vul.
Rate

Total Devices

Educational 1,371 32.83% 156,992
ISP 2,374 17.43% 2,095,292

Priv. Enterprise 4,070 16.40% 554,101
Government 494 10.38% 44,460
Unidentified 9,118 2.54% 1,103,775

Table 5: Vulnerability Rate By Organization Type.

5.4 Community Response to Default Creden-
tial Scanner Activity

The default credential scanner is designed to direct inter-
ested parties to a public webpage which describes the intent
and methodology of our project[3]. Each IP address used by
the scanner also hosts a public HTTP server which redirects
visitors to the public project webpage. We tracked access
to this webpage using Google Analytics as a way to gauge
the global community’s awareness of our scanning activities.
Figure 8 shows the number and geographical distribution of
visitors over the past six months. The initial spike of visitors
in October 2009 coincided with the publication of an article
regarding preliminary results of our project [8]. Since then,
our continuous scanning activity attracted 87 visitors over
the last 5 months.

Total Con-
versations

Opt-Out
Requests

Request for Information,
but Not Opt-Out

36 14 22
Tone of Counter-Party

Supportive Neutral Hostile
14 15 7

Table 6: Email Correspondences Received from Net-
work Operators Regarding Scanning Activity.

104

Figure 8: Daily Page Access Analytics For Scan Project Information Page [www.hacktory.cs.columbia.edu].
Oct 19, 2009 - April 12, 2010.

Vulnerable Devices Tracked 102,896
Tracked Devices Currently Online 54,429
Tracked Devices Currently Vulnerable 52,661

Table 7: Preliminary Longitudinal Study Tracking
102,896 Vulnerable Devices Over 4 Months.

Table 6 shows a breakdown of all communications between
the operators of the networks monitored by our scanner and
our research team. The conversations were all initiated by
the counter-party via email, usually requesting further in-
formation or to be excluded from the scan. We answered
36 conversations in total, 14 of which requested certain IP
ranges to be permanently excluded. 1,798 /24 networks were
excluded as a result of these requests. 61% of all interested
parties which detected our scanning activity and contacted
us decided to allow the scan to continue. The geographi-
cal location of the counter-parties correlates closely to the
heat map in Figure 8. We did not receive any correspon-
dence from ISP organizations or organizations from Asia,
even though the majority of vulnerable devices were discov-
ered within such IP ranges.

5.5 Preliminary Longitudinal Results
Table 7 shows the preliminary results of our longitudinal

study. We retested 102,896 vulnerable embedded devices
discovered at the end of December, 2009. As of April 20,
2010, 54,429 of the retested devices are still publicly acces-
sible, out of which 52,661 devices remain vulnerable.

In other words, approximately 96.75% of accessible vul-
nerable devices are still vulnerable after a 4 month period,
and factory default credentials have been removed from only
3.25% of the same set of devices.

6. REMEDIATION STRATEGY
The least sophisticated attacker modeled in this exper-

iment can be defeated by simply discontinuing the use of
well-known default credentials on embedded devices. How-
ever, the overall cost of implementing this naive mitigation
strategy will likely be quite high in reality. In the unlikely
event that all embedded device manufacturers universally
agree to discontinue the use of well-known default passwords
henceforth, we are still faced with the challenge of retroac-
tively fixing the vulnerable legacy embedded devices in use
throughout the world today. Therefore, it is reasonable to
assume that the embedded security threat will likely per-

sist and grow endemically for the near future. In order to
effectively reduce the total population of vulnerable embed-
ded devices in the wild, we must carefully consider the best
methods for securing existing legacy devices. Since exist-
ing devices are by definition under the administrative con-
trol of some individual or organization, successful mitigation
strategies must actively engage these network operators in
order to fix the problem.

According to the data presented in Section 5, a few groups
of network operators contribute disproportionally large num-
bers of vulnerable embedded devices to the global popula-
tion. For example, we discovered over 300,000 vulnerable
embedded devices operating in homogenous environments
within two ISP networks in Asia. Overall, embedded de-
vices operated by residential ISPs constitute over 68% of
the entire vulnerable population. Since ISPs centrally man-
age large numbers of vulnerable embedded devices, they are
the ideal candidates to engage to mitigate the embedded
security threat.

While immediately effective, engaging individual organi-
zations and manufacturers to fix pockets of vulnerable de-
vices can only impede the growth of the embedded security
threat but not solve it. In order to improve categorically the
security posture of both new and legacy embedded devices,
we must develop methods of delivering effective host-based
protection onto large numbers of proprietary embedded de-
vices running heterogeneous operating systems. We believe
that a novel, injectable code structure called Parasitic Em-
bedded Machines (PEM) [12] currently under development
by the Columbia Intrusion Detection Systems Lab provides
a viable solution to this challenging problem.

7. CONCLUSION AND FUTURE WORKS
We presented the first quantitative measurement of em-

bedded device insecurity on a global scale as well as a pre-
liminary longitudinal study tracking vulnerable embedded
devices over a 4 month period. We developed an embed-
ded device default credential scanner capable of efficiently
and safely identifying vulnerable embedded devices on the
network. The scanner does this by testing whether one can
remotely login into a device using its well-known manufac-
turer supplied default credentials. Using this scanner, which
currently monitors 73 common embedded device types, we
identify over 540,000 publicly accessible vulnerable devices
in 144 countries. Vulnerable embedded devices were discov-
ered in 17,427 unique organizations on 6 continents including
government, ISP, private enterprise, educational and satel-

105

lite provider networks. Preliminary results from our longi-
tudinal study tracked 102,896 vulnerable devices discovered
in December 2009. Out of the 54,429 devices currently on-
line from the original population, 96.75% such devices still
remain vulnerable today. By breaking down the observed
vulnerable embedded device population across functional,
geographical and organizational categories, we were able to
identify key groups which contribute a disproportionately
large number of vulnerable devices to the global popula-
tion. Lastly, using observations derived from the presented
data, we proposed a set of realistic mitigation strategies to
effectively reduce the total population of vulnerable embed-
ded devices. This study demonstrates that there is a very
large population of trivially vulnerable embedded devices
available for exploitation by the least sophisticated adver-
sary. We posit that the size of this vulnerable population
can be significantly increased by escalating the level of so-
phistication of the assumed attacker. Since no widely avail-
able host-based defenses exist, vulnerable embedded devices
constitute a serious and pervasive security problem.

8. REFERENCES
[1] kaiten.c IRC DDOS Bot.

http://packetstormsecurity.nl/irc/kaiten.c.

[2] MaxMind GeoIP.
http://www.maxmind.com/app/ip-location.

[3] Embedded Device Vulnerability Assessment Initiative.
http://www.hacktory.cs.columbia.edu.

[4] IronKey Personal D200.
http://www.ironkey.com/personal-solutions.

[5] The
End of Your Internet: Malware for Home Routers, 2008.
http://data.nicenamecrew.com/papers/malwareforrouters/paper.txt.

[6] Network Bluepill. Dronebl.org, 2008.
http://www.dronebl.org/blog/8.

[7] Psyb0t’ worm infects linksys, netgear home routers,
modems. ZDNET, 2009.
http://blogs.zdnet.com/BTL/?p=15197.

[8] Scan of internet uncovers thousands of vulnerable
embedded devices.
http://www.wired.com/threatlevel/2009/10/vulnerable-
devices/,
2009.

[9] Time warner cable exposes 65,000 customer routers to
remote hacks.
http://www.wired.com/threatlevel/2009/10/time-
warner-cable/,
2009.

[10] P. Akritidis, W. Y. Chin, V. T. Lam, S. Sidiroglou,
and K. G. Anagnostakis. Proximity breeds danger:
Emerging threats in metro-area wireless networks. In
In Proceedings of the 16 th USENIX Security
Symposium, pages 323–338, 2007.

[11] Hristo Bojinov, Elie Bursztein, Eric Lovett, and Dan
Boneh. Embedded management interfaces: Emerging
massive insecurity. Black Hat USA, 2009, 2009.

[12] Ang Cui and Salvatore J. Stolfo. Generic rootkit
detection for embedded devices using parasitic
embedded machines. Columbia University, New York.
cucs-009-10., 2010.

[13] Felix ”FX” Linder. Cisco Vulnerabilities. In In
BlackHat USA, 2003.

[14] Felix ”FX” Linder. Cisco IOS Router Exploitation. In
In BlackHat USA, 2009.

[15] Andrea M. Matwyshyn, Angelos D. Keromytis
Ang Cui, and Salvatore J. Stolfo. Ethics in security
vulnerability research. IEEE Security and Privacy
(Vol. 8, No. 2), 2010.

[16] Michael Lynn. Cisco IOS Shellcode, 2005. In BlackHat
USA.

[17] Sebastian Muniz. Killing the myth of Cisco IOS
rootkits: DIK, 2008. In EUSecWest.

[18] Petko D. Petkov. Router Hacking Challenge, 2008.
http://www.gnucitizen.org/blog/router-hacking-
challenge/.

[19] Patrick Traynor, Kevin R. B. Butler, William Enck,
Patrick McDaniel, and Kevin Borders. malnets:
large-scale malicious networks ia compromised wireless
access points. Security and Communication Networks,
3(2-3):102–113, 2010.

[20] Alex Tsow. Phishing with consumer electronics -
malicious home routers. In Tim Finin, Lalana Kagal,
and Daniel Olmedilla, editors, MTW, volume 190 of
CEUR Workshop Proceedings. CEUR-WS.org, 2006.

106

Multi-vendor Penetration Testing in the
Advanced Metering Infrastructure

Stephen McLaughlin, Dmitry Podkuiko, Sergei Miadzvezhanka,
Adam Delozier, and Patrick McDaniel

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
{smclaugh,podkuiko,swm5344,delozier,mcdaniel}@cse.psu.edu

Abstract - The advanced metering infrastructure (AMI) is
revolutionizing electrical grids. Intelligent AMI “smart me-
ters” report real time usage data that enables efficient en-
ergy generation and use. However, aggressive deployments
are outpacing security efforts: new devices from a dizzying
array of vendors are being introduced into grids with little
or no understanding of the security problems they represent.
In this paper we develop an archetypal attack tree approach
to guide penetration testing across multiple-vendor imple-
mentations of a technology class. In this, we graft archety-
pal attack trees modeling broad adversary goals and attack
vectors to vendor-specific concrete attack trees. Evaluators
then use the grafted trees as a roadmap to penetration test-
ing. We apply this approach within AMI to model attacker
goals such as energy fraud and denial of service. Our exper-
iments with multiple vendors generate real attack scenarios
using vulnerabilities identified during directed penetration
testing, e.g., manipulation of energy usage data, spoofing
meters, and extracting sensitive data from internal regis-
ters. More broadly, we show how we can reuse efforts in
penetration testing to efficiently evaluate the increasingly
large body of AMI technologies being deployed in the field.

1. INTRODUCTION
The Advanced Metering Infrastructure (AMI) is changing

the way electric energy is produced, priced, and consumed.
The introduction of digital sensors–smart meters–in homes
and enterprises has allowed regional and national produc-
ers to more efficiently produce and deliver energy [18]. In
short, the vast yet antiquated analog control system that
has served electricity consumers for decades is entering the
information age. Here AMI is evolving and being deployed
quickly. In the US, the recent stimulus package allocates
US $4.5 billion for smart grid technology development [25],
with the energy sector making substantial additional invest-
ments. Similar efforts are under way internationally, with
the EU, Canada, and China launching broad initiatives in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

recent years. Such expenditures are driving the dizzying
array of new products that reach the market almost every
day.

The transition of electric meters to digital systems is not
without risks. New technologies offer new opportunities for
adversaries to manipulate the grid to further their malicious
ends. Moreover, deployments are outpacing security efforts:
new devices and technologies are being introduced into grids
with little or no real understanding of the security problems
they represent. Current penetration testing efforts are piece-
meal, ad hoc and often superficial. Not surprisingly, new
vulnerabilities are being found almost as quickly as AMI
products are being deployed [33, 20, 9].

Prudence critically demands better analyses of AMI sys-
tem security: manufacturers and utilities must leverage mod-
eling and analysis efforts for the large body of systems to-
wards a global understanding of the security problems they
represent. Efforts like the NIST smart grid guidelines [30]
are a step in the right direction, but only identify affirmative
steps for secure systems. They do not posit the causes and
effects of critical vulnerabilities, nor identify a roadmap for
offensive testing of smart meter technology. In the absence of
guidance on these key issues, current industrial pen-testing
strategies focus on specific vendor lines and are agnostic to
critical security concerns–such as utilities’ concerns with rev-
enue protection from fraud and cost of operations.

In this paper, we design and execute a systematic penetra-
tion testing process for AMI systems and uncover a number
of real attacks on commercially available systems. Our con-
tributions in this effort include:

• We develop a new approach to guiding penetration
testing. This approach uses vendor independent archety-
pal attack trees to model broad adversary goals and
attack vectors, and concrete attack trees to instantiate
specific attack subgoals on vendor systems.

• We develop archetypal and concrete attack trees for
three important classes of attacks, (a) energy fraud, (b)
denial of service, and (c) targeted disconnect. These
trees represent practical (and in some cases trivial)
attacks that can be carried out in widely deployed AMI
systems.

• We identify from our penentration testing results of
one and one half years a broad range of security vulner-
abilities for two popular AMI vendors, and use them
to instantiate real attack scenarios in fielded systems.

107

Representative attacks include the manipulation of en-
ergy usage data and signaling as it traverses public
networks, spoofing meter identity, and physically ex-
tracting sensitive data from meters.

In this work, we focus solely on AMI: neighborhood-level
smart grids including smart meters, utility management ser-
vices, and the communications between them. However,
there is nothing specific to AMI in the archetypal attack
tree approach. The explored techniques are applicable to a
broad range of products such as SCADA, medical devices,
or automotive systems. We begin the exploration of this
approach and its use in the next section.

2. METHODOLOGY
An attack tree is a structure for enumerating the kinds

of attacks that achieve a particular adversarial goal [27]. It
does this by recursively breaking down a goal into finer-
and finer-grained subgoals and finally to a set of attacks
that achieve the original goal. An example attack tree that
formed the genesis of this work [24] is shown in Figure 1.
The root specifies the end goal, committing energy fraud by
forging the energy usage information reported to the util-
ity. The internal nodes (those with parents and children)
describe the different combinations of conditions that must
be met to commit fraud. Finally, the leaves of the tree are
the attacks necessary for energy fraud. The final attribute of
the tree is the conjunctions (AND/OR) between each layer
of child nodes. These specify whether all or just one of the
child branches must be followed to reach the goal in the
parent node.

What we notice about this example is that the attacks
at the leaves of the tree are fairly general, and seem appli-
cable to most smart metering systems. This suggests that
this type of tree is a widely applicable tool. However, be-
cause it lacks details about any specific system, its useful-
ness is limited in finding concrete vulnerabilities. Because
we are pen-testing multiple commercially available meter-
ing systems, we will want to further specify the details of
each attack in this generic tree. Thus, as we learn about the
individual systems, we extend this generic tree with vendor-
specific attack strategies. These ideas can be refined into
two types of attack trees: archetypal and concrete.

The process of grafting a concrete tree to an archetypal
tree is shown in Figure 2. For a given adversarial goal, one
may define an archetypal tree that enumerates strategies for
reaching the goal against any system of a given architecture.
In the case of the example above, the goal is forged energy
demand and the architecture is smart metering. Each leaf
of an archetypal tree is an archetypal attack. A concrete tree
then refines an archetypal attack with respect to a specific
vendor’s system. The subgoals in the concrete tree sensitive
to the security mechanisms present in the system, and thus
define the exact conditions under which the root goal can
be achieved. The leaves of the concrete tree are the con-
crete attacks which ultimately allow an adversarial goal to
be achieved. For the purposes of our study, we use pene-
tration testing to determine the feasibility of each concrete
attack.

Our method is similar to that originally used for attack
patterns [14, 10]. An attack pattern is a parameterized de-
scription of an attack, e.g. an injection attack, that is generic
until its parameters are instantiated. Attack patterns may

be described in terms of attack trees. When considering a
particular attack against a particular instance of a system,
e.g. a company’s network, its parameters are instantiated
with the specific details of that system. The concept of
attack trees is based on that of fault trees, which were origi-
nally use to model the dependencies between potential faults
in aviation and nuclear power systems [8, 32].

Attack trees by themselves are useful as a guide for pen-
etration testing. However, once the knowledge of system
interfaces has been exhausted and the concrete attacks are
developed, we resort to standard pen-testing techniques such
as reverse engineering [6], fuzz testing [28], and the construc-
tion of custom attack tools. For example, we later examine
an energy fraud attack based on a meter spoof program writ-
ten in Python.

Documented throughout, our methodology for directing
penetration testing includes:

1. Capture architectural description: Elicit the fea-
tures of a general architecture for target domain (see
Section 3).

2. Construct archetypal tree: Given the architectural
description, design a generic and comprehensive archety-
pal tree for each adversarial goal (see Section 4).

3. Capture vendor-specific description: Identify the
structures and security mechanisms present the Sys-
tems Under Test (SUTs) that may thwart a given archety-
pal attack (see Section 5).

4. Construct concrete trees: Graft the vendor-specific
goals to an archetypal goal to form concrete trees (see
Section 6).

5. Perform Penetration Testing: Attempt to achieve
the concrete goals by performing penetration testing
on the SUT (see Section 7).

3. THE ADVANCED METERING INFRAS-
TRUCTURE

AMI may be divided into utility-side management, smart
electric meter deployments, and the networks that connect
these two. This section describes these three along with
AMI security concerns. At the edge of the AMI resides
its main component: smart electric meters. A smart me-
ter is a digital equivalent of a stand-alone electromechanical
meter. Their most distinguishing characteristic is the use
of two-way network communication with utilities. Smart
meters have evolved from early Automated Meter Reading
(AMR) systems [5] to allow for automatic updates of dy-
namic pricing information [26] and curtailment of individ-
ual loads when the grid is under stress [11]. Internal stor-
age is used to keep time of day measurements for Time of
Use (TOU) pricing schemes [18] and logs for both power
outages [17] and potential intrusions, the latter of which is
further explored in section 5.1.

3.1 Smart Meter Architectures
A smart meter is a networked embedded system equipped

with a special apparatus for sensing electrical currents flow-
ing through wires. In this section, we tease out the details
of this definition, starting with the individual computing
platform and finishing with the network. Unless otherwise
specified, the features described in this section are present
in the vast majority of commercial smart meters.

108

Tamper
Usage
Data

Tamper
Measure-

ment

Tamper
Stored

Demand
Tamper in
Network

Clear
Logged
Events

Inject
Usage
Data

OR OR

OR AND

OR

Disconnect
Meter

A1.1

Recover
Meter

Passwords
A2.1

Physically
Tamper
Storage

A2.3

Intercept
Communi-

cations
A3.1

Man in
the

Middle
A3.2

Spoof
Meter

A3.3

Log In and
Clear Event

History
A1.3

Log In and
Reset Net

Usage
A2.2

Reset
Net

Usage
AND

Bypass
Meter

Reverse
Meter

AND

Meter
Inversion

A1.2

OR

ANDAND

(a) (b) (c)

Figure 1: Example energy fraud attack tree. The
three subgoals beneath the root are labeled as (a),
(b), and (c) for reference purposes.

A

B

A

A

B

Adversarial Goal
↓

⇒
⇒

S1

S2

Attack
Grafting

Archetypal
Tree

Concrete
Trees

Archetypal
Tree

Concrete
Trees

Figure 2: Grafting concrete trees for two different
systems (S1 and S2) onto an archetypal attack tree
for a specific adversarial goal.

Meters that are kept outside, such as those in the US, re-
side in protective socket enclosures, while those kept inside,
which is common in the EU, often do not require a socket.
The meter’s internals are further protected by its cylindri-
cal housing which consists of a base and a removable cover.
To detect tampering by removal of the cover, a “flag” style
aluminum tamper seal connects the cover to the base. This
inexpensive seal consists of a stem which must be broken to
remove the cover and a flag with a stamped identifier for
the seal. As one might expect, there are no restrictions pre-
venting the purchase of the seal with whatever flag marking
is desired, making the removal of a seal for the purposes of
physical tampering inconsequential.

The activities of a smart meter are coordinated by its
Microcontroller Unit (MCU). The majority of work done by
the MCU involves retrieving energy measurements from the
low-level meter engine and storing them in flash memory
for later transmission to the utility. Smart meter storage,
however, is not used for electrical measurements alone. Like
any general-purpose system, smart meters maintain logs of
event histories and operating conditions. While the set of
logged events varies between meter vendors, we cover the
logs relevant to our security analysis later.

For flexibility of installation, smart meters within the same
deployment can communicate over a number of different net-
work mediums and topologies. Thus, meter firmware is de-
signed to support a generic communication interface, leav-
ing the specifics of a given network to a pluggable Network
Interface Card (NIC). The meter exports a generic serial in-
terface to communicate with the NIC, leaving the processing
of specific network communication to the NIC.

If a meter is out of network communication with the utility
and configurations or repairs are needed, it can be controlled
locally through a standard infrared optical port located on
its front panel. These ports are accessed via a small optical
probe consisting of an LED and a photo-sensor at the range
of less than one inch. While most meter vendors follow the
physical layer standard for this port [4], the application layer
is often proprietary. Typically, the optical ports transmit all
data in the clear including passwords for user authentication.
This includes the meter’s administrator password.

One final component that deserves attention is the re-
mote disconnect switch. If a utility wishes to disconnect a

customer’s power, it may do so remotely by transmitting
a request to the meter to open the switch. The request is
received by the digital portion of the meter, which issues
the signal to the switch to break the circuit for the power
flowing through the meter.

3.2 Meter Networks and Utility-Side Manage-
ment

Given the sheer size of a utility’s customer base, achiev-
ing networking connectivity with a meter at each individual
home is a serious logistical challenge. Given the near impos-
sibility of placing each individual meter on a public network,
smart meters are designed to form their own LANs, each of
which relies on a gateway device for communication between
the LAN and public network. Some common choices of LAN
and public network configurations are shown in Figure 3.

In the most common meter LANs, meters are connected
in an adaptive wireless mesh network. Each meter in the
mesh is a repeater that propagates data through the LAN
to a collector. In some cases, the collector may itself be a
meter. Power Line Communication (PLC) networks piggy-
back signalling over power distribution lines to form a star
network topology that directly connects each meter in the
LAN with the collector. The collector connects to the utility
via a backhaul network such as the cellular or landline phone
network, or the Internet.

On the utility end of the meter network resides a PC
or server machine responsible for performing all regularly
scheduled interactions with the meter. This machine runs a
commodity OS, e.g. Microsoft Windows, a database server
and the proprietary meter server software. If the utility
server is compromised, the entire meter deployment is com-
promised.

3.3 AMI Security Concerns
Since smart meters have first come under scrutiny, con-

cerns have been raised regarding their accuracy, reliability,
security and privacy [23]. Academic and industrial pen-
testing efforts have found flaws in meter hardware [20], firmware [9]
and network protocols [24]. Recently, Pacific Gas and Elec-
tric (PG&E) has experienced problems with measurement
accuracy and meter network connectivity in their 5 million
meter deployment, one of the largest in the US [15]. The

109

Meter LAN 1: Power Line Communication

Meter LAN 2: RF Mesh

 • Cellular
 • Internet
 • PSTN

Backhaul Network
Utility Server

Collector Repeater

Figure 3: Connectivity of meters to utilities given two configurations of meter LANs.

addition of networks of such large numbers of devices to the
uncontrolled Internet has been known to leave systems vul-
nerable to Denial of Service (DoS) attacks stemming from
incompatibilities between their rigid proprietary designs and
the Internet’s open architecture [7, 31]. It will later be shown
that this is the case for one of our pen-tested systems.

In addition to basic cyber security concerns, the advanced
measurement capabilities of smart meters makes them a po-
tential threat to privacy if used in an unrestricted manner.
This is due to their ability to implement Non-Intrusive Load
Monitoring (NILM), which can disaggregate the loads ex-
erted by the individual appliances in a house from the net
load recorded at the electric meter [13]. Hart posited NILM’s
use as a means of surveillance over activities that are nor-
mally considered within the sanctity of the home [12]. More
recently, Lisovich et al. showed that the appliance informa-
tion extracted by NILM is useful to recover some information
about occupant behavior [21]. While this paper is limited
to AMI related concerns, we mention that attacks on sen-
sors in the grid’s core distribution network have also been
considered [22], along with the necessary conditions for such
attacks to lead to large scale cascading failures [19].

4. ARCHETYPAL ATTACK TREES
Having reviewed the general architecture of smart meter-

ing systems, we may now construct archetypal trees that
describe attacks in a broad sense that is applicable to any
system within the architecture. An archetypal tree is an
attack tree that is general enough to be applicable to all
systems of a given architecture. As with a regular attack
tree, the root of an archetypal tree is a single adversarial
goal. This goal is repeatedly broken down into subgoals that
describe the individual conditions that must exist to reach
the root goal. Unlike a regular attack tree, the leaf nodes
of the archetypal tree are not targeted at a specific system.
Instead, the leaves constitute the points to which concrete
trees are grafted. It is thus critical that they be selected
to clearly define the boundary between broad architectural
goals and vendor-specific goals. While this is somewhat of
an art rather than a science, we have devised a set of criteria
to aid us in differentiating between archetypal and concrete
goals. If any of the following are true of a goal during the
construction of an archetypal tree, then it becomes a leaf
node, to which a concrete tree can be grafted.

1. The goal targets a component whose implementation

is vendor-specific. An example of such a component
is the meter LAN. While an archetypal tree can pre-
scribe an attack on a meter LAN, the attack can not
be specific to any particular LAN media.

2. The goal may be hindered by the presence of a vendor-
specific protection mechanism. The addition of any
subgoals for circumventing vendor-specific protection
mechanisms is by definition not archetypal. Such de-
tails must be described in the concrete tree. An ex-
ample of this can be seen in the following section on
energy fraud (Section 4.1), where nothing general is
known about the protection mechanisms present at the
collector’s link to the backhaul network.

If a subgoal does not meet these conditions, it is broken
down. In the following sections, we provide justification for
extending or terminating a given subgoal where instructive.

4.1 Energy Fraud
For our initial pen-testing efforts [24], we constructed an

archetypal tree for energy fraud (shown in Figure 1). It is
described here so that it may be instantiated later. We de-
fine energy fraud as any tampering with the metering infras-
tructure that leads to a customer not being billed for some
energy consumed. (Note that in this particular archetypal
tree, we do not consider using energy fraud to artificially
inflate a victim’s bill.) In AMI, fraud may be committed in
the field by modifying the recorded energy usage before it is
read by the utility. Known methods for fraud in electrome-
chanical meters include interfering with the meter’s sensors
using magnets and rewinding usage gauges by inverting the
meter in the socket (thereby reversing current flow through
the meter).

Smart meters, present new opportunities for tampering
with usage data. As shown in the first level of subgoals in
the example tree, this can be done in three places (a) in the
meter’s low-level components, (b) the meter’s long-term stor-
age, and (c) in transmission to the utility. The archetypal
attacks in this tree, as in the others, are labeled as TX.Y ,
where T is a letter specific to the tree, X is the index of
the subtree below the root to which the attack belongs, and
Y is the index of the attack within that subtree. Starting
with the physical attacks in subtree a, there are two means
to interrupt a smart meter’s physical measurement of us-
age. A1.1 simply requires that the meter is removed from
the path of current flow, and A1.2 that it be reversed in

110

DoS Meter
Command
Execution

Suppress
Command
Delivery

Exhaust
Meter LAN
Bandwidth

Drop
Packets to

Meter

Receive at
Spoofed

Meter

Suppress
Command
Execution

Halt or
Lock Meter

D1.1

D1.3

Leverage
Software

Bug
D2.3

Allocate
Maximum
Sessions

D2.2

Exhaust
Meter

Processing
D2.1

Drop in
Backhaul
Network

D1.2

OR

OR OR

OR OR

Figure 4: Archetypal tree for Denial of Service.

Targeted
Disconnect

Directly
Issue

Disconnect

Issue from
Network

Issue via
Optical

Port

Recover
Meter

Passwords

Issue
Local

Disconnect

Tamper
with Switch

Remove
Meter
Cover

Manipulate
Switch to

Disconnect

Replace
Tamper

Seal

R1.3 R1.4

R2.1 R2.2 R2.3AND

OR

OR AND AND

Determine
Target ID

or Address

Issue
Remote

Disconnect
R1.2R1.1

ANDAND

Figure 5: Archetypal tree for targeted disconnect.

its socket. As described in section 3.1, virtually all smart
meters will log and report both of these events (power cycle
and reverse energy flow respectively). Thus, in the archety-
pal level, we already recognize that the log messages will
need to be cleared of these events. As a final note on physi-
cal attacks, because obtaining physical access to the meter is
specific to a particular installation, we do not consider this
prerequisite in either the archetypal or concrete trees. This
does not matter for the case of fraud because it is assumed
that the adversary already has access to her own meter.

Modifying logs and usage in meter storage is the goal of
subtree b. This can be achieved in one of two ways. Ei-
ther the meter’s administrator password can be obtained
and used to clear the log files: A2.1 AND A2.2, or the phys-
ical storage device may be tampered without interfering with
the meter. As this is an archetypal tree, the implementation
of the storage is left unmentioned.

The strategies for forging usage data on the wire are shown
in subtree c. The interception of network communications
is assumed to be necessary both for the purposes of un-
derstanding the meter’s protocol stack, assuming it is non-
standard, and for interposing one’s self in the communica-
tion path with the utility. In the archetypal tree, we ignore
over which network (meter LAN or backhaul) the intercep-
tion occurs, as well as any potential protection mechanisms.
Along with A3.1, the adversary must either hijack a session
between the meter and utility (A3.2) or impersonate a meter
for the entire session (A3.3).

4.2 Denial of Service
This section considers DoS attacks that prevent meters

from acting on commands such as usage queries, firmware
upgrades, and remote disconnects. This is a realistic ad-
versary goal. For example, if the retrieval of meter log files
can be prevented for a sufficient period of time, a suspicious
event such as a meter power cycle can be erased when the
logs roll over with benign events.

The archetypal tree for meter DoS against meter com-
mand execution is shown in Figure 4. The adversary has
two choices for a general strategy, either prevent the com-
mand from reaching the meter, or prevent its execution on
the meter. The former can be achieved either through net-
work resource exhaustion, or by tampering with the routing
of packets away from the meter. As the LAN media is sys-
tem specific, we do not break this subgoal down any further
in the archetypal tree. A potentially more practical strategy
is to drop traffic destined for the meter. This may either be

done at a link or routing layer (D1.2) or at the transmis-
sion layer (D1.3). The latter seems like the more reasonable
method, as dropping a packet at an intermediate hop will
result in a retransmission by a higher layer.

The second strategy for command DoS prevents the meter
from executing a command once it is received. An extremely
simplistic method for doing this is to exhaust the meter’s in-
put processing capability (D2.1). This could be done either
from the backhaul network or meter LAN. While effective,
this type of attack is not covert, and cannot guarantee the
command will fail. A more failsafe approach would be to
put the meter into an unresponsive state. This may be done
through interactions that exhaust a particular system re-
source, e.g. allocating and maintaining the maximum al-
lowed number of open connections (D2.2), or by leveraging
a firmware bug causing a system hang (D2.3).

4.3 Targeted Disconnect of Electrical Service
Most meter vendors include remote disconnect function-

ality in their meters. The ability to disconnect a target’s
power can cause at best, inconvenience and in worse sce-
narios, financial or physical harm depending on the setting.
As described earlier, remote disconnect systems consist of a
physical switch that breaks the current flowing to the house,
and a set of remote commands to operate this switch. The
archetypal tree for this attack is shown in Figure 5.

The ideal case for an adversary would be to issue the dis-
connect command remotely. Doing this requires at least that
the ID be known for the target device (R1.1), and that its
administrator password has been recovered (R1.3). Notice
that this is the second archetypal tree with a leaf node re-
quiring meter passwords to be recovered. This illustrates a
secondary usefulness of attack trees: they act as a reference
for quickly mapping security flaws to the adversarial goals
they enable.

We reason that the disconnect functionality will be acces-
sible through the optical ports on most systems because op-
tical port functionality needs to contain at least the network
functionality to allow the meter to function in the event that
it is not network accessible, e.g. the meter’s network card is
malfunctioning. This is the basis of archetypal attacks R1.3
and R1.4.

Finally, physical access to a meter may also be useful for
manipulating the disconnect switch, be it by mechanical or
electrical means (R2.2). From experience, we have found
that virtually all smart meters use the same tamper seal [1].
We have contacted the manufacturer of these seals and con-

111

(A) (B)

Utility
Server

Collector Repeater Repeater

 Attacker Machine

Utility Field
Machine

" " " " " 240V AC

Load

"
"

Switch

Infrared

TC
P/

IP

Collector Repeater

120V AC

RadioRcvrPBX

Utility
Machine

Repeater

" " " " "

Attacker
Machine

Load

"
"

Load

"
"

Infrared

M
od

em

Power Line
Communication

Figure 6: The two SUTs used in our experiments. In S1 (A), the collector also functions as a meter, and
relays data from a wireless mesh LAN to a telephone network backhaul. S2 (B) uses a dedicated device as a
collector to relay data between a PLC network and an Internet connection to the utility.

firmed that there are no limitations on the text which we
could have embossed on the flag.

5. SYSTEMS UNDER TEST
This section details the two Systems Under Test (SUTs)

that have been the subject of our penetration testing1. We
will denote the two systems as S1 and S2. Besides the
meters themselves, this section covers the additional com-
ponents needed to run utility-end software and to network
meters with the utilities. In describing the two systems, we
will refer to the utility machine or utility server to mean a
Microsoft Windows-based PC or laptop computer running
software for meter management. We found that Windows by
far the most common choice of utility-end operating system
across vendors. The attacker machine is used to represent
our machine used for various pen-testing purposes. In prac-
tice, this could be any machine within network reachability
of a meter that is controlled by an adversary.

The general environment for both systems is identical.
Both SUTs consist of several repeaters and a single collector,
the main difference being that in S2, the collector does not
function as a meter itself. We constructed sockets to allow
the meters in our lab to function using wall socket power.
The meters in S1 are able to run on 120V AC at 60 Hz,
while the meters in S2 require a 240V step up transformer.
A simple load was exerted by a small synchronous motor and
measured to check the proper installation of each meter.

5.1 S1 Specifics
An overview of S1 is given in Figure 6.A. In S1, utilities

communicate with meters via Public Switched Telephone
Service. For obvious security reasons, we were unable to
directly connect our collector to the telephone network. In-
stead, an Asterisk [29] based private branch exchange (PBX)
on an x86 Linux machine provided call routing between the
collector and utility machine. The PBX routes calls accord-
ing to a table called the dial plan. The attacker machine

1We do not reveal vendor identities here, as we are already
in contact with them, and both SUTs are already deployed
in the US and Europe.

sits on the PBX along with the meter and utility machine.
Calls to the meter can be routed to the attacker machine
by modifying the PBX dial plan. The ability to perform
such rerouting using a commodity system was instrumental
in our instantiation of the energy fraud attack for S1.

For all communication, the utility machine initiates com-
munication with collector meters, with the exception of alarm
conditions such as outage management or potential intru-
sions, in which case the meter preemptively contacts the
utility. We augmented the utility machine with a modem
monitor for analyzing the telephone protocol. What we
quickly found is that it largely conforms to the ANSI C12.21
standard for telephone modem communication with meters.
After this, the monitor was only needed to understand the
occasional deviations from the standard.

The PSTN backhaul link at the collector is guarded by an
“intrusion detection” mechanism. The purpose of this mech-
anism is to prevent both active and passive attacks from
telephony devices connected on the same link as the collec-
tor, i.e. via a line splitter. The intrusion detection mech-
anism will immediately terminate a call from the utility if
another device on the line goes off the hook. When a de-
vice goes off the hook, it receives a dial tone and voltage via
an onboard component called the Foreign Exchange Office
(FXO). All endpoint devices in a telephone network use an
FXO. The dial tone and voltage are supplied from the other
end of the line by the Foreign Exchange Service (FXS), usu-
ally implemented by the phone company. Because the meter
can detect when another device is receiving a voltage and
dial tone, it can terminate its current call.

The main operation of concern in S1 is the diagnostic pro-
tocol between the meter and utility. This protocol can per-
form many functions from a simple meter reading, to a full
check of every parameter set in the meter. For the purposes
of energy fraud we are mainly concerned with how this pro-
tocol performs energy usage readings. The utility initiates a
diagnostic by calling a collector, resulting in the collector re-
sponding with an identification message. An authentication
round is then carried out according to the default scheme
specified by ANSI C12.21 (ANSI X3.92-198) [3]. If authen-
tication is successful, the utility will probe the meter for

112

Intercept
Communi-

cations

Via
Wireless

Mesh

Splice Into
Meter I/O

Bus
Via

Telephone

Spoof
Meter

Initiate
Session

with Utility

Identify
Self as
Meter

Complete
Authentica-
tion Round

Run
Diagnostic up
to Usage Data

Transmit
Forged

Usage Data

Interpose on
Collector

PSTN Link

Circumvent
Intrusion
Detection

A3.1 A3.3

a1.1

a2.1 a2.2

a3.1

a4.1 a4.2

a5.1 a6.1

OR OR

AND

AND AND

AND

(AND)

Figure 7: The concrete trees for energy fraud in S1.

Receive at
Spoofed
Collector

Allocate
Maximum
Sessions

Determine
Meter

Listening Port

Allocate
Sessions

Until Failure

Determine
Collector

ID

Initiate
Association
with Utility

Receive
and Drop
Packets

D1.3 D2.2

AND AND

d1.1 d1.2 d1.3 d2.1 d2.2

AND

(OR)

Figure 8: The concrete trees for DOS in S2.

some variable number of parameters, after which the cur-
rent net usages are read. This is the point in the protocol
where a usage forgery must occur. The remainder of the
protocol consists of potentially more parameter queries, and
finally a goodbye message. The meter LAN, a wireless mesh
operating in the 900 MHz band, is currently under evalua-
tion.

5.2 S2 Specifics
Our testbed for S2 is shown in Figure 6.B. The main dif-

ferences from S1 are the backhaul and meter LAN protocols,
and the collector, which does not function as a meter in S2.
Upon initial inspection, one notices that S2 is more acces-
sible to remote attacks due to the use of an Internet-based
backhaul. This fact becomes useful when instantiating a
concrete tree for DoS against meter command execution.
The meter LAN uses a proprietary protocol that requires
special equipment to analyze.

Though the application layer protocol between the utility
and collector is proprietary, two thing are clear from initial
inspection. First, an initial association between the two is
started by the collector, and each subsequent command ex-
ecution is started by the utility. This suggests that both
directions should be considered when designing a concrete
DoS attack. Second, in the initial association, the collector
transmits its unique ID number and associated network ad-
dress in the clear to the utility. Thus, knowing this ID for a
target collector may be useful in a DoS attack.

6. CONCRETE ATTACK TREES
Concrete attack trees function as a guide for penetration

testing a specific system. As with the archetypal trees, we
use basic guidelines to determine when a concrete tree is
specific enough. Any details not elaborated in the concrete
tree must either already be known about the system, or
must be discovered during pen-testing. In constructing the
concrete trees for fraud, DoS, and targeted disconnect, we
use the following two rules:

1. A goal should be a leaf if it is achievable completely by
known means in the system. This is the simplest case
as no additional pen-testing is required. Several leaves
in the concrete DoS tree are of this type.

2. A goal should be a leaf if no vulnerability is yet known
that would allow it to be executed. At this point, de-
termining the existence of a vulnerability enabling the
goal becomes the job of penetration testing.

We instantiate concrete trees for the three adversarial
goals for S1 and S2 below. The root of each concrete tree

shares a reference number with a leaf in one or more archety-
pal attack trees to which it may be grafted. We instantiate
fraud and targeted disconnect for S1, and DoS for S22.

6.1 Energy Fraud in S1
The archetypal attack tree for energy fraud presented three

broad strategies: tampering with the measurement process,
tampering with the recorded usage in meter storage, and
tampering with the usage data in transmission. For our first
attempt to implement a fraud attack in S1, we chose the
third strategy because of its relatively low invasiveness and
our understanding of the backhaul network operation. This
strategy terminated in three archetypal attacks: a manda-
tory requirement of being interposed on the backhaul link
(A3.1), and the option of either performing a man in the
middle attack (A3.2) or meter spoofing (A3.3). After evalu-
ating the ANSI C12.21 specification via trace of S1’s telephony-
based diagnostic protocol, we determined that meter spoof-
ing was more straightforward. Thus, to complete the goal of
fraud in S1, we must instantiate and execute concrete trees
for archetypal attacks A1.1 and A1.3. Both concrete trees
are shown in Figure 7.

Archetypal attack A3.1 requires that the adversary be in-
terposed somewhere on the path between the meter’s net-
working interface card (NIC) and the utility. In one extreme
end, this may be achieved by directly tampering with the
communications bus on which the NIC resides (a1.1). Two
more likely places are the mesh network (a3.1), and the tele-
phone backhaul (a2.1). For the latter, the additional pre-
requisite of bypassing the “intrusion detection” mechanism
is necessary (a2.2).

The second archetypal attack for energy fraud requires
meter spoofing. This calls for three steps to successfully de-
liver forged usage data as part of S1’s diagnostic protocol.
First, the spoofing device must initiate a new diagnostic ses-
sion with the utility. This will require first identifying itself
as the expected meter (a4.1), and second, completing the au-
thentication round (a4.2). Once the session is established,
the spoofing device must answer all diagnostic queries up to
the forged demand (a5.1), and finally, insert the forged de-
mand value (a6.1). The remainder of work to realize these
attacks is achieved by pen-testing as described in section 7.

6.2 Denial of Service in S2
Unlike the two concrete trees for energy fraud, the root

nodes of the two for DoS are combined by disjunction in the
archetypal tree. Thus, fulfilling the requirements of either

2While there are a large number of attempted attacks, we
find the ones described here to be the most instructive.

113

Recover
Meter

Passwords

R1.3 / A2.1
Issue

Remote
Disconnect

R1.2

Trojan
Optical

Port
r1.1

Physically
Extract from

Meter
r1.2

Mutually
Authenticate
with Meter

r2.1

Issue
Disconnect
Command

r2.2

OR AND

(AND)

Figure 9: The concrete trees for targeted disconnect S1.

tree is sufficient for achieving denial of command execution.
Recall that there are two options because communication in
S2 may be initiated by both the collector and the utility
at different points in time. The first tree (D1.3) requires
another device to spoof the collector node in order to receive
any commands destined for meters and drop them en route.
This requires first the necessary reconnaissance to determine
the collectors network ID (d1.1), and to establish a new
session with the utility using that ID (d1.2). Finally, the
spoofed collector can receive and drop commands from the
utility (d1.3). All three of these are leaves in the concrete
tree because they are achievable using known actions within
the system.

The other option for DoS against utility command exe-
cution is to allocate a maximum number of sessions in the
meter (D2.2). First, it must be determined on which port
the meter listens for commands (d2.1). If this is possible, an
attempt may be made to open multiple sessions on this port
in an attempt to exhaust either memory or OS resources
in the meter (d2.2). Both concrete attacks are leaf nodes
because pen-testing of S2 is needed to determine how they
may be executed in practice.

6.3 Targeted Disconnect in S1
The final concrete attack tree analyzed here is for the dis-

ruption of electrical service. As an adversary would ideally
want to execute this attack remotely, we chose archetypal
attacks R1.1 - R1.3 for instantiation. In S1, the meter ID is
printed on the front of each meter, making R1.1 achievable
by visual inspection. The concrete trees for R1.2 and R1.3
are shown in Figure 9.

Two strategies are feasible for meter password recovery in
S1 (R1.3). If the optical port can be physically monitored,
then the password can be obtained upon the next visit by
the utility (r1.1). Alternatively, if the contents of meter
storage can be extracted, the password may be recoverable,
though potentially only in a hashed format (r1.3). As both
of these are physical attacks, they may only be used to re-
cover a password from a single meter. This would normally
be a limiting factor in the impact of an attack against S1,
but we observe that its architecture encourages utilities to
use the same password for a large number of meters. In
the administrative utility-end software, a single password
set (consisting of a read-only and administrative user) is
chosen for a template program that is pushed to the meters
at configuration time. This makes it very tedious to create
a different program template for each meter. A brute force
guessing attack is not considered, as the maximum length of
a password in S1 is well over ten bytes. The final archetypal
attack needed is the issuance of the command to the tar-
get meter. This requires that the known password be used
in the mutual authentication round (the same as that used

in S1’s diagnostic protocol) (r2.1). Once authenticated, the
command can be issued (r2.2).

7. RESULTS
We now turn to the results of the penetration testing to

achieve each goal as summarized in Table 1.

7.1 Energy Fraud by Forged Usage Data
The energy fraud attack in S1 works as follows. First,

an adversarial device is interposed on the PSTN link from
a collector (a2.1) so as not to trigger the intrusion detec-
tion mechanism (a2.2). This was achieved by interposing
our PBX on the line. Recall that the purpose of the intru-
sion detection feature is to protect meter communication in
situations where the link to the PSTN is shared with that al-
ready present in a house. The PBX is used to route incoming
calls to the meter to a laptop computer that impersonates
the meter using a Python program we wrote. This is suf-
ficient for circumventing the intrusion detection mechanism
for two reasons. First, routing a call to the laptop need not
involve the meter at all. Second, if the PBX is used for the
purposes of eavesdropping on communication between the
meter and utility, it cannot be detected by the intrusion de-
tection mechanism that can only sense other FXOs on the
line (as described in section 5.1). Thus two requirements of
A3.1 are satisfied.

Once the adversarial laptop has been contacted by the
utility, it must identify itself as the target meter (a4.1) and
complete the authentication round (a4.2). This was possible
without knowing the meter’s password, which is used to de-
rive the key for the authentication protocol. Spoofing meter
identification only required using the ID which was printed
on the meter’s nameplate. Completing the authentication
round without knowing the password required one observa-
tion about the protocol: the meter generates the nonce used
for mutual authentication, but nonces are not tracked by the
utility’s server. Thus, a replayed nonce is sufficient for re-
playing the remainder of the authentication protocol. What
was not initially obvious was that the meter places the nonce
in a special field as part of the identification round. Thus,
replaying both the identification and authentication rounds
of ANSI C12.21 is sufficient for spoofing the meter during a
diagnostic.

The remaining protocol up to forged demand insertion
may also be replayed in this manner, satisfying (a5.1). The
final task towards energy fraud is inserting a forged net us-
age value into the diagnostic. This requires adding two addi-
tional pieces of information along with the numerical usage
value. First, a one byte checksum of the value is placed in
the application-layer header, and second a CRC is placed in
the MAC layer header, again as specified in ANSI C12.21.

114

Table 1: Summary of concrete attacks and discovered vulnerabilities for each adversarial goal.
Ref. Description Enabling Feature or Vulnerability

Energy Fraud in S1
a2.1 Interpose between utility and collector Telephone line may be accessible.
a2.2 Defeat modem intrusion detection The mechanism cannot detect an FXS.
a4.1 Identify self as meter A meter’s ID is printed on its faceplate.
a4.2 Complete authentication round Lack of nonce-tracking allows replayed authentication.
a5.1 Run diagnostic up to usage data Protocol is standardized.
a6.1 Transmit forged usage data Usage data is not integrity protected.

Denial of Service in S2
d1.1 Determine collector ID The ID is transmitted in the clear.
d1.2 Initiate association with utility Initialization uses a simple init message.
d1.3 Receive and drop packets The utility uses the IP address of the initiator of the most recent

association.
d2.1 Determine meter listening port The collector is responsive to port scanning.
d2.2 Allocate sessions until failure The collector does not handle many sessions robustly.

Targeted Disconnect in S1
r1.2 Physically extract passwords Passwords are stored in the clear in EEPROM storage.
r2.1 Mutually authenticate with meter The encryption key is derived from passwords.
r2.2 Issue disconnect command Administrative software is commercially available.

7.2 Denial of Service Against Command Exe-
cution

Two concrete attack trees were previously introduced for
Denial of Service against the execution of utility commands
by meters in S2. The first assumed that an association could
be formed between the utility and a device impersonating a
collector (d1.1,d1.2). At this point, the fake collector could
simply drop all commands issued by the utility (d1.3). The
initial association with the utility is initiated by an init

sent by the collector. This message, which is transmitted in
the clear, contains the unique serial number used to identify
the collector. The utility assumes that the source IP address
of the init message is the collector. Any device may sub-
mit an init message to the utility, but will not be able to
establish a secure channel without knowing the collector’s
symmetric key. This does not prevent the DoS attack how-
ever, as receiving the init message causes the utility to drop
its previous association with the real collector. After this,
the collector will only attempt to create a new association
if it is rebooted or if some alarm condition occurs such as a
power outage or potential physical tampering. A subsequent
second forged init would suffice to immediately break this
association.

The other concrete attack tree in this category is based
on the idea that the collector has a maximum number of
sessions which can be reached (D2.2). In practice, finding
the port on which a collector listens for utility requests (d2.1)
is done using the nmap [2] utility to perform a port scan of
the collector. What we found was that while attempting to
open many concurrent TCP connections on the collector’s
listening port, the collector would become unresponsive after
fewer than ten such connections. If continual attempts at
establishing new connections were made at the rate of once
per ten seconds, the collector remains unresponsive, and the
utility-end server is unable to complete any commands on
that collector, thus satisfying d2.2.

Under the category of DoS, we do have one result that was
found completely independently of the methodology pre-
sented in this paper. The use of a software fuzz tester [16]

found that the collector was vulnerable to crashing while
processing malformed packets. While we had not planned
on systematically exploring methods for leveraging software
bugs (D2.3), the use of fuzz testing would make a viable
addition to the archetypal tree.

7.3 Targeted Disconnect
The final result we explore is the application of concrete

trees R1.2 and R1.3 to disrupting electric service at a tar-
get meter by subverting its remote disconnect feature. We
were unable to verify the efficacy of this attack due to fact
that our S1 meters do not include the optional physical dis-
connect switch. However, we reason by inspection that the
attack is possible. The first step needed to issue the re-
mote disconnect command is password recovery (R1.3). Af-
ter some experimentation, we found that concrete attack
(r1.2) is possible. By desoldering a small SPI-based EEP-
ROM memory chip from the S1 collector’s radio card, we
were able to extract the plaintext password. While this is a
potentially dangerous operation, given that the same pass-
word may be used throughout a deployment, the payoff is
high. Upon discovering that the meter passwords may be
extracted from memory, a check of the archetypal trees re-
veals that A2.1 from Figure 1 is also satisfied, enabling sev-
eral alternate strategies for energy fraud. This demonstrates
the usefulness of archetypal attack trees in mapping newly
discovered vulnerabilities to adversarial goals.

Once the password is recovered, it must be used to per-
form the default C12.21 authentication function with the
target meter (r2.1). This authentication is a keyed hash
based on the DES cipher, and thus requires a DES key.
An internet search revealed that one distributor of S1 had
placed the manual for the utility-end software in a publicly
accessible directory. The manual revealed the fact that the
first eight bytes of the password are used to derive a DES key.
This is done using an unknown obfuscation method. The
easiest procedure to use the recovered passwords for authen-
ticating to the target meter would be to obtain the utility-
end software, which can be purchased from third party dis-
tributors, and provide it the password to issue the discon-

115

nect command (r2.2). Otherwise, a degree of reconnaissance
and reverse engineering will be necessary to determine the
obfuscation method.

8. CONCLUSIONS
In this paper, we have investigated a technique for evaluat-

ing the security of the myriad of devices being deployed into
the AMI. We have shown that we can leverage focused pen-
etration efforts in one vendor to others, and explored where
such evaluations must focus solely on the unique artifacts
of a system under test. In so doing, this work has sought
not only to streamline security analysis, but also to ensure
greater and more consistent coverage of potential attacker
goals and methods.

Yet there is much work left to be done. Government agen-
cies such as the NIST and the Federal Energy Regulation
Commission (FERC) continue to provide the essential guide-
lines for the design and maintenance of AMI security infras-
tructure. Complementary efforts at codifying penetration
testing of AMI such as the one documented in this paper
are essential to the future reliability of electric power grids.
In the future, we will expand the base of attacker goals and
associated trees, as well as extend this work to other vendor
devices. It is through these collected efforts that we hope
to garner a broad view of the security issues in AMI, and
ultimate positively influence the safety of smart grid.

9. REFERENCES
[1] B.T. Aluminum Tamper Seal. http://www.brooksutility.

com/catalog/product-detail.asp?ID=302.

[2] Nmap Reference Guide. http://nmap.org/book/man.html.

[3] American National Standards Institute. ANSIX3.92-198
Data Encryption Algorithm, 1981.

[4] American National Standards Institute. C12.18 Protocol
Specification for ANSI Type 2 Optical Port, 2006.

[5] A. Brothman, R. D. Reiser, N. L. Kahn, F. S. Ritenhouse,
and R. A. Wells. Automatic Remote Reading of Residential
Meters. IEEE Transactions on Communication Technology,
13(2):219 – 232, 1965.

[6] E. Eilam. Reversing: Secrets of Reverse Engineering.
Wiley, 2005.

[7] W. Enck, P. Traynor, P. Mcdaniel, and T. L. Porta.
Exploiting Open Functionality in SMS-capable Cellular
Networks. In Proceedings of the 12th ACM Conference on
Computer and Communication Security (CCS), pages
393–404. ACM Press, 2005.

[8] C. A. Ericson, II. Fault Tree Analysis — A History. In
Proceedings of the 17th International System Saftey
Conference, 1999.

[9] K. Fehrenbacher. Smart Meter Worm Could Spread Like A
Virus. http://earth2tech.com/2009/07/31/
smart-meter-worm-could-spread-like-a-virus/.

[10] M. Gegick and L. Williams. Matching attack patterns to
security vulnerabilities in software-intensive system designs.
In SESS ’05: Proceedings of the 2005 workshop on Software
engineering for secure systems—building trustworthy
applications, pages 1–7, New York, NY, USA, 2005. ACM.

[11] M. Goldberg. Measure Twice, Cut Once. IEEE Power and
Energy Magazine, May/June 2010.

[12] G. W. Hart. Residential Energy Monitoring and
Computerized Surveillance via Utility Power Flows. IEEE
Technology and Society Magazine, June 1989.

[13] G. W. Hart. Nonintrusive Appliance Load Monitoring.
Proceedings of the IEEE, 2004.

[14] G. Hoglund and G. McGraw. Exploiting Software: How to
Break Code. Addison Wesley, 2004.

[15] D. Hull. PG&E details technical problems with
SmartMeters.
http://www.siliconvalley.com/news/ci_14963541, April
2010.

[16] Infigo.hr. Infigo FTPStress Fuzzer.
http://www.infigo.hr/en/in_focus/tools.

[17] R. Kelley and R. D. Pate. Mesh Networks and Outage
Management. White Paper, September 2008.

[18] C. S. King. The Economics of Real-Time and Time-of-Use
Pricing For Residential Consumers. Technical report,
American Energy Institute, 2001.

[19] R. Kinney, P. Crucitti, R. Albert, and V. Latora. Modeling
cascading failures in the North American power grid. The
European Physical Journal B - Condensed Matter and
Complex Systems, 46(1):101–107, July 2005.

[20] N. Lewson. Smart meter crypto flaw worse than thought.
http://rdist.root.org/2010/01/11/
smart-meter-crypto-flaw-worse-than-thought.

[21] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring
Personal Information from Demand-Response Systems.
IEEE Security and Privacy, 8:11–20, 2010.

[22] Y. Liu, P. Ning, and M. K. Reiter. False Data Injection
Attacks against State Estimation in Electric Power Grids.
In Proceedings of the 16th ACM Conference on Computer
and Communications Security, November 2009.

[23] P. McDaniel and S. McLaughlin. Security and Privacy
Challenges in the Smart Grid. IEEE Security & Privacy
Magazine, May/June 2009.

[24] S. McLaughlin, D. Podkuiko, and P. McDaniel. Energy
Theft in the Advanced Metering Infrastructure. In
Proceedings of the 4th International Workshop on Critical
Information Infrastructure Security, 2009.

[25] R. Meritt. Stimulus: DoE readies $4.3 billion for smart
grid. EE Times, February 2009.

[26] A. H. Rosenfeld, D. A. Bulleit, and R. A. Peddie. Smart
Meters and Spot Pricing: Experiments and Potential. IEEE
Technology and Society Magazine, March 1986.

[27] B. Schneier. Attack Trees. Dr. Dobb’s Journal, December
1999.

[28] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software
Security Testing and Quality Assurance. Artech House
Publishers, 2008.

[29] The Asterisk Project. Asterisk open source pbx.
http://www.asterisk.org.

[30] The Smart Grid Interoperability Panel – Cyber Security
Working Group. Smart grid cyber security strategy and
requirements draft nistir 7628, February 2010.

[31] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger,
P. McDaniel, and T. La Porta. On Cellular Botnets:
Measuring the Impact of Malicious Devices on a Cellular
Network Core. In Proceedings of the 16th ACM Cnference
on Computer and Communications Security (CCS), pages
223–234, New York, NY, USA, November 2009. ACM.

[32] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl. Fault
Tree Handbook. U.S. Nuclear Regulator Commission, 1981.

[33] K. Zetter. Security Pros Question Deployment of Smart
Meters. Threat Level: Privacy, Crime and Security Online,
March 2010.

116

Network Intrusion Detection: Dead or Alive?

[Classic Paper]

Giovanni Vigna
Department of Computer Science

University of California, Santa Barbara
vigna@cs.ucsb.edu

ABSTRACT

Research on network intrusion detection has produced a
number of interesting results. In this paper, I look back
to the NetSTAT system, which was presented at ACSAC in
1998. In addition to describing the original system, I dis-
cuss some historical context, with reference to well-known
evaluation efforts and to the evolution of network intrusion
detection into a broader field that includes malware detec-
tion and the analysis of malicious behavior.

Keywords

Intrusion Detection, Network Security

1. INTRODUCTION
Network intrusion detection systems (NIDSs) have evolved

from their academic beginnings into mainstream commer-
cial products, and network intrusion detection is now con-
sidered a “mature technology.” From the early network-
based systems (such as EMERALD [13], NSM [3], Bro [11],
and NetSTAT [16]), dozens of network-based systems have
been proposed in research and many have transitioned to
the commercial world to become products (see, for example,
Snort [14], which is the most popular open-source network
intrusion detection system today).

Even though network intrusion detection is considered a
mature technology and research in this field is sometimes
considered “dead,” network attacks are still prevalent, large-
scale abuse of network resources are an everyday reality,
and sophisticated attacks seem to be able to easily bypass
commercial intrusion detection systems. So what happened
to network intrusion detection?

In this paper, I look back to some early research in network
intrusion detection, namely the NetSTAT system, which was
presented at ACSAC in 1998 [16]. I describe the system in
Section 2 and present some interesting contributions which
are still unmatched by the current state-of-the-art tools.

In Section 3, I discuss how, in the late nineties, there
was a push to compare and evaluate the intrusion detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

research being performed at the time, which culminated in
the MIT Lincoln Laboratory’s intrusion detection system
evaluation effort. Even though the results of this effort were
criticized and misused, they still represent one of the most
systematic and interesting attempts to measure, compare,
and even stimulate research in security.

Then, in Section 4, I describe some of the shortcomings
that gave network intrusion detection a bad name, but I also
discuss how the lessons learned in developing intrusion de-
tection systems have been taken into account in shaping a
larger research field, involved with the detection of compro-
mises at many levels.

2. THE NETSTAT SYSTEM
The NetSTAT system was a network-based intrusion de-

tection system. NetSTAT extended the state transition anal-
ysis technique (STAT) [4] to network-based intrusion detec-
tion in order to represent attack scenarios in a networked
environment. However, unlike other network-based intru-
sion detection systems that monitored a single sub-network
for patterns representing malicious activity, NetSTAT was
oriented towards the detection of attacks in complex net-
works composed of several sub-networks. In this setting,
the messages that are produced during an intrusion attempt
may be recognized as malicious only in particular subparts
of the network, depending on the network topology and ser-
vice configuration. As a consequence, intrusions cannot be
detected by a single component, and a distributed approach
is needed.

The NetSTAT approach models network attacks as state
transition diagrams, where states and transitions are char-
acterized in a networked environment. The network envi-
ronment itself is described by using a formal model based
on hypergraphs [1, 15].

The analysis of the attack scenarios and the network for-
mal descriptions determines which events have to be mon-
itored to detect an intrusion and where the monitors need
to be placed. In addition, by characterizing in a formal
way both the configuration and the state of a network it
is possible to provide the components responsible for intru-
sion detection with all the information they need to perform
their task autonomously with minimal interaction and traffic
overhead. This can be achieved because network-based state
transition diagrams contain references to the network topol-
ogy and service configuration. Thus, it is possible to extract
from a central database only the information that is needed
for the detection of the particular modeled intrusions. More-
over, attack scenarios use assertions to characterize the state

117

�
�
�
�����

��
��
��
��

probe

probe

probe

Network fact base

Analyzer

Scenario database

Security Officer

Network

Internet

gateway

gateway

router

Figure 1: The NetSTAT architecture.

of the network. Thus, it is possible to automatically deter-
mine the data to be collected to support intrusion analysis
and to instruct the detection components to look only for
the events that are involved in run-time attack detection.
This solution allows for a lightweight, scalable implementa-
tion of the probes and focused filtering of the network event
stream, delivering more reliable, efficient, and autonomous
components.

2.1 Architecture
NetSTAT is a distributed application composed of the fol-

lowing components: the network fact base, the state transi-
tion scenario database, a collection of general-purpose pro-
bes, and the analyzer. A high-level view of the NetSTAT
architecture is given in Figure 1.

2.1.1 Network Fact Base

The network fact base component stores and manages the
security-relevant information about a network. The fact
base is a stand-alone application that is used by the Net-
work Security Officer to construct, insert, and browse the
data about the network being protected. It contains infor-
mation about the network topology and the network services
provided.

The network topology is a description of the constituent
components of the network and how they are connected.
The network model underlying the NetSTAT tool uses in-
terfaces, hosts, and links as primitive elements. A network
is represented as a hypergraph on the set of interfaces [15].
In this model, interfaces are nodes while hosts and links are
edges; that is, hosts and links are modeled as sets of inter-
faces. This is an original approach that has a number of
advantages. Because the model is formal, it provides a well-
defined semantics and supports reasoning and automation.
Another advantage is that this formalization allows one to
model network links based on a shared medium (e.g., Eth-
ernet) in a natural way, by representing the shared medium

as a set containing all the interfaces that can access the
communication bus. In this way, it is possible to precisely
model the concept of network traffic eavesdropping, which
is the basis for a number of network-related attacks. In ad-
dition, topological properties can be described in a simple
way since hosts and links are treated uniformly as edges of
the hypergraph.

The network model is not limited to the description of
the connection of elements. Each element of the model has
some associated information. For example, hosts have sev-
eral attributes that characterize the type of hardware and
operating system software installed. The reader should note
that in this model “host” is a rather general concept. More
specifically, a host is a device that has one or more net-
work interfaces that can be the (explicit) source and/or des-
tination of network traffic. For example, by this definition,
gateways and printers are considered to be hosts. Links
are characterized by their type (e.g., Ethernet). Interfaces
are characterized by their type and by their corresponding
link- and network-level addresses. This information is rep-
resented in the model by means of functions that associate
the network elements with the related information.

The network services portion of the network fact base
contains a description of the services provided by the hosts
of a network. Examples of these services are the Network
File System (NFS), the Network Information System (NIS),
TELNET, FTP, “r” services, etc. The fact base contains a
characterization of each service in terms of the network/trans-
port protocol(s) used, the access model (e.g., request/reply),
the type of authentication (e.g., address-based, password-
based, token-based, or certificate-based), and the level of
traffic protection (e.g., encrypted or not). In addition, the
network fact base contains information about how services
are deployed, that is, how services are instantiated and ac-
cessed over the network.

Figure 2 shows an example network. In the hypergraph

118

landis

rlogin: carpenter, lang

carpenter

bergman

i6

i8

i10i11

i9

i9

wood

wilder

jackson

lang

chaplin

hitchcock

i1
i

i1

i2

i3

i3

NFS: /home kubrick, wood

 /fs kubrick, wood

TELNET: *

Outside Internet

L4

L5

fellini

i4

kubrick

i5

L1

L2

L3

3

2
i31

2

1

1

2

i7

0

Figure 2: An example network.

describing the network, interfaces are represented as black
dots, hosts are represented as circles around the correspond-
ing interfaces, and links are represented as lines connecting
the interfaces. The sample network is composed of five links,
namely L1, L2, L3, L4, and L5, and twelve hosts. Here-
inafter, it is assumed that each interface has a single associ-
ated IP address, for example interface i7 is associated with
IP address a7. The outside network is modeled as a compos-
ite host (the double circle in the figure) containing all the
interfaces and corresponding addresses not in use elsewhere
in the modeled network. As far as services are concerned,
host fellini is an NFS server exporting file systems /home
and /fs to kubrick and wood. In addition, fellini is a
TELNET server for everybody. Host jackson exports an
rlogin service to hosts carpenter and lang.

2.1.2 State Transition Scenario Database

The state transition scenario database is the component
that manages the set of state transition representations of
the intrusion scenarios to be detected.

The state transition analysis technique was originally de-
veloped to model host-based intrusions [4]. It describes com-
puter penetrations as sequences of actions that an attacker
performs to compromise the security of a computer system.
Attacks are (graphically) described by using state transition
diagrams. States represent snapshots of a system’s volatile,
semi-permanent, and permanent memory locations. A de-
scription of an attack has a“safe”starting state, zero or more
intermediate states, and (at least) one “compromised” end-
ing state. States are characterized by means of assertions,
which are functions with zero or more arguments returning
Boolean values. Typically, these assertions describe some
aspects of the security state of the system, such as file own-
ership, user identification, or user authorization. Transitions
between states are indicated by signature actions that rep-
resent the actions that, if omitted from the execution of an
attack scenario, would prevent the attack from completing
successfully. Typical examples of host-based signature ac-

tions include reading, writing, and executing files. For a
complete description of the state transition analysis tech-
nique see [12]. For NetSTAT the original STAT technique
has been applied to computer networks, and the concepts of
state, assertions, and signature actions have been character-
ized in a networked environment.

States and Assertions.
In network-based state transition analysis the state in-

cludes the currently active connections (for connection ori-
ented services), the state of interactions (for connectionless
services), and the values of the network tables (e.g., rout-
ing tables, DNS mappings, ARP caches, etc). For instance,
both an open connection and a mounted file system are part
of the state of the network. A pending DNS request that has
not yet been answered is also part of the state, such as the
mapping between IP address 128.111.12.13 and the name
hitchcock. For the application of state transition analysis
to networks the original state transition analysis concept of
assertion has been extended to include both static assertions
and dynamic assertions.

Static assertions are assertions on a network that can be
verified by examining the network fact base; that is, by ex-
amining its topology and the current service configuration.
For example, the following assertion:

service s in server.services|

s.name == "www" and

s.application.name == "CERN httpd";

identifies a service s in the set of services provided by host
server such that the name of the service is www and the
application providing the service is the CERN http daemon1.
As another example, the following assertion:

Interface i in gateway.interfaces|

i.link.type == "Ethernet";

1The only (possibly) nonstandard notation used in the as-
sertions is the use of “|” for “such that”.

119

Network interface

Filter

network link

Inference Engine

Decision Engine

Probe

Figure 3: Probe architecture.

denotes an interface of a host, say gateway, that is connected
to an Ethernet link.

These assertions are used to customize state transition
representations for particular scenarios (e.g., a particular
server and its clients). In practice, they are used to deter-
mine the amount of knowledge about the network fact base
that each probe must be provided with during configuration
procedures.

Dynamic assertions can be verified only by examining
the current state of the network. One examples is NFS-

Mounted(filesys, server, client), which returns true if
the specified file system exported by server is currently
mounted by client. Another example is ConnectionEsta-

blished(addr1, port1, addr2, port2), which returns true
if there is an established virtual circuit between the specified
addresses and ports. These assertions are used to determine
what relevant network state events should be monitored by
a network probe.

Transitions and Signature Actions.
In NetSTAT, signature actions are expressed by leverag-

ing an event model. In this model, events are sequences of
messages exchanged over a network.

The basic event is the link-level message, or message for
short. A link-level message is a string of bits that appears on
a network link at a specified time. The message is exchanged
between two directly-connected interfaces. For example the
signature action:

Message m {i_x,i_y}|

m.length > 512;

represents a link-level message exchanged between interfaces
i_x and i_y whose size is greater than 512 bytes.

Basic events can be abstracted or composed to represent
higher-level actions. For example, IP datagrams that are
transported from one interface to another in an IP network
are modeled as sequences of link-level messages that repre-
sent the intermediate steps in the delivery process. Note
that the only directly observable events are link-level mes-
sages appearing on specific links. Therefore, the IP data-
gram “event” is observable by looking at the payload of one

of the link-level messages used to deliver the datagram. For
example, the signature action:

[IPDatagram d]{i_x,i_y}|

d.options.sourceRoute == true;

represents an IP datagram that is delivered from interface
i_x to interface i_y and that has the source route option
enabled. This event can be observed by looking at the link-
level messages used in datagram delivery along the path(s)
from i_x to i_y. It is also possible to write signature actions
that refer to specific link-level messages in the context of
datagram delivery. For example, the signature action:

Message m in [IPDatagram d]{i_x,i_y}|

m.dst != i_y;

represents a link-level message used during the delivery of
an IP datagram such that the link-level destination address
is not the final destination interface (i.e., the message is not
the last one in the delivery process).

Events representing single UDP datagrams or TCP seg-
ments are represented by specifying encapsulation in an IP
datagram. For example, the signature action:

[IPDatagram d [TCPSegment t]]{i_x,i_y}|

d.dst == a_y and

t.dst == 23;

denotes the sequence of messages used to deliver a TCP
segment encapsulated into an IP datagram such that the
destination IP address is a_y and the destination port is 23.

TCP virtual circuits are higher-level, composite events. A
virtual circuit is identified by the tuple (source IP address,
destination IP address, source TCP port, destination TCP
port) and is composed of two sequences of TCP segments ex-
changed between two interfaces. Each of these two sequences
defines a byte stream. The byte stream is obtained by as-
sembling the payloads of the segments in the corresponding
sequence, following the rules of the TCP protocol (e.g., se-
quencing, retransmission, etc.). The streams are denoted by
streamToClient and streamToServer.

For example, the signature action:

120

��

����

��
��
��
��

Scenario databaseNetwork fact base

Analysis engine

Configuration builder Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

analysis results

Analyzer

Probe configurations

Figure 4: Analyzer architecture.

TCPSegment t in

[VirtualCircuit c]{i_x,i_y}|

c.dstIP == a_y and

c.dstPort == 80 and

t.syn == true;

denotes a segment that has the SYN bit set and belongs
to a virtual circuit established between interfaces i_x and
i_y and that has destination IP address a_y and destination
port 80.

Events at the application level can be either encapsulated
in UDP datagrams or can be sent through TCP virtual cir-
cuits. In the former case, the application-level event can be
referenced by indicating the corresponding datagram and
specifying the encapsulation. For example, the signature
action:

[IPDatagram d

[UDPDatagram u

[RPC r]]]{i_x,i_y}|

d.dst == a_y and

u.dst == 2049 and

r.type == CALL and

r.proc == MKDIR;

represents an RPC request encapsulated in a UDP datagram
representing an NFS command.

In the TCP virtual circuit case, application-level events
are extracted by parsing the stream of bytes exchanged over
the virtual circuit. The type of application event determines
the protocol used to interpret the stream. For example, the
following signature action:

[c.streamToServer [HTTPRequest r]]|

r.method == "GET";

is an HTTP GET request that is transmitted over a TCP
virtual circuit (defined somewhere else as c), through the
stream directed to the server side2.

2.1.3 Probes

The probes are the active intrusion detection components.
They monitor the network traffic in specific parts of the
2This original formulation of the NetSTAT state transition
language was subsequently refined into a general-purpose
state transition language, called STATL [2].

network, following the configuration they receive at startup
from the analyzer, which is described in the following sec-
tion. Probes are general-purpose intrusion detection systems
that can be configured remotely and dynamically following
any changes in the modeled attacks or in the implemented
security policy. Each probe has the structure shown in Fig-
ure 3.

The filter module is responsible for filtering the network
message stream. Its main task is to select those messages
that contribute to signature actions or dynamic assertions
used in a state transition scenario from among the huge num-
ber of messages transmitted over a network link. The filter
module can be configured remotely by the analyzer. Its
configuration can also be updated at run-time to reflect new
attack scenarios, or changes in the network configuration.
The performance of the filter is of paramount importance,
because it has strict real-time constraints for the process of
selecting the events that have to be delivered to the inference
engine. In the current prototype the filter is implemented
using the BSD Packet Filter [8] and a modified version of
the tcpdump application [9].

The inference engine is the actual intrusion detecting sys-
tem. This module is initialized by the analyzer with a set
of state transition information representing attack scenarios
(or parts thereof). These attack scenarios are codified in
a structure called the inference engine table. At any point
during the probe execution, this table consists of snapshots
of penetration scenario instances (instantiations), which are
not yet completed. Each entry contains information about
the history of the instantiation, such as the address and ser-
vices involved, the time of the attack, and so on. On the
basis of the current active attacks, the event stream pro-
vided by the filter is interpreted looking for further evidence
of an occurring attack. Evolution of the inference engine
state is monitored by the decision engine, which is responsi-
ble for taking actions based on the outcomes of the inference
engine analysis. Some possible actions include informing the
Network Security Officer of successful or failed intrusion at-
tempts, alerting the Network Security Officer during the first
phases of particularly critical scenarios, suggesting possible
actions that can preempt a state transition leading to a com-
promised state, or playing an active role in protecting the
network (e.g., by injecting modified datagrams that reset

121

network connections.)
Probes are autonomous intrusion detection components.

If a single probe is able to detect all the steps involved in
an attack then the probe does not need to interact with
any other probe or with the analyzer. Interaction is needed
whenever different parts of an intrusion can be detected only
by probes monitoring different subparts of the network. In
this case, it is the analyzer’s task to decompose an intrusion
scenario into sub-scenarios such that each can be detected
by a single probe. The decision engine procedures associated
with these scenarios are configured so that when part of a
scenario is detected, an event is sent to the probes that are in
charge of detecting the other parts of the overall attack. This
simple form of forward chaining allows one to detect attacks
that involve different (possibly distant) sub-networks.

2.1.4 Analyzer

The analyzer is used to analyze and instrument a network
for the detection of a number of selected attacks. It takes as
input the network fact base and a state transition scenario
database and determines:

• which events have to be monitored; only the events
that are relevant to the modeled intrusions must be
detected;

• where the events need to be monitored;

• what information about the topology of the network is
required to perform detection;

• what information must be maintained about the state
of the network in order to be able to verify state as-
sertions.

Thus, the analyzer component acts as a probe generator
that customizes a number of general-purpose probes using
an automated process based on a formal description of the
network to be protected and of the attacks to be detected.
This information takes the form of a set of probe configura-
tions. Each probe configuration specifies the positioning of a
probe, the set of events to be monitored, and a description of
the intrusions that the probe should detect. These intrusion
scenarios are customized for the particular sub-network the
probe is monitoring, which focuses the scanning and reduces
the overhead.

The analyzer is composed of several modules (see Fig-
ure 4). The network fact base and the state transition sce-
nario database components are used as internal modules for
the selection and presentation of a particular network and
a selected set of state transition scenarios. The analysis en-
gine uses the data contained in the network fact base and the
state transition scenario database to customize the selected
attacks for the particular network under exam. For example,
if one scenario describes an attack that exploits the trust re-
lationship between a server and a client, that scenario will
be customized for every client/server pair that satisfies the
specified trust relationship3. This customization allows one
to instantiate an attack in a particular context. Using the
description of the topology of that context it is then possible
to identify what the sufficient conditions for detection are or
if a particular attack simply cannot be detected given the
current network configuration.

3Thus, state assertions are treated as if they were universally
quantified.

Once the attack scenarios contained in the state transi-
tion scenario database have been customized over the given
network, another module, called the configuration builder,
translates the results of the analysis engine to produce the
configurations to be sent to the different probes. Each con-
figuration contains a filter configuration, a set of state tran-
sition information, and the corresponding decision tables to
customize the probe’s decision engine.

2.2 Example
Consider, as an example, an active UDP spoofing attack.

In this scenario an attacker tries to access a UDP-based ser-
vice exported by a server by pretending to be one of its
trusted clients, that is, by sending a forged UDP-over-IP
datagram that contains the IP address of one of the autho-
rized clients as the source address. The receiver of a spoofed
datagram is usually not able to detect the attack. For this
example, consider the network presented in Figure 2 and as-
sume that host lang is attacking host fellini by providing
an NFS request that pretends to come from wood, who is
a trusted, authorized client. Host fellini receives the re-
quest encapsulated in a link-level message from chaplin’s
interface i33

to fellini’s interface i4. Host fellini has no
means to distinguish this message from the final link-level
message used to deliver a legitimate request coming from
wood. Therefore, fellini cannot determine if the datagram
is a spoofed one. The spoofing can be detected, however,
by examining the message on link L2. In this case, since
the link-level message comes from bergman’s interface i91

while it should come from wood’s interface i7, the datagram
can be recognized as spoofed. In general, if one considers
a single link-level message that encapsulates a UDP-over-
IP datagram, the datagram may be considered spoofed if
there is no path between the interface corresponding to the
datagram source address and the link-level message source
interface in the network obtained by removing the link-level
message source interface from the corresponding link.

This attack scenario is described in Figure 5 using a state
transition diagram. The scenario assumes that two net-
works have been defined, Network and ProtectedNetwork.
Network is a reference to the network modeled in the fact
base; ProtectedNetwork is a sub-network that contains the
hosts that must be protected against the attack.

The starting state (S1) is characterized by assertions that
define the hosts, interfaces, addresses, and services involved
in the attack. The first assertion states that the attacked
host victim belongs to the protected network. The second
assertion states that there is a service s in the set of services
provided by victim such that the transport protocol used is
UDP, and service authentication is based on the IP address
of the client. The third assertion states that a_v is one of the
IP addresses where the service is available. The fourth as-
sertion says that a_t is one of the addresses that the service
considers as “trusted”. The following assertions characterize
the attacker. In particular, the fifth assertion states that
there exists a host attacker that is different from victim

and that doesn’t have the trusted IP address. The sixth
assertion states that i is one of the attacker’s interfaces.

The signature action is a spoofed service request. That
is, a UDP datagram that pretends to come from one of the
trusted addresses, although it did not originate from the
corresponding interface. Actually the signature action is a
link-level message m that belongs to the sequence of mes-

122

S
1

Service s in victim.services |

s.protocol == "UDP" and

s.authentication == "IPaddress";

2
S

Message m in [IPDatagram d [UDPDatagram u]]{i, a_v.interface} |

d.src == a_t and

u.dst == s.port and

d.dst == a_v and

not (Network.detachFromLink(m.src)).existsPath(m.src, d.src.interface);

Host victim in ProtectedNetwork.hosts;

not attacker.IPaddresses.contains(a_t);

IPAddress a_v in s.addresses;

IPAddress a_t in s.trustedAddr;

Host attacker in Network.hosts |

Interface i in attacker.interfaces;

attacker != victim and

Compromised

Figure 5: UDP spoofing attack scenario.

sages used to deliver an IP datagram from interface i to the
interface associated with the address of the attacked host.
The IP datagram enclosed in the message has source ad-
dress a_t and destination address a_v. The IP datagram
encloses a UDP datagram, whose destination port is the
port used by service s. In addition, the message is such
that, if one considers the network obtained by removing
the message source interface from the corresponding link
(i.e., Network.detachFromLink(m.src)), there is no path
between the interface corresponding to the datagram IP
source address and the link-level message source interface.
For example, consider a link-level message exchanged be-
tween bergman’s interface i91

and chaplin’s interface i32
.

The message is an intermediate step in the delivery of a
UDP-over-IP datagram to fellini; the IP source address
of the datagram is wood’s a7. Intuitively, it is clear that a
message originated by wood and intended for fellini can-
not come from one of bergman’s interfaces, because there is
no path in the network that would require bergman to act
as a forwarder of the datagram. One way to check for this
is by removing the source interface of the message (i91

) and
checking whether or not there still exists a path from the
host whose IP address is the source of the datagram (wood)
to the host that contains the interface that was removed
(bergman). The second state (S2) is a “compromised” state.

The analysis of the attack starts by identifying the possi-
ble scenarios in the context of a modeled network. Thus, the
analysis engine determines all the possible combinations of
victim host, attacked service, spoofed address, and attacker
in a particular network. A subset of the scenarios for the
network in Figure 2 is presented in Table 1. In all scenarios
fellini is the attacked host, NFS is the service exploited,
and the spoofed address can be kubrick’s or wood’s.

The next step in the analysis is to determine where the
events associated with the signature action can be detected.
For each of these scenarios, the analysis engine generates all
the possible datagrams between the interface of the attacker
and the interface of the victim. In practice, the engine finds

all the paths between the interfaces defined by the scenario
and, for each path, generates the sequence of messages that
would be used to deliver a datagram. For each message
the predicate contained in the clause of the signature ac-
tion is applied. The messages that satisfy the predicate are
candidates for being part of the detection of the scenario.
For example, consider the scenario where carpenter is at-
tacking fellini by pretending to be wood. In this case,
the spoofed datagram is generated from interface i11 and
delivered through three messages to fellini’s interface i4.
The first message is between carpenter and bergman, the
second one is between bergman and chaplin, and the third
one is between chaplin and fellini. Of these three mes-
sages only the first two satisfy the predicate of the signature
action. Therefore, to detect this particular scenario one ei-
ther needs a probe on L3 looking for link-level messages
from carpenter’s interface i11 to bergman’s interface i92

, or
a probe on L2 looking for messages from bergman’s interface
i91

to chaplin’s interface i32
. In both cases, the IP source

address is a7, the destination IP address is a4, and the des-
tination UDP port is the one used by the NFS service. By
analyzing all the scenarios, one finds that in order to detect
all possible spoofing attacks it is necessary to set up probes
on links L1, L2, and L4.

3. EVALUATING INTRUSION DETECTION

SYSTEMS
Network intrusion detection systems should not be diffi-

cult to evaluate: given a traffic dump collected during real
or simulated intrusions, a NIDS should be able to detect a
subset of the attacks while producing a certain (hopefully
low) number of false positives. This is not as straightfor-
ward with other types of intrusion detection systems (e.g.,
host-based systems and application-based systems), because
the quantity and quality of information collected about the
actions performed by the OS and its applications can vary
dramatically. In addition, systems that use an anomaly-

123

victim s a_v a_t attacker i

fellini NFS a4 a5 Outside i0
fellini NFS a4 a7 Outside i0
fellini NFS a4 a5 hitchcock i11

fellini NFS a4 a7 hitchcock i11

.
fellini NFS a4 a5 lang i10
fellini NFS a4 a7 lang i10
fellini NFS a4 a5 carpenter i11
fellini NFS a4 a7 carpenter i11

Table 1: Possible scenarios for the UDP spoofing attack.

based approach to intrusion detection necessitate training
data, which should be realistic, complete, and attack-free
(note that “realistic and attack-free” could be considered an
oxymoron). This type of data is particularly hard to collect
and/or generate.

Even though the creation of a dataset that can be lever-
aged to compare the performance of intrusion detection sys-
tems is a challenging task, in 1998 and 1999 a group of re-
searchers from the MIT Lincoln Laboratory courageously
embarked in an effort to produce such a dataset, which in-
cluded both training data and test data (with truth files)
in the form of network packets, OS audit records, and file
system dumps [6, 7].

These datasets were used to evaluate a number of in-
trusion detection systems being developed by academic re-
searchers. At the beginning of the evaluation process, the
attack-free training data was given to the participants, and,
after a while, the test data containing attacks was distributed
(without truth files). The participants then had to identify
the attacks and submit their detection alerts, which were
then evaluated with respect to the truth files.

The results of the evaluation were disclosed only partially,
without declaring a “winner,” and with great care in not
making any single group look bad. Therefore, instead of a
single score, the authors of the evaluation provided a set
of scores that took into consideration various characteris-
tics of the systems involved, creating a no-winner/no-loser
situation. We think that this was a missed opportunity to
foster research by creating a competition with a clear win-
ner, as was later demonstrated by other challenges (e.g., the
DARPA Grand Challenge for unmanned vehicles), which by
having a clear winner motivated the competitors, fostered
innovation and creativity, and provided great publicity for
both the participants and the funding agency.

To determine a winner, a more draconian approach to
evaluation would have been to simply compose the recall
and precision of the intrusion detection systems. More pre-
cisely, in order to evaluate the effectiveness of a system one
could compute the percentage of hits H over the total num-
ber of attacks T , that is, (H/T) ∗ 100. This is a measure
of how many attacks were actually detected with respect to
the overall set of attacks (i.e., the recall). Then, in order
to characterize how precise the system is, one would com-
pute the percentage of false alarms F over the total number
of detections H + F , that is (H/(H + F)) ∗ 100. For ex-
ample, a system with three detections and no false alarms
would have a precision of 100%, but it would not be very
effective at detecting attacks if the dataset contained hun-

dreds of attack instances. As another example, a system
that flagged every single packet as malicious would have an
effectiveness of 100% because all attacks would be detected,
but it would also have an abysmal precision. Therefore, the
obvious choice is to multiply the two measures above to take
into account these two important aspects of intrusion detec-
tion.

The values of these metrics are shown in Table 2 for the
systems that participated in the 1999 MIT Lincoln Labora-
tory evaluation. According to the proposed metrics, UCSB’s
NetSTAT would be the winner of the 1999 competition,
closely followed by SRI’s EMERALD.

Even though the evaluation failed to declare a clear win-
ner and, in addition, there were some criticisms against the
evaluation process [10], the dataset produced was immensely
popular, and it is without doubt the most used dataset in
the intrusion detection community.

Unfortunately, the MIT/LL dataset and the correspond-
ing truth files were used in a series of scientific publications
in which the performance of intrusion detection systems,
evaluated on the non-blind dataset, were compared to the
performance of the intrusion detection systems that partic-
ipated in the blind evaluation, with nefarious and unfair
results. Since then, the dataset has become outdated, and
nowadays it is used very seldom in research publications.

4. THE DEATH (AND REBIRTH) OF INTRU-

SION DETECTION
In the years following the MIT/LL evaluation, there was

an increased skepticism towards network intrusion detection
and its ability to detect attacks, especially 0-day exploits and
mutations of existing attacks [17]. In addition, researchers
started to develop attacks against stateful intrusion detec-
tion system, exposing the challenge of detecting low-traffic,
slow-paced attacks that last months (if not years).

In general, there was a shift from the analysis of network
data to the analysis of host data, under the assumption
that only by monitoring the end nodes one could possibly
detect sophisticated attacks. Therefore, during the early
2000s, academia started losing interest in network intrusion
detection, while, at the same time, the use of commercial
network intrusion detection systems became an established
best-practice in enterprise networks. This happened some-
times in disguise, for example by relabeling NIDS as “in-
trusion prevention systems” to describe network intrusion
detection systems with traffic-blocking responses.

Around 2003-2004 it looked like research on the “classic”

124

GMU NYU RST
Elman
Network

RST
State
Tester

RST
String
Transd.

SRI
Derbi

SRI
Estat

SRI
EMERALD

SunySB UCSB
STAT

Hits 43 21 37 26 26 17 29 94 7 88
False Positives 16 74 5351 429 117 48 96 13 2 4
H/T 21.3 10.4 18.3 12.9 12.9 8.4 14.4 46.5 3.5 43.6
H/H + F 72.9 22.1 0.7 5.7 18.2 26.2 23.2 87.9 77.8 95.7
H/T ∗ H/H + F 15.5 2.3 0.1 0.7 2.3 2.2 3.3 40.9 2.7 41.7

Table 2: Hits, false positives (in absolute values), recall, precision, and composition of recall and precision (in
percentages) for the systems involved in the MIT Lincoln Laboratory 1999 IDS evaluation, which contained
202 attacks.

network intrusion detection problem (i.e., detecting attacks
by looking at network packets) was dwindling fast. How-
ever, at the same time, the techniques used to characterize
network attacks were applied to the detection of malicious
code components, such as worms and bots. Both misuse-
based and anomaly-based techniques were readily leveraged
to identify malware of various kinds. In a way, these re-
search efforts resulted in “intrusion detection” system that
were closer to the meaning of the term than the early NIDSs.
In fact, while the early systems focused mostly on detecting
attacks, these new systems focused on detecting the actual
intrusions by identifying malicious behavior that would in-
dicate that a system had been compromised.

This “born-again” network intrusion detection research is
characterized by the heavy use of data-mining and machine-
learning techniques to address one of the main problems
associated with misuse-based NIDS, which is the need for
the manual specification of attack models (note that some
of the seminal work in this field was performed in the late
90’s [5]).

5. CONCLUSIONS
Even though the term “Intrusion Detection” sometimes

is looked-down upon by the academic community, intrusion
detection research will always be a core part of the security
field. It might be the case that the focus of intrusion de-
tection will move towards more semantically-rich domains,
such as the OS and the web. For example, web-based intru-
sion detection systems (normally referred to as “Web Appli-
cation Firewalls”, for marketing purposes) leverage knowl-
edge about the characteristics of web applications and their
logic, in order to identify attacks. Nonetheless, these sys-
tems mostly use concepts that were researched and applied
more than two decades ago.

This “re-invention” of network intrusion detection tech-
niques and approaches shows how intrusion detection (be
it network-based, web-based, or host-based) is still an im-
portant research problem. As new attacks and new ways
of compromising systems are introduced, both researchers
and practitioners will develop (or re-discover) techniques for
the analysis of events that allow for the identification of the
manifestation of malicious activity.

The next challenge will be to expand the scope of intrusion
detection to take into account the surrounding context, in
terms of abstract and difficult-to-define concepts, such as
missions, tasks, and stakeholders, when analyzing data in
an effort to identify malicious intent.

6. REFERENCES

[1] C. Berge. Hypergraphs. North-Holland, 1989.

[2] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An
Attack Language for State-based Intrusion Detection.
Journal of Computer Security, 10(1,2):71–104, 2002.

[3] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A Network Security
Monitor. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 296 – 304,
Oakland, CA, May 1990.

[4] K. Ilgun, R. Kemmerer, and P. Porras. State
Transition Analysis: A Rule-Based Intrusion
Detection System. IEEE Transactions on Software
Engineering, 21(3):181–199, March 1995.

[5] W. Lee and S. Stolfo. Data Mining Approaches for
Intrusion Detection. In Proceedings of the USENIX
Security Symposium, San Antonio, TX, January 1998.

[6] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman. Evaluating
Intrustion Detection Systems: The 1998 DARPA
Off-line Intrusion Detection Evaluation. In Proceedings
of the DARPA Information Survivability Conference
and Exposition, Volume 2, Hilton Head, SC, January
2000.

[7] R. Lippmann and J. Haines. Analysis and Results of
the 1999 DARPA Off-Line Intrusion Detection
Evaluation. In Proceedings of the Symposium on the
Recent Advances in Intrusion Detection (RAID),
pages 162–182, Toulouse, France, 2000.

[8] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the 1993 Winter USENIX Conference,
San Diego, CA, January 1993.

[9] S. McCanne, C. Leres, and V. Jacobson. Tcpdump
3.7. Documentation, 2002.

[10] J. McHugh. Testing Intrusion Detection Systems: A
Critique of the 1998 and 1999 DARPA Intrusion
Detection System Evaluations as Performed by
Lincoln Laboratory. ACM Transaction on Information
and System Security, 3(4), November 2000.

[11] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX,
January 1998.

[12] P. Porras. STAT – A State Transition Analysis Tool
for Intrusion Detection. Master’s thesis, Computer
Science Department, University of California, Santa

125

Barbara, June 1992.

[13] P. Porras and P. Neumann. EMERALD: Event
Monitoring Enabling Responses to Anomalous Live
Disturbances. In Proceedings of the 1997 National
Information Systems Security Conference, October
1997.

[14] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of the USENIX LISA ’99
Conference, Seattle, WA, November 1999.

[15] G. Vigna. A Topological Characterization of TCP/IP
Security. In Proceedings of the 12th International
Symposium of Formal Methods Europe (FME ’03),
number 2805 in LNCS, pages 914–940, Pisa, Italy,
September 2003. Springer-Verlag.

[16] G. Vigna and R. Kemmerer. NetSTAT: A
Network-based Intrusion Detection Approach. In
Proceedings of the 14th Annual Computer Security
Applications Conference (ACSAC ’98), pages 25–34,
Scottsdale, AZ, December 1998. IEEE Press.

[17] G. Vigna, W. Robertson, and D. Balzarotti. Testing
Network-based Intrusion Detection Signatures Using
Mutant Exploits. In Proceedings of the ACM
Conference on Computer and Communication Security
(ACM CCS), pages 21–30, Washington, DC, October
2004.

126

Barriers to Science in Security
	

Tom Longstaff
The Johns Hopkins University

Applied Physics Laboratory 11100
Johns Hopkins Rd., Laurel, MD

20723
Thomas.Longstaff@jhuapl.edu

David Balenson
The Johns Hopkins University

Applied Physics Laboratory 11100
Johns Hopkins Rd., Laurel, MD

20723
Thomas.Longstaff@jhuapl.edu

Mark Matties
The Johns Hopkins University

Applied Physics Laboratory 11100
Johns Hopkins Rd., Laurel, MD

20723
Thomas.Longstaff@jhuapl.edu

Overview
In the past year, there has been significant interest in promoting
the idea of applying scientific principles to information security.
The main point made by information security professionals who
brief at conferences seems to be that our field of information
security is finally mature enough to begin making significant
strides towards applying the scientific approach. Audiences
everywhere enthusiastically agree and thrash themselves for
bypassing science all along, bemoaning the fact that we could be
“so much further along” if we only did science. Of course, after
the presentation is over, everyone goes back to the methods that
have been used throughout our generation to generate prototypes
and tools with no regard for the scientific principles involved.

The type of information security1 projects in scope for this essay
are experimental projects that produce a new approach or
support/refute a theoretical result. The use of the scientific
method in theoretical information security and in computer
science more generally is well documented and mature (even if
not universally applied). The focus of the “science of security”
publications in FY09-10 is in the area of experimentation and
applied information security research. Thus our focus here is also
in the comparison of experimental information security research
that does or does not use a traditional scientific method in the
execution of the project and in the publication of the results. The
definition of the scientific method we use in this essay is well
documented and not further described here.

Finding agreement in the use of the scientific method is
practically universal, finding participation in the scientific method

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 We use the term information security to clarify that the types of
projects in scope address the confidentiality, integrity, or
availability of information assets. While it is common to use the
term cyber security to address perhaps a wider set of topics, the
definition of cyber security is not as well defined or accepted, and
thus is more likely to cause confusion over the types of projects
included herein.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACSAC ¹10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.
	

is rare. Why? What are the primary barriers to applying the
scientific method to information security projects? What are the
main differences between the projects that apply the scientific
method to experimental information security projects and those
that promote software/tool development without applying a
traditional scientific approach? In this essay, I explore three main
barriers to achieving a more universal application of the scientific
method to experimental information security projects. These are:

• Time to publish as a primary driver
• Standard of peer reviews in conferences and journals
• Expectation of a breakthrough in every publication

Although these drivers are evident in many academic
publications, it must be noted that much of the work in computer
science, and more importantly, information security does not
concern the development of the body of scientific knowledge, but
in getting a job done. This is closely aligned to computer
engineering or software engineering, both of which are often
associated with computer science departments. Many practicing
computer scientists work in the area of information security by
producing innovative tools and techniques to solve specific
technical problems in information security. Many of these
practitioners have a computer science degree, but have never been
formally trained in the application of scientific method, nor do
they need to be to have successful careers in information security.
The overarching goal in this area of information security is to get
the job done in terms of writing a program to accomplish a task,
rather than on exploring the and testing the range of possibilities
(experimenting) and implementing a better solution. Practical,
working systems that can be quickly implemented tend to prevail.
This follows the old IETF mantra of “rough consensus and
running code.” (see
http://en.wikipedia.org/wiki/Rough_consensus).

In this sense, the Science in “Computer Science” is a misnomer –
many CS graduates are never formally trained in the scientific
method and its use in experimental information security. Some CS
curricula teach basics in terms of computational logic,
programming languages, data structures, database, artificial
intelligence, etc., but do not teach scientific experimentation.
Many other academic curricula, like Math, and even English,
often develop students who ultimately work as programmers,
developers, or researchers, but they also lack formal education in
scientific method. The curricula that do teach scientific methods,
such as Psychology, Biology, Physics, etc. lead to few people who
work on information security. However, as more of these
professionals enter the field, the call for a scientific approach
becomes increasingly urgent.

127

Time to Publish as a Primary Driver
The application of the scientific method to experimental
information security projects usually takes significantly more time
than is available for the development of a demonstration/prototype
tool. A carefully conceived experiment requires planning around a
well-formed hypothesis, assuring that the tests against the
hypothesis are sufficient to potentially refute the hypothesis. In
the likely event that the experiment will support the hypothesis,
the domain of the test environment must be sufficient to build an
argument that the hypothesis holds in a significantly extensive
context. This frequently means many runs of the experiment over
a wide variety of input variations to assure the relationship
between the domain and range of the system under test (SUT) is
as predicted by the hypothesis.

In contrast, many experimental tests take a developed prototype or
demonstration system and provides a narrow set of performance
characteristics. Since there is no hypothesis to test, there is no
possibility of refuting a hypothesis. All that is generated is a series
of observations of the SUT. The tests can be performed in a
narrow set of domain variables since the test is designed to show
performance in the environment for which the SUT was designed.
Since no failure is possible in this situation, the tests need not be
extensive to lead to results that may be published.

Even when a rigorous scientific test is designed, the pressure to
publish quickly may lead to an inadequate exploration through
extensive and multiple trials. There is a tendency to test a very
limited set of functionality or a small number of parameters. This
approach supports the hypothesis, but only for a limited
environment. These tests answer specific questions such as testing
an implementation X in environment Y and it’s ability to detect Z.
Variations X’ in alternative environments Y’ may be limited. The
full operating range or characteristics of our technology may not
be included in the rush to publish.

The publication of a well-designed experiment must follow a
rigorous structure that will allow readers of the publication to
fully repeat the experiment. This includes the domain (data and
input settings), full description of the SUT (including any
implementations), and the architecture of the test environment.
This implies that this data was carefully captured during the
experiment, which again takes a carefully planned experimental
methodology. When simply executing performance tests of a
prototype/demonstration system, the standard is not to capture the
experiment in full detail, but to instead describe the performance
of the prototype/demonstration. The publication is not designed to
allow others to re-create the experiment but instead to motivate
the use of the prototype in their environment. Since there is not
carefully described domain description for the test, the result
(range) of the prototype in a new environment cannot be
accurately predicted.

A well-defined experiment has a much more powerful predictive
value, but given that it takes a much longer time to achieve, there
is significant pressure on researchers to publish a higher volume
of results more quickly than running a series of experiments.
Since the metric for most academics in the area of information
security is number of publications rather than quality of
experimental results, rewards are gained by minimizing a
scientific approach and putting out as many publications on new
prototypes/demonstrations as possible. Since we get what we
incentivize, time to publish becomes a primary driver for choosing
prototyping over science.

Standard of Peer Reviews in Conferences and
Journals
Of course, rapidly producing many publication submissions based
on prototypes and demonstrations would be irrelevant if the
selection criteria in conferences and journals favored science over
demonstration.

In many natural and social science journals and conferences, a
submission must demonstrate the use of good science principles in
order to be considered for publication. In scientific areas such as
Physics, Chemistry, Psychology, and many others, the entire
culture is focused on the critical evaluation of scientific evidence.
A reviewer in these disciplines has an enormous responsibility to
represent the critical review of the entire readership. Her primary
responsibility is to discredit the potential publication before it can
be discredited by the readership. A well respected journal or
conference gains a reputation for the inclusion of only a small
subset of submissions that cannot be discredited, so thus must be
published to allow another researcher to reproduce the results or
possibly refute the hypothesis while hopefully proposing an
alternative.

In cultures such as the natural and social sciences described
above, critical reviewers are trained throughout their career to
evaluate submissions for scientific rigor. New ideas are not simply
given credence for being clever, but must be supported with
scientific evidence. Only then can the new idea be incorporated
into the scientific body of knowledge and used to make further
predictions.

In sharp contrast to this culture, the majority of the information
security reviewers consider the technological implementation of
new ideas to be of high worth. A description of a new tool that
implements a feature that has not yet been conceived is of great
interest to most of the reviewing community. A critical review of
this type of submission usually focuses on the quality of the
description itself, and of any duplication the tool might have with
previous tools that have been created (often to assure there is a
reference to this prior work). In this case, experimental design is
neither desired nor appreciated in the submission, and may be
excluded for a reduced page count.

Expectation of a Breakthrough in Every
Publication
If you accept the previous two points (time to publish and
standard of peer review) as driving the culture of scientific
discourse in information security, a natural expectation for short-
term R&D is to create a novel new system and publish the result.
These new systems are designed to solve particular problems
(such as intrusion detection or secure computing), but the
approach to solving the problem is to use insight to create a novel
solution that attempts to solve the problem at large. The
“breakthrough” solutions are shown to be effective in a lab
environment or small set of enterprise environments and described
as a prototype demonstration of the novel concept.

While there is absolutely nothing wrong with the generation of
technology based on novel concepts (this is how many companies
succeed), this is not a scientific approach to solving problems in
information security. Using a scientific approach would create
reusable knowledge or explore causal relationships rather than

128

focus on the apparatus used to gain these results. By equating the
process of “scientific discovery” with technology innovation, we
create an expectation that scientific publications should always
contain a breakthrough technology as a core benefit. This
expectation leads to a reduced number of accepted publications
that show incremental progress in the understanding of how
information security actually works, and instead promotes
publications that fully describe a technology breakthrough.

Conclusions and Way Forward
It is certainly possible that in this field, the traditional scientific
approach is not commercially viable from a product development
standpoint. It can easily be argued that given the rapid pace of
technological advance, we should be promoting innovative
technological solutions over scientific investigation. We do have
mature and rigorous scientific investigation in computer science
more generally and in information security from a theoretical and
cryptographic perspective. While we don’t often use these results
to drive innovation, there are specific instances where we have
used results from theoretical computer security to drive a security
product.

If this is the case, why the clamor for scientific method in
experimental information security? Given the advances in other
experimental sciences, the hope is that we can begin to develop
lines of information security products that are incrementally better
as time goes on, not just by adding features to an implementation,
but by understanding the underlying causality of information
security and addressing the problem at its most fundamental level.
Applying the scientific method to our experiments will enable a
more purposeful approach to discovering the exact conditions
under which our innovations can be expected to operate,
providing much greater utility in our future products.

If this is a goal to be at least partially achieved, the three barriers
to adoption described in this article must be addressed. Each of
these poses a significant challenge to the field as they address the
culture of our process, which one can argue has successfully
produced commercially successful products. Yet the basic
problem of information security remains. Could we begin to
eliminate these problems through the application of experimental
science in information security? If we do not create at least a
small sub-culture that applies scientific method to experimental
information security, we may never know. If we do create such a
sub-culture that embraces experimental science in information
security, it might be best to treat this delicate new community as a
“skunk-works” from the main body of information security R&D.
This would involve creating a series of publication venues that use
reviewers from this new community, create expectations that will
appeal largely to this community (and not to the information
security community at large), and which creates a body of
knowledge that is formed outside of the mainstream of
information security R&D. The success or failure of this
community will pivot on its ability to solve fundamental questions
in information security in a way that cannot be ignored by the
mainstream.

It possible that the current climate of our funding agencies in the
US and EU are disposed to fund the creation of this community
given a clear definition and leadership in its formation. For
members of this conference that both have a deep understanding
and appreciation of experimental science and for future program
managers that might fund such an approach, it is time to come
together to produce the “grand experiment” of the creation of a
sub-community of information security that rejects ad-hoc
solutions in favor of scientific evidence that increase our
understanding of information security.

129

Friends of An Enemy: Identifying Local Members of
Peer-to-Peer Botnets Using Mutual Contacts

Baris Coskun
∗

AT&T
33 Thomas Street

New York, NY
baris@att.com

Sven Dietrich
Stevens Inst. of Technology

Castle Point on Hudson
Hoboken, NJ

spock@cs.stevens.edu

Nasir Memon
Polytechnic Institute of NYU

Six Metrotech Center
Brooklyn, NY

memon@nyu.edu

ABSTRACT

In this work we show that once a single peer-to-peer (P2P)
bot is detected in a network, it may be possible to efficiently
identify other members of the same botnet in the same net-
work even before they exhibit any overtly malicious behav-
ior. Detection is based on an analysis of connections made
by the hosts in the network. It turns out that if bots select
their peers randomly and independently (i.e. unstructured
topology), any given pair of P2P bots in a network com-
municate with at least one mutual peer outside the network
with a surprisingly high probability. This, along with the
low probability of any other host communicating with this
mutual peer, allows us to link local nodes within a P2P
botnet together. We propose a simple method to identify
potential members of an unstructured P2P botnet in a net-
work starting from a known peer. We formulate the problem
as a graph problem and mathematically analyze a solution
using an iterative algorithm. The proposed scheme is simple
and requires only flow records captured at network borders.
We analyze the efficacy of the proposed scheme using real
botnet data, including data obtained from both observing
and crawling the Nugache botnet.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.3 [Computer
Communication Networks]: Network Operations—Net-
work Monitoring

General Terms

Security

Keywords

P2P Botnet, IDS, Network Security
∗This work was carried out while Baris Coskun was with
Polytechnic Institute of NYU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION
Botnets, which are networks of compromised hosts (bots)

under the control of a botmaster, have become a major
threat in recent years. Botnets are used to perform vari-
ous malicious activities such as spamming, phishing, steal-
ing sensitive information, conducting distributed denial of
service (DDoS) attacks, scanning to find more hosts to com-
promise, etc. Bots which perform such malicious activity,
occasionally go over the radar and get detected by Intru-
sion/Anomaly/Behavior Detection Systems present within
the network. In fact, network administrators routinely dis-
cover bots which are then immediately quarantined or re-
moved. However, some interesting and important questions
remain, such as: “Does the network contain more bots
of the same type which haven’t been exposed yet?”
“Can the discovered bot be leveraged to find other dor-
mant bots of the botnet before they commit any ma-
licious activity?” “Can all this be done without any
access to backbone traffic and only from netflow data
from the edge router?”
A common and fairly obvious approach to find dormant

bots is to characterize the Command and Control (C&C)
channel from the discovered bot’s recent traffic and iden-
tify hosts that exhibit similar C&C traffic characteristics.
For example, botnets with a centralized C&C architecture,
where all bots receive commands from a few central con-
trol servers, the source of the C&C messages can be used
to characterize the corresponding C&C channel and reveal
potential dormant bots [23].
However, characterizing the C&C channel is in general not

a trivial task for botnets that utilize a peer-to-peer (P2P)
architecture involving no central server. For example, this
kind of source analysis falls short for P2P botnets as here
the botmaster can use any node to inject C&C messages. To
receive and distribute C&C messages, each P2P bot com-
municates with a small subset of the botnet (i.e. peer list)
[30, 14, 18] and maintains its own peer list independently.
Hence, no obvious common source of C&C messages can be
observed, thereby preventing the linking of the discovered
bot with the dormant bots. Furthermore, features based on
packet sizes and timings, such as packets per flow, bytes per
flow, flows per hour, etc. may not be useful in characterizing
a C&C channel, since botmasters can easily randomize such
features thereby obtaining different feature values for each
bot [29]. Botnets such as Nugache, Storm, Waledac and
Conficker employ advanced encryption mechanisms [30, 14,
18, 28, 27] making characterization based on packet contents

131

infeasible.
In this paper we propose an efficient technique to dis-

cover additional P2P bots in a network after one such bot
has been discovered. Specifically, the proposed technique
provides a list of hosts ordered by a degree of certainty,
that potentially belong to the same P2P botnet as the dis-
covered bot. Network administrators can use this list as a
starting point of their investigation and potentially identify
more bots in their network once they discover one. The
proposed technique is based on the simple observation that
peers of a P2P botnet communicate with other peers in or-
der to receive commands and updates. Although different
bots may communicate with different peers, we show that
for P2P botnets with an unstructured topology, where bots
randomly pick peers to communicate with, there is a sur-
prisingly high probability that any given pair of P2P bots
communicate with at least one common external bot during
a given time window. In other words, there is a significant
probability a pair of bots within a network have a mutual
contact. We present a precise mathematical derivation of
this probability as a function of the size of a botnet and the
number of peers a bot contacts. Notice that we focus on
P2P botnets with unstructured topology in this work and
the term ”P2P botnet“ refers to unstructured P2P botnets
in the rest of the paper unless stated otherwise.
In order to discover dormant bots, we first construct a mu-

tual contacts graph where every host is a node and two nodes
share an edge if they share a mutual contact. The weight or
capacity on an edge is the number of mutual contacts shared
between the corresponding hosts incident on the edge. Then
given a discovered bot or seed bot, we present an iterative
algorithm, which identifies other potential members of the
botnet by iteratively computing a level of confidence to each
host on the graph. We declare the hosts which have confi-
dence levels higher than a threshold as potential members
of the same P2P botnet as the seed-bot. We present experi-
mental results with real and simulated traffic to measure the
effectiveness of our technique. We also present mathemati-
cal analysis characterizing the structure of a mutual contact
graph.
In addition to being simple and effective the proposed

scheme has the following desirable properties:
• The proposed method is not an anomaly detection
scheme and hence doesn’t require P2P bots to exhibit
any overtly malicious activity.

• Similarly, it is not a behavior clustering algorithm and
therefore doesn’t require any common behavior exhib-
ited by all the bots.

• It utilizes the pairwise mutual-contact relationships
between pairs of bot peers, which arise due to P2P
C&C communications. We validate the existence of
such relationships both mathematically and experi-
mentally.

• The proposed method is generic and doesn’t depend
on specific properties of specific botnets. Therefore,
it doesn’t require reverse engineering bot binaries or
C&C protocols [3].

• Contrary to existing graph-based network traffic anal-
ysis methods [26] [19], the proposed method doesn’t
require any access to backbone traffic. Mutual-contact
relationships are deduced locally at an edge router.

In the rest of this paper, we explain the basic idea and de-
tails of the proposed method in Section 2. Following that,

Network Boundary

Host A

Host B

Host C

Host X

Host Y Host Z

Benign Hosts

(a)

Node B

Node A

Node C

Benign

Benign

1

2

(b)
Figure 1: Illustration of P2P Botnet communi-
cations for a network (a) and its corresponding
mutual-contact graph (b). The network contains 2
benign hosts and 3 bots (Hosts A, B, and C). The
bots are members of a P2P botnet with 9 bots in to-
tal. Mutual-contact relationship among hosts, which
is indicated by red dashed arrows in (a), are repre-
sented by the mutual-contact graph in (b). The edge
capacities are determined by the number of mutual
contacts between nodes.

we present our experimental results with the Nugache bot-
net in Section 3. In Section 4, we present a mathematical
analysis that provides insights on why the proposed scheme
works and its limitations. Then in Section 5, we discuss
practical limitations of the proposed scheme, possible eva-
sion techniques and their implications on P2P botnets. We
present the related work in Section 6. Finally, we conclude
the paper and discuss future work in Section 7.
2. FINDING FRIENDS OF AN ENEMY
In this section, we present the basic idea and the details

of the proposed algorithm. We first begin with an intuitive
explanation in the next subsection and then provide a more
detailed and formal explanation in subsequent subsections.
2.1 Basic Idea
Consider the botnet illustrated in Figure 1(a). The basic

idea of the proposed method is that, Host A can be linked
to Host B since they both communicate with Host X (the
mutual contact). Similarly Host B and Host C are linked
together through Host Y and Host Z. As a result, if Host
A becomes known as a member of a P2P botnet, then by
examining its connections, one may suspect that Host B
is likely to be a member due to the presence of a mutual
contact with the known bot Host A. Similarly, if Host B is
likely to be a member, then Host C is likely to be a member
as well.
Now it is clear that, aside from P2P botnet traffic, le-

gitimate traffic probably includes several mutual-contacts
among hosts as well. For instance, there are some very pop-
ular servers that almost every host in the network commu-
nicates with such as google.com, microsoft.com. etc. As a
result, every host in the network would be linked to most
of the other hosts through such popular mutual-contacts.
However, if Host A is a known bot and both Host A and
Host B have been in communication with Host X, and Host
X has not talked to almost anyone else within our network,
then it is likely that Host B is a member of the same bot-
net as Host A. Hence in our mutual contact based analysis
we restrict ourselves to private mutual-contacts. Private
mutual contacts are mutual contacts which communicate
with less than k internal hosts during an observation win-

132

dow. Here, k is the privacy-threshold. Private mutual
contacts capture the intuition that it is very unlikely that
external peers which are part of a botnet will be communi-
cating with many internal hosts that do not belong to the
botnet. Therefore, private mutual-contacts can be strong in-
dicators of peer relationships among hosts within a botnet.
In the rest of this paper, we use the term mutual-
contacts to mean private mutual contacts.
The question then remains that given a known bot, how

do we systematically rank all the hosts in our network based
on their likelihood of being a member of the same P2P
botnet using private mutual contact relationships they ex-
hibit? To do this, we first extract mutual-contacts from the
flow records captured at the network border for a time win-
dow prior to discovering the seed-bot. We then represent
the mutual-contact relationships among hosts by a directed
graph called the mutual-contacts graph, such that: 1. Nodes
represent the hosts in the network. 2. There is a bidirec-
tional edge between two nodes if the corresponding hosts have
at least one mutual-contact during the given time window.
3. Each edge has a capacity determined by the number of
mutual-contacts between corresponding nodes.
As an example, the mutual-contact graph for the network

illustrated in Figure 1(a) is shown in Figure 1(b). Now intu-
itively speaking, it is expected that hosts which are likely to
be P2P bots are at a short distance from the seed-bot on a
mutual-contacts graph since such hosts are expected to have
mutual-contacts with the seed-bot itself and/or with other
hosts which have mutual-contacts with the seed-bot. In fact,
we observe this behavior in various real world botnets as pre-
sented later in Table 1. Furthermore, the more the mutual
contacts that a host has with the seed bot and other sus-
pected bots, the more likely it is that this host is also a
bot. The mutual contacts graph illustrated in Figure 2(a)
displays such behavior (black edges). Based on these two
intuitions, we propose a scheme that iteratively computes a
confidence level of being a member of the same P2P botnet
as the seed bot for each node. This iterative process can
be illustrated as pumping red dye into the mutual-contacts
graph from the node representing the seed-bot as depicted in
Figure 2(b). During the process, the dye coming to a node
is distributed across its outgoing edges proportional to their
capacities. Therefore, the dye accumulated in a node reflects
our confidence for that host being a part of the same botnet
as the seed-bot. Inspired by this illustration, we named our
proposed algorithm the “Dye-Pumping Algorithm”.
In Figure 2(b), it is also observed that along with the P2P

bots, few benign hosts also share mutual-contacts with P2P
bots (via green edges in Figure 2(a)), and therefore receive
some amount of dye. Such hosts potentially result in false
positives. However, we expect the capacity of the edges con-
necting these benign hosts to P2P bots to be usually lower
thereby keeping the dye accumulated on these benign hosts
below a threshold in most cases. In later sections we provide
detailed experimental and mathematical analysis, that sup-
ports our intuition that a majority of the false positives can
be eliminated while maintaining reasonable false negatives,
by choosing a suitable threshold. But first, in the following
subsections, we present each step of this algorithm in greater
detail.
2.2 The “Mutual-Contacts” Graph
We denote the mutual-contacts graph constructed from

the flow records of a network by G = (N, E), where the

Seed-Bot

Dormant
Bots

Benign
Hosts

Benign
Hosts

(a)

Seed-Bot

Dormant
Bots

Benign
Hosts

Benign
Hosts

(b)
Figure 2: (a) Illustration of a mutual-contacts
graph. P2P bots tend to share mutual-contacts
with each other (black edges). Also some benign
hosts share mutual-contacts among themselves (blue
edges), which may be due to a legitimate P2P appli-
cation. (b) Illustration of the dye-flow in the Dye-
Pumping algorithm.

nodes correspond to hosts and the edges indicate private
mutual-contacts. Each edge on the graph has a capacity
which is determined by the exact number of mutual-contacts
between corresponding hosts. More formally, if Eij repre-
sents the capacity of the edge between nodes Ni and Nj ,
then we can write:

Eij = Eji = |S(Ni) ∩ S(Nj)|
where S(Ni) represents the set of mutual-contacts which Ni

was in communication with during the observation period
and | · | represents the cardinality of a set. Notice that,
if nodes Ni and Nj don’t share any mutual-contacts then
there is no edge between them on the graph or equivalently
Eij = 0.

2.3 The “Dye-Pumping" Algorithm
Once the mutual-contacts graph is constructed, the dye-

pumping algorithm is executed to compute the confidence
levels of hosts being part of the P2P botnet. The dye-
pumping algorithm iteratively pumps dye to the mutual-
contacts graph from the seed node and picks the nodes which
accumulates more dye than a threshold. During the process,
dye coming to a node is distributed to other nodes propor-
tional to a heuristic called the dye-attraction coefficient,
which helps the algorithm to funnel more dye towards the
nodes which are more likely to be P2P bots.

Dye-Attraction Coefficient is denoted by γji, and indi-
cates what portion of the dye arriving at Node j will be
distributed to Node i in the next iteration. Intuitively, it
represents our confidence on Node i being a P2P bot given
that Node j is a P2P bot. Such confidence gets higher as
Node i and Node j share more private mutual-contacts with
each other. On the other hand, our confidence reduces if
Node i shares mutual-contacts with many other nodes in the
graph. The reason is that we expect to have few bots in our
network and therefore if a host shares mutual-contacts with
many other hosts, then these mutual-contacts are probably
due to a different application other than botnet C&C. Con-
sequently, we compute the dye-attraction coefficient from
Node j to Node i as follows:

γji =
Eji

(Di)β

133

where Di is the degree of Node Ni (i.e. number of neighbors
or edges that Ni has) and β is the Node Degree Sensitiv-
ity Coefficient. Basically, nodes with high degrees receive
less and less dye as β increases.
The Dye-pumping Algorithm has three inputs, namely
the edge capacities (Eji) of the mutual-contacts graph (E
represents the matrix containing all Eji values), the in-
dex (s) of the seed node Ns, and the number of iterations
(maxIter). Given these inputs, the dye-pumping algorithm
first computes the dye-attraction coefficients from edge ca-
pacities and forms the transition matrix T such that:

T(i, j) = γji =
Eji

(Di)β
where i = 1, ..., v and j = 1, ..., v. Also T(i, j) = 0 if i = j.
Notice that the transition matrix of a mutual-contacts graph
with v nodes is a v × v square matrix.
Following that, the algorithm normalizes T, so that each

of its columns sums to 1 (i.e. stochastic matrix). If T in-
dicates the normalized transition matrix, the normalization
procedure can be written as T(i, j) = T(i,j)∑v

i=1
T(i,j)

. After

normalization, the algorithm iteratively pumps dye to the
mutual-contacts graph from the seed node. For this purpose,
let the column vector L is the dye level vector, where L(i)
indicates the dye level accumulated at node i. The pumping
begins with filling the seed node with dye and leaving the
others empty such that:

L(i) =
{
1, if s = i
0, elsewhere

Once the seed node is filled with dye, the algorithm pumps
dye from the seed node across the mutual-contacts graph.
Since the outgoing edges distribute the dye accumulated
within a node proportional to their capacities, the dye levels
at next iteration can be computed as:

L(i) =
v∑

j=1

T(j, i)L(j)

which can be also written in matrix form as L = TL. At
each iteration, after updating L, the algorithm pumps more
dye to the graph from the seed node by updating L(s) =
L(s) + 1. Following that the vector L is normalized after
each iteration as L = L∑v

i=1
L(i)
. Finally after maxIter it-

erations, the dye-pumping algorithm outputs the dye-level
vector L. The steps of the dye-pumping algorithm are sum-
marized below:

Algorithm 1 Dye_P umping(E, s, maxIter)
1: T ← computeT ransitionMatrix(E)
2: T ← normalize(T)
3: L ← [0, 0, ..., 0]tr {initialize L as a zero vector}
4: for iter = 1 to maxIter do
5: L(s) ← L(s) + 1 {Pump dye from the seed node}
6: L ← L∑

L(i)
{Normalize dye level vector}

7: L ← TL {Distribute dye in network for one iteration}
8: end for
9: output L

Once the algorithm outputs the vector L, the dye level
of each node (L(i)) indicates the confidence level for the
corresponding host being a member of the same P2P botnet
as the seed node. To have a more conclusive result, we set a
threshold thr such that the nodes having a dye level greater

than thr are declared as potential members of the same P2P
botnet as the seed bot.
Notice that the algorithm involves a constant number of

matrix multiplications. Hence, the complexity of a naive
implementation of the algorithm is cubic in the number of
nodes. However, both dye-level vector (L) and transition
matrix (T) are sparse. Therefore one can implement the
dye-pumping algorithm asymptotically faster by using fast
sparse matrix multiplication techniques.
3. EXPERIMENTS

3.1 Detecting Nugache Peers
In order to systematically assess the performance of the

proposed scheme against a real-world botnet, one needs to
know the IP addresses of the members of a P2P botnet in
a given network. Otherwise, nothing can be said about the
true positive or false alarm rate without knowing the ground
truth. One way to obtain the ground truth is to blend real
botnet data into the network traffic and make few hosts look
as if they have been infected by the botnet. This strategy
essentially aggregates real botnet traffic and real user traf-
fic on some of the hosts and therefore provides a realistic
scenario. From the proposed scheme’s perspective, to make
a host look like a P2P bot, one can first capture the flow
records of the network, which contains the host, during a
time window. Then one can collect the flow records form a
real P2P bot during a similar time window. Following that,
one can change the bot’s IP address in these botnet flow
records to a selected host’s IP address and append them to
the flow records of the entire network so that, along with its
original traffic, the selected host will appear as if it has also
communicated with the external IP addresses that the real
bot has talked to.
In order to establish the ground truth for our experiments,

we utilize the data collected from the Nugache botnet, which
has been thoroughly studied in [30][8]. Briefly speaking,
Nugache is a P2P botnet that uses random high-numbered
ports for its communication over TCP. The data we use
in our experiments was compiled by the Nugache crawler
presented in [10] and its communication between Nugache
peers.

Nugache Botnet Data: Details on the Nugache botnet
and Nugache crawler can be found in [30] and [8]. In sum-
mary, the C&C protocol of Nugache enables querying a peer
for its list of known peers and a list of recently communi-
cated peers. Using this functionality, the crawler starts from
a series of seed peers and traverses the botnet by querying
peers for their list of known peers. The crawler maintains
the list of recently communicated peers for each accessible
Nugache peer. Consequently, when it finishes crawling, it
produces list of recently communicated peers for several Nu-
gache peers.
In our experiments, we used the data collected by the

crawler when Nugache was active. To collect data, the
crawler was executed repeatedly for 9 days, where each ex-
ecution lasted roughly 30 to 45 minutes. We used a 24-hour
observation window for our experiments. Hence, we em-
ployed several randomly selected 24-hour segments of the
crawler data from the 9-day results in our experiments to
cover the botnet dynamics during all 9 days. We observed
that in any of these 24-hour segments, 904 Nugache peers
responded to the crawler on an average. We also observed
that 34% of all possible pairs of Nugache peers communi-

134

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Node Degree

k=3
k=5
k=10

(a) Node Degree Dist.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Clustering Coefficient

k=3
k=5
k=10

(b) Clustering Coeff. Dist.
Figure 3: Node Degree and Clustering Coefficient
distributions of the mutual-contacts graph of the
background traffic for different privacy threshold (k)
values.

cated with at least one mutual-contact on average.

Background Traffic: In order to obtain background traf-
fic that we could blend with Nugache traffic, we captured
the flow records observed at the border of Polytechnic In-
stitute of NYU network during a typical weekday (i.e. the
observation window is 24 hours). Collected flow records in-
dicate that there were 2128 active IP addresses in our net-
work during the observation window. We then extracted
mutual-contacts from the recorded data. To ensure a valid
communication (i.e. not a scan flow), we only considered
external IPs which exchanged sufficient amount of data (i.e.
at least 256 bytes) in both directions with at least one inter-
nal IP. Finally we built the corresponding mutual-contacts
graph to serve as a basis for our experiments.
We immediately observed in the mutual-contacts graph

that DNS servers within the network shared a significantly
large number of mutual-contacts with each other. As a mat-
ter of fact, DNS servers constituted the highest-magnitude
entries of the first eigenvector of the matrix (E) whose en-
tries are the corresponding edge capacities (Eij). This is
not surprising since DNS servers in a network communicates
with many other DNS servers around the world. Obviously
this relationship among DNS servers dominates the mutual-
contacts graph and taints the results of the Dye-Pumping
algorithm. Hence, we removed all the edges of the 11 DNS
servers in the network from the mutual-contacts graph.
The mutual-contacts graph extracted from the background

traffic suggests that majority of the hosts share none or very
few mutual-contacts with other nodes. This can be observed
in Figure 3(a), where we plot the distribution of node de-
grees (i.e. no of edge of a node). Figure 3(a) also shows,
as expected, that nodes usually have a higher degree in the
mutual contact graph when a higher privacy threshold (k)
value is used to construct the graph.
We then looked at the clustering coefficient, which is de-

fined as the ratio of the number of the actual edges of a node
to the number of all possible edges among it’s neighbors.
We plot the clustering coefficient distribution of the nodes
in Figure 3(b). We observe that the mutual contact-graph
is a lot more clustered than a comparable random graph (i.e
same number of nodes and edges). For instance the cluster-
ing coefficient distribution of a random graph comparable to
the mutual-contacts graph with k = 5 has a mean of 0.006
and standard deviation of 0.009. This suggests that there are
communities of hosts in the observed network where commu-
nity members usually communicate with the same external
IPs that are exclusive to the corresponding community. One
can speculate that these communities may represent peers

of different P2P networks (legitimate or bot) or a group of
users visiting similar websites etc.

Experiments with Nugache: In order to assess the per-
formance of the proposed scheme in detecting Nugache bots,
we randomly picked m Nugache peers from a randomly se-
lected 24-hour segment of the crawler data. Then, we com-
puted the mutual-contacts graph corresponding to these m
Nugache peers based on the recently-communicated peers
field of the crawler data. We then randomly picked m inter-
nal hosts from the mutual-contacts graph corresponding to
the background traffic. Finally, we superposed the mutual-
contacts graph of the Nugache peers onto in the mutual-
contacts graph of the background traffic where m Nugache
peers coincide with m selected internal hosts. This proce-
dure essentially blends Nugache traffic into the background
traffic so that each of these m selected internal hosts looked
as if they communicated with the peers that the correspond-
ing m Nugache peers communicated with. Consequently,
each of these m selected hosts becomes a real Nugache peer
and constitutes the ground truth as far as the proposed
scheme is concerned.
Once we obtained the superposed mutual-contacts graph,

we randomly selected one of the m hosts as the seed bot
and ran the Dye-Pumping algorithm to detect the otherm−
1 hosts whose flow records were modified according to the
Nugache crawler data. We set the number of iterations to
maxIter = 5 for Dye-Pumping algorithm since it is almost
impossible to find P2P botnet peers more than 3 hops away
from the seed node due to the Erdős-Rényi model as will be
explained in Section 4. In the end, we returned the list of
hosts which accumulate more dye than the threshold as P2P
bots. To obtain statistically reliable results, we repeated the
experiment 100 times, each time with different selection of
m hosts and m Nugache peers. We also picked a different
24-hour segment of crawler data at every 20th repetition.

Results (Precision & Recall): To gauge the algorithm’s
performance, we computed the average precision and recall.
In our context, precision can be defined as the ratio of the
number of Nugache peers in the returned list of hosts to the
length of the returned list. On the other hand, recall can be
defined as the ratio of the number of Nugache peers in the re-
turned list to the number of all Nugache peers in the network
except the seed bot (m − 1). Figure 4 presents the average
precision and recall values for different number of Nugache
peers (m) and different threshold values (thr). We set the
privacy threshold k = 5 and node degree sensitivity coeffi-
cient β = 2. It is observed that several dormant Nugache
peers can be identified by the proposed technique when the
threshold is set to an appropriate value. For instance, in
Figure 4(c) we observe that, if there are 17 Nugache peers
in the network, the proposed scheme on average returns 35
hosts, 11 of which are Nugache peers. As a result, upon
obtaining the list of potential P2P bots, a network admin-
istrator can perform a more detailed investigation (perhaps
physically) on the hosts in the list and potentially uncover
several dormant P2P bots. Meanwhile, the returned list also
contains some hosts which are not Nugache peers since such
hosts happen to be connected to one or more Nugache bots
on the mutual-contacts graph due to mutual-contacts cre-
ated by other applications. Interestingly, it is observed in
Figure 4 that both precision and recall values increase as
the number of bots (m) increases. This is due to a property

135

5 10 15 20
0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

Number of Nugache Peers (m)

thr=1x10−4

thr=5x10−4

thr=10x10−4

(a) Precision

5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Number of Nugache Peers (m)

thr=1x10−4

thr=5x10−4

thr=10x10−4

(b) Recall

5 9 13 17 21
0

10

20

30

40

Number of Nugache Peers (m)

#Bots
#Returned Hosts

(c) Returned host counts,thr=5x10−4

Figure 4: Experiment results with Nugache. The parameters are k = 5 and β = 2

of Erdős-Rényi random graphs that−as will be explained in
the next section− the probability of having a short path be-
tween two nodes increases with the number of nodes. It is
also observed that, increasing the threshold increases pre-
cision but decreases recall, as is naturally expected for any
detection system.

Effects of Privacy Threshold (k): When we repeated
the experiments for different k values, we did not observe
a major change in the precision performance. On the other
hand, we observed, as shown Figure 5(a), that recall per-
formance improves as we decrease k as long as the number
of P2P bots in the network is low. The recall performance
improves because more background traffic is filtered out for
lower k, thereby removing a significant portion of the benign
edges. However, if there are many P2P bots in the network
and if k is small (i.e. k = 3), more than k of them are
likely to communicate with several common external peers
and therefore some of the botnet communications are likely
to be filtered out as well. The effect of this phenomenon can
be observed in Figure 5(a), where recall performance dimin-
ishes for large number of Nugache peers. Hence, based on
Figure 5(a) we can say that k = 5 was an appropriate setting
for our network.

Effects Node Degree Sensitivity Coefficient (β): As
explained in Section 2.3, larger β values result in less dye-
flow towards the nodes which have high degrees on a mutual-
contacts graph. We would like to restrict the dye-flow to
high-degree nodes, because edges between bots and high-
degree nodes are probably not due to botnet communica-
tions but rather due to some other application which causes
many of the edges that high-degree nodes have. Larger β
values cause the dye to concentrate around the seed-bot and
therefore improve the precision performance as observed in
Figure 5(b). On the other hand, since the algorithm cannot
reach far in the mutual-contacts graph for larger β values,
the recall performance drops as β gets larger as observed in
Figure 5(c). According to our experiments, β = 2 turned
out to be an appropriate setting for our network.

In summary, different values of the parameters k and β
yield a tradeoff between precision and recall. When deploy-
ing the proposed scheme, a network administrator should
first decide on the minimum tolerated precision level and
then set the parameters accordingly. For this purpose, ar-
tificial P2P botnet traffic generated by the Random Peer
Selection model described in Section 4.1 could be used as
a ground truth to determine which parameter values would

result in which precision levels for a given network.

4. MATHEMATICAL ANALYSIS
The essence of the proposed algorithm is that the mem-

bers of a P2P botnet tend to have mutual-contacts and
therefore are closely connected on a corresponding private
mutual-contacts graph. In fact, the dye-pumping algorithm
performs better if P2P bots in a network are connected to
the seed node through shorter and higher-capacity paths,
which yield higher volume of dye flow from the seed node
to the other bots. Although our experimental results in
the previous section tend to validate our intuition, some
significant questions remain to be addressed to mathemati-
cally validate the approach and show its applicability to the
general problem that goes beyond specific instances of P2P
botnets. Question such as how likely is it that two peer
bots will have a mutual contact? How does this probability
vary with the size of the botnet and the number of peers
contacted by each bot. Next, how likely is it that the mu-
tual contact graph will have a connected component that
spans peer bots? How does one characterize the properties
of the mutual contacts graph? In this section we address
these questions and present a mathematical analysis that
supports our approach and validates the experimental re-
sults reported in the previous section.
4.1 Random Peer Selection Model
The first question we posed was the likelihood of peer

bots having a mutual contact. But before we answer that,
we would like to first justify the framework in which we
examine this question. Recall that our framework assumes
that bots independently and randomly select the peers with
which they communicate. How does this assumption bias
our analysis? In this subsection we address this question
and argue that this represents the worst case situation for
our analysis.
In a P2P network some peers might be more available

than others and therefore they have a higher probability of
being selected by other peers [14][18] [21] [1]. Obviously,
having such preferred peers in a P2P botnet increases the
chance finding mutual-contacts between P2P bots in a net-
work. However, the worst case, as long as unstructured
P2P botnets are considered, from our work’s point of view
is when there is no preferred peer in the botnet and all
peers have equal probability of being contacted by any other
peer, thereby minimizing the probability of private mutual-
contacts between peers.
To investigate the probability of mutual-contacts in the

worst case, we consider a generic botnet model, where each

136

5 10 15 20
0

0.2

0.4

0.6

0.8

1
R

ec
al

l

Number of Nugache Peers (m)

k=3
k=5
k=10

(a) Recall for different k

5 10 15 20
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Number of Nugache Peers (m)

β=0
β=1
β=2
β=3

(b) Prec. for different β

5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Number of Nugache Peers (m)

β=0
β=1
β=2
β=3

(c) Recall for different β

Figure 5: Effects of different parameters. The non-varying parameters are set to k = 5, β = 2 and thr = 5×10−4

bot picks peers independently and randomly. The model has
two configurable parameters such that; “B” is the number of
all peer in the botnet and “C” is the number of peers that
each peer communicate with during a specific observation
window. Based on these parameters, each bot (bi) in the
model communicates with a uniform random subset (Si) of
all B−1 available bots (excluding itself) in the model, where
the cardinality of each subset is C.

Bot-Edge Probability: Having justified our framework,
we now address the question about the probability of two
peer bots having a mutual contact. In the random peer se-
lection model, the probability of having an edge between
two arbitrary bots bi and bj (i.e. bot-edge probability, pe) is
actually the probability of the intersection of the correspond-
ing subsets being non-empty; such that pe = P r(Si∩Sj �= ∅).
Since the number of elements in the intersection of two uni-
form random subsets can be computed using hypergeometric
distribution, we can write the bot-edge probability as:

pe = 1−
(

C
0

)(
B−1−C

C

)
(

B−1
C

) (1)

Bot-edge probabilities are plotted in Figure 6(a). It is
observed that, similar to the Birthday Paradox, as the num-
ber of contacted peers increases, the bot-edge probability
increases very rapidly. Consequently, even for a fairly large
botnet with 50k peers, the bot-edge probability is almost
0.5 when peers contact only 200 other peers during the ob-
servation window.

Bot-Edge Capacity: Although, high bot-edge probabili-
ties works in favor of the dye-pumping algorithm, the capac-
ities of those edges are also important. It is obvious that, the
higher the bot-edge capacities the better the dye-pumping
algorithm performs. In the random peer selection model,
the probability of a peer contacted by two given peers is(

C
B

)2. Therefore, since there are B peers in total, we can
write the expected capacity of bot edges (E[Cp]) as:

E[Cp] =
(

C

B

)2
B = C2

B
(2)

which is also the expected value of the corresponding hy-
pergeometric distribution. Figure 6(b) plots the expected
bot-edge probabilities. It is observed that, regardless of the
botnet size, expected bot-edge capacity rapidly exceeds 1
and continues to increase as the number of contacted peers
increases. Figure 6 suggests that the members of a P2P bot-
net will most probably be well connected with each other
on a private mutual-contacts graph through high capacity

edges, thereby allowing the dye-pumping algorithm to iden-
tify them.

4.2 Friends Stay Closely Connected (Erdős-
Rényi Subgraphs)

Having established that it is quite likely that two peer bots
will have a mutual contact we now turn our attention on the
expected structure of the mutual contacts graph. After all,
the Dye-Pumping algorithm can only identify the P2P bots
which are connected to the seed-bot via short paths on the
mutual-contacts graph. Bots which are isolated from the
seed-bot cannot be accessed by the algorithm. In this sub-
section, given a bot-edge probability, we investigate how the
P2P bots are expected to be oriented on a private mutual-
contacts graph and what portion of the P2P nodes can be
accessed by the dye-pumping algorithm.
To understand the structure of the subgraph formed by

members of a P2P botnet on a mutual-contacts graph, sup-
pose that there are m bots in the network, and therefore
the corresponding m nodes on the graph. Let the set X =
{X1, X2, ..., Xm} denote these nodes and pe denote the prob-
ability of having an edge between any given Xi and Xj , for
i �= j where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Since pe is the
same for any pair of Xi and Xj , the subgraph formed by
the nodesX1, X2, ..., Xm on a private mutual-contacts graph
is an Erdős-Rényi random graph [11][12], where each possi-
ble edge in the graph appears with equal probability.
One interesting property shown by Erdős and Rényi is

that, Erdős -Rényi graphs have a sharp threshold of edge-
probability for graph connectivity [12]. More specifically,
if the edge-probability is greater than the threshold then
almost all of the graphs produced by the model will be con-
nected. Erdős and Rényi have shown the sharp connectivity
threshold is ln θ

θ
, where θ is the number of nodes in the

graph. Therefore, if the bot-edge probability of a P2P bot-
net is pe = ln m

m
, then the dye-pumping algorithm potentially

identifies all other P2P bots from a given seed bot with high
probability as long as there are more thanm bots in the net-
work. In other words, it gets easier for the proposed method
to reveal P2P bots as the botmaster infects more hosts in the
network. However, even if the bot-edge probability is below
the threshold, the dye-pumping algorithm can still identify
some of the P2P bots, which happen to be connected to the
seed node on the private mutual-contacts graph.
In conclusion, according to the random peer selection model,

members of a P2P botnet are expected to be closely con-
nected to each other on a private mutual contacts graph
despite large botnet sizes.

137

0 50 100
0

0.05

0.1

0.15

0.2

(a) Bot-Edge probability

10
2

10
30

1

2

3

4

5

(b) Expect.value of bot-edge
capacity

Figure 6: Properties of random peer selection model
for different botnet sizes (B) and different number of
contacted peers (C) are plotted in Figure 6(a). Solid
lines indicate the theoretical computation and the
stars point the empirical estimation. Inner figures
magnifies the region where 0 < C < 100

5. LIMITATIONS AND POTENTIAL

IMPROVEMENTS
The proposed method is able to identify P2P bots in a net-

work as long as they are clustered through short and high
capacity paths on a private mutual-contacts graph. There-
fore, botmasters need to disturb this clustering structure in
order to evade the proposed method. In this section, we re-
view these possible evasion strategies, and their implications
on the creation and maintenance of P2P botnets.

Eliminating Private Mutual-Contacts: One way to elim-
inate private mutual contacts is by increasing the popular-
ity of private mutual-contacts that P2P bots in a network
communicate with. If their popularity gets higher than
the privacy threshold (k), they will be omitted by the pro-
posed scheme and will not result in edges in private mutual-
contacts graphs. However, in order to achieve this, a bot-
master has to control more than k hosts in that particular
network, so that they can collectively boost a contact’s pop-
ularity beyond the privacy threshold. To defend against this
strategy, the privacy threshold (k) needs to be set as large as
possible. Although, as discussed in Section 3, high k values
impairs the recall performance of the proposed scheme, for
smaller networks it is often possible to find an appropriate k
value since a botmaster is unlikely to have too many bots in a
small network. On the other hand, for large networks which
potentially contain many P2P bots, the proposed technique
can be applied on smaller subnets separately and indepen-
dently to increase the likelihood that the number of P2P
bots in each subnet remain below the privacy threshold.
Decreasing The Probability of Mutual-Contacts: De-
creasing the probability of observing mutual-contacts be-
tween P2P bots is equivalent to decreasing the bot-edge
probability (pe). As discussed in Section 4, a botmaster has
to either(or both) increase the botnet size (B) or decrease
the number of peers that each bot communicates with (C) in
order to lower pe. It is clear that increasing B and decreas-
ing C will inversely affect a P2P botnet’s robustness and
efficiency. Although it may be possible for a botmaster to
pull pe down to a lower value, we observed in a controlled en-
vironment that peers of today’s botnets such as Storm and
Waledac have very high bot-edge probabilities. To collect
data for Storm and Waledac, we infected two Pentium IV,
512MB RAM Windows XP hosts, which were completely
isolated from the rest of the network by a firewall. The

firewall was also set to block all SMTP traffic to prevent
any spam traffic. We observe that both Storm and Waledac
communicate with fairly high number of unique peers dur-
ing 24 hours, and therefore create many mutual-contacts as
presented in Table 1. On the contrary, Nugache peers are
less active and create far less mutual-contacts as observed
in Table 1. Nevertheless, in Section 3, the proposed scheme
is shown to successfully detect several Nugache peers, which
are introduced to the network using the crawler data, de-
spite their low communication activities. To collect data
for Nugache, the bots were installed on a Pentium IV, 1GB
RAM, running VMware Server with a Windows XP guest,
as well as on bare metal machines on comparable hardware
running Windows XP. The traces were captured within the
protected network using a customized honeywall [32] and
also using full-packet capture on an extrusion prevention
system running OpenBSD with strict packet filter rules, as
described in [10] The captured packets were converted to
flow records using the SiLK tools [4] for establishing mutual
contact sets and validating the algorithm.
Table 1: Summary of observed P2P botnet behavior.
Δ : Average number of unique IP addresses that a
bot communicates with each day. © : the number of
mutual-contacts (the bot-edge capacities) between
the two bots during 24 hours.

Day 1 Day 2 Day 3
Δ © Δ © Δ ©

Storm 5180 2861 4681 2886 4022 2323
Waledac 1145 341 775 300 1012 358
Nugache 45 0 53 1 49 0

Using a Structured P2P Topology: A botmaster can
adopt a structured P2P topology to decrease the probability
of mutual contacts by making peers in a same network to
communicate with different sets of peers from each other. To
achieve this, peers in a same network have to coordinate with
each other so that they won’t communicate with the peers in
each other’s peer list. In some sense, peers in a same network
have to form their own tiny botnet among themselves and
appear as a single node to the remaining of the P2P botnet.
These intra-network communications among the peers in a
same network, however, would potentially yield new means
of detecting P2P bots in a network. Nevertheless, even if
a botmaster manages to deploy a mutual-contact-free P2P
architecture, two or more networks can choose to share their
flow records to exploit the mutual-contacts among P2P bots
in different networks, which are unavoidable since the bot-
master cannot know which networks would collaborate in
the first place. For such mitigation strategies, cooperating
networks can use privacy-preserving set operations such as
[7] to share data between networks without revealing any
sensitive information.
Poisoning Clusters: The purpose of cluster poisoning for
P2P networks is to destroy clustering structure of a graph
by creating bogus edges [5]. Cluster poisoning appears to
be very hard to achieve in our context. In order to perform
poisoning, a botmaster has to create an edge between a P2P
bot and a benign node on a mutual-contacts graph. For this
purpose, she needs to make both the bot and the benign
host communicate with a mutual external IP. To do so, the
botmaster has to listen to the traffic of the benign host and
make the P2P bot contact with an external host which the
benign host has communicated with. But this is not a trivial
task for a botmaster, unless she also possesses a router or a

138

proxy in the same network.
6. RELATED WORK
Early botnets employed centralized command and control

(C&C) servers to distribute commands and updates to in-
dividual bots, usually through IRC or HTTP protocols [9].
Although a centralized structure is simple and easy to man-
age, it suffers from a single point of failure and is susceptible
to traditional defenses such as domain revocation, DNS redi-
rection, blacklisting etc. Therefore, botmasters have begun
to adopt a P2P architecture for C&C channels. In [20], au-
thors argue that it is harder to detect P2P bots especially
with a limited view of their traffic from a single Autonomous
System. In P2P botnets each bot acts both as a server and
a client allowing botmasters to publish commands and up-
dates from any point in the botnet[14][18]. In [6], authors
investigate the effects of different botnet structures.
There have been numerous techniques proposed to detect

botnets. In [25] and [24], the authors employ machine learn-
ing techniques where they train classifiers with different fea-
tures to detect botnet C&C flows. In [31], Strayer et. al.
proposed a technique to detect botnet activity by exploiting
temporal correlations between C&C activities of the bots
belonging to the same botnet. Binkey and Singh proposed a
technique to detect IRC botnets in [2] using botnet-related
anomalies in TCP and IRC statistics. Another IRC botnet
detection scheme was proposed by Goebel and Holz in [13],
where the authors exploited the structure and evolution of
IRC nicknames used by IRC bots. In [23], Karasaridis et.
al. combined traffic aggregates with IDS alarms to identify
centralized botnets within a Tier-1 ISP. In [16], Gu et. al.
proposed BotHunter, which searches for a specific pattern
of events in IDS logs to detect successful infections caused
by centralized botnets.
All the above schemes were designed to detect either spe-

cific botnets that they were trained for, or centralized bot-
nets. In general, detecting P2P bots in a network is harder
since there is no trivial correlation that allows us to link to-
gether the P2P bots in a network, especially when bot peers
communicate with each other using encryption and through
random ports [14, 18, 10].
As a completely different problem from ours, crawler based

methods were proposed to enumerate P2P bots globally in
[22] and [18]. Since crawlers cannot enumerate P2P bots
behind NAT and/or firewall in [21] Kang et. al. proposed a
sybil attack based passive monitoring scheme to enumerate
P2P bots even behind NAT or firewall. However, P2P bot
enumeration methods are not intended to identify local P2P
bots in a network. Also, they require implantation of bot
peers which requires reverse engineering of a bot binary and
its C&C protocol.
Coming back to our problem, there have been few tech-

niques proposed which are able to detect local P2P bots
assuming that P2P bots exhibit similar malicious activities
and similar connection patterns. In [17], Gu et. al. pro-
posed BotSniffer to detect bots based on spatial-temporal
correlation between bot responses to commands. Following
that, in [15], Gu et. al. proposed BotMiner which clusters
the hosts in a network by their malicious activity and com-
munication patterns. Their results showed that members of
a botnet usually fall within the same cluster. Similarly, in
[33], Yen and Reiter proposed a scheme called TAMD, where
traffic containing similar external IPs, similar payloads and
similar internal platform types are aggregated to detect bot-

nets in a network. Although clustering based botnet detec-
tion schemes are successful in detecting many current P2P
bots, botmasters can evade them by assigning different tasks
to the bots in the same network or by randomizing their
communication patterns as acknowledged in [15]. In [29],
authors systematically investigate such evasion techniques.
Also, clustering based schemes fall short in detecting idle
P2P bots which haven’t exhibited any overt behavior yet.
7. CONCLUSION AND FUTURE WORK
In this paper, we presented a simple and efficient method

to identify local members of a P2P botnet in a network,
starting from a known member of the same botnet in the
same network. The basic idea of the proposed method is
that, the members of a botnet are more likely to have mutual-
contacts with each other than with benign hosts. We evalu-
ate the proposed method using real P2P botnet (Nugache)
data captured by a crawler. We also provide a mathematical
analysis of the C&C structure of P2P botnets to characterize
the performance of the proposed method. Both our analysis
and experiments show that the proposed scheme is able to
identify several dormant P2P bots in a network.
There are some limitations of the proposed scheme as dis-

cussed in Section 5. Perhaps the most important one is that,
a botmaster can evade detection if she employs a structured
P2P topology which ensures that her bots avoid mutual-
contacts while communicating with each other. However,
developing such a mechanism is not trivial for today’s bot-
nets and currently available P2P topologies. Nevertheless,
even if a botmaster achieves such a topology, two or more
networks can mitigate this by sharing their network traf-
fic, possibly in a privacy-preserving manner, to exploit the
mutual-contacts which will possibly occur between peers in
different networks. We leave the exploration of the bene-
fits of data-sharing as future work. In addition, we plan
to study on a new P2P botnet architectures, which poten-
tially evade the proposed scheme at least in some scenarios.
This will allow us to further improve the proposed scheme
to withstand potential evasion strategies, which might be
employed by next generation botnets.
8. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous review-

ers for their comments and David Dittrich for his valuable
contributions.
9. REFERENCES
[1] R. Bhagwan, S. Savage, and G. M. Voelker.
Understanding availability. In The 2nd International
Workshop on Peer-to-peer systems, 2003.

[2] J. R. Binkley and S. Singh. An algorithm for
anomaly-based botnet detection. In SRUTI’06:
Proceedings of the 2nd conference on Steps to
Reducing Unwanted Traffic on the Internet, 2006.

[3] J. Caballero, P. Poosankam, C. Kreibich, and
D. Song. Dispatcher: Enabling active botnet
infiltration using automatic protocol
reverse-engineering. In Proceedings of the 16th ACM
Conference on Computer and Communication
Security, Chicago, IL, November 2009.

[4] CERT Coordination Center. SiLK: System for
internet-level knowledge. Available at
http://tools.netsa.cert.org/silk/.

[5] D. R. Choffnes, J. Duch, D. Malmgren, R. Guierma,
F. E. Bustamante, and L. Amaral. Swarmscreen:

139

Privacy through plausible deniability in P2P systems.
Technical report, Northwestern EECS Technical
Report, March 2009.

[6] D. Dagon, G. Gu, C. Lee, and W. Lee. A taxonomy of
botnet structures. In Proceedings of the 23 Annual
Computer Security Applications Conference
(ACSAC’07), December 2007.

[7] L. K. Dawn and D. Song. Privacy-preserving set
operations. In in Advances in Cryptology - CRYPTO
2005, LNCS, pages 241–257, 2005.

[8] D. Dittrich and S. Dietrich. Discovery techniques for
P2P botnets. In Stevens Institute of Technology CS
Technical Report 2008-4, September 2008.

[9] D. Dittrich and S. Dietrich. New directions in
peer-to-peer malware. In Sarnoff Symposium, 2008
IEEE, April 2008.

[10] D. Dittrich and S. Dietrich. P2P as botnet command
and control: A deeper insight. In MALWARE 2008.
3rd International Conference on Malicious and
Unwanted Software, 2008.

[11] P. Erdos and A. Renyi. On random graphs I. Publ.
Math. Debrecen 6, pages 290–297, 1959.

[12] P. Erdos and A. Renyi. The evolution of random
graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl 5,
pages 17–61, 1960.

[13] J. Goebel and T. Holz. Rishi: identify bot
contaminated hosts by IRC nickname evaluation. In
HotBots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, 2007.

[14] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang,
and D. Dagon. Peer-to-peer botnets: overview and
case study. In HotBots’07: Proceedings of the first
conference on First Workshop on Hot Topics in
Understanding Botnets, 2007.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In
Proceedings of the 17th USENIX Security Symposium
(Security’08), 2008.

[16] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: Detecting malware infection
through ids-driven dialog correlation. In Proceedings
of the 16th USENIX Security Symposium
(Security’07), August 2007.

[17] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting
botnet command and control channels in network
traffic. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08),
February 2008.

[18] T. Holz, M. Steiner, F. Dahl, E. Biersack, and
F. Freiling. Measurements and mitigation of
peer-to-peer-based botnets: a case study on Storm
Worm. In LEET’08: Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent
Threats, 2008.

[19] M. Iliofotou, P. Pappu, M. Faloutsos,
M. Mitzenmacher, S. Singh, and G. Varghese.
Network monitoring using traffic dispersion graphs
(TDGs). In IMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement,
pages 315–320, 2007.

[20] M. Jelasity and V. Bilicki. Towards automated
detection of peer-to-peer botnets: On the limits of
local approaches. In Proceedings of the 2nd USENIX
Workshop on Large-Scale Exploits and Emergent
Threats LEET’09, April 2009.

[21] B. B. Kang, E. Chan-Tin, C. P. Lee, J. Tyra, H. J.
Kang, C. N. Z. Wadler, G. Sinclair, N. Hopper,
D. Dagon, and Y. Kim. Towards complete node
enumeration in a peer-to-peer botnet. In Proceedings
of ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2009), March
2009.

[22] C. Kanich, K. Levchenko, B. Enright, G. M. Voelker,
and S. Savage. The Heisenbot uncertainty problem:
challenges in separating bots from chaff. In LEET’08:
Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, pages 1–9, 2008.

[23] A. Karasaridis, B. Rexroad, and D. Hoeflin.
Wide-scale botnet detection and characterization. In
HotBots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, 2007.

[24] S. Kondo and N. Sato. Botnet traffic detection
techniques by C&C session classification using svm.
Advances in Information and Computer Security,
pages 91–104, 2007.

[25] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer.
Using machine learning technliques to identify botnet
traffic. Local Computer Networks, Annual IEEE
Conference on, 0:967–974, 2006.

[26] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and
N. Borisov. BotGrep: Finding P2P bots with
structured graph analysis. In USENIX Security
Conference, August 2010.

[27] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C
P2P Protocol and Implementation, September 2009.
http://mtc.sri.com/Conficker/P2P/.

[28] G. Sinclair, C. Nunnery, and B.-H. Kang. The waledac
protocol: The how and why. In Malicious and
Unwanted Software (MALWARE), 2009 4th
International Conference on, pages 69 –77, October
2009.

[29] E. Stinson and J. C. Mitchell. Towards systematic
evaluation of the evadability of bot/botnet detection
methods. In WOOT’08: Proceedings of the 2nd
conference on USENIX Workshop on offensive
technologies, 2008.

[30] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich.
Analysis of the storm and nugache trojans: P2P is
here. In ;login: The USENIX Magazine, volume 32-6,
December 2007.

[31] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley.
Detecting botnets with tight command and control.
Local Computer Networks, Annual IEEE Conference
on, 0:195–202, 2006.

[32] The Honeynet Project. Honeywall, 2009.
https://projects.honeynet.org/honeywall/.

[33] T.-F. Yen and M. K. Reiter. Traffic aggregation for
malware detection. In DIMVA ’08: Proceedings of the
5th international conference on Detection of
Intrusions and Malware, and Vulnerability
Assessment, pages 207–227, 2008.

140

The case for in-the-lab botnet experimentation:
creating and taking down a 3000-node botnet

Joan Calvet
École Polytechnique de

Montréal, Canada

Carlton R. Davis
École Polytechnique de

Montréal, Canada

José M. Fernandez
École Polytechnique de

Montréal, Canada

Jean-Yves Marion
LORIA, Nancy, France

Pier-Luc St-Onge
Ecole Polytech. de Montréal

Wadie Guizani
LORIA, Nancy, France

Pierre-Marc Bureau
ESET

Montréal, Canada

Anil Somayaji
Carleton University

Ottawa, Canada

ABSTRACT
Botnets constitute a serious security problem. A lot of effort has
been invested towards understanding them better, while develop-
ing and learning how to deploy effective counter-measures against
them. Their study via various analysis, modelling and experimen-
tal methods are integral parts of the development cycle of any such
botnet mitigation schemes. It also constitutes a vital part of the pro-
cess of understanding present threats and predicting future ones.
Currently, the most popular of these techniques are “in-the-wild”
botnet studies, where researchers interact directly with real-world
botnets. This approach is less than ideal, for many reasons that we
discuss in this paper, including scientific validity, ethical and legal
issues. Consequently, we present an alternative approach employ-
ing “in the lab” experiments involving at-scale emulated botnets.
We discuss the advantages of such an approach over reverse engi-
neering, analytical modelling, simulation and in-the-wild studies.
Moreover, we discuss the requirements that facilities supporting
them must have. We then describe an experiment in which we em-
ulated a 3000-node, fully-featured version of the Waledac botnet,
complete with an emulated command and control (C&C) infras-
tructure. By observing the load characteristics and yield (rate of
spamming) of such a botnet, we can draw interesting conclusions
about its real-world operations and design decisions made by its
creators. Furthermore, we conducted experiments with sybil at-
tacks launched against it and verified their viability. However, we
were able to determine that mounting such attacks is not so simple:
high resource consumption can cause havoc and partially neutralise
them. Finally, we were able to repeat the attacks with varying pa-
rameters, in an attempt to optimise them. The merits of this exper-
imental approach is underlined since by the fact that it would have
been difficult to obtain these results by other methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION
Botnets constitute one of the most worrying computer security

threats. Practically all Internet users have experienced the ill ef-
fects of botnets, whether by receiving large volumes of spams daily,
having their confidential information stolen, lost access to critical
Internet services, etc. Botnets are complex and large distributed
systems consisting of several thousands, and in some cases, mil-
lions of computers. In order to develop a good understanding of
such a distributed system and gain insights on its vulnerabilities
and weaknesses, it is necessary to study the system as a whole. To
that purpose, efforts need to be made to understand how the various
parts of the system interact, and in particular how the size and scale
of such systems affect their performance.

While analysis by reverse engineering of botnet binaries can ini-
tially help us better understand them, it does not always provide
the “big picture” in terms of botnet operations. This is because its
other parts might not be visible or accessible. Beyond that, we can
partially increase our understanding by observing and analysing in-
the-wild botnets as a whole, giving indirect visibility of some of
these inaccesible components. Studies such as [6, 15, 16, 18, 22]
conducting experiments with in-the-wild botnets, have contributed
to furthering understanding of botnets. Nonetheless, this method
can be problematic, owing to the following: (i) In order to exper-
iment with in-the-wild botnets, researchers need to create entities
which join the botnets and perform the tasks the researchers stip-
ulate. If a significant number of entities is added to a botnet, it is
possible that the botnets operators will detect the presence of these
entities, and possibly implement counter-measures to protect their
botnets, and in so doing, potentially shift the botnet arms race fur-
ther in their favour. On the other hand, if the number of such entities
introduced constitutes only a small portion of the overall botnet, we
might not be able to accurately observe or predict at-scale effects.
(ii) There are legal and ethical issues involved in performing in-
the-wild botnet research; for example, in some jurisdictions (par-
ticularly in Europe), it is considered unethical and even illegal to
create entities that join a botnet, despite the fact that their purpose
might be to disrupt the botnet. There are also potential risks in-
volved in doing in-the-wild botnet research: some researchers who
investigated botnets have reported that their domains have received
distributed DoS attacks from the botnets [12, 21]. (iii) It is diffi-
cult to get statistically significant results for experiments involv-

141

ing in-the-wild botnets. Values that are ascertained for variables
via a single experiment run—which often require several weeks or
months to complete—may be outliers rather than being represen-
tative values. In principle, the only way to guarantee that the re-
sults are statistically significant is to repeat the experiment multiple
times until the standard deviation of the values are within accept-
able limits. As highlighted above, it may be undesirable or even
counter-productive to perform an experiment on in-the-wild botnets
multiple times. Nonetheless, statistical significance is very impor-
tant because the changing conditions of the environment (churn of
infected population, actions by humans, etc.) could give the ap-
pearance that, for example, a mitigation strategy is effective, even
though the experimenter just happened to be “lucky” at the time of
the experiment. (iv) Since in-the-wild botnets experiments are not
controlled and (normally) cannot be repeated, they do not allow us
to explore the full design space and potential choice of parameters,
for example, those related to mitigation strategies being developed.
Thus, the solution tested and validated in a single in-the-wild exper-
iment could be far from optimal. For example, a failed experiment
because of an unlucky bad choice of parameters could lead us to
believe that a promising approach will not work, and cause us to
prematurely abandon it . Simulation studies and analytical mod-
elling have also been employed for botnet investigations. Analyti-
cal models are often complex, and all but the more simplistic mod-
els are hard to understand and resolve. While mathematical mod-
els like Markov chains [3] and immunological equations have been
used for other kinds of malware, e.g. worms, botnet-specific ana-
lytical modelling has been less common, either addressing propa-
gation properties [8], performance of the C&C infrastructure using
graph theory [11, 25], or other techniques [19]. Simulation results,
on the other hand, are more accessible and can be obtained by us-
ing ready-made network simulators such as Opnet/Omnet, ns2, etc.
and adapting them to specific protocols, or by home-coding spe-
cial purpose discrete-event simulators tailored to model a particu-
lar botnet (e.g. the Kademlia/Storm simulator in [9,10], and generic
botnet models in [7, 23]). However, while it is easier to more pre-
cisely measure these performance criteria in simulations, this ap-
proach has the disavantadge that all aspects of the botnet must ei-
ther be modelled and implemented, or simply modelled away and
ignored. This is particularly problematic for two reasons. First, ex-
cept for finer-grained, network-based simulators (and even then), it
is hard to model and appropriately reproduce the network transmis-
sion characteristics of the Internet. Second, it is also quite hard to
model and simulate the behaviour of the universe of infectable ma-
chines and users, which is particularly important in understanding
the “churn” within the botnet due to infection/disinfection, power-
on-power-off cycles, etc.

For these reasons, at-scale emulation studies, where conditions
as close as possible to the real-world are reproduced in a controlled
environment, are perhaps the best alternative to in-the-wild studies.
Emulation studies allow controlled repetition of the experiments to
see whether variations in environmental parameters, whether these
are controlled (by experiment design) or uncontrolled (but measur-
able) variables, significantly affect performance results. Moreover,
they are paramount in threat prediction research, in that they allow
us to safely explore the botnet design space in scenarios where the
botnet operating parameters have been optimised, something that
would be unthinkable with in-the-wild experimentation. On the
other hand, in comparison with simulation studies, where artificial
models are used in lieu of real botnet entities, in emulation exper-
iments, botnet entities that are either identical or slightly adapted
versions of their real-world counterparts, are executed in controlled
environments. While this at-scale approach requires large amount

of system resources and experimental preparation efforts, it is worth
pursuing due to its many advantages. First, as mentioned above,
this approach allows researchers to have greater control over the
experimental environment; consequently, more thorough investiga-
tion encompassing greater variation of experiment parameters can
be undertaken. Second, botnet emulation experiments can provide
information about botnets that would be very difficult or virtually
impossible to ascertain via in-the-wild studies, via simulation ex-
periments, or via reverse engineering analyses. Third, evaluating
botnet mitigation schemes using emulated botnets rather than in-
the-wild studies, allows researchers the privilege of hiding their
ammunition from botnets operators, until the mitigation schemes
are fully developed and optimised, at which point, the schemes can
be made available to appropriate authorities or those who feel “the
calling” and have the resources, and clout or mandate to overtly
go on the offence against botnets. Fourth, in addition to facili-
tating more thorough evaluation of botnet mitigation schemes (as
highlighted above), emulation studies can be conducted in signifi-
cantly less time than in-the-wild studies. Therefore, with this ap-
proach, security researchers and practitioners can be more effective
and proactive in the fight against botnets. Finally, at-scale botnet
emulation provides an avenue for investigating botnets that does
not present the same level of legal and ethical issues involved in
actively investigating botnets in-the-wild.

For all of these reasons, we jointly endeavoured to develop a dif-
ferent approach for conducting such at-scale, in-the-lab botnet em-
ulation experiments, as an alternative to these other methods of bot-
net analysis. In this paper, we introduce the philosophy, methodol-
ogy and tools of this approach, and present a case study involving a
particular botnet. The experiment described herein involved recre-
ating in the lab an isolated version of the Waledac botnet [4, 20]
consisting of approximately 3,000 nodes, and further, testing and
validating a mitigation scheme against it (sybil attack), that we had
theorised was possible in such previous work. The specific contri-
butions of the paper are the following: (i) we introduce and show
the feasibility of recreating and studying isolated at-scale botnet in
a secure environment, (ii) we provide the first significant evidence
that the Waledac botnet is vulnerable to sybil attack by demonstrat-
ing it in the lab, (iii) we illustrate how such emulated botnets can be
used to validate, refine and optimise botnet takedown mechanisms,
and (iv) we illustrate how at-scale experimentation of this type can
be used to obtain otherwise unaccessible information by revealing
previously unknown details about the non-visible components and
design decisions taken by Waledac creators and operators.

The rest of the paper is structured as follows. Section 2 describes
some previous work in the construction of experimental platforms
supporting botnet research. We then discuss the criteria that this
type of platforms should meet in order to support at-scale botnet
emulation experiments in a safe and scientifically sound manner.
We also describe the testbed and generic tools that we have used
to conduct our 3000-node botnet emulation experiment with the
Waledac botnet. Waledac itself and the experiment are described in
Section 3, where we also discuss the results obtained. This includes
both results about the viability of the sybil attack we described in
previous work [4] and, more interestingly, some valuable insights
regarding Waledac design and operations, that could not have been
obtained by other methods. We discuss the relevance of these re-
sults with respect to validating this kind of experimental approach
in Section 4 and conclude in Section 5 by summarizing our contri-
butions, presenting some limitations of our work and highlighting
avenues for future research.

2. BOTNET EMULATION EXPERIMENTS

142

2.1 Related Work
The idea of using laboratory experimentation facilities for botnet

research is not new. PlanetLab [17], Emulab [24], and DETER [2]
are popular network testbeds that are based on computers hosted at
multiple facilities. DETER in particular is specially geared towards
security research. These experimental platforms, though they have
proven to be very valuable facilities for researchers, are not that
suitable for high risk security experiments, such as botnets emula-
tion, owing to the risk of malware “breaking” through logical bar-
riers and escaping into the wild.

With regards to work related to high risk security experiments,
a botnet evaluation environment is described in [1] that is a “plug-
in” for Emulab-enabled network testbeds. This work is an initial
step in building a scalable laboratory testbed for experiments with
botnets, but one of the approaches the authors have used to con-
tain the network traffic within the testbed is to give the nodes un-
routable (private) IP addresses, which severely limits the type of
experiments that can be run on the testbed. Moreover, they only
managed hundreds of malicious bots, thus not allowing at-scale
emulation of large modern botnets. Jackson et al. [13] use DE-
TER to deploy their System for Live Investigation of Next Gener-
ation bots (SLINGbot) which, according to the authors, “enables
researchers to construct benign bots for the purposes of generating
and characterizing botnet command and control traffic”. We took
a quite different approach mainly because we wanted to run high
risk experiments, e.g. involving real malware binaries, and thus we
decided to totally isolate our environment from the Internet.

Finally, John et al. [14] created a platform named Botlab which
monitors the behaviour of spam-oriented bots. Some of the goals
of this work is similar to ours, they are both geared to studying
botnets. However, there are significant differences. In their work,
real-world in-the-wild botnets are monitored, while in ours a com-
plete botnet is reproduced in an isolated and secure environment.

2.2 Design Criteria
The two computer security research labs involved in this work

have both adopted stringent security rules and scientific criteria.
This is a requirement in order to be able to conduct safe and rele-
vant experimental security research in general, and botnet emula-
tion experiments in particular. A full description of these facilities
and the associated criteria is given in [5]. We reproduce here the
criteria that we consider are specifically applicable to botnet emu-
lation experiments.
Highly secured. Malware can be potentially highly contagious and
is (by definition) developed for malicious intents. Consequently,
experiments involving malware should therefore take adequate pre-
cautionary measures to ensure that it is not accidentally released
into the wild during the course to the experiment. Perhaps the
only way of adequately mitigating risk associated to this threat is
for the experiment environment to be completely isolated from the
Internet and other networks. Thus we build our emulation plat-
form based on an isolated cluster within highly secured facilities.
The physical security of the labs includes strong physical barriers
(floor-to-ceiling walls, reinforced doors, etc.), surveillance systems
(cameras, motion detectors), a separate access control system using
multi-factor authentication. In terms of logical security, the cluster
is completely isolated from other computer networks (air gapped).
Scale. We desire to have an emulation platform capable of supporting-
at scale experiments; i.e. involving several thousands of bots. The
choice followed was to heavily rely on virtualisation. This allowed
us to have upwards of 30 virtual bots per physical machine.
Realism. An important requirement of our botnet emulation plat-
form is that it be capable of reproducing botnets that in principle

are identical (or close to identical) in functionality to those found
in the wild. To achieve this, it is necessary that very few changes (or
ideally none at all) be made to the bot binaries that are used to re-
produce the botnets. Changes should be restricted to those that are
necessary (if any are required) to overcome anti-virtualisation and
anti-debugging capabilities in the bot binaries. This constraint ne-
cessitates that nodes in the emulation platform be configured with
IP addresses that are hard coded in the bots binaries, and that the
necessary DNS databases be setup to resolve these addresses.
Flexibility. We desire to have an emulation platform that is capa-
ble of reproducing any botnet after the necessary reverse engineer-
ing and investigative work has been done to elucidate the structure
of the botnet command and control. Therefore, flexibility is an
important requirement. The emulation platform should be easily
configurable to adapt various overlay network topologies with for
example, variable proportions of bots with private (unroutable) IP
addresses versus bots with public IP addresses: proportions that
mirror those observed in the in-the-wild botnet.
Sterilisability. To guarantee the integrity of the experiments, vir-
tual machines (VM) need to be “sterilised” in order to remove any
artifacts associated with the malware infection. In certain cases,
this requires removal and re-installation of the VMs. Efficient mech-
anisms are therefore needed to accomplish these tasks.

2.3 Hardware and Tools
In order to meet these criteria, we used an isolated cluster as our

emulation platform. The cluster consists of 98 blades, each having
a quad-core processor, 8 Gb of RAM, dual 136 Gb SCSI disks and a
network card with 4 separate gigabit Ethernet ports. The blades are
contained in two 42U racks. The blades are interconnected with
two separate sets of switches (each in their own 42U rack) such
that two physically separated networks are created: a) a control
network used for transmitting commands and data necessary for
controlling the experiments, and b) an experiment network used
for transmitting the experiment traffic, including in this case botnet
activity (spam, C&C traffic, etc.). Having two physically separated
networks helps to guarantee the integrity of the experiment, in that,
commands and data necessary for controlling the experiment can
be sent via a separate network. This ensures that the control traffic
does not interfere with the transmission of the experiment traffic,
thus preserving the validity of timing measurements made on it.

We present a brief overview of the virtualisation and configura-
tion management tools we employed.
Virtualisation: To maximise the versatility and capability of the
emulation platform, we sought a feature rich virtualisation tech-
nology that is able to emulate both Windows and Linux. Conse-
quently, we choose the VMWare ESX product as the hypervisor for
the blades, which allows good efficiency and ease of configuration.
Configuration and management: We used the Extreme Cloud
Administration Toolkit (xCAT), an open-source tool, for config-
uring and managing the emulation platform. xCAT is particularly
attractive for this purpose since it contains VMWare functionali-
ties; for example, xCAT can create defined number of VMs with
a single command, such as, mkvm vm[001-098], thus creating
98 VMs which are assigned names vm01, vm02, ..., vm098. From
a management point of view, xCAT operates as follows. First it
requires tables containing host configuration information, includ-
ing details such as machine template (i.e. location and name of the
ghost image), hostname, IP address, etc. These tables can be filled
manually using a text editor or they can be generated using perl
or any other scripting language. When the tables are filled, xCAT
can be issued commands causing the tables to be committed to the
xCAT database. It incorporates powerful image deployment, con-

143

figuration and control commands, that take the information from
the database, and use remote boot technology such as PXE or the
ESX API, to order hosts to do the required tasks. Thus, the ex-
periment design, deployment and management process for emu-
lated experiments is as follows. First, xCAT tables must be filled
to facilitate the deployment and configuration of appropriate host
images containing ESX. Following this, the researchers produce
an abstract, high-level description of the desired environments, and
build necessary VM templates or ghost images (e.g. a VM template
for each type of bot, gateways, SMTP servers, etc.). Next, the re-
searchers decides on a network topology, addressing plan and host
naming convention. xCAT tables then need to be filled to facili-
tate the deployment and configuration of these entities (ESX hosts,
VMs, and their configurations). Depending on the size of the exper-
iment, xCAT tables can be filled manually or automatically using
scripts, regular expressions or a combination of both.

2.4 Experiment Methodology
Generally speaking in order to prepare, design and conduct an

at-scale botnet emulation experiment (some or all of) the following
steps are followed:

1. Capture of botnet client code, through various methods (hon-
eypot, collaborators, etc.).

2. Gather information on the botnet in order to understand as
much as is possible about the botnet architecture and modes
of operation. Examples of information that are required are
(i) communications protocols and message formats; (ii) au-
thentication process for gaining access to the botnet; (iii)
categories of bots and the hierarchical relationship between
them; and (iv) C& C architecture. This information can typ-
ically be obtained by reverse engineering bots and analysing
their communication traffic.

3. Passively monitoring the botnet by observing infected ma-
chines and/or joining the botnet with special purpose passive
botnet-like programmes (crawlers), in order to continue to
gain information on its structure, in particular the C&C in-
frastructure, including formats of commands, location and
characteristics of C&C servers, etc.

4. Construction of a surrogate C&C infrastructure complete with
servers and any intermediary proxies.

5. Construction of realistic operating environment for the bot-
net in the lab, including infectable/infected machines (ide-
ally showing human driven-like behaviour), ancillary net-
work services (DNS, SMTP, DHCP, etc.), a realistic emu-
lated network architecture, and, of course, counter-measures
and mitigation schemes against it.

6. Determination of metrics to be measured, based on research
questions that experiment must answer.

7. Implementation of methods for measuring these metrics and
extracting the results in usable form for further analysis.

The main challenges in following this methodology involve:
Maintaining isolation. This means both a) maintaining spatial
and logical isolation between the experimental and control com-
ponents (achieved in our setup through physical separation), and
b) maintaining isolation between the whole facility and the outside
world (security criterion). In addition, it also means time and log-
ical separation between successive experiment runs (sterilisability
criterion).

Observing without interference. This is paramount in order to
maintain the scientific soundness of the results, and also to enforce
isolation.
Simulating network characteristics and user behaviour. This is
a very hard problem that is not just relevant to botnet research. It
is essentially a modelling problem combined with significant engi-
neering issues.

3. THE WALEDAC EXPERIMENT
To exemplify this methodology, we now describe how we ap-

plied it in constituting an isolated Waledac botnet and launching
our sybil attack against it.

3.1 Overview of Waledac
Waledac is a prominent botnet which first appeared in Novem-

ber 2008, shortly after the Storm botnet became inactive. Waledac
employs a “home grown” peer-to-peer (P2P) network infrastructure
for its C&C. Other researchers and members of our group [4, 20]
had previously reversed engineered the Waledac binary and ob-
tained details about its mode of operation. Here, we will limit our
description of Waledac to the aspects relevant to the goals of this
research, i.e. disruption of its C&C through sybil attacks.

Waledac botnet uses a four layered C&C architecture. The first
layer contains bots that are referred to as spammers. These are ma-
chines with private IP addresses residing behind Network Address
Translator (NAT) devices. Spammers are essentially the “worker”
bots and constitute approximately 80% of the botnet. Their princi-
pal role is to send spam, harvest email addresses from files stored
on the infected machines, and harvest confidential information (e.g.
usernames and passwords) from the network traffic that traverses
the infected machines.

Waledac binaries are hardcoded with a list consisting of 100 to
500 contact information of repeaters. This list—which is referred
to as a RList—is stored in XML format in a registry key. An RList
has a global Unix timestamp and between 100 to 500 records that
contain the following fields: a 16-byte ID, an IP address, a port
number, and a Unix timestamp. The list is sorted in descending
order of timestamp (oldest at the top of the list). The RLists play
a key role in facilitating Waledac operations and maintaining the
P2P infrastructure, in the following ways: (i) The Rlist allows each
node to “know” a small subset of the botnet nodes. A spammer, for
example, contacts the repeaters in its RList, at frequent intervals,
and request “jobs” (i.e. tasks to perform). The repeater will in turn,
forward the job request to a protector, which will subsequently for-
ward the request to the C&C server, and relay the response (the
work order) to the repeater, which will issue the work order to the
spammer. (ii) The RList provides a means of propagating identifi-
cation information of repeaters which recently join the botnet. This
process is facilitated as follows. All bots regularly send update
messages to their known repeaters. For a bot S that wishes to send
an update message we have two possibilities: a) if S is a spam-
mer, it extracts 100 records from its RList and sends this extract to
a randomly selected repeater; and b) if S is a repeater, it selects
99 records from its RList, adds its own record (containing its iden-
tification information and the current timestamp) to the top of the
list, and sends the list to the selected repeater. When the recipi-
ent bot R receives the list, it reciprocates the process, by sending a
list containing 100 records of repeaters it knows of, back to bot S.
The recipient of an update list uses the list to update its RList, as
indicated below in Section 3.3.

In addition to an RList, each repeater also has a cryptographically-
signed protector list, containing identification information on the
protectors. The repeaters regularly exchange signed protector lists.

144

Figure 1: Experimental setup

The private key for signing such lists is known only to the C&C
server, and the public key certificate for verifying them is embed-
ded in the bot code. Note that it would be nonsensical to sign RLists
since any bot (even if infiltrated) must be able to provide them.
More interestingly, commands from the server are not signed ei-
ther, something that could provide some level of protection against
a sybil attack. However, the traffic between the server and the bots
is encrypted with AES-128, using a key that is chosen by the server
(and was probably meant to be a session key).

Waledac also provide a failback mechanism that allows bots to
maintain connection to the botnet even if the repeaters listed in its
RList are not reachable. The failback mechanism works as follows:
if a bot makes 10 consecutive unsuccessful attempts to contact a
repeater, the bot connects to a HTTP server (the URL for the servers
are hardcoded in the Waledac binary) and download an updated
RList. These lists are updated every 10 minutes on the server, so
that they contain the most recently “heard of” repeaters.

3.2 Waledac emulation
The overall setup and architecture for our emulation experiment

involving a contained Waledac botnet is depicted in Figure 1. The
process we employed to constitute it is as follows:
(i) Create VM templates. First, we installed the binaries on Win-
dows XP VMs and created xCat VM templates associated with
them. We created separate templates for spammer and repeaters.
(ii) Add the IP addresses of 500 repeaters to the RLists. We deleted
the entries in the original RLists, and added the identification infor-
mation of the 500 repeaters we used for the experiment.
(iii) Add script to issue commands to the VMs. We created a Python
script and added it to the VM template. This script allows us to
issue commands to the VM, for example, to start and stop execution
of the Waledac binaries, to clean the VMs, to restore the RList to
its initial state, and delete the RList dumps (see Section 3.4).
(iv) Deploy the VM templates. Next, we utilised xCAT to install the
VM templates on the blades (approximately 30 VMs per blade).
(v) Setup C&C server. Through our in-the-wild investigation of
Waledac, we were able to determine the type and the format of the

messages the C&C server sends to the bots in response to those it
receives from them. The server code is a Python script that is ca-
pable of responding to all such requests in a similar manner as the
original C&C server. For example, we observed that spam orders
issued to bots contain between 500 and 1,000 email addresses. We
mimic this functionality by creating five different spam order mes-
sages, each containing between 500 and 1,000 addresses and pro-
grammed the C&C to send them to bots requesting spam jobs. We
also implemented the failback scheme as follows: every 10 minutes
the script creates an RList containing the identification information
of the most active repeaters; this list is placed on a HTTP host. All
HTTP requests from the Waledac binaries to the hardcoded failback
domains are directed to this host. As is the case for Waledac C&C
server, our C&C server utilises 1024-bit RSA and 128-bit AES keys
to provide confidentially services for the messages the C&C server
and the bots exchange. The server runs on a VM that is the only
one to run on that blade.
(vi) Constitute the botnet. Finally, we issue commands to the VMs
to start running the Waledac binaries. We can similarly stop and
re-start the experiment at will. The botnet we constituted for our
experiment consisted of 500 repeaters, 2,300 spammer, 8 protec-
tors and the C&C server (for a total of 2,809 nodes in the botnet).
This proportion is close to that which is observed in the wild for
Waledac. It should be noted that the protectors we created are actu-
ally components of the C&C server, and not separate machines: we
assigned 8 network interfaces—each with a different IP address—
to the C&C server for this purpose. These addresses are set to be
identical to those of the real Waledac protectors. This was neces-
sary because the protectors identification information hardcoded in
the bots binaries is signed and we have no knowledge of the corre-
sponding private key.
(vii) Setup environment. In addition to the blades in the cluster, we
used standalone Linux machines to setup the ancillary infrastruc-
ture needed for the botnet to run. These standalone machines pro-
vide services, such as DNS, SMTP and DHCP, that would normally
be present in the Internet. They constitute a simple reproduction of
part of the “environment” within which the real botnet would op-
erate. These machines were of course connected to the experiment
network of the cluster.

3.3 Mitigation scheme and implementation
By reverse engineering the Waledac code and analysing its net-

work traffic, we had previously conjectured [4] that Waledac was
vulnerable to sybil attacks, due to characteristics of the home-made
P2P protocol it uses for C&C. In addition, because the IP address
of a bot needs not be unique (bots are primarily identified by their
16-byte ID), it is possible to generate large number of sybils—with
unique IDs but with the same IP address—whilst using few ma-
chines, thus making this attack relatively easy to mount.

We indicated in Section 3.1 that bots use the update messages
they receive, containing a 100-entry extract of the sender’s RList, to
update their RList. For each entry i in the update list, the recipient
computes a new timestamp:

NewTSi = CurrentTS− |UpdateTS− TSi|

where CurrentTS is the current timestamp, UpdateTS is the list’s
global timestamp and TSi is the timestamp of the entry. The recip-
ient then replaces the timestamp and inserts the entry in its RList
at the correct location: recall that an RList is sorted in descending
order of timestamp. All entries beyond position 500 are deleted.

By analysing the binaries, we also discovered that Waledac bots
do not check the update lists they receive to determine if they con-
tain more than 100 records. It is therefore possible to craft special

145

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Time (hour)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r

o
f

e
m

a
ils

 s
e
n
d

Spam send by the botnet

200 targets
100 targets
25 targets
0 targets
Attack time

(a) Spam output before and after sybil attack

0.90 0.95 1.00 1.05 1.10 1.15
Time (hour)

0

50

100

150

200

250

N
u
m

b
e
r

o
f

N
O

T
IF

Y
 m

e
ss

a
g
e
s

Number of job requests that reach the C&C server

200 targets
100 targets
25 targets
0 targets
Attack time

(b) Job requests arriving at the C&C server before and after attack

Figure 2: Botnet activities before and after sybil attack being launched.

update messages that will cause all the entries in the RLists of the
recipients to be entirely replaced by the sybil records. This can eas-
ily be accomplished by placing 500 sybil records in the update list
and set the timestamp of all the sybil entries, to a value that is iden-
tical to the list’s global timestamp. This guarantees that the NewTS
for all the sybil entries will be equal to the current timestamp; con-
sequently these 500 sybil entries will be placed at the top of the
recipient’s RList and all the others will be deleted.

The extent to which a bot can be controlled and isolated when it
receives such a message, depends on the type of bot.
If the bot is a repeater. After receiving the message from the sybil,
a race condition situation arises. Since the repeater’s identity infor-
mation is likely to be in other bots’ RLists, they are likely to send
the repeater update messages whose entries could replace some of
the sybil entries in its RList. To maximise the chances that the
repeater remains completely isolated, the sybils need to continue
sending update messages to the repeater at short time intervals.
If the bot is a spammer. In this case the result of the sybil attack
is more effective, since the spammer cannot be contacted directly.
When it receives an update from a sybil, and the entries in its RList
are consequently completely replaced by sybil entries, the spammer
will become completely isolated from other bots. It should be noted
though, that in order to infiltrate a spammer’s RList, the sybils first
need to infiltrate the RLists of repeaters whose identity information
are in the RList of the spammer. Also, in order to mantain isolation,
the sybils need to remain active until all the Waledac domains that
are encoded in the affected bots are disactivated, otherwise the bots
will resort to the failback mechanism we described in Section 3.1,
and download a “clean” RList from a Waledac HTTP server.

For the sybil attack implementation, we used three separate en-
tities: (a) fake repeaters (sybils), (b) attackers, and (c) a sybil C&C
server. The role of the sybils is to passively respond to update
messages—sent to sybils—with responses containing the specially
crafted update message we described above, whereas the attackers’
role is to target specified numbers of repeaters and send them the
specially crafted update messages. The records in the update mes-
sages all contain sybil ID information. The attackers send these
messages to the targeted repeaters once every minute. This rate was
utilised because we observed that the Waledac bots in-the-wild send
between 2 to 5 update messages during a two-minute time period.
The role of the sybil C&C server is to prevent the “turned” bots
from resorting to the failback mechanism. We indicated in Sec-
tion 3.1 that if a bot makes 10 consecutive unsuccessful attempts

to contact repeaters, the bot will connect to a Waledac Web server
and download an updated RList. In order to prevent this from hap-
pening, the sybils are programmed to relay all messages from the
turned bots to the sybil C&C server. The sybil C&C server will
in turn send harmless spam orders to the turned bots. We use the
following feature of Waledac to issue these harmless orders: spam-
mers are supplied with a special SMTP server IP address that they
are required to use to test if they are capable of sending spams. Be-
fore sending spam, spammer try to connect to this special SMTP
server and send spam only if they succeed. We therefore send the
bots the address for an “SMTP server” that is unreachable. In so
doing, we can ensure that the bots the sybils control, do not send
spam.

We employed three VM to host the sybils, one VM to launch the
attackers and another VM to run the sybil C&C server.

3.4 Experiment results
We utilised the following metrics for assessing the effectiveness

of the sybil attack mitigation scheme.
Spam output. We measure the spam output of the botnet, over a
fixed time period, before and after we launch the attack. To facil-
itate spam output measurement, we programmed our botnet C&C
server to send spam orders with email addresses belonging to the
same domain. This allows us to more easily count the number of
spam sent by counting DNS requests to that domain.
Connectivity of the botnet. In order to determine the extent to
which the sybil attack affects the connectivity of the botnet, we
measure the number of NOTIFY messages the C&C server receives
over a fixed time period, before and after we launch the attack.
NOTIFY messages are the second message that a bot sends when it
dialogues with the C&C server. Counting only NOTIFY messages
allows us to filter out noise due to failed connection requests.
Percentage of sybils in RList. The goal of the attack is to replace
the entries in RLists with sybil records, which will utlimately iso-
late the bots. This parameter is thus an intermediary indicator of
effectiveness. We measure it by way of a Python running on the
bots, that dumps RList to a file each time it is modified, and send
these files to an FTP server via the control network. We then anal-
yse these files to determine the percentages of sybils in the RList.

In addition to measuring the above metrics, we also wish to de-
termine the degree of success of the attack when subsets of known
repeaters are targeted, vice targeting all known repeaters. We con-
sequently performed 3 sets of experiments, targeting 200, 100 and

146

0.6 0.7 0.8 0.9 1.0 1.1
Time (hours)

0

20

40

60

80

100

In
fe

ct
io

n
 (

p
e
rc

e
n
ta

g
e
s)

RList infections for the Repeaters

200 targets
100 targets
25 targets
Attack time

(a) Percentage RList infection for all repeaters

0.6 0.7 0.8 0.9 1.0 1.1
Time (hours)

0

20

40

60

80

100

In
fe

ct
io

n
 (

p
e
rc

e
n
ta

g
e
s)

RList infections for the target Repeaters

200 targets
100 targets
25 targets
Attack time

(b) Percentage RList infection for targeted repeaters

Figure 3: Percentage RList infections by sybils.

25 repeaters, respectively.
The first set of experiments was used to benchmark the botnet.

We performed 3 experiment runs; for each run, we allow the bot-
net activities to reach a steady state, then we measure spam output
and botnet connectivity. The average values—for the 3 experiment
runs—for these measures were 13,200 emails per minutes and 120
NOTIFY messages per minute, respectively.

The next set of experiments assessed the efficacy of the sybil
attack by determining the steady state values of the above metrics,
before and after the attack begins. We performed 3 experiment runs
for each set of experiments and compute the average values for the
the runs. As indicated in Table 1, the standard deviation values
obtained are relatively small, and we therefore believe that these
results are statistically significant.

Figure 2(a) shows the spam output of the botnet before and after
the sybil attack begins. The dotted vertical line indicates the time
that the attack begins. The graph shows that the attack is a success
and that the spam output drastically falls after less than an hour.
We also observe that after the sybil attack begins, there is an initial
decrease in the spam output, with a subsequent gradual return to its
original level, and even rising significantly above it, before the final
fall. Furthermore, we can see that the time taken to reach the final
fall is longer with 200 and 100 targets than it is with 25, which is
also not so intuitive.

We think the main cause of these two surprising and interesting
effects is the load on the C&C servers, both the sybil and the ma-
licious one. The C&C servers are overloaded and cannot keep up
with the computing time required for cryptographic operations. As
mentioned in [4], the Waledac botnet uses RSA with 1024 bits key-
pairs and AES-128. Through our observation of the Waledac botnet
in-the-wild, we discovered that the C&C server used the same AES
session key for all bots, for approximately 10 months. We initially
thought that this was a design error made by the botnet creators, but
when implementing the Waledac C&C server we discovered that it
was not impossible to generate a session key for each bot, because
it overloads the server with cryptographic computation. Waledac
bots are too verbose and if a good availability of the C&C server
is desired, there is no choice but to keep the same session key for
all active connections (at least for several minutes) and give bots
the same set of encrypted orders. Hence it is likely that this was no
mistake, but rather a conscious design choice by Waledac creators.

However, as the sybil attack progresses, the sybil C&C server has
fewer cryptographic operations to perform because we use exactly

the same strategy as the Waledac C&C server in-the-wild: we use
the same session key and pre-encrypt the work orders in batch mode
before they need to be sent. Thus as the attack progresses the sybil
C&C server availability does not decrease too significantly since it
does not have to encrypt any orders, hence allowing it to control an
increasing number of bots, and adequately handle their requests.

It is important to note that there is a delay between the moment
we completely infect a spammer’s RList and the moment it stops
sending spam: a bot will not contact the C&C server until it has
finished its current task.

As the attack progresses and we gain a hold within the botnet,
we decrease the load on the real C&C server, which becomes more
available for the non-poisoned bots. Thus, these bots receive orders
every time they ask (which is not a normal situation, even in-the-
wild) and continue to spam in a more efficient way than in a normal
state. During that short interim time period, the botnet is more
efficient under attack than in its normal state. It should be noted
that if we had given more resources to the C&C server to start with,
this effect would probably be less important, but as we attributed
4 processors and 8 Gb RAM for its VM, we think it is realistic to
assume that this effect would also be observed in-the-wild.

Figure 2(b) shows the number of NOTIFY messages the C&C
server receives before and after the sybil attack begins. The num-
ber of NOTIFY messages the C&C server receives is essentially
a measure of the connectivity of the botnet. The figure indicates
that, as expected, there was a gradual decrease in the number of
messages that arrive at the C&C server, after the sybil attack com-
mences. After the attack begins, the more efficient attack is the one
with 25 targets. This is also a consequence of the load on the sybil
C&C server. Because it is overwhelmed with the more aggressive
attacks, it refuses connections. After a transition period, the 100
and 200 targets attacks become eventually more effective as the
sybil C&C server has fewer cryptographic computation to perform.

Figure 3(a) shows the percentage of sybils entries in all repeaters
RList (targets and non-targets). After an initial transitory phase
where the more aggressive attacks (more targets) seem more effi-
cient, we reach a stage of equivalent linear growth in the number of
sybil-controlled machines in the RLists, This is due to the fact that
propagation of sybil records in the RList of non-sybil, non-targeted
bots is dependent on the rate of RList updates between non-targeted
real bots, which is the same for all attacks.

Figure 3(b) shows the percentage of poisoning on the targeted
repeaters only. We can observe that it is quicker to fully control

147

25 direct targets than 100 or 200, because of the race condition
faced by these direct targets: the more bots we target, the higher
the chance that we lose some races and have sybil records replaced
by real ones.

4. DISCUSSION
As previously discussed, at-scale botnet emulation in the lab dis-

plays several advantages with respect to other analysis methods.
The Waledac experiments that we have conducted exemplifies the
viability of this approach and provides clear indications of some of
these advantages.

First, we were able to assess the efficacy of the mitigation scheme
directly by measuring the following three parameters: (i) the num-
ber of NOTIFY messages arriving at the C&C server within a given
time period, (ii) the number of spam sent within a given time pe-
riod; and (iii) the penetration ratio of sybil identification within the
bots peer lists (RLists). These parameters provide the most effec-
tive means of measuring the connectivity and productivity of the
botnet. Whereas we were easily able to measure these parameters
via such botnet emulation experiments, the value of these parame-
ters are virtually impossible to ascertain—particularly items (i) and
(iii)—via in-the-wild botnet studies.

Second, we were able to address and answer questions about at-
tack optimisation. In particular, in our attack the role of fake re-
peaters (the sybils) is to target a specified subset of repeaters by
sending them specially crafted update messages. An important
question that needed to be answered regarding the implementation
of the mitigation scheme is, what is the ideal number of repeaters to
target? It is very difficult to design in-the-wild botnet experiments
to find answer to this question. Moreover, even if it were possible
to do so, these experiments would likely take several weeks or even
months to complete, whereas botnet emulation experiments supply
the answer to this question within a few hours.

Moreover, some of the experiment results seem counter-intuitive.
They indicate, for example, that targeting higher number of re-
peaters does not necessarily cause the efficacy of the mitigation
scheme to increase. By performing the experiment multiple times
and observing the same trend, it became clear that the larger the
number of repeaters that are targeted, the more update requests will
be sent to the fake repeaters (sybils) that respond to update mes-
sages sent to sybils; and if the number of update messages sent to
the sybils increase beyond a given threshold, many of these mes-
sages will be dropped and consequently will not be serviced. This
leads to higher number of repeaters that are under the control of the
sybils resorting to the failback mechanism (as outlined in Section
3.1) and download “clean” RList, and in so doing, breaking free of
the control of the sybils. Becoming aware of this fact is important
for a couple of reasons. Firstly, it provides pointers as to how the
mitigation scheme can be made more stealthy, since in targeting
smaller number of repeaters it is likely that the probability of the
botnet operators detecting the presence of the counter-botnet agents
in the botnet will decrease. Secondly, this awareness provides in-
dicators as to how the counter-botnet agents can allocate their re-
sources to maximise the efficacy of the counter-botnet operations.
In essence, we were able to discover this phenomenon (repeaters
re-joining the real botnet because of sybil overload) by running an
at-scale botnet emulation experiment where we could observe and
note the behaviour of bot clients. Again, it would have been very
difficult to notice this by passive in-the-wild botnet observation,
unless researchers have machines that join the botnet and play an
active role in them (i.e. send spam and support criminal activities),
something that many would consider dangerous and questionable.
Thus, this constitutes a third example of why at-scale botnet emu-

lation are a necessary tool in botnet research.
Since fake repeaters responding to update messages sent to tar-

geted repeaters were easily overloaded, we can deduce that this
task requires more resources than the attackers, whose role it is to
send specially crafted update messages to the targeted repeaters in
order to place fake repeaters in their RList. We did not directly
address the question of what would have been the optimal value
for the ratio of fake repeaters to attackers, i.e. how to best allocate
sybil machines to these roles. However, by running the experiments
multiple times, it became clear that the resources we allocated for
responding to update messages sent to the fake repeaters were in-
adequate, since large number of messages that were addressed to
the fake repeaters were dropped, simply because the service queue
was being filled. Whereas this observation could also have been
made via in-the-wild botnet experiments, it is much easier to verify
via in-lab experiments such as this.

Finally, the last example has nothing to do not with the attack,
but rather with the botnet and the botmasters themselves. By not
only directly observing the bot clients but also the reconstructed
botnet C&C server, we were able to “wear the shoes” of the bot-
master and were thus able to identify some of the performance and
design challenges that botnet creators and botmasters must face. In
particular, what would have been a textbook solution to ensure data
confidentiality and integrity, i.e. the use of unique symmetric keys
for each session between a bot and the C&C server, turned out to
be non viable due to the size of the botnet. Without at-scale exper-
imentation in the scale of several thousand bots, we would never
have discovered this fact. This illustrates that, surprising to some
(including some of us!), one can indeed learn a lot about the bad
guys even in the lab. In other words, field work is not by itself the
end-all of botnet and cyber criminality research.

5. CONCLUSIONS
In this paper we presented an alternative approach for conducting

botnet research: at-scale botnet emulation in laboratory conditions.
We have discussed its generic advantages with respect to other ap-
proaches like analytical modelling, simulation studies, and in-the-
wild botnet experimentation. In a nutshell, it provides a greater
verifiable realism than analytical models, simulation methods or
small-scale emulations, while providing greater levels of control
and safety, and presenting fewer ethical and legal problems than
in-the-wild experimentation.

In order to deliver such advantages, however, botnet emulations
must be run on platforms or testbeds that meet certain criteria. We
have postulated and described such necessary criteria. Namely: i)
security, to mitigate risks of accidental or unauthorised release of
botnet code or information about them; ii) scalability, in order to
be able to emulate botnets of large enough size so that similar phe-
nomena as those in a real botnet can be observed; iii) realism, for
the same reason; iv) flexibility, so that experiments can easily be re-
peated, under varying controlled conditions and for different types
of botnets and/or mitigation schemes, and v) sterilisability, so that
results from previous experiments do not affect that of future ones.

Using the isolated security testbeds based on virtualisation [5],
we were able to mount a set of at-scale emulation experiments of
the Waledac botnet involving close to 3,000 bots. The controlled
conditions of the lab and the full visibility on the botnet and the
ancillary infrastructure (the botnet’s “operating environment”) al-
lowed us to measure performance metrics for both the botnet and
attacks agains it that would have been very hard to measure in in-
the-wild botnet, such as i) spam yield (i.e. number of spams per
minute sent by the bots), ii) botnet activity (i.e. number of NOTIFY
messages per minute), and iii) penetration of sybils into the botnet

148

(a) Average (30 min period before attack) and Std deviation values for spam output
Experiment Average Standard deviation for the spam output each 2 minutes after the start of the attack
25 targets 13219 403.27 389.29 102.75 149.51 101.22 528.81 182.02 121.48 211.20 230.79 274.75 169.00 445.75 325.85 395.44
100 targets 13433 180.07 546.72 195.69 327.22 22.61 326.74 271.37 250.24 339.77 338.79 511.07 187.33 171.66 315.68 462.08
200 targets 13582 506.29 348.47 144.76 312.90 769.54 56.01 493.12 239.83 450.14 160.21 662.21 378.59 154.85 406.08 562.96

(b) Average (30 min period before attack) and Std deviation values for job request reaching the C&C
Experiment Average Standard deviation for the number of job requests that reach the C&C server
25 targets 185 23.33 19.09 7.78 3.54 1.41 0.71 7.78 5.66 4.95 0.71 0.71 1.41 0.71 0.00 0.00
100 targets 176 19.22 39.59 21.63 5.03 2.52 3.00 6.03 0.00 0.58 0.00 0.58 0.58 0.00 0.00 0.58
200 targets 172 25.70 12.22 5.51 10.02 16.07 4.58 7.00 2.31 4.04 1.73 0.58 0.58 0.00 0.00 0.58

(c) Std deviation values for percentage RList infection for all the repeaters
Experiment Standard deviation for percentages of RList infection each 2 minutes during the transition state
25 targets 0.00 1.00 2.52 0.58 2.31 2.31 1.53 2.65 2.65 0.00 0.58 0.58 0.00 0.00 0.00
100 targets 0.00 0.50 0.82 2.22 1.50 2.38 1.63 2.63 2.00 1.26 1.00 0.50 0.00 0.00 0.00
200 targets 0.00 1.65 2.08 1.73 1.53 5.00 0.58 2.08 2.65 1.73 1.00 0.58 0.00 0.00 0.58

(d) Std deviation values for percentage RList infection for the target repeaters
Experiment Standard deviation for percentages of RList infection each 2 minutes during the transition state
25 targets 0.00 1.97 2.90 0.71 0.71 1.54 0.00 2.83 0.00 2.83 0.00 2.12 2.12 0.00 1.41
100 targets 0.00 1.53 0.58 2.00 0.58 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
200 targets 0.00 4.78 3.49 2.87 2.36 2.12 0.00 0.00 0.00 0.00 1.24 1.83 0.00 0.00 0.71

Table 1: Standard deviation values for the experiment runs

(i.e. percentage of sybils in bot peer lists). The results obtained
by measurement of these quantities can be summarised as follows.
With respect to the efficacy and viability of the sybil attack, we can
conclude that:

1. The sybil attack as implemented is indeed effective and a-
chieves full disruption within an hour.

2. Workload on the sybil C&C server is an important factor to
consider, as it creates a transient “window of detection” that
could allow the botmaster to detect the attack before he com-
pletely loses control of the botnet.

3. It is not necessary to poison the RList of all or even many
repeaters for the attack to succeed. In fact, targeting smaller
numbers of repeaters (as few as 5% of them) yields essen-
tially the same disruption results as wider attacks (targeting
up to 40% of the repeaters), while somewhat mitigating the
workload problem of the sybil attack C&C server.

With respect to the actual botnet, we were able to deduce the fol-
lowing facts from our results:

4. Workload on the actual C&C server is also a problem. We
suspect that this is the real reason why common session keys
started to be used 10 months into the botnet deployment, and
not due to a programming or design mistake, as was initially
suspected. This is also the probable reason why server com-
mands are not signed.

It is very important to note that it would have been very difficult,
and in some cases impossible, to reach these same conclusions by
resorting to other methods of botnet analysis. While the efficacy
of the sybil attack on the real botnet could have been measured by
continuous monitoring the attacked botnet, it is unlikely that the at-
tack designer would have had a chance to run several experiments
to find out that limited targeted attacks are a better option. In addi-
tion, and as mentioned above, testing counter-measures in-the-wild
could bave several negative side-effects (retaliation, premature dis-
closure of mitigation strategies, premature beginning of an arms

race, etc.) that could easily outweigh the benefits of such research.
In addition, without running an actual C&C server in the lab for an
at-scale reproduction of the botnet, it would not have been possible
to confirm that the design choices made by the botnet creators were
due to performance issues. This cannot be deduced from real-world
botnet observation, unless one has gained access to the actual C&C
server, a very unlikely proposition.

Thus, we hope to have made a strong case for the use of at-scale
botnet emulation as a fundamental tool in botnet research, comple-
mentary at least, and superior in many respects to other botnet and
counter-measure study techniques. Nonetheless, there are some im-
portant limitations to this approach.

First, they require access to testing facilities that meet the above-
mentioned criteria; this is unfortunately not the case today for many
good and well-established botnet researchers. National and inter-
national collaborative efforts like those in which the authors are
involved, or the US DETER project are one way to address this.
However, even though it is understandable that actual usage of the
facilities might be restricted, more collaboration and sharing of pro-
cedures, tools and standards would greatly benefit the community
as a whole and encourage researchers and research funders to fol-
low that path.

Second, while we were very careful in the fidelity of the botnet
emulation portion of our experimental setup, the emulation of the
operating environment of the botnet is somewhat simplistic. As-
pects of the environment that can be included in that category are:
i) a more realistic model and emulation of the Internet (includ-
ing Layer 3 and below characteristics such as topology, latency,
adressing, etc.) as it interconnects the bots, the C&C server and
the ancillary infrastructure, ii) a more realistic model describing
the natural oscillations in botnet population —also referred to as
churn or birth-death process— due to user action such as infec-
tion/disinfection, powering on and off, diurnal usage patterns, etc.
Internet networks and user modelling is another field of research
all on its own, and a very hard one at that. Nonetheless, we are
currently working on ways to easily and transparently port and im-
plement such given models to our security testbeds, which would

149

allow us to test the impact of changes in network configuration and
user behaviour on botnet and counter-measure efficacy. This, we
hope, will lead to very fruitful research, as we, the good guys, do
in principle control the network and can positively affect user be-
haviour through education or regulation.

Finally, none of our experiments emulate the behaviour of an im-
portant part of the botnet: the botmaster, who deploys and operates
the botnet and that has, in principle, clearly defined objectives for
doing so (e.g. profit). While it is not as easy to capture the “bot-
master code” into the lab as it was for the bot code itself, it would
be relatively easy to adapt our botnet emulation to allow for inter-
active “gaming” of a botmaster vs. botnet attacker scenario, where
both are played by security researchers in real time or off-line by
surrogate “game” engines that play out pre-defined strategies. This
approach would allow us to quantify the typical payoff matrices
that are used in game theory to try to predict the ultimate outcome
of such scenarios.

Acknowledgments
This research was partially funded by Canada’s Natural Sciences
and Engineering Research Council (NSERC) strategic research net-
work on Internetworked System Security Network (ISSNet). We
are also very grateful for the valuable input and feedback we re-
ceived from Patrick McDaniel on previous versions of this manuscript.

6. REFERENCES
[1] P. Barford and M. Blodgett. Toward botnet mesocosms. In

Proc. 1st Work. on Hot Topics in Understanding Botnets
(HotBots), Apr. 2007.

[2] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab. Experience with
DETER: A testbed for security research. In Proc. IEEE Conf.
on Testbeds and Research Infrastructures for the Dev. of
Networks and Communities (TridentCom), Mar. 2006.

[3] P.-M. Bureau and J. Fernandez. Optimising networks against
malware. In Proc. Int. Swarm Intelligence and Other Forms
of Malware Work. (MALWARE), Apr. 2007.

[4] J. Calvet, C. Davis, and P.-M. Bureau. Malware authors don’t
learn, and that’s good! In Proc. Int. Conf. on Malicious and
Unwanted Software (MALWARE), Oct. 2009.

[5] J. Calvet, C. Davis, J. Fernandez, W. Guizani,
M. Kaczmarek, J.-Y. Marion, and P.-L. St-Onge. Isolated
virtualised clusters: testbeds for high-security
experimentation and training. In Proc. 3rd USENIX Work. on
Cyber Sec. Experimentation and Test (CSET), Aug. 2010.

[6] E. Cooke, F. Jahanian, and D. McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets.
In Proc. Work. on Steps to Reducing Unwanted Traffic on the
Internet (SRUTI), July 2005.

[7] D. Dagon, G.Gu, C.Zou, J. Grizzard, S. Dwivedi, W. Lee,
and R. Lipton. A taxonomy of botnets. In Proc. of CAIDA
DNS-OARC Work., July 2005.

[8] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation
using time zones. In Proc. 13th Network and Distributed
System Security Symp. (NDSS), Feb. 2006.

[9] C. Davis, J. Fernandez, and S. Neville. Optimising sybil
attacks against P2P-based botnets. Proc. 4th Int. Conf. on
Malicious and Unwanted Software (MALWARE), Oct. 2009.

[10] C. Davis, J. Fernandez, S. Neville, and J. McHugh. Sybil
attacks as a mitigation strategy against the storm botnet. In

Proc. 3rd Int. Conf. on Malicious and Unwanted Software
(MALWARE), Oct. 2008.

[11] C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and
J. McHugh. Structured peer-to-peer overlay networks: Ideal
botnets command and control infrastructures? In Proc. 13th

European Symp. on Research in Computer Security
(ESORICS), Oct. 2008.

[12] S. Gaudin. Storm botnet puts up defenses and starts attacking
back. http://informationweek.com, Aug. 2007.

[13] A. Jackson, D. Lapsley, C. Jones, M. Zatko, C. Golubitsky,
and W. Strayer. Slingbot: A system for live investigation of
next generation botnets. In Proc. of IEEE Conf. for
Homeland Security, Cybersecurity Applications and
Technology (CATCH ’09), Mar. 2009.

[14] J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy.
Studying spamming botnets using botlab. In Proc. 6th

USENIX Symp. on Networked Systems Designs and
Implementation (NSDI), Apr. 2009.

[15] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics: an
empirical analysis of spam marketing conversion. In Proc.
15th ACM Conf. Comp. & Comm. Security (CCS), Oct. 2008.

[16] C. Kanich, K. Levchenko, B. Enright, G. Voelker, and
S. Savage. The Heisenbot uncertainty problem: Challenges
in separating bots from chaff. In Proc. 1st USENIX Work.
Large-Scale Exploits & Emergent Threats (LEET), Apr.
2008.

[17] L. Peterson and T. Roscoe. The design principles of
PlanetLab. ACM SIGOPS Operating Systems Review,
40:11–16, Jan. 2006.

[18] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A
multifaceted approach to understanding the botnet
phenomenon. In Proc. 6th ACM SIGCOMM Conf. on
Internet measurement (IMC), Oct. 2006.

[19] E. Ruitenbeek and W. Sanders. Modeling peer-to-peer
botnets. In Proc. 5th Int. Conf. on Quantitative Evaluation of
Systems (QuEST), pages 307–316, Sept. 2008.

[20] G. Sinclair, C. Nunnery, and B. Kang. The Waledac protocol:
The how and why. In Proc. 4th Int. Conf. on Malicious and
Unwanted Software (MALWARE), Oct. 2009.

[21] J. Stewart. Storm worm DDoS attack.
http://www.secureworks.com/research/
threats/storm-worm, Feb. 2007.

[22] B. Stock, J. Goebel, M. Engelberth, F. Freiling, and T. Holz.
Walowdac analysis of a peer-to-peer botnet. In Proc. Europ.
Conf. Computer Network Defense (EC2ND), Nov. 2009.

[23] P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid
peer-to-peer botnet. In Proc. 1st Work. on Hot Topics in
Understanding Botnets (HotBots), Apr. 2007.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. of 5th Symp. on Operating systems
design and implementation (OSDI), pages 255–270, 2002.

[25] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum.
Botgraph: Large scale spamming botnet detection. In Proc.
6th USENIX Symp. on Networked Systems Designs and
Implementation (NSDI), 2009.

150

Conficker and Beyond: A Large-Scale Empirical Study

Seungwon Shin
Success Lab, Texas A&M University
College Station, Texas, 77843, USA
seungwon.shin@neo.tamu.edu

Guofei Gu
Success Lab, Texas A&M University
College Station, Texas, 77843, USA

guofei@cse.tamu.edu

ABSTRACT

Conficker [26] is the most recent widespread, well-known
worm/bot. According to several reports [16, 28], it has in-
fected about 7 million to 15 million hosts and the victims are
still increasing even now. In this paper, we analyze Conficker
infections at a large scale, including about 25 millions vic-
tims, and study various interesting aspects about this state-
of-the-art malware. By analyzing Conficker, we intend to
understand current and new trends in malware propagation,
which could be very helpful in predicting future malware
trends and providing insights for future malware defense.
We observe that Conficker has some very different victim
distribution patterns compared to many previous genera-
tion worms/botnets, suggesting that new malware spreading
models and defense strategies are likely needed. Further-
more, we intend to determine how well a reputation-based
blacklisting approach can perform when faced with new mal-
ware threats such as Conficker. We cross-check several DNS
blacklists and IP/AS reputation data from Dshield [6] and
FIRE [7], and our evaluation shows that unlike a previous
study [18] which shows that a blacklist-based approach can
detect most bots, these reputation-based approaches did rel-
atively poorly for Conficker. This raised the question, how
can we improve and complement existing reputation-based
techniques to prepare for future malware defense? Finally,
we look into some insights for defenders. We show that
neighborhood watch is a surprisingly effective approach in
the Conficker case. This suggests that security alert shar-
ing/correlation (particularly among neighborhood networks)
could be a promising approach and play a more important
role for future malware defense.

1. INTRODUCTION
Conficker worm (or bot) [26] first appeared in November

2008 and since then it has rapidly and widely spread in the
world within a short period. It exploits a NetBIOS vulner-
ability in various Windows operating systems and utilizes
many new, advanced techniques such as a domain genera-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

tion algorithm, self-defense mechanisms, updating via Web
and P2P, and efficient local propagation. As a result, it has
infected millions of victims in the world and the number is
still increasing even now [16, 28].

It is clear that the complex nature of Conficker makes it
one of the state-of-the-art malware, and therefore the analy-
sis of Conficker is very important in order to defend against
it. A full understanding of Conficker can also help us in
comprehending current and future malware trends. Exist-
ing research of Conficker analysis mainly falls into two cat-
egories. The first focuses on analyzing the Conficker bi-
nary and its behavior, revealing its malicious tricks such as
the domain generation algorithm [23, 30]. In this direction,
SRI researchers [23] and the Honeynet project [30] already
provided excellent reports that analyzed Conficker in great
detail. The second research category mainly focuses on an-
alyzing the network telescope data [2] or DNS sinkhole data
[13] to reveal the propagation pattern and victim distribu-
tion characteristics of Conficker on the Internet. There are
very few studies in this direction, which is probably because
it is very hard to obtain large scale real-world data of vic-
tims and the amount of data should be large enough to cover
victims’ global behavior. CAIDA [2] and Team Cymru [13]
provided some initial reports which contain some very basic
statistics on the scanning pattern and propagation informa-
tion of Conficker. However, for a worm/bot that has infected
so many victims and has so much potential to damage the
Internet, it deserves a much deeper study. Such study is
necessary because by analyzing this state-of-the-art botnet,
we can gain more knowledge of current malware, e.g., how it
differs from previous generation malware and whether such
differences represent future trends or not. These deeper in-
vestigations could also provide new insights in developing
new detection and defense mechanisms for current and fu-
ture malware.

In this paper, we attempt to provide a deeper empiri-
cal measurement study of Conficker. We have collected a
large-scale data set which contains almost 25 million Con-
ficker victims with the help of Shadowserver.org (details on
data collection are discussed in Section 3). We believe such
scale is large enough to uncover Conficker’s global patterns.
We provide an extensive measurement of various distribu-
tion patterns of Conficker victims. Furthermore, we use
a comparison- and cross-check-based methodology in our
measurement study. We study the similarities and differ-
ences between Conficker and several other publicly reported
worms/botnets. Then we analyze how these differences may
affect existing reputation-based detection approaches. We

151

also investigate possible aspects that may be useful for Con-
ficker and future malware defense.

In short, this paper makes the following contributions:

• We provide a large-scale empirical study of almost 25
million Conficker victims. By analyzing this data, we
reveal many interesting aspects that were previously
unknown and show that Conficker victims exhibit a
very different distribution pattern from many previ-
ously reported botnets or worms. This difference could
be a new trend or some ignored facts that are poten-
tially important for future malware defense. Detailed
information is in Section 4.

• We evaluate the effectiveness of existing reputation-
based approaches for detecting emerging malware threats.
They are considered as promising in defending against
unknown malware compared to traditional signature-
based approaches [1]. Through cross-checking several
DNS blacklists and reputation data from Dshield [6]
and FIRE [7], our evaluation shows that these reputation-
based approaches are not effective for Conficker de-
fense. This suggests that these reputation-based ap-
proaches need to be significantly improved and com-
plemented by other techniques. Detailed information
is in Section 5.

• We study the Conficker data and find that neighbor-
hood watch is surprisingly effective to detect or pre-
dict new victims. This could suggest that alert shar-
ing/correlation (among distributed collaborators, par-
ticularly neighborhood networks) could be an effec-
tive and promising technique to defend against future
emerging threats and it needs more attention for such
research. Detailed information is in Section 6.

2. RELATED WORK
Conficker binary analysis. Porras et al. from SRI In-

ternational provided a very extensive study of the Conficker
binary analysis [23]. They analyzed several variants of Con-
ficker and revealed how Conficker propagates, how it infects
others, how it evades anti-virus tools and how it updates
itself. This provided very detailed and valuable information
of Conficker behavior. The Honeynet project [30] also pro-
vides a detailed analysis of Conficker binary. These studies
also provide scanning tools for detecting Conficker victims
in the network.

Conficker data analysis. With the use of the telescope
data, researchers from CAIDA provided a simple analysis
on Conficker propagation [2]. The Telescope data mainly
contains scanning traffic from Conficker victims, which re-
veals Conficker victim location and timing information to
display how Conficker emerges and spreads on the Internet.
However, such data is not complete due to the size limit of
(passive) monitoring networks. Recently, researchers started
to use the DNS sinkholing technique [13] to collect much
more accurate Conficker victim data. A report from Team
Cymru[13] analyzed the behavior of Conficker victims and
provided some general distribution and propagation infor-
mation. However, there is still a lack of some deep analysis
of Conficker victims such as how different the victims are
from previous malware. This paper is a first attempt to
provide an empirical deep study of Conficker victims, reveal

how they are distributed differently from previous genera-
tion malware, and how this affects current reputation-based
defense mechanisms. In addition, we want to understand
if there are some effective techniques for early detection of
future variations of Conficker.

3. DATA COLLECTION
An interesting feature of Conficker is the resilient function

of updating itself. To avoid detection, it automatically gen-
erates new domain names (of updating servers) [23, 30] and
connects to those domain names to download an updated
version of itself. This function greatly supports Conficker to
increase the survivability and resilience. However, once the
domain generation algorithm was cracked by researchers, it
also provides a way to sinkhole and track the victims. By
registering new domain names that will be used by Con-
ficker victims on controlled servers, defenders can collect
visits from hosts infected by Conficker. This approach is
widely known as DNS sinkholing and has been successfully
adopted by researchers that study Conficker [13].

With the aid of Shadowserver.org, we have collected the
Conficker sinkhole data captured from January 1, 2010 to
January 8, 2010. During this period, we observed 24,912,492
unique IP addresses of Conficker victims. We note that the
accurate counting of worm/botnet victims is not an easy
task because of the existence of DHCP, NAT, and many
other issues [31, 25]. For example, Stone-Gross et al. [25]
pointed out that there is a slight difference between the num-
ber of IP addresses and the number of real infected hosts.
This is the limitation of almost all existing worm/botnet
measurement studies. We do not intend to solve this prob-
lem in this paper. We simply report our observations from
our collected data. Although the number may not be exact,
with such a large scale it at least provides an estimation of
overall characteristics and statistics of the Conficker botnet.

To obtain more interesting results, we surveyed previous
work [15, 14, 19, 18, 31, 32, 24] about the behavior of ne-
farious worms and bots/botnets. They are used to compare
with our Conficker result and to help us track whether in-
fection trends have changed. Based on the information they
provide, we selected seven measurement studies, which are
summarized in Table 1. Of these, three are well-known net-
work worms [15, 14, 19] and four are botnets [18, 31, 32,
24]. Note that some studies of botnets do not specify botnet
names in their work, but they show the result of malicious
nodes that send spam emails. Since most spam emails are
delivered by botnets [18], we can reasonably assume that
their studies represent the behavior of some bots or mal-
ware.

4. WHO IS WORKING FOR THE CONFICKER

BOTNET?
In this section, we provide a basic but important network-

level examination, which demonstrates fundamental charac-
teristics of Conficker victims. We review how Conficker vic-
tims are distributed over the IP address space and ASes.
Also, we investigate the bandwidth of Conficker victims and
domain names that Conficker victims belong to. Finally, we
survey portions of countries where Conficker victims heavily
exist. Some of them are already provided by other studies
[2, 13], but our work is more than just providing basic mea-
surement results. To comprehend the radical alteration of

152

Malware [Work] Type Data Source Data Collection Time
Botnet 1 [18] Botnet Sinkhole server Aug. 2004 ∼ Jan. 2006
Botnet 2 [31] Botnet Hotmail Jun. 2006 ∼ Sep. 2006
Botnet 3 [32] Botnet Spamhaus Nov. 2006 ∼ Jun. 2007
Waledac [24] Botnet Infilatrion into Waledac Aug. 2008 ∼ Sep. 2009
CodeRed [15] Worm Measurement Jul. 2001 ∼ Oct.2001
Slammer [14] Worm Measurement Jan. 2003
Witty [19] Worm Measurement Mar. 2004

Table 1: Data source of previous worms/bots for comparison.

malware, we compare Conficker victims’ network-level char-
acteristics with those of previous well-known bots or worms.

4.1 Distribution Over Networks
We plotted each victim’s IP address to determine how

Conficker victims are distributed over the IP address space
and found that they are not uniformly distributed in the
whole IP address space; instead the distribution is highly
biased, mostly concentrated in some specific ranges.

Result 1. (Distribution over the IP address space)
Most of hosts infected by Conficker are concentrated in sev-
eral specific IP address ranges.

0.0.0.0 50.0.0.0 100.0.0.0 150.0.0.0 200.0.0.0 250.0.0.0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

IP address

nu
m

be
r

of
 in

fe
ct

ed
 h

os
ts

Figure 1: Distribution of infected hosts over IP ad-
dress.

Figure 1 depicts the distribution of victims over the IP
address space. The presence of several wide, sharp spikes,
which represent densely infected areas, reveals that the vic-
tims are not uniformly distributed. Since the IP address
ranges within these wide spikes could be regarded as more
vulnerable, we inspected three notable wide spikes in detail.
They are in the range of (109.* - 125.*), (77.* - 96.*), and
(186.* - 222.*) and they cover around 87% of all victims.
In particular, the widest and most prominent spike which is
in the range of (109.* - 125.*), includes 9,303,423 infected
hosts and accounts for 37.34% of the total number of Con-
ficker victims. To get a more detailed view, we narrowed
down the scope from the ranges to more specific networks.
In the widest spike, we found that 123.* and 124.* networks
are the main contributors. They comprise 1,701,438 infected
hosts and account for 6.83% of all victims. We analyzed fur-

ther and discovered that there are 40,278 Conficker victims
in the 123.19.* network, which is around 61.9% of all possi-
ble IP addresses in that /16 subnet. Similar characteristics
were observed in nearby networks such as the 123.22.* and
the 123.23.*1

Result 1.1. (Distribution over IP address space -
Comparison) Some portions of IP address ranges were al-
ready affected by the previous botnets, but some ranges such
as 109.* - 125.* are unique to Conficker.

Comparing the distribution of Conficker victims over the
IP address space with that of previous bots, we find that
some ranges are similar to the previous results and some are
unique to Conficker. The ranges of (77.* - 96.*) and (186.* -
222.*) are widely known as major locations of the Waledac
bot [24]. Yet the interesting thing is that while the range
of (109.* - 125.*) is one of the significant locations of Con-
ficker, Waledac has no significant number of victims in that
range. In addition, [18] investigated the IP address ranges
of hosts infected by bots and they denoted that the ranges
of (80.* - 90.*) and (210.* - 220.*) were major locations of
bots, which is similar to Waledac analysis. However, both
previous studies still did not point out the range of (109.*
- 125.*) as a heavy contributor of bots. We tried to under-
stand why the range of (109.* - 125.*) was not seen before.
After investigating the data in this range, we concluded that
the reason is most likely a change of infection trend, and we
will elaborate on this in Result 2.1.

Since it is nearly impossible to monitor the entire Internet,
it is more efficient to focus on specific (suspicious) networks
that are more likely to contain commands directed by a bot-
master. The IP address ranges within wide spikes, which are
shown in Figure 1, can be good candidates that need to be
focused.

Insight from Result 1 and 1.1 (Monitoring Net-
works more efficiently) It is impossible to monitor all the
IP addresses on the Internet, but we can monitor a limited
number of specific ranges to efficiently detect commands and
attacks in infected networks. Even though the ranges may be
different for each botnet, there are still some common parts
and they are good candidate ranges to monitor.

1Since the 123.* network is in Class A network, it seems
that there is no meaning in splitting it into subnetworks.
However, people commonly split Class A networks into sev-
eral /16 subnets to manage them efficiently. As in the case
of 123.* network, we found that it is divided and assigned
to several network providers. The 123.19.* network is one
of them and it is assigned to VietNam Post and Telecom
Coorperation and its inetnum is 123.19.0.0 - 123.19.255.255.

153

Representing identities of Conficker-infected hosts by IP
address is often preferable in a way that it is precise and
elaborate. However, the number of the infected IP addresses
is so large that this makes it hard to grasp the global view
of Conficker victims. Hence, we use the Autonomous Sys-
tem (AS), which is a useful method for clustering hosts on
the Internet for easier management and has been applied in
previous measurement work, to group the hosts infected by
Conficker.

Result 2. (Distribution over ASes) Of all infected
hosts, the top two ASes account for 28.37% of all victims
and top 20 ASes cover 52.54% of all victims. In particular,
most of the top rated ASes are located in Asia.

Conficker victims are concentrated in a few ASes and most
of the top infected ASes are located in Asia. As shown in
Table 2, around 30% of infected hosts belong to one of only
two ASes and more than 50% of infected hosts belong to one
of the (top) 20 ASes. Most highly infected ASes are mainly
distributed in Asia, particularly in China. This result also
suggests that an approach to detect malicious hosts based
on ASes would be practical.

ASN # Host AS Name Country
4134 2825403 CHINA-BACKBONE China
4837 1435411 CHINA169-BACKBONE China
7738 385672 TELECOMUNICACOES Brazil
3462 280957 HINET Taiwan

45899 273577 VPNT-AS-VN Vietnam
27699 260848 TELECOMUNICACOES Brazil
9829 248444 BSNL-NIB India
8167 237465 TELESC Brazil
3269 231020 ASN-IBSNAZ Italia
9121 207849 TTNET Turkey
9394 195088 TELEFONICA China
4812 182015 CRNET China
4788 180876 CHINANET-SH-AP Malaysia
8402 141130 TMNET-AS-AP Russia
8151 138567 CORBINA-AS Mexico

17974 137991 UNINET Indonesia
4808 137672 TELKOMNET-AS2-AP China
3352 135276 CHINA169-BJ China
8708 128228 TELEFONICA-DATA-ESPANA Romania
3320 126520 RDSNET Germany

Table 2: Conficker victims in the top 20 ASes.

Result 2.1. (Distribution over ASes - Comparison)
Even though the top two ASes were also sources of previous
botnets, most of other top rated ASes are newly emerged in
the Conficker case.

By comparing the result of the distribution over ASes with
that of previous bots, we find that even if there are common
ASes between Conficker and previous bots, there is a sig-
nificant difference in the locations of infected ASes. Some
studies [18, 31, 32] investigated which ASes are the major
sources of the botnets that deliver spam emails2. We com-
pare their findings with our result and denote it in Table
3. In [18], the authors analyzed data collected in 2004 -
2006 and pointed out that most of the bots are located in

2In [32], they only present the top five of ASes, and that is
why we could not compare the whole list.

North America (particularly in USA), while in [31] and [32]
in which data was collected in 2006 - 2007, it was empha-
sized that bots spread widely over the world. However, in
the case of Conficker, ASes in the USA are no longer shown
in the top 20 list. Instead, most highly infected ASes are
located in Asia and South America.

From this result, we conclude that the trend of major loca-
tions of bot infected hosts is still changing; (i) mainly located
in North America, (ii) widely spread over the World, (iii)
popular in Asia and South America. This trend guides us
to observe Asia and South America more closely than North
America, which used to be the major source of spam email
when we built blacklists to prevent spam at the time. It is
important that the trend of major sources of bots is chang-
ing. Also, we find that four ASes in Conficker are never seen
in previous results. Two of them are in Asia (Vietnam and
India) and two of them are in South America (Brazil).

Insight from Result 2 and 2.1. (Change of Infec-
tion Trend) North America used to be the main contribu-
tors of botnets, but now Asia and South America contribute
more. This means that the locations of the main sources of
botnets are changing and we may chase this trend (e.g., new
malware spreading models and defense strategies are proba-
bly needed).

4.2 Distribution Over Domain Names
In this section, we inspect the domain names of each vic-

tim using DNS reverse lookup.3 A domain name indicates a
group in which a host belongs and it can be a good way to
reveal the host itself because domain names are expressed
in easy and comprehensible words.

Result 3. (Distribution over Domain Name) The
.br, .net and .cn domains cover around 24.42% of Conficker
victims. Interestingly, one of the third level domains covers
around 7% of infected hosts, which means it contains more
than 1,700,000 victims.

As shown in Table 4, only a few domains account for about
20% of hosts infected by Conficker. This does not solely ap-
ply to top level domains but to all second level domains
and third level domains as well. In the case of top and sec-
ond level domain names, their scope is quite broad and it
is hard to find any big advantage when compared to IP ad-
dress range or AS number. However, for third level domain
names, it is possible to focus on small sets of victims. It is
useful to monitor victims because the top third level domain
includes numerous Conficker victims. In particular, we find
that domain 163data.com.cn accounts for 6.88% of infected
hosts. Also, more than 99% of victims in 163data.com.cn in-
clude the word dynamic in their fourth level domain names.
From this, we can guess that they are using dynamic IP ad-
dresses, as their names imply. This result is similar to [31]
which uncovers dynamic IP addresses as a main source of
most spam emails.

3In our DNS reverse lookups, about 49% of victims did
not return valid results and therefore we labeled them as
“Unknown”, shown in Table 4. Since previous studies also
showed similar rates of “unknown” domains, we leave them
in the table.

154

Conficker Botnet 1 [18] Botnet 2 [31] Botnet 3 [32]

ASN Country ASN Country ASN Country ASN Country
4134 China 766 Korea 4134 China 4766 Korea
4837 China 4134 China 4837 China 19262 USA
7738 Brazil 1239 USA 4776 Australia 3215 France
3462 Taiwan 4837 China 27699 Brazil 4837 China
45899 Vietnam 9318 Japan 3352 Spain 4134 China
27699 Brazil 32311 USA 5617 Poland no info. no info.
9829 India 5617 Poland 19262 USA no info. no info.
8167 Brazil 6478 USA 3462 Taiwan no info. no info.
3269 Italia 19262 USA 3269 Italy no info. no info.
9121 Turkey 8075 USA 9121 Turkey no info. no info.

Table 3: Top 10 ASes hosting Conficker and Spamming Botnets.

Top Level Percentage Second Level Percentage Third Level Percentage
Unknown 48.81% Unknown 48.81% Unknown 48.81%
br 8.83% com.cn 6.89% 163data.com.cn 6.88%
net 8.65% net.br 4.61% veloxzone.com.br 1.96%
cn 6.94% com.br 4.20% dynamic.hinet.net 1.86%
ru 5.01% hinet.net 1.91% telesp.net.br 1.69%
it 2.36% telecomitalia.it 1.55% retail.telecomitalia.it 1.46%
ar 1.54% corbina.ru 0.99% brasiltelecom.net.br 1.39%
in 1.35% ny.adsl 0.93% broadband.corbina.ru 0.99%
com 1.21% com.mx 0.90% kd.ny.adsl 0.93%
mx 1.16% com.ar 0.84% prod-infinitum.com.mx 0.85%

Table 4: Top 10 Domain Names hosting Conficker Victims in each level.

Result 3.1. (Distribution over Domain Name -
Comparison) The .net domain is still prevalent, but new
domains such as .br, .cn, and .ru have recently emerged as
heavy resources of botnets. The .com and .edu domains used
to be the major sources of worms, but now they cast off the
yoke of malicious domains.

Comparing the domain result with previous work, we found
that a few domains that were not previously seen in Con-
ficker. Also, we found that .com and .edu domains, which
used to be nefarious domains, are now relatively clean. Un-
fortunately, because the previous work does not show sec-
ond level and third level domain distributions, we could only
compare top level domains. In previous studies, top contrib-
utors of infected domains are .net, .com and .edu. However,
in the case of Conficker, things have changed. While the .net
domain is still prevalent, there are newly emerged domains
which are not shown in the previous work: .cn, .ru, .in, and
.mx. All domains that are newly seen represent their coun-
tries and we call these ccTLDs (Country Code Top Level
Domains). The report from Verisign [29] shows that the
registration rate of above ccTLDs has increased explosively
for the past three years. This implies that the number of
hosts in newly registered domains have increased exponen-
tially. Therefore we may monitor more closely whether they
are infected by malware or not, since they may not be on
any blacklists. The more interesting part is .edu and .com
domains are no longer serious sources of malware. Of course,
there are infected hosts which still belong to those domains,
but its coverage is reduced to 1.21% in .com and 0.0096% in
.edu. This result implies that the networks in .com and .edu
domains are probably better managed and protected than
before. The comparison result is summarized in Table 5.

Result 3.2. (Distribution over Domain Name -

Sensitive Domain Name) There are Conficker victims in
government networks and companies listed in Fortune 100,
even though the number of infected hosts is small.

Besides sending DDoS packets and spam emails, a botnet
can steal sensitive information from victims [11]. If hosts
infected by a bot belong to critical networks such as gov-
ernment and military networks that contain sensitive infor-
mation, a botmaster can steal important information from
them. Using our Conficker data, we investigated how many
victims are affiliated with government or military networks
and we found 714 such victims. Surprisingly, victims in gov-
ernment networks are not limited to a few countries, instead
they are spread around 70 countries including U.S.A., Park-
istan, India and China. Also, we investigated how many
victims are in well-known companies. To do this, we used
the Fortune 100 Company List [8] and we found 2,847 such
hosts. Conficker victims still exist within several reputable
companies such as HP and IBM.

Insight from Result 3, 3.1 and 3.2. (Watch out
for new and sensitive Domains!) It is nearly impossible
to monitor all domain names. However, we have observed
that newly registered domains are more vulnerable and more
easily infected by Conficker. Hence, it is necessary to closely
monitor those recently registered domains. In addition, even
though the number of victims is not large, a botmaster of
Conficker can steal sensitive information from government
and top rated company networks.

4.3 Distribution over Bandwidth
Besides IP address, AS and domain names, bandwidth

gives us information that shows us what kinds of networks
Conficker victims belong to. It also helps to predict the
power of the botnet. For instance, if we know there are one

155

Conficker CodeRed Slammer Witty

Top level Percentage Top level Percentage Top level Percentage Top level Percentage
Unknown 48.81% Unknown 47.22% Unknown 59.49% net 33%
br 8.83% net 18.79% net 14.37% com 20%
net 8.65% com 14.41% com 10.75% Unknown 15%
cn 6.94% edu 2.37% edu 2.79% fr 3%
ru 5.01% tw 1.99% tw 1.29% ca 2%
it 2.36% jp 1.33% au 0.71% jp 2%
ar 1.54% ca 1.11% ca 0.71% au 2%
in 1.35% it 0.86% jp 0.65% edu 1%
com 1.21% fr 0.75% br 0.57% nl 1%
mx 1.16% nl 0.73% uk 0.57% ar 1%

Table 5: Top 10 Domain Names hosting Conficker, Codered, Slammer and Witty.

million Conficker victims in the world and most Conficker
victims are in networks with bandwidth less than 1 Kbps,
we deduce that it could generate 1 Gbps traffic in the best
case. To measure the bandwidth, we use Tmetric [27] which
sends ICMP packets to the target network and provides a
measured bandwidth result. Since Tmetric needs to con-
tact the target network to estimate the bandwidth, we can
not get the bandwidth result without live target networks
and hosts. It takes quite a long time to contact each host
and measure the bandwidth, so we only contact one host in
the subnetworks (/24) where Conficker victims exist. We
reasonably assume that hosts in the same subnetwork (/24)
have the same bandwidth.

Result 4. (Bandwidth Distribution) About 99% of
Conficker victims have bandwidth less than 1 Mbps and this
means that most of them are ADSL or Modem/Dialup users.

We find that most victims are using Modem/Dialup or
ADSL networks. As shown in Figure 2 (a), about 90% of
Conficker victims are in the network whose bandwidth is less
than 200 Kbps and around 99% of victims are residing in the
network whose bandwidth is less than 1 Mbps. This result
is similar to [10] and [31] which denote most bots are using
ADSL or Dialup networks. When we conducted this mea-
surement, we found interesting patterns between the band-
width of a subnet and the number of infected hosts in the
subnet.

Result 4.1. (Bandwidth Distribution - relation
with the numbers of victims) The networks that have
low bandwidth are likely to have more Conficker victims than
those with high bandwidth.

We suspect that there is a relationship between the band-
width of a network and the number of infected hosts of the
network. As shown in Figure 2 (b), the bandwidth of the
subnet is inversely related to the number of infected hosts
in the subnet. We think that this pattern is related to the
manageability of each network. A network with high band-
width indicates consuming high setup cost and it also means
the network is that worthy. And we could infer that such
worthy network is under reasonably good maintenance.

Insight from Result 4 and 4.1. (Examine ADSL
or Modem/Dialup networks) Hosts with ADSL or Mo-
dem/Dialup connections are still very vulnerable.

4.4 Distribution over Geographic Location
Result 5. (Geographic Location) 34.47% of infected

hosts are located in China, which is larger than the total
number of Conficker victims from the next top eight coun-
tries.

As shown in Table 6 on the distribution over countries,
the top ten countries include over 70% of Conficker victims,
China ranks number one by a large margin. Conficker vic-
tims are distributed over most of the world including Asia,
Europe, and South America, but interestingly, only 1.1% of
victims are located in North America. This result is some-
what different from previous infection patterns.

Result 5.1. (Geographic Location - Comparison)
In previous worms and botnets, most the infected hosts were
located in North America - especially in USA, but in Con-
ficker, most victims are located in the Asian region - espe-
cially in China.

We compare the country distribution with that of other
worms and bots to determine whether it is different or sim-
ilar and we find that the location of heavy malware contrib-
utors is changing. Even though we could not get the exact
country distribution from the previous work [18] [31], we are
able to estimate which country had more victims based on
their distribution over ASes. From Table 6 and 3, we ob-
serve that worms prevalent several years ago were mainly
located in North America. In previous botnets, [31] and [32]
show that victims are mainly located in both Asia and North
America, but [18] and [24] denote that most victims are lo-
cated in North America. However, contrast to the results
of previous work, we find that Conficker victims are mainly
located in Asia and not in North America, where only 1.1%
of victims are located. Therefore, changing monitoring focus
from North America to Asia seems reasonable.

Insight from Result 5 and 5.1. (From North Amer-
ica to Asia - Confirmed) We clearly observe that the hosts
infected by Conficker are mainly located in Asia and not in
North America, as also shown in Result 2 and 2.1.

5. HOW WELL DO REPUTATION-BASED

DETECTION SYSTEMS DETECT CON-

FICKER?
In this section, we examine how well current reputation-

156

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bandwidth (kbps) of subnet

F
(x

)

Empirical CDF

(a) (b)

Figure 2: Bandwidth measurement of Conficker victims.

Conficker Waledac CodeRed Slammer Witty

Country % Country % Country % Country % Country %
China 34.47% USA 17.34% USA 43.91% USA 42.87% USA 26.28%
Brazil 9.43% U.K 7.76% Korea 10.57% Korea 11.82% U.K 7.27%
Russia 7.39% France 7.04% China 5.05 % Unknown 6.96% Canada 3.46 %
India 4.45% Spain 5.90% Taiwan 4.21% China 6.29% China 3.36%
Italy 3.56% India 5.50% Canada 3.47% Taiwan 3.98% France 2.94%
Vietnam 2.81% no info. no info. U.K. 3.32% Canada 2.88% Japan 2.17%
Taiwan 2.59% no info. no info. Germany 3.28% Australia 2.38% Australia 1.83%
Germany 2.03% no info. no info. Australia 2.39% U.K. 2.02% Germany 1.82%
Argentina 2.00% no info. no info. Japan 2.31% Japan 1.72% Netherlands 1.36%
Indonesia 1.85% no info. no info. Netherlands 2.16% Netherlands 1.53% Korea 1.21%

Table 6: Top 10 countries where Conficker, Waledac, Codered, and Slammer are located.

based detection systems detect Conficker. A DNS blacklist
is an effective approach to detect malicious hosts and net-
works based on reputation [1]. We investigate how well it
detects Conficker victims to verify its effectiveness. Also,
we examine other reputation-based detection systems such
as Dshield [6] and FIRE [7] to check if they could successfully
detect Conficker victims.

5.1 DNS Blacklist
We have investigated several well-known blacklists such

as DNSBL [5], SORBS [20], SpamHaus [22], and SpamCop
[21] to see how many victims of Conficker are on their black-
lists. We tested all 24,912,492 infected hosts and we found
out that only 4,281,069 hosts are on blacklists which is only
17.18% of all victims.

Result 6. (DNS Blacklist) DNS blacklists only cover
a small portion of Conficker victims. More specifically, only
17.18% of Conficker victims are found on any of four DNS
blacklists.

Our investigation result is quite different from the previ-
ous work [18] which shows about 80% of bot infected hosts
are already on some blacklists and we believe that the dis-
parity is caused by the difference of distribution of infected
hosts. As we mentioned in Section 4.1 and 4.2, the distri-

bution of Conficker victims (over IP address space, ASes,
Domain names and Countries) is different from the previ-
ous work, and this makes it hard to build effective blacklists
for detecting emerging malicious hosts/networks, because
blacklists highly depend on the reputation of hosts and net-
works obtained from their previous records (and currently
heavily rely on spam activity records).

Insight from Result 6. (Unfortunately, blacklists
can not help us all the time) Only less than 20% of vic-
tims are on DNS blacklists, which means that we need better
ways to detect future emerging malware.

5.2 Dshield and FIRE
Some other reputation-based detection systems are also

provided to complement DNS blacklists, and we need to in-
vestigate their performance of detection. Since most DNS
blacklists are mainly to detect hosts or ASes sending spam,
they may not detect other malicious behaviors (potentially)
performed by (emerging) infected hosts. There are several
studies that try to detect network scanning attacks or web-
based attacks and Dshield [6] and FIRE [7] are good exam-
ples of them. Dshield provides information to detect hosts or
ASes sending suspicious network scanning/attacking pack-
ets, and FIRE [7] lists malicious ASes which frequently host

157

rogue networks by measuring their reputation. We plan to
inspect how many Conficker victims are notified by Dshield
and FIRE.

Result 7. (Dshield) Only 0.33% of victims of Conficker
are found on the list of malicious IP addresses reported by
DShield, and most of the top ASes infected by Conficker are
not on the malicious AS list of Dshield.

Checking Conficker victims against the list provided by
Dshield [4], we found that only a small portion of hosts
and ASes are on the list. We investigated 588,797 IP ad-
dresses presented by Dshield, and they denoted world-wide
attackers/scanners that were detected by all kinds of IDSs
and reported to DShield. Since one of the infection vectors
in Conficker is random IP scanning [17], we expect a large
portion of Conficker victims to show up in Dshield. How-
ever, we only find 82,856 hosts from the list. This shows
that these Conficker victim hosts are probably easy targets
of many previous malware. However, DShield is still not
good at catching major portions of new emerging malware
such as Conficker. Similarly, we examined the malicious AS
list provided by Dshield and we only observed 83 Conficker
infected ASes out of 10,584 ASes given by Dshield. Only
one of them (AS4812) is a serious contributor of Conficker
(ranked 12th among infected ASes) but the rest are not as
critical as AS4812. Most of them cover less than 0.02% of
Conficker victims.

Result 8. (FIRE) Most highly infected ASes by Con-
ficker are not reported by FIRE.

We compared our infection list of ASes with the results
provided by FIRE as well and we want to know whether
FIRE is helpful in detecting Conficker victims. Although
FIRE denotes AS4134 as the 8th most malicious AS in its
list, most of other heavily infected ASes by Conficker are
not shown in the top 500 malicious ASes of FIRE. Some of
the main contributing ASes to Conficker have never shown
up on FIRE’s list.

Insight from Result 7 and 8. (New and com-
plementary detection approaches are needed) DNS
blacklists, Dshield and FIRE detect only a small portion of
Conficker victims. This means that these reputation-based
approaches are not the perfect solution. We need to im-
prove them significantly and complement them with other
approaches.

When we tested Dshield and FIRE, we expected that
they could complement DNS blacklists, but the result is not
very positive. This implies that these reputation-based sys-
tems alone are far from enough to protect the Internet from
emerging threats. We believe that new detection systems
based on anomalous behaviors of malware could be a good
complementary approach to them.

6. CAN NEIGHBORHOOD WATCH HELP?
Conficker still uses network scanning to infect other hosts

on the Internet as previous worms and bots did, and it also
adopts several advanced skills to infect hosts efficiently. The
spreading techniques of Conficker can be classified into two
categories [3, 17]; (i) infecting random hosts and (ii) in-

fecting nearby hosts. Conficker has a function of scanning
randomly selected IP addresses. Although this will help
Conficker to spread globally, it is not probably very effi-
cient these days because most networks are protected by fire-
walls or Network Intrusion Detection/Prevention Systems.
To propagate more efficiently, Conficker adopts several in-
teresting techniques to infect hosts nearby; (1) an ability to
infect other hosts in the same subnet, (2) an ability to in-
fect hosts in the nearby subnets, and (3) an ability to infect
portable storage devices.

The diverse infection techniques of Conficker lead us to
ask this question: “Which vector is more effective to in-
fect hosts?”. Some previous studies suggested that second
approach - (ii) infecting nearby hosts - is probably more
dominant in the Conficker case [17, 12]. We think that this
seems reasonable, because even though most networks are
protected well from outside threats, they are still open to in-
ternal attacks. However, they do not show concrete evidence
to support it.

To determine whether this hypothesis is correct, we con-
structed a test. Prior to explaining our test, we declare that
we will use /24 subnet as a basic unit in our test. And we
make the following definition to simplify the test. We define
two terms: (i) “camp” is the group of /24 subnets whose /16
subnet is the same and locations are close together, and (ii)
each /24 subnet is a “neighbor” of nearby /24 subnets in the
same camp. Sometimes, even if two /24 subnets are in the
same /16 subnet, their physical locations could be far from
each other. However, since our concept of“camp” is each /24
subnet with both nearby IP address and physical location,
we should consider its location as well. Based on the above
definition, we establish a hypothesis as follows. Of the two
infection vectors of Conficker, suppose the second infection
vector plays a dominant role, the infection pattern4 of a /24
subnet will be similar to that of its “neighbors” in the same
“camp”. In other words, the hosts in nearby networks of in-
fected host are more likely to be selected as future victims
than randomly chosen hosts.

To evaluate this hypothesis, we have tested the following
scenarios. First, we divide hosts into /24 subnets and as-
sign each /24 subnet into a “camp” based on our definition.
Second, we investigate the infection pattern of each /24 sub-
net to see whether the infection pattern of each /24 subnet
is similar to its “neighbors”. We use Variance-Mean Ratio
(VMR) [9] for a numerical expression. In this test, we mea-
sure the mean and variance value of the numbers of infected
hosts of each /24 subnet in each“camp”, and calculate VMR
for each “camp”. If the value of VMR is less than one, dis-
tribution of the data set shows under-dispersion with mean
value in the center, which means that infection patterns of
/24 subnets in the “camp” are very similar to each other.

Result 9. (Neighborhood) Most /24 subnets show
similar infection patterns (numbers of infected hosts) with
their“neighbors”. The closer they are located with each other,
the more similar in their infection patterns.

We measured the VMR value of each“camp”and we found
that more than 70% of “camps” denoted that their /24 sub-
net members are similar to each other. From this result, we
reasonably infer that the dominant infection vector of Con-

4We use the number of infected hosts of /24 subnet as a
feature to represent an infection pattern.

158

Within Distance # of all “camps” # of “camps” whose /24 subnet members are similar to each other
≈ 100km 85,246 62,121 (72.87%)
≈ 200km 65,748 44,633 (67.88%)
≈ 300km 54,415 36,495 (67.06%)

Table 7: The number of all “camps” and “camps” whose members are similar to each other.

ficker is to infect nearby hosts. The test result is shown
in Table 7. When we did this test, we got three types
of “camps” based on its geographical information. For in-
stance, if we set the distance metric for the“camp”as 100km
which means that all /24 subnets in the “camp” have the
same /16 subnet and they are within 100km of each other,
we found 85,246 “camps” from our data and we discovered
62,121 “camps” whose /24 subnet members are similar to
each other. We observed that more than 67% of “camps”
showed that their /24 subnet members are similar to each
other. The closer their locations are, the clearer this pattern
is shown. This result tells us that Conficker is more likely
to select nearby hosts than randomly chosen hosts and this
means Conficker victims are mainly infected by neighbor
networks/hosts. We deduce from this result that infection
from the inside could be more harmful than the threats from
the outside. Usually, most enterprise networks and ISPs pro-
tect their internal hosts using firewalls and IPS/IDS from
external attacks, but there are very few approaches to pro-
tect hosts from internal threats.

Result 9.1 (Detection based on neighborhood in-
formation) We could detect unknown victims by sharing
and correlating neighbor alert information, even if we only
know small sets of families and its neighbors.

Based on previous results, we propose an approach of de-
tecting (or early warning) emerging (unknown) infected /24
subnets using neighborhood information and we show that
the approach can detect unknown infected /24 subnets with
more than 90% of accuracy. From the above test, we find
that Conficker victims share their infection patterns with
their neighbors, and this finding gives us an intuition that
collecting and sharing neighborhood information would be
helpful to detect unknown malware or provide early warn-
ings. To validate this intuition, we have tested the simple
scenario of “We only have small portions of information of
benign and malicious hosts, but we can gather neighborhood
information. Then, how many unknown malicious hosts can
we detect (or predict) based on neighborhood information?”.

As a method of considering neighborhood information, we
use the K-Nearest Neighbor (KNN) classification algorithm,
because it is a very popular approach that classifies unknown
examples using the most similar “neighbors” in the known
examples. When we apply the KNN algorithm to our data,
we need the following preparations.

• define classes: in this test, we define two classes;
benign (normal /24 subnet) and malicious (/24 subnet
which has Conficker victims)

• collect data: we use our Conficker data for malicious
data, and we collected the same number of benign /24
subnets as malicious /24 subnets.5

5As a result, we have 1,300,000 malicious /24 subnets (in-

• divide data: we randomly select 20% of data from
both data sets for training samples and other 80% of
data is used for testing.

After all preparation was completed, we used the KNN
algorithm (we use 3 for K and use IP address to calculate
the distance) to our data and found that it can detect un-
known infected /24 subnets with a high accuracy. As shown
in Table 8, we find that even if we only know a small part
of Conficker data (20%), we can still predict other infected
/24 subnets within more than 90% accuracy with reasonable
True Positive (TP) and False Positive (FP)6 rates. This de-
tection result implies that if we share neighbor information,
we could detect unknown victims or provide early warnings
more efficiently.

Detection Accuracy TP rate FP rate
91.59% 91.65% 8.5%

Table 8: Accuracy, TP and FP rate of the Detection
Approach based on Neighborhood Information.

Insight from Result 9 and 9.1. (Neighborhood
watch) We observe that a large portion of victims could
be infected by nearby victims and find that it is very impor-
tant to share threat information with neighborhood networks.
And this insight implies that further research is needed for
developing new detection/defending approaches based on co-
operated/shared (alert) information (and probably in an ef-
ficient privacy-preserving way).

7. CONCLUSION
In this paper, we have studied a large-scale Conficker in-

fection data to discover (i) their distribution over networks,
ASes and etc, (ii) difference from previous bots/worms (iii)
the effectiveness of current reputation-based malware detec-
tion/warning systems, and (iv) some insight to help detect
future malware.

Our analysis of Conficker victims and cross-comparison
results allowed us to obtain profound insights of Conficker
victims. They also guide us to understand the trends of
malware infections and to find interesting ideas that can
aid the design of future malware detecting systems. We re-
vealed that current reputation-based malware detecting sys-
tems depending on previously known information are not
enough to detect most Conficker victims. This result sug-
gests that different kinds of (complementary) detection sys-
tems such as an anomaly-based detection system are needed.

fected by Conficker), and 1,300,000 benign /24 subnets
(NOT infected by Conficker or other malware).
6TP denotes the rates that the detector classifies real mali-
cious networks correctly, and FP denotes the rates that the
detector classifies benign networks as malicious.

159

We provide a basis that proves the hypothesis of “A Con-
ficker bot is more likely to infect nearby hosts than ran-
domly chosen hosts” and we believe that it calls for more
research of detection systems which are based on watch-
ing/sharing/correlating neighborhood information.

Acknowledgments

We greatly thank Chris Lee and Shadowserver.org for pro-
viding the data used in this paper. We also would like to
thank our shepherd, Sven Dietrich, and anonymous review-
ers for their insightful comments and feedback to improve
the paper. This material is based upon work supported
in part by the Office of Naval Research under Grant no.
N00014-09-1-0776, the National Science Foundation under
Grant CNS-0954096, and the Texas Higher Education Co-
ordinating Board under NHARP Grant no. 01909. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the Office of Naval Research,
the National Science Foundation, and the Texas Higher Ed-
ucation Coordinating Board.

8. REFERENCES
[1] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and

N. Feamster. Building a Dynamic Reputation System
for DNS. In Proceedings of USENIX Security of
Symposium, Aug. 2010.

[2] CAIDA. Conficker/Conflicker/Downadup as seen from
the UCSD Network Telescope. http://www.caida.
org/research/security/ms08-067/conficker.xml.

[3] E. Chien. Downadup: Attempts at Smart Network
Scanning. http://www.symantec.com/connect/blogs/
downadup-attempts-smart-network-scanning.

[4] DHIELD. All suspicious Source IPs in DSHIELD.
http://www.dshield.org/feeds/daily_sources.

[5] DNSBL. invaluement DNSBL (an anti-spam
blacklist). http://dnsbl.invaluement.com/.

[6] DSHIELD. Cooperative Network Security
Community. http://www.dshield.org/.

[7] FIRE. Finding Rogue Networks.
http://maliciousnetworks.org/.

[8] Fortune. Fortune 100 companies.
http://money.cnn.com/magazines/fortune/.

[9] U. G. and C. I. Oxford Dictionary of Statistics (2nd
edition). Oxford University Press, 2006.

[10] T. Holz, C. Gorecki, and F. Freiling. Detection and
Mitigation of Fast-Flux Service Networks. In
Proceedings of NDSS Symposium, Feb. 2008.

[11] N. Ianelli and A. Hackworth. Botnets as a Vehicle for
Online Crime. 2005.

[12] S. Krishnan and Y. Kim. Passive identification of
Conficker nodes on the Internet. In University of
Minnesota - Technical Document, 2009.

[13] J. Kristoff. Experiences with Conficker C Sinkhole
Operation and Analysis. In Proceedings of Australian
Computer Emergency Response Team Conference,
May 2009.

[14] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the Slammer
Worm. In Proceedings of IEEE Security and Privacy,
May 2003.

[15] D. Moore, C. Shannon, and K. Calffy. Code-red: a
case study on the spread and victims of an internet
worm. In Proceedings of ACM SIGCOMM Workshop
on Internet Measurement, Nov. 2002.

[16] B. N. Online. Clock ticking on worm code. http:
//news.bbc.co.uk/2/hi/technology/7832652.stm.

[17] P. Porras, H. Saidi, and V. Yegneswaran. A Foray into
Conficker’s Logic and Rendezvous Points. In
Proceedings of USENIX LEET, Apr. 2009.

[18] A. Ramachandran and N. Feamster. Understanding
the Network-Level Behavior of Spammers. In
Proceedings of ACM SIGCOMM, Sep. 2006.

[19] C. Shannon and D. Moore. The Spread of the Witty
Worm. In Proceedings of IEEE Security and Privacy,
May 2004.

[20] SORBS. Fighting spam by finding and listing
Exploitable Servers. http://www.au.sorbs.net/.

[21] SPAMHAUS. Spamcop.net.
http://www.spamcop.net/.

[22] SPAMHAUS. The SPAMHAUS Project.
http://www.spamhaus.org/.

[23] SRI-International. An analysis of Conficker C.
http://mtc.sri.com/Conficker/addendumC/.

[24] B. Stock, M. E. Jan Goebel, F. C. Freiling, and
T. Holz. Walowdac Analysis of a Peer-to-Peer Botnet.
In Proceedings of European Conference on Computer
Network Defense (EC2ND), Nov. 2009.

[25] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In Proceedings of ACM CCS, Nov.
2009.

[26] M. S. Techcenter. Conficker worm. http://technet.
microsoft.com/en-us/security/dd452420.aspx.

[27] Tmetric. Bandwidth Measurement Tool. http:
//mbacarella.blogspot.com/projects/tmetric/.

[28] UPI. Virus strikes 15 million PCs.
http://www.upi.com/Top_News/2009/01/26/

Virus-strikes-15-million-PCs/

UPI-19421232924206/.

[29] Verisign. The Domain Name Industry Brief.
http://www.verisign.com/domain-name-services/

domain-information-center/

domain-name-resources/

domain-name-report-sept09.pdf.

[30] D. Watson. Know Your Enemy: Containing Conficker.
http://www.honeynet.org/papers/conficker.

[31] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldzmidt,
and T. Wobber. How Dynamic are IP Addresses? In
Proceedings of ACM SIGCOMM, Aug. 2007.

[32] Y. Xie, F. Yu, K. Achan, R. Panigraphy, G. Hulte,
and I. Osipkov. Spamming Botnets: Signatures and
Characteristics. In Proceedings of ACM SIGCOMM,
Aug. 2008.

160

Spam Mitigation using Spatio-Temporal
Reputations from Blacklist History ∗

Andrew G. West, Adam J. Aviv, Jian Chang, and Insup Lee
Dept. of Computer and Information Science - University of Pennsylvania - Philadelphia, PA

{westand, aviv, jianchan, lee}@cis.upenn.edu

ABSTRACT
IP blacklists are a spam filtering tool employed by a large
number of email providers. Centrally maintained and well
regarded, blacklists can filter 80+% of spam without having
to perform computationally expensive content-based filter-
ing. However, spammers can vary which hosts send spam
(often in intelligent ways), and as a result, some percent-
age of spamming IPs are not actively listed on any black-
list. Blacklists also provide a previously untapped resource
of rich historical information. Leveraging this history in
combination with spatial reasoning, this paper presents a
novel reputation model (PreSTA), designed to aid in spam
classification. In simulation on arriving email at a large uni-
versity mail system, PreSTA is capable of classifying up
to 50% of spam not identified by blacklists alone, and 93%
of spam on average (when used in combination with black-
lists). Further, the system is consistent in maintaining this
blockage-rate even during periods of decreased blacklist per-
formance. PreSTA is scalable and can classify over 500,000
emails an hour. Such a system can be implemented as a
complementary blacklist service or used as a first-level filter
or prioritization mechanism on an email server.

1. INTRODUCTION
Roughly 90% of the total volume of email on the Internet

is considered spam [5], and IP-based blacklisting has become
a standard tool in fighting such influxes. Spammers often
control large collections of compromised machines, botnets,
and vary which hosts act as the spamming mail servers. As
a result, some 20% of spam emails received at a large spam
trap in 2006 were not listed on any blacklist [21].

Blacklists provide only a static view of the current (or
recently active) spamming IP addresses. However, when
viewed over time, blacklists provide dense historical (tem-
poral) information. Upon inspection, interesting properties
emerge; for example, more than 25% of the IPs once listed

∗This research was supported in part by ONR MURI
N00014-07-1-0907. POC: Insup Lee, lee@cis.upenn.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

on the blacklist were re-listed within 10 days, and overall,
45% were re-listed during the observation period.

It is known that spamming IP addresses exhibit inter-
esting spatial properties. Previous studies have shown that
spamming IPs are distributed non-uniformly throughout the
address space [19, 21, 28], and they can often be clustered
into spatial groups indicative of spamming behavior. For
example, AS-membership has been shown to be a strong
predictor of spamming likelihood [11], as well as BGP pre-
fixes, and the host-names of reverse DNS look-ups [19].

In this paper we propose a novel method to combine black-
list histories with spatial context to produce predictive repu-
tation values capable of classifying spam. Our model,
Preventive Spatio-Temporal Aggregation (PreSTA), mon-
itors blacklist dynamics, interpreting listings as a record of
negative feedback. An entity (i.e., an IP address) is then
evaluated based on its own history of negative feedback and
the histories of spatially related entities. Spatial adjacency
is multi-tiered and defined based on multiple grouping func-
tions (e.g., AS-membership, subnet, etc.). A reputation
value is computed for each grouping, and these are com-
bined using a standard machine learning technique to pro-
duce ham/spam classifications.

We implemented PreSTA and analyzed incoming email
traces at a large university mail server. We found that
PreSTA can classify an additional 50% of spam not iden-
tified by blacklists alone while maintaining similar false-
positive rates. Moreover, when PreSTA is used in com-
bination with traditional blacklists, on average 93% of spam
is consistently identified without the need for content-based
analysis. This result was found to be stable: As the un-
derlying blacklist suffers large deviations in detection ac-
curacy, PreSTA maintains steady-state performance. Fur-
ther, PreSTA is highly scalable: Over 500,000 emails an
hour can be scored using a single-threaded implementation
on a commodity server.

We do not propose that PreSTA can (or should) replace
context-based filtering. Instead, PreSTA can be leveraged
just as blacklists are today – as a preliminary filter to avoid
more computationally expensive analysis. Use-cases could
include a complimentary service to blacklists (perhaps im-
plemented by the blacklist provider) or an email prioritiza-
tion mechanism for overloaded mail servers.

PreSTA’s applicability is not confined to email spam de-
tection. Related work has already shown PreSTA reputa-
tions helpful in prioritizing edits and detecting vandalism on
Wikipedia [30], and PreSTA may be further applicable to
an entire class of dynamic trust management problems [9,

161

29] that are characterized by the need for decision-making
in the presence of uncertainty and partial-information.

2. RELATED WORK
Spam filtering based on network-level properties of the

source IP address is a popular choice for mitigating spam.
Unlike content-based filters (e.g., those based on Bayesian
quantifiers [24]), these techniques tend to be computation-
ally inexpensive while achieving relatively good performance.

IP blacklists [3, 7] are one such network-level filtering
strategy. Blacklists are collections of known spamming IP
addresses collated from various institutions (e.g., large email
providers). They tend to be well-regarded because they are
maintained by reputable providers and incorporated into
many email server’s. Blacklists are only a static snapshot of
spamming hosts, but over time, IP addresses are listed, de-
listed, and re-listed. It is precisely this history that PreSTA
leverages in generating IP reputation.

Filtering based on blacklists alone is imperfect [25]. List-
ing latency is a commonly cited weakness [20], as is incom-
pleteness. One study reported that 10% of spamming IPs
observed at a spam-trap were not blacklisted [23]. Such sit-
uations motivate PreSTA; in these partial knowledge sce-
narios, an unlisted IP address can be viewed in terms of
its previous listings (if any) and its spatial relation to other
known spamming IPs.

The non-uniform distribution of spamming IPs on the In-
ternet is a well-studied phenomenon. Spamming IPs tend to
be found near other spamming IPs [23] and in small regions
of the address space [21]. Most such IPs tend to be short-
lived [28]; further supporting the use of spatial relationships.
Although PreSTA employs basic spatial measures in its pre-
liminary implementation, more advanced relationships could
be exploited, such as those suggested in [11, 19]. Addition-
ally, dynamically shaped groups could be used [27].

A key difference between PreSTA and similar work is
its combination of temporal history provided by blacklists
and the spatial dynamics of spamming IPs. Perhaps the
closest related system is SNARE by Hao et al. [11]. In addi-
tion to demonstrating interesting spatial measures (includ-
ing geographic distance), SNARE utilizes simple temporal
metrics to perform spam filtering (e.g., the time-of-day an
email was sent) and applies a lightweight form of aggregation
(e.g., mean and variance) to detect abnormal patterns. In
contrast, PreSTA’s temporal computation has more depth,
aggregating time-decayed compounding evidence that en-
codes months of detailed blacklisting events. Indeed, [11]
identifies many valid measures of spamming behavior, but
is incapable of Internet-wide scalability due to a reliance on
high-dimensional learning. PreSTA spam detection com-
putes over a single feature, IP address (and groups thereof),
and is extremely scalable with high accuracy.

Similar techniques are claimed by two commercial ser-
vices: Symantec [26] uses “IP reputation” in its security soft-
ware, and SenderBase [12] by Ironport uses spatial data to
build IP reputations. The procedures are proprietary, so a
detailed comparison is not possible. However, the binary
output of the public-facing query mechanisms correlate well
with PreSTA’s classifications.

PreSTA can also be examined in the context of general-
purpose reputation systems/logics, such as EigenTrust [16]
or TNA-SL [14]. A key difference involves the nature of feed-
back; namely, PreSTA considers only negative feedback.

Conventional algorithms aggregate over both positive and
negative feedback, and feedback is indefinitely retained and
associated with a single discrete event. PreSTA utilizes ex-
piring feedback, where a negative observation (e.g., sending
spam) is valid for some finite duration (the blacklist period),
after which, it is discarded.

3. REPUTATION MODEL
Although our presentation of PreSTA is focused on the

domain of spam detection, it is important to note that
PreSTA defines a general reputation model. There are two
requirements for potential applications: (1) Access to a his-
tory of negative feedback (as achieved via IP blacklists); and
(2) the ability to define spatial partitions over entities (as
achieved via the IP address hierarchy). The reputation val-
ues computed consider both the history of negative feedback
for an individual entity and those of related entities.

In the temporal dimension, a history of negative feedback,
stored in a feedback database, is required. An entity is con-
sidered active in the database when an associated negative
feedback has been recently received (i.e., the entity is listed
on the blacklist). After some interval, the feedback expires,
and the entity is considered inactive (i.e., the entity is de-
listed from the blacklist). A query to the database returns
an entire history of active and inactive events, to which a
decay function is applied. The function weighs distant and
recent events appropriately and permits compounding evi-
dence to accumulate against entities.

A set of grouping functions define spatial relevance. A
grouping function maps an entity to other entities that share
behavioral properties. More than one grouping function can
(and should) be defined, and they may be singular in na-
ture (i.e., an entity is in a group by itself). The temporal
history of each spatial grouping is considered, resulting in
multiple reputation values. These component reputations
are then combined so that a single entity is evaluated based
on multiple contexts of negative feedback.

In the remainder of this section the model is formalized.
First, the computation and its normalization are discussed,
and following that, the feedback database is presented.

3.1 Reputation Computation
The goal of the reputation computation is to produce a

quantified value that captures both the spatial and temporal
properties of the entity being evaluated. Spatially, the size
of the grouping must be considered, and temporally, the
history of negative feedback must be weighted in proportion
to its spatial relevance.

To capture these properties, three functions are required
– two temporal and one spatial:

• hist(α, G, H) is a temporal function returning a list
of pairs, (tin, tout), representing listings from the feed-
back history, H , according to the grouping of entity
α by grouping function G. The values tin and tout

are time-stamps bounding the active duration of the
listing. Active listings return (tin,⊥).

• decay(tout, h) is a temporal function that exponen-
tially decays input times using a half-life h, and it takes
the form 2−Δt/h where Δt = tnow− tout is of the same
unit as h. It returns a value in the range [0, 1], and for
consistency, decay(⊥, h) = 1.

162

• size(α, G, t) is a spatial function returning the mag-
nitude, at time t, of the grouping defined by G, of
which α is/was a member. If G defines multiple group-
ings for α, only the magnitude of one grouping is re-
turned. The choice of group is application specific.

Raw reputation can be defined as follows:

raw rep(α, G, H) =
X

(tin,tout)∈
hist(α,G,H)

decay(tout, h)

size(α, G, tin)
(1)

This computation captures precisely the spatio-temporal
properties required by PreSTA. Temporally, the listing his-
tory of an entity/group is captured at each summation via
the hist() function, and events occurring recently are more
strongly weighted via the decay() function. Spatially, group-
ing function G defines the group membership, and each sum-
mation is normalized by the group size.

When two or more grouping functions are defined over the
entities, multiple computations of raw rep() are performed.
Each value encodes the reputation of an entity when con-
sidered in a different spatial context. How to best combine
reputation is application specific, and for the spam applica-
tion, machine learning techniques are used (see Sec. 5.7).

The values returned by raw rep() are strictly compara-
ble for all spatial groupings defined by G and the history
H . High values correspond to less reputable entities and
vice-versa. However, it is more typical for reputation sys-
tems [14, 16] to normalize values onto the interval [0, 1]
where lower values correspond to low reputation and vice-
versa. Ultimately, machine learning does not require nor-
malized values. Such values do, however, enable the model
to be consistent with other reputation systems and provide
an absolute interpretation that permits manually-authored
policies (e.g., allow access where reputation > 0.8).

Normalization requires knowledge of an upper bound on
the values returned by raw rep(). This cannot be generally
defined when the de-listing policy is non-regular. However,
if listings expire after a fixed duration d (or a greatest lower-
bound for d can be computed), then it is possible to compute
an upper bound. Such a bound is found by considering
an entity who is as bad as possible; one that is re-listed
immediately after every de-listing, and thus, is always active
in the feedback database. Considering a grouping of size 1,
the raw rep() computation reduces to a geometric sequence:

MAX_REP = 1 +
1

1− 2−d/h
(2)

Similarly, the same worst case reputation occurs for groups
of larger size, however, instead of a single entity acting as a
bad as possible, the entire group is simultaneously re-listed
immediately following each de-listing. Normalized reputa-
tion is now defined as:

rep(α, G, H) = 1−

„
raw rep(α,G, H)

MAX_REP

«
(3)

This reputation computation can be modified depending on
the entities being evaluated or the nature of the negative
feedback database. For example, one can eliminate spatial
relevance by using grouping functions that define groups of
size 1. Or, one can eliminate all temporal aspects by defin-
ing the return of decay() as a constant (C). Both such us-
ages are later employed in spam detection; the former due

to dynamism in IP address assignment, and the latter due
to properties of the blacklist in question. Note that when
decay(tout, h) = C, MAX_REP = decay(⊥, h) + C.

3.2 Feedback Database
The feedback database, H , depends on the nature of feed-

back available. PreSTA is most adept at handling expiring
feedback like that present in IP blacklists. By definition,
an expiring feedback occurs when an entity is active (listed)
in the database before removal (de-listed) after a finite du-
ration. In this case, H is a record of the entries/exits of
listings such that the active database can be reproduced at
any point in time.

Feedback can also be discrete, where negative feedbacks
are associated with a single time-stamp. This is the model
most often seen in general-purpose reputation management
systems [14, 16]. In such cases, hist() always returns pairs of
the form (tin,⊥), and thus the associated listings do not de-
cay. A discrete database can be transformed into a compat-
ible H by setting an artificial timeout x, (e.g., (tin, tin +x)).
Further, listings should not overlap (i.e., an entity having
multiple active listings). Spam blacklists are inherently non-
overlapping, and pre-processing can be applied over feed-
backs when this is not the case.

4. SPAM DETECTION SETUP
As presented, PreSTA defines a general model for rep-

utation. Here, we apply PreSTA for the purpose of spam
detection. Two properties of spam and IP blacklists are well
leveraged by PreSTA. First, spammers are generally found
“near” other spammers, and their identifiers, IP addresses,
can be spatially grouped based on the IP address hierarchy.
Second, blacklists are a rich source of temporal data.

It should be noted that other sources of negative feedback
besides IP blacklists could be employed by PreSTA. Any
manner of negative feedback associating spamming and IP
addresses is sufficient. IP blacklists, however, are a well-
regarded and generally trusted source of negative feedback.
They are centrally maintained and reputation computed over
them can be seen as a good global quantifier. IP blacklists
do have weaknesses, and readers should take care not to
associate these flaws to the PreSTA model.

4.1 Data Sources

Blacklists: To collect blacklist data, we subscribed to a
popular blacklist-provider, Spamhaus [7]. The arrival and
exit of IP addresses listed on three Spamhaus blacklists (up-
dated at thirty-minute intervals) were recorded for the du-
ration of the experiment:

• Policy Block List (PBL): Listing of dynamic IP
addresses (e.g., those provided by large ISPs such as
Comcast or Verizon).

• Spamhaus Block List (SBL): Manually-maintained
listing of IPs of known spammers/organizations. Typi-
cally these are IPs mapping to dedicated spam servers.

• Exploits Block List (XBL): Automated listing of
IPs caught spamming; usually open proxies or ma-
chines that have been compromised by a botnet.

As the latter two blacklists contain IP addresses known to
have participated in spamming, only these are used to build

163

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f T
ot

al
 L

is
tin

gs
 (

X
B

L)

Duration (days)

Re-listings
De-listings

Figure 1: XBL Durations & Re-listing Rates

reputation. The PBL is a preventative measure (however,
it is used when examining blacklist performance) which lists
hosts that should never be sending email, on principle.

The mechanism by which a blacklist entry occurs, be it
accurate or otherwise, is beyond the scope of this work. Re-
moval from the blacklist takes two forms: manual de-listing
and timed-expiration. Given its rigorous human mainte-
nance, the SBL follows the former format. The XBL, on
the other hand, defaults to a more automated time-to-live
de-listing policy. Empirical evidence shows the bulk of such
listings expire 5-days after their appearance (see Fig. 1).
However, in the case a blacklisted party can demonstrate
its innocence or show the spam-generating exploit has been
patched, manual removal is also an option for the XBL. Man-
ual de-listings can complicate the calculation of MAX_REP,
but as we will show, worst case spamming behaviors are
rarely realized, permitting strong normalization.

AS Mappings: For the purpose of mapping an IP address
to the Autonomous System(s) (AS(es)) that homes or orig-
inates it, CAIDA [2] reports are used. These are compiled
from Route Views [8] data and are essentially a snapshot of
the BGP routing table.

Email Set: The timestamp and connecting IP address of
approximately 31 million email headers were collected at
the University of Pennsylvania’s engineering email servers
between 8/1/2009 and 12/31/2009. The servers host ap-
proximately 6,100 accounts, of which roughly 5,500 serve
human-users, while the remaining are for various adminis-
trative and school uses (e.g., aliases, lists, etc.).

A considerable number of emails (2.8 million) in the data-
set were both sent and received within the university net-
work. Such emails are not considered in the analysis. Many
intra-network messages are the result of list-serves/aliasing,
and by excluding them, only externally arriving emails are
considered. Our working set is further reduced to 6.1 million
emails when analysis is conducted “above the blacklist,” or
those mails not currently listed on a blacklist (see Sec. 5.1).

A Proofpoint [6] score was provided with each email to cat-
egorize it as either spam or ham (not spam). Proofpoint is a
commercial spam detection service employed by the Univer-
sity whose detection methods are known to include propri-
etary filtering and Bayesian content analysis [24] similar to
that employed by SpamAssassin [1]. Proofpoint claims ex-
tremely high accuracy with a low false-positive rate. Given
no other consistent scoring metric and a lack of access to the

 0

 200

 400

 600

 800

 1000

N
um

be
r

of
 B

la
ck

lis
tin

gs

AS-29385 IP Space (256-IP blocks)
(Vertical bar delineates non-contiguous address space)

Figure 2: Behavioral Variance within an AS

original email bodies, the Proofpoint score is considered the
ground truth in forthcoming analysis.

4.2 Temporal Properties of Spamming IPs
PreSTA leverages the temporal properties of IP blacklists

by aggregating the de-listings and re-listings of blacklist en-
tries. Fig. 1 displays the analysis of those two statistics. Of
IP-addresses de-listed during the experiment period, 26%
were re-listed within 10 days. Overall, 47% of such IPs were
re-listed within 10 weeks, and it is precisely such statistics
that motivate PreSTA’s use of temporal data.

Given that IP addresses are frequently re-listed, we exam-
ined the rate at which de-listing occurs; 80% of XBL entries
were de-listed at, or very close to, 5 days after their entry
(Fig. 1). Even so, this 5-day interval is not fixed. Despite a
non-exact expiration, MAX_REP is well computed using d = 5
(days). Raw reputation values rarely exceeded the calcu-
lated MAX_REP (less than 0.01% of the time).

The SBL requires a manual confirmation of innocence
before de-listing can occur and has no consistent listing
length. Thus, MAX_REP computation cannot proceed as with
the XBL. Instead, the strong assurance provided by de-
listing events can be leveraged in reputation calculation. A
de-listed IP was verified to be non-spamming, and so there
is no reason to decay entries as they exit the list. Formally,
∀tout, decay(tout) = 0, but as previously, decay(⊥) = 1. In
such circumstances, the MAX_REP value for such IPs is com-
puted as 1 (i.e., the IP address is currently listed).

Adjusting the decay() function in this way permits the
reputations’ of SBL IPs to be based solely on spatial prop-
erties. This is a feature of the reputation model, as it allows
for flexibility in weighing context when it comes to spatial
and temporal information. In a similar way, one can focus
solely on temporal properties by defining singular groups,
and both produce useful spam classifications (see Sec. 5.7).

4.3 Spatial Properties of Spamming IPs
The hierarchical nature of IP address assignment provides

natural spatial groupings for use by PreSTA. Starting at the
lowest level, a local router or DHCP service assigns IP ad-
dresses to individual machines. The selection pool is likely
well-bounded to a subnet (i.e., a /24 or /16). In turn, these
routers operate within an ISP/AS, which get their alloca-
tions from Regional Internet Registries (RIRs), whose space
is delegated from the Internet Assigned Number Author-
ity [4] (IANA). A clear hierarchy exists, and at each level, a

164

Figure 3: PreSTA Spam Detection Architecture

unique reputation can be applied. We focus our groupings
at the following three levels: (1) the AS(es) that home(s)
the IP, (2) the 768-IP block membership (a rough approxi-
mation of a subnet), and (3) the IP address itself.

Despite its easily partitioned nature, it remains to be
shown that the IP assignment hierarchy provides relevant
groupings. Previous work and anecdotal evidence suggest
that AS-number is one of the strongest identifiers of spam-
mers. Indeed, entire AS/ISPs, such as McColo [17] and
3FN [18], have been shut down as a result of their malicious
nature. Moreover, in [11], AS-level identifiers were used as
a reliable indicator of spamming hosts – indicating that 20
ASes host nearly 42% of spamming IPs.

At the subnet level, it was found that groupings of 768 IP-
addresses (i.e., three adjacent /24s) well contain malicious
activity (see Sec. 5.5 for details). Fig. 2 visualizes the quan-
tity of of XBL listings in /24 blocks of the address space
for an ISP in Uzbekistan. Clearly, there is strong variance
across the address space – some regions are highly listed
while others are not. The AS-level reputation of this ISP
is comparatively poor due to the quantity of listings, but
within the address space, certain block-level reputations are
ideal. This suggests that AS-level reputation alone may be
too broad a metric.

Finally, using a grouping function that singularly groups
entities effectively removes spatial relevance from reputation
computation. Intuitively, the reputation of a single IP ad-
dress should be considered because many mail servers use
static addresses. However, the often dynamic nature of ad-
dress assignment implies that unique IP addresses are not
singular groupings, but rather, could represent many differ-
ent machines over time. A recent study reported that the
percentage of dynamically assigned IP addresses1 on the In-
ternet is substantial and that 96% of mail servers using dy-
namic IPs send spam almost exclusively [31].

5. SPAM IMPLEMENTATION
In this section the implementation of PreSTA for spam

detection is described. It is designed with three primary
goals: It should produce a classifier that is (1) lightweight;
(2) capable of detecting a large quantity of spam; and (3)
do so with a low false-positive rate. Design decisions are
justified with respect to these goals. Further, the practical
concerns of such an implementation are discussed.

The work-flow begins when an email is received and the
connecting IP address and timestamp are recorded. Assum-
ing the IP is not actively blacklisted, PreSTA is brought to
bear. The IP is mapped to its respective spatial groupings:
itself, its subnet, and its originating AS(es). Reputations

1Recall that Spamhaus’ PBL blacklist is essentially a listing
of dynamic IP addresses. It is constructed mainly using ISP-
provided data, and as such, is far from a complete listing.

are calculated at each granularity and these component rep-
utations are supplied as input to a machine-learning clas-
sifier trained over previous email. The output is a binary
ham/spam label along with each of the three component
reputations – all of which may be used by a client applica-
tion. This procedure is now described in detail, and a visual
reference of the PreSTA work-flow is presented in Fig. 3.

5.1 Traditional Blacklists
In Sec. 4.1 the Spamhaus blacklists were introduced. They

not only provide the basis on which reputations are built,
but in an implementation of PreSTA, it is natural to apply
them as intended – to label emails originating from currently
active IPs as spam. When applied to the email data-set, the
blacklists (PBL included) captured 91.0% of spam with a
0.74% false-positive rate. This detection rate is somewhat
higher than previous published statistics2 [15].

Had the intra-network emails not been excluded from anal-
ysis, the blacklists would have captured a similar 90.9% of
spam emails with a much-reduced 0.46% false-positive rate.
The exclusion of such emails, while inflating false-positive
rates, permits concentration only on the more interesting set
of externally-received emails and does not bias results. The
usage of blacklists (independent of spatio-temporal proper-
ties), enables fast detection of a large portion of spam emails
with minimal time and space requirements – the active list-
ing requires roughly 100MB of storage.

Given the temporal statistics presented in Sec. 4.2, we also
experimented with increasing the blacklists’ listing period
to determine if simple policy changes could greatly affect
blacklist performance. This was not the case; increasing the
active duration of expired listings (but not those suspected
of being manually de-listed) by 5 days increased the detec-
tion rate less than 0.05%, and longer listing durations show
minimal accuracy improvements at the expense of significant
increases in false-positive rates.

5.2 Historical Database
Before reputation can be calculated, a historical feedback

database must be in place. As described, Spamhaus black-
lists are retrieved at 30-minute intervals. The diff is cal-
culated between consecutive copies and time-stamped en-
tries/exits are written to a database. When a new listing
appears, the spatial groups (IP, subnet, and AS(es)) that IP
is a member of are permanently recorded. For example, if
IP i was blacklisted as a member of AS a, that entry will
always be a part of a’s blacklist history.

Roughly 1GB of space is sufficient to store one month’s
blacklist history (the XBL has 1.0–1.5 million IPs turn over
on a daily basis). Fortunately, an extensive history is not

2Our analysis of blacklist performance is from a single-
perspective and may not speak to global effectiveness.

165

 0 10 20 30 40 50

C
D

F
 A

re
a

Half-life (days)

Plotted area is sum of
component-level areas

Figure 4: Affect of Half-Life on CDF Area

required given the exponential decay() function3. For ex-
ample, given a 10-day half-life, a 3-month old XBL entry
contributes 0.6% the weight of an active listing. Lengthy
histories offer diminishing returns. To save space, one should
discard records incapable of contributing statistical signifi-
cance. Further, such removal saves computation time be-
cause the smaller the set hist() returns, the fewer values
which must be processed by raw rep().

5.3 Grouping Functions
Given an entity (IP address) for which to calculate repu-

tation, three grouping functions are applied:

• IP Function: An IP is a group in and of itself, so
such a grouping function mirrors its input.

• Subnet Function: IP subnet boundaries are not pub-
licly available. Instead, an estimate considers blocks
of IP addresses (we use the terms “subnet-level” and
“block-level” interchangeably). IP space is partitioned
into /24s (256 IP segments), and an IP’s block group-
ing consists of the segment in which it resides as well
as the segment on either side; 768 addresses per block.
Thus, block groupings overlap in the address space,
and a single IP input returns one block of IPs (three
/24s). Although such estimations may overflow known
AS boundaries, these näıve blocks prove effective.

• AS Function: Mapping an IP to its parent AS(es) re-
quires CAIDA [2] and RouteViews [8] data. Note that
some AS boundaries overlap in address space and some
portions of that space (i.e., unallocated portions) have
no resident AS whatsoever. An IP can be homed by
any number of ASes, including none at all, the techni-
cal considerations of which are addressed in Sec. 5.5.
The function’s output is all the IPs homed by an AS(es)
in which the input IP is a member. Each returned IP is
tagged with the parent AS(es), so a well-defined subset
of the output can be chosen.

5.4 Decay Function
The decay function (Sec. 3.1) controls the extent to which

temporal proximity factors into reputation. It is configured
via its half-life, h. If h is too small, reputations will decay
rapidly and provide little benefit over using blacklists alone.
Too large an h will cause an increase in false positives due
to stale information.

3This minimal history requirement was of benefit to this
study. Reputations must warm-up before their use is appro-
priate. Indeed, collection of blacklist data began in 5/2009,
three months before the first classifications.

A good half-life will maximize the difference between the
reputations of spam and ham email. Analyzing email pre-
dating the evaluation period, the reputation-CDFs for both
spam and ham emails (as in Fig. 6) were plotted using differ-
ent h, seeking to maximize the area between the curves. In
Fig. 4 the calculations from these experiments are presented.
A value of h = 10 (days) was found optimal and this value is
used in the spam application4. With the half-life established
and having chosen d = 5 (days), MAX_REP= 4.14.

As described previously, two separate decay() functions
are employed depending on whether a listing appeared on
the SBL or the XBL. Manually maintained, de-listing from
the SBL is not decayed, but the XBL is decayed using the
aforementioned 10-day half-life. A special flag attached to
each time pair returned by hist() allows both listings to be
used in combination.

5.5 Reputation Calculation
Given the feedback database (Sec. 5.2), output (sets of IP

addresses) of the three grouping functions (Sec. 5.3), and
the decay function (Sec. 5.4), reputation may now be calcu-
lated at each granularity, returning three reputation values.
Calculation closely follows as described in Sec. 3.1.

Calculation of IP-level and subnet-level reputation is
straightforward per the reputation model with size() = 1
and size() = 768, respectively. The particulars of AS-level
calculation are more interesting. An IP may be a member
of any quantity of ASes, including none at all. If an IP is
multi-homed, the conservative choice is made by selecting
the most reputable AS-level reputation. Those IPs mapping
to no AS form their own group, and the reputation for this
group is designated as 0 because, in general, unallocated
space is only used for malicious activity (see Sec. 7). In this
spatial grouping, size() is not constant over time. Instead,
magnitudes are pre-computed for all AS using CAIDA data
and updated as BGP routes change.

5.6 Calculation Optimizations
PreSTA must calculate reputation efficiently to achieve

the desired scalability. It should not significantly slow email
delivery (latency), and it should be capable of handling
heavy email loads (bandwidth). Caching strategies and other
techniques that support these goals are described below:

• AS Value Caching: Reputations for all ASes are
periodically recalculated off-line. Calculation is (rela-
tively) slow given that hist() calls return large sets.

• Block/IP Value Caching: Similarly, block and IP
reputations can be cached after the first cache miss.
Cache hit rates are expected to be high because (1)
an email with multiple recipients (i.e., a carbon copy)
is received multiple times but with the same source IP
address, and (2) source IP addresses are non-uniformly
distributed. For the 6.1 million (non-intra-network,
non-blacklisted) emails in the working data-set, there
are 364k unique IP senders and 176k unique ‘blocks.’

• Cache Consistency: Caches at all levels need to be
flushed when the blacklists are updated (every 30 min-
utes), to avoid inconsistencies involving the arrival of

4Although it was found unnecessary, h could be optimized
on an interval basis, much like re-training a classifier. How-
ever, experiments showed minor variations of the parameter
to be inconsequential.

166

new listings. As far as time-decay is concerned, a dis-
crepancy of up to 30 minutes is inconsequential when
considering a 10-day half-life.

• Whitelisting: There is no reason to calculate reputa-
tion in trusted IP addresses, such as one’s own server.
Of course, whitelists could also be utilized in a feed-
back loop to alleviate false-positives stemming from
those entities whose emails are misclassified.

Using these optimizations, the PreSTA implementation is
capable of scoring 500k emails an hour, with average email
latency on the order of milliseconds5. Latency and band-
width are minimal concerns. Instead, it is the off-line pro-
cessing supporting this scoring which is the biggest resource
consumer. Even so, the implementation is comfortably han-
dled by a commodity machine and could easily run adjacent
to an email server. Pertinent implementation statistics, such
as cache performance, are available in Sec. 6.4.

5.7 Reputation Classification
Extraction of a binary classification (i.e., spam or ham)

is based on a threshold strategy. Emails evaluated above
the threshold are considered ham, and those below are con-
sidered spam. Finding an appropriate threshold can be
difficult, especially as dimensionality grows, as is the case
when classifying multiple reputation values. Further, a fixed
threshold is insufficient due to temporal fluctuations; as
large groups (botnets) of spamming IPs arise and fall over
time, the distinction between good and bad may shift.

A support vector machine (SVM) [13] is employed to de-
termine thresholds. SVM is a form of supervised learn-
ing that provides a simple and effective means to classify
multiple reputation values. The algorithm maps reputation
triples (a feature for each spatial dimension) from an email
training set into 3-dimensional space. It then determines the
surface (threshold) that best divides spam and ham data-
points based on the training labels. This same threshold
is then applied during classification. The SVM routine is
tuned via a cost metric that is correlated to the eventual
false-positive rate of the classifier.

The classifier is adjusted (re-trained) every 4 days to han-
dle dynamism. A subset of emails received in the previous
4 days are trained upon, and the resulting classifier is used
for the next 4 day interval. The affect of different training
periods has not been extensively studied. Clearly, large pe-
riods are not desired; the reputation of distant emails may
not speak to the classification of current ones. Too short a
period is poor because it requires extensive resources to re-
train so frequently. Analysis found 4-day re-training to be a
good compromise. However, the re-training period need not
be fixed, and future work will explore re-training rates that
adjust based on various environmental factors.

At each re-training, 10,000 emails (5% of the non-intra-
network, non-blacklisted email received every 4 days) were
used, and emails were labeled as spam/ham based on the
Proofpoint score. In a more general use case, there would
be some form of client feedback correlated across many ac-
counts that can classify spam post-delivery and train various
spam detectors. Since we do not have access to such user
behavior, correlation statistics, or any external spam filters,

5Statistics are based on a single-threaded implementation.
Concurrency and other programming optimizations would
likely improve PreSTA’s performance and scalability.

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

08/01/09 09/01/09 10/01/09 11/01/09 12/01/09

N
um

. I
P

s
B

la
ck

lis
te

d

A
ve

ra
ge

 A
S

 R
ep

ut
at

io
n

XBL (y1)
REP (y2)

Figure 5: XBL Size Relative to Global Rep.

the provided Proofpoint values are assumed.
Post-training, the false-positive (FP) rate of the classi-

fier is estimated by measuring the error over the training
set (assuming one does not over-fit the training data). The
estimated FP-rate is a good indicator of the true FP-rate,
and the SVM cost parameter is adjusted to tune the ex-
pected FP-rate. All classifier statistics and graphs hereafter
were produced with a 0.5% tolerance for false-positives (over
the classification set), as this simplifies presentation. This
FP-rate (0.5%) is a reasonable setting given that blacklists
are widely accepted and achieved a 0.74% FP-rate over the
same dataset. Additionally, these rates are somewhat in-
flated given the decision to exclude intra-network emails,
which are unlikely to contribute false-positives (the black-
list FP-rate was reduced one-third to 0.46% with their in-
clusion). In Sec. 6.5, the trade-off between the FP-rate and
spam blockage is examined in greater depth.

6. EXPERIMENTAL ANALYSIS
Experimental analysis begins by examining component

reputations individually. From there, two case studies are
presented which exemplify how PreSTA produces metrics
outperforming traditional blacklists in both spatial and tem-
poral dimensions. Finally, the detection results of the
PreSTA spam filter are presented.

To best simulate a real email server load, it is assumed
emails arrive in the order of their timestamps and are eval-
uated relative to this ordering. Additionally, cache popula-
tion/flushing and classification re-training are performed at
the relative time-intervals outlined in the previous section.

6.1 Blacklist Relationship
In examining how reputations quantify behavior, we apply

a simple intuition: One would expect to see a clear push-pull
relationship between an entity’s reputation and the number
of corresponding entries on the blacklist. To confirm this
hypothesis, the size of the XBL blacklist6 was graphed over
time and compared to the average reputation of all ASes.
Results are presented in Fig. 5. An inverse relationship is
observed, confirming the hypothesis. When the number of
listings decreases, reputation increases – and vice versa.

6.2 Component Reputation Analysis
In order for component reputations (IP, block, and AS) to

be useful in spam detection they must be behavior predictive.
That is, the reputations of ham emails should exceed those

6The XBL is the driving force behind reputation. The SBL
is also a contributor, but is orders of magnitude smaller.

167

 0

 5

 10

 15

 20

 0.8 0.9 1

(a) IP Reputation

%
 m

ai
ls

 (
by

 s
er

ie
s)

 Ham
 Spam

 0

 20

 40

 60

 0.99 0.995 1

(b) Block Reputation

 Ham
 Spam

 0

 20

 40

 60

 80

 100

 0.99 0.995 1

(c) ASN Reputation

 Ham
 Spam

Figure 6: CDFs of Component Reputations

 0

 10

 20

 30

 40

 50

 60

08/19/09 09/11/09 10/04/09 10/28/09 11/20/09 12/13/09

%
 o

f S
pa

m
 C

au
gh

t
"A

bo
ve

 th
e

B
L"

Start Date of Classification (4-day blocks)

ASN Rep.
Block Rep.

IP Rep.
All (SVM)

Figure 7: Component Reputation Performance

of spam emails. This relationship is visualized in the CDFs
of Fig. 6. All component reputations behave as expected.
Fig. 6 also displays the benefit of multiple spatial groupings.
While 90% of spam emails come from IPs that had ideal
reputation (i.e., a reputation of 1) at the time of receipt,
this is true for just 46% of blocks, and only 3% of AS.

The CDFs of Fig. 6 imply that each component reputa-
tion is, in and of itself, a metric capable of classifying some
quantity of spam. However, it is desirable to show that each
granularity captures unique spam, so that the combination
of multiple reputations will produce a higher-order classi-
fier of greater accuracy. In Fig. 7, the effectiveness of each
component reputation is presented. The percentage of spam
caught is “above the blacklist,” or more precisely, the per-
centage of spam well-classified by the reputation value that
was not identified by the blacklist alone7. Crucially, the
combined performance (the top line of Fig. 7), exceeds that
of any component, so each spatial grouping catches spam the
others do not. On the average, PreSTA is able to capture
25.7% of spam emails not caught by traditional blacklists.

We are also interested in determining which grouping pro-
vides the best classification. AS-level reputation is the most
stable of the components, individually capable of classifying
an additional 10-15% of spam above the blacklist. However,
during periods of increased PreSTA performance, it is often
the block and IP levels that make significant contributions.
This is intuitive; AS-level thresholding must be conservative.
Given their large size, the mis-classification of an AS could
result in an unacceptable increase in the FP-rate. Mean-
while, the cost associated with a mis-prediction is far less
for block and IP groupings.

These results suggest that considering more spatial di-
mensions should increase performance, that is, when there
are non-overlapping classifications. However, there are di-
minishing returns. Each additional component reputation
requires increased resources in evaluation and classification.

7Given the inclusion of traditional blacklist filtering, the pri-
mary concern is those emails that are not actively listed.

 0

 20

 40

 60

 80

 100

 0

 0.2

 0.4

 0.6

 0.8

 1

%
 o

f S
pa

m
s

R
ec

ei
ve

d

IP
-le

ve
l R

ep
ut

at
io

n

9/9/09 - 10/3/09 :: IP-204.xxx.9.154 History

BL SPAM(y1) REP(y2)

Figure 8: Single IP Behavior w.r.t. Blacklisting

An application should seek a minimal set of dimensions to
best represent and classify its data.

6.3 Case Studies
Two case studies exemplify the types of spam behavior

able to evade blacklists, yet captured via PreSTA. First,
Fig. 8 shows the temporal sending patterns of a single spam-
ming IP address. This IP was blacklisted twice during the
course of the study (as indicated by shaded regions), and the
time between listings was small (≈ 2 days). The controller of
this IP address likely used blacklist counter-intelligence [22]
to increase the likelihood that spam would be delivered: No-
tice that no spam was observed when the IP was actively
listed, but 150 spam emails were received at other times.

Traditional blacklist are reactive, binary measures that do
not take history into account. During the intermittent pe-
riod between listings, as far as the blacklist is concerned,
the spamming IP is an innocent one. However, as shown in
Fig. 8, the IP-level reputation metric compounds prior evi-
dence. Thus, if PreSTA had been in use, the intermittent
influx of email likely would have been identified as spam.

Secondly, Fig. 9 visualizes a case study at the AS-level
utilizing both spatial and temporal dimensions. In the early
stages of data collection anomalous activity was noticed at
a particular AS (AS#12743)8. Even when compared to the
other four worst performing ASes during the time block,
ASN-12743’s drop in reputation is astounding. Nearly its
entire address space, some 4,500 addresses, were blacklisted
over the course of several days – likely indicative of an ag-
gressive botnet-based spam campaign. After this, the repu-
tation increases exponentially (per the half-life), eventually
returning to innocent levels.

With traditional blacklists, an IP must actually send spam
before it can be blacklisted. In the ASN-12743 case, this
means all 4,500 IPs had some window in which to freely
send spam. However, as the IPs were listed in mass, the
reputation of the AS drops at an alarming rate, losing more
than 50% of its value. Had PreSTA been implemented, the
reputation of the AS (and the blocks within) would have
been low enough to classify mails sourced from the remain-
der of the space as spam, mitigating the brunt of the attack.

6.4 Implementation Performance
An important aspect of PreSTA is its scalability, and

to best evaluate this our PreSTA simulation mimicked the

8PTK-Centertel, a major Polish mobile service provider.

168

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

06/01/09 07/01/09 08/01/09 09/01/09

A
S

-L
ev

el
 R

ep
ut

at
io

n

AS-12743
AS-23860
AS-24827
AS-39924

Figure 9: Temporal Shift within Grouping (AS)

normal processing of a mail server. The blacklist history
and cached reputation scores were regulated so that only the
knowledge available at the time of arrival is used to evalu-
ate an email. PreSTA requires a warm-up period to gather
enough temporal knowledge to process correctly; hence, his-
torical blacklist storage began three months prior to the first
email being scored.

The effectiveness of the cache and the latency of the sys-
tem is also of interest. Caching is highly effective: 56.8% of
block-level calculations are avoided, and 43.1% are avoided
at the IP-level (recall that all AS-level calculations are per-
formed off-line and then cached). The reputation of an in-
coming email is calculated in nearly real time, with the av-
erage email being processed in fractions of a second. Under
typical conditions, over 500,000 emails can be scored in an
hour, using commodity hardware.

Re-training the classifiers and rebuilding the AS-cache are
the most time consumptive activities. Fortunately, training
new classifiers takes only minutes of work for a 10,000 email
training set, and only needs to be performed every 4 days.
Re-training is also done off-line and does not affect current
scoring. Rebuilding the AS reputation cache must be done
every 30 minutes, once new blacklist data is available, but
it need not delay current scoring as the previous AS-level
reputations are still relevant (at most 30 minutes old).

6.5 Spam Mitigation Performance
The spam detection capabilities of PreSTA are summa-

rized in Fig. 10. On average, 93% of spam emails are iden-
tified when used in conjunction with traditional blacklists.
This may seem to be a nominal increase over blacklists alone;
however, the inset of Fig. 10 is more intuitive – PreSTA
blocks between 20% and 50% of those mails passing the
Spamhaus blacklists, with a 25.7% average (identical to the
top line of Fig. 7). Had PreSTA been implemented on our
university mail server during the study, it would have caught
650,000 spam emails that evaded the Spamhaus blacklists.

Most interestingly, PreSTA provides consistent and
steady state detection. For example, consider the signif-
icant variations in blacklist performance seen throughout
the study (for example, in late August 2009 and in mid-
November 2009). PreSTA is nearly unaffected during these
periods and may be a useful stop-gap during variations in
blacklist accuracy. While the blockage-rates of the blacklists
fluctuate 18% over the course of the study, PreSTA is far
more consistent, exhibiting just 5% of variance. Further,

T
ot

al
 %

 o
f S

pa
m

 C
au

gh
t

Start Date of Classification (4-day blocks)

08/04/09

PreSTA + Blacklists
Spamhaus Blacklists

 75

 80

 85

 90

 95

 100

09/01/09 10/01/09 11/01/09 12/01/09

%-Blocked Above Blacklist
 0

 20

 40

 60

Figure 10: Blacklist and PreSTA Blockage

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50
F

al
se

 P
os

iti
ve

 %
% Blockage Above Blacklist (Recall)

Classification
switched for
large AS.

(26%, 0.5%)

Performance

Figure 11: Characteristic ROC Trade-Off

it is likely that continued analysis will show similar varia-
tions in blacklist performance. Periods of high de-listing are
likely followed by periods of high re-listing as spammers try
to maximize the utility of available IPs.

Ultimately, the performance attainable by the classifier is
dependent on the number of false-positives (FPs) tolerated.
To this point, the FP-rate has been fixed at 0.5%; how-
ever, as exemplified in Fig. 11, the FP-rate is tune-able and
strongly correlates with the blockage rate. The plot is gener-
ated over a characteristic interval of email from mid-October
2009, and is akin to the precision/recall graphs common in
machine-learning. We remind readers that the decision to
exclude intra-network emails from the dataset (see Sec. 5.1)
significantly inflates the presented FP-rates.

7. EVASION AND GAMESMANSHIP
To be effective, PreSTA must be robust to evasion and

gamesmanship – an entity should be unable to surrepti-
tiously influence its own reputation. Given the use of IP
blacklists as a feedback source, the most effective way to
avoid PreSTA is to avoid getting blacklisted. However, such
a technique is not fail-safe; a single evasive entity may still
have poor reputation at broader granularity. When neg-
ative feedback exists, and an IP has been blacklisted, the
best recourse is patience. Over time, the weight of the list-
ing decays. As such, there is no way to evade PreSTA in
the temporal dimension.

However, spammers are migrant and the spatial dimen-
sion affords greater opportunities. While IP and block mag-
nitudes are fixed, an AS controls the number of IPs it broad-
casts. An actively evasive AS would ensure its entire allo-

169

cation is broadcasted. More maliciously, a spammer may
briefly hijack IP space they were not allocated in order to
send spam from stolen IPs. Such spectrum agility was shown
by [21] to be an emergent spamming technique. Fortunately,
if the hijacked IP space was not broadcasted (i.e., unal-
located), emails from these IPs would map to the special
grouping “no AS”, whose reputation is zero (per Sec. 5.5).
However, if the hijacked space was broadcasted by a rep-
utable AS, evasion may be possible. Fortunately, [21] ob-
serves the use of unallocated space is most prevalent.

The previous scenario can be described as a sizing at-
tack and is of most concern to PreSTA. The entities being
evaluated should not be able to affect the size of their spa-
tial groupings. However, this attack is only effective when
the group size is non-singular, and an simple mitigation
technique is to always include a grouping function defining
singular groups. Further, an implementation should assign
persistent identifiers to entities. When identifiers are non-
persistent, PreSTA could fall victim to a Sybil attack [10]
since an entity could evade negative feedback by simply
changing identifiers.

8. CONCLUSIONS
In this paper, we have introduced PreSTA, a novel repu-

tation model designed to combine the rich historical informa-
tion of blacklists and the spatial relationships of spamming
IPs. We have shown PreSTA reputations to be an effective
measure for classifying spam, identifying up to 50% of spam
not caught by blacklists alone. Our preliminary implemen-
tation, which combines PreSTA with blacklists, mitigates
93% of spam on average and is stable – reducing the effects
of blacklist fluctuations. Finally, PreSTA proves scalable
and is able to efficiently handle production email workloads,
processing over 500k emails an hour.

Having demonstrated PreSTA’s proficiency in the field
of spam detection, one must consider how this capability is
best utilized. Although we make no claims it can (or should)
replace content-based filtering, PreSTA could be applied as
an initial filter or grey-listing mechanism. Alternatively, the
system could be used to prioritize the processing of incoming
email in high-volume situations. Since it is based on central-
ized blacklist information, PreSTA could be installed as a
parallel service provided by blacklist providers.

Further, PreSTA’s applicability is broader than email
spam. PreSTA has already proven effective in the detection
of Wikipedia vandalism [30] and shows promise in other do-
mains ranging from prioritization of BGP announcements to
reputation for web-based service mash-ups. Any service that
requires dynamic decision making and has access to records
of historical feedback is a candidate. Ultimately, PreSTA
reputations may be utilized as an effective means of perform-
ing dynamic access-control and mitigating malicious behav-
ior, two extremely relevant issues as service paradigms shift
to more distributed architectures.

9. ACKNOWLEDGMENTS
The authors would like to thank Wenke Lee and David

Dagon, both of Georgia Tech, for their initial guidance on
this project. Additional thanks go to Charles ‘Chip’ Buch-
holtz of UPenn-CETS, who performed mail dumps and aided
us in obtaining permission to process those logs.

References
[1] Apache SpamAssassin. http://spamassassin.apache.org/.

[2] CAIDA. http://www.caida.org/.

[3] DNSBL.info: Blacklists. http://www.dnsbl.info/dnsbl-list.php.

[4] Internet Assigned Numbers Authority. http://www.iana.org/.

[5] MessageLabs Intelligence. http://www.messagelabs.com/.

[6] Proofpoint, Inc. http://www.proofpoint.com/.

[7] Spamhaus Project. http://www.spamhaus.org/.

[8] Univ. of Oregon Route Views. http://www.routeviews.org/.

[9] M. Blaze, S. Kannan, A. D. Keromytis, I. Lee, W. Lee, O. Sokol-
sky, and J. M. Smith. Dynamic trust management. IEEE Com-
puter (Special Issue on Trust Mangement), 2009.

[10] J. Douceur. The Sybil attack. In 1st IPTPS, March 2002.

[11] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser. De-
tecting spammers with SNARE: Spatio-temporal network-level
automated reputation engine. In USENIX Security Sym., 2009.

[12] IronPort Systems Inc. Reputation-based mail flow control. White
Paper, 2002. (SenderBase).

[13] T. Joachims. Advances in Kernel Methods - Support Vector
Learning, chapter Making Large-scale SVM Learning Practical,
pages 169–184. MIT Press, Cambridge, MA, 1999.

[14] A. Jøsang, R. Hayward, and S. Pope. Trust network analysis
with subjective logic. In Proceedings of the 29th Australasian
Computer Science Conference, 2006.

[15] J. Jung and E. Sit. An empirical study of spam traffic and the
use of DNS black lists. In Proc. of the 4th ACM SIGCOMM
Conference on Internet Measurement, pages 370–375, 2004.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina. The Eigen-
Trust algorithm for reputation management in P2P networks. In
Proc. of the Twelfth WWW Conference, May 2003.

[17] B. Krebs. Host of Internet spam groups is cut off.
http://www.washingtonpost.com/wp-dyn/content/article/2008/

11/12/AR2008111200658.html, November 2008. (McColo).

[18] B. Krebs. FTC sues, shuts down N. Calif. web host-
ing firm. http://voices.washingtonpost.com/securityfix/2009/

06/ftc_sues_shuts_down_n_calif_we.html, June 2009. (3FN).

[19] Z. Qian, Z. Mao, Y. Xie, and F. Yu. On network-level clusters
for spam detection. In Proceedings of the 17th Annual Network
and Distributed System Security Symposium (NDSS), 2010.

[20] A. Ramachandran, D. Dagon, and N. Feamster. Can DNSBLs
keep up with bots? In Proc. of the 3rd CEAS, 2006.

[21] A. Ramachandran and N. Feamster. Understanding the network-
level behavior of spammers. In Proc. of SIGCOMM 2006, 2006.

[22] A. Ramachandran, N. Feamster, and D. Dagon. Revealing bot-
net membership using DNSBL counter-intelligence. In USENIX:
Steps to Reducing Unwanted Traffic on the Internet, 2006.

[23] A. Ramachandran, N. Feamster, and S. Vempala. Filtering spam
with behavioral blacklisting. In Proc. of Computer and Com-
munications Security (CCS ’07), pages 342–351, 2007.

[24] M. Sahami, S. Dumais, D. Heckerman, and E.Horvitz. A
Bayesian approach to filtering junk e-mail. In AAAI-98 Work-
shop on Learning for Text Categorization, 1998.

[25] S. Sinha, M. Bailey, and F. Jahanian. Improving spam blacklist-
ing through dynamic thresholding and speculative aggregation.
In Proceedings of the 17th NDSS, 2010.

[26] Symantec Corportation. IP reputation investigation. http://

ipremoval.sms.symantec.com/.

[27] S. Venkataraman, A. Blum, D. Song, S. Sen, and O. Spatscheck.
Tracking dynamic sources of malicious activity at internet scale.
In Neural Information Processing Systems ’09, 2009.

[28] S. Venkataraman, S. Sen, O. Spatscheck, P. Haffner, and D. Song.
Exploiting network structure for proactive spam mitigation. In
16th USENIX Security Symposium, pages 149–166, 2007.

[29] A. G. West, A. J. Aviv, J. Chang, V. S. Prabhu, M. Blaze,
S. Kannan, I. Lee, J. M. Smith, and O. Sokolsky. QuanTM:
A quantitative trust management system. In EUROSEC 2009,
pages 28–35, March 2009.

[30] A. G. West, S. Kannan, and I. Lee. Detecting Wikipedia vandal-
ism via spatio-temporal analysis of revision metadata. In EU-
ROSEC ‘10, pages 22–28, Paris, France, 2010.

[31] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wob-
ber. How dynamic are IP addresses? In SIGCOMM ’07, 2007.

170

Breaking e-Banking CAPTCHAs

Shujun Li
University of Konstanz,

Germany

S. Amier Haider Shah
National University of Science

and Technology, Pakistan

M. Asad Usman Khan
National University of Science

and Technology, Pakistan

Syed Ali Khayam
National University of Science

and Technology, Pakistan

Ahmad-Reza Sadeghi
Ruhr-University of Bochum,

Germany

Roland Schmitz
Stuttgart Media University,

Germany

ABSTRACT
Many financial institutions have deployed CAPTCHAs to
protect their services (e.g., e-banking) from automated at-
tacks. In addition to CAPTCHAs for login, CAPTCHAs are
also used to prevent malicious manipulation of e-banking
transactions by automated Man-in-the-Middle (MitM) at-
tackers. Despite serious financial risks, security of e-banking
CAPTCHAs is largely unexplored. In this paper, we report
the first comprehensive study on e-banking CAPTCHAs de-
ployed around the world. A new set of image processing
and pattern recognition techniques is proposed to break all
e-banking CAPTCHA schemes that we found over the In-
ternet, including three e-banking CAPTCHA schemes for
transaction verification and 41 schemes for login. These bro-
ken e-banking CAPTCHA schemes are used by thousands
of financial institutions worldwide, which are serving hun-
dreds of millions of e-banking customers. The success rate
of our proposed attacks are either equal to or close to 100%.
We also discuss possible improvements to these e-banking
CAPTCHA schemes and show essential difficulties of design-
ing e-banking CAPTCHAs that are both secure and usable.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems—Security and Protection

General Terms
Security, Electronic Commerce, Human Factors

Keywords
CAPTCHA, e-banking, man-in-the-middle attack, malware

1. INTRODUCTION
Due to their ease and ubiquity of use, e-banking systems

have experienced worldwide deployments. A 2009 survey

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

of the American Bankers Association reveals that e-banking
has been the preferred banking method of bank customers
[1]. Security of e-banking systems is a major concern for
the financial institutions and their customers. The highly
sensitive nature of data processed by e-banking systems ne-
cessitates a robust security framework to protect the users’
privacy, identity and assets.

Many financial institutions around the world have de-
ployed CAPTCHAs1 to protect their e-banking systems from
automated attacks. In addition to traditional CAPTCHAs
for preventing automated login attempts, some financial in-
stitutions have also deployed CAPTCHAs for transaction
verification. The main goal of these CAPTCHAs is to make
automated transaction manipulation by malicious programs
(e.g., Trojans) more difficult. These CAPTCHAs are sup-
posed to provide security against Man-in-the-Middle (MitM)
attacks, which can manipulate the communication between
the user and the e-banking server on the fly. Such attacks are
much more difficult to detect than credential stealers (like
email-based phishing attacks and keyloggers) because they
can circumvent many existing e-banking protection mecha-
nisms including multi-factor authentication schemes. While
the number of such attacks remains unknown, large-scale
attacks are becoming more and more likely with the ris-
ing infection rate and evolving sophistication of malware on
desktop PCs and smart phones.

Existing e-banking solutions counter MitM attacks by in-
troducing some means of transaction verification into the
system. These solutions can be broadly divided into the
following classes: trusted out-of-band channel [2]; hardware
for establishing encrypted channel over untrusted network
and/or computer [3]; hardware with trusted display/keypad
for generating transaction-dependent TANs or signatures
[4, 5]; and solutions based on CAPTCHAs (see Sec. 2.2).
The main advantage of CAPTCHA-based solutions is that
they do not depend on special hardware and therefore the
implementation and maintenance costs are very low for both
financial institutions and customers.

The main premise of e-banking CAPTCHAs for both login
and transaction is that some pattern recognition tasks are
extremely difficult for computers (e.g., automated programs
like malware) but easy for humans. Based on this premise,
e-banking systems protected by CAPTCHAs are considered
secure against automated attackers which aim to interpret

1CAPTCHA is an acronym for “Completely Automated
Public Turing test to tell Computers and Humans Apart”.

171

or forge CAPTCHAs. A further challenge of breaking trans-
action e-banking CAPTCHAs is that the automated attack
needs to run in real time to avoid being noticed by users.

A number of prior efforts have been made for analyzing
the security of general-purpose CAPTCHAs (which are only
for login). However, to the best of our knowledge, the se-
curity of e-banking CAPTCHAs has not yet been evaluated
thoroughly.

Contribution: This paper presents the first comprehen-
sive study on e-banking CAPTCHAs, and shows that ex-
isting e-banking CAPTCHAs do not meet the expected se-
curity requirements. More precisely, we report practical at-
tacks on three e-banking CAPTCHA schemes for transac-
tion verification and 41 schemes for login.2 Our attacks are
based on a new set of image processing and pattern recog-
nition tools, including k-means clustering [6], digital image
inpainting [7,8], morphological image processing [9], charac-
ter recognition based on cross-correlation [10] and an image
quality assessment (IQA) method called CW-SSIM [11]. As
far as we know, it is the first time that image inpainting and
IQA algorithms are used to break CAPTCHAs. Our attacks
are alarmingly successful: all of the e-banking CAPTCHA
schemes are broken with a success rate equal to or close to
100%. Most of our proposed attacks can run in real time.

Our further investigation shows that it is nontrivial to
enhance the security of the broken e-banking CAPTCHAs.
CAPTCHAs have some essential drawbacks rooted in their
design principle that makes it difficult to simultaneously
achieve both usability and security. We thus call for cau-
tions in deploying e-banking CAPTCHAs.

Outline: The rest of this paper is organized as follows. In
the next section, we give a survey of related work on the
cryptanalysis of CAPTCHAs and the use of CAPTCHAs in
e-banking systems. In Sec. 3 we introduce the new set of
CAPTCHA-breaking tools used in our attacks. Section 4
demonstrates how these tools are used to break a typical
e-banking CAPTCHA scheme for transaction verification
(used by around 800 German banks). Then, Section 5 re-
ports our attacks on another two CAPTCHA schemes for
transaction verification, which are deployed by two major
banks in China. Section 6 shows that 41 e-banking login
CAPTCHA schemes deployed by many financial institutions
all over the world cannot resist automated segmentation at-
tacks. Based on the proposed attacks, in Sec. 7 we out-
line some possible improvements to the broken e-banking
CAPTCHA schemes, and discuss whether CAPTCHAs are
at all appropriate for protecting e-banking system. The last
section summarizes the salient findings of our work.

2. RELATED WORK

2.1 CAPTCHAs in general
A CAPTCHA [12] scheme is a challenge-response authen-

tication protocol based on a hard AI problem, which can be
easily solved by humans but not by machines. Here, the goal
differs from traditional user authentication protocols: to ac-
cept humans but reject automated programs. CAPTCHAs
can be designed in many forms. The most well-known and
widely-deployed form is distorted texts shown as CAPTCHA
images. The distortions are chosen in a way that automated

2These are all the e-banking CAPTCHA schemes that we
had found when we submitted the final edition of this paper.

programs cannot achieve a comparable recognition rate to
what humans can. Figure 1 shows some CAPTCHAs of this
kind. Similarly, audio CAPTCHAs designed for the blind
use distorted audio as the challenge shown to the prover.

Figure 1: Three CAPTCHAs based on distorted
texts (left to right): Google, Microsoft, Yahoo!

Another form of CAPTCHA is based on hard AI problems
on image understanding. A typical CAPTCHA of this kind
is Asirra [13], which challenges the prover to select all cat
pictures from 12 pictures of cats and dogs. The idea of
image-based CAPTCHAs has also been generalized to be
based on animation, video, and 3-D models. Readers are
referred to [14] for a recent survey on CAPTCHAs.

The idea of breaking CAPTCHAs has been around for a
while. The first public report we know appeared in 2003
[15], in which Mori and Malik proposed recognition based
attacks on Gimpy and EZ-Gimpy, two early CAPTCHA
schemes based on distorted texts. Later, several other at-
tacks were reported, showing insecurity of more CAPTCHA
schemes based on distorted texts [16, 17]. Moreover, Hoce-
var demonstrated results of his attacks on quite a number of
CAPTCHA schemes on his web site [18], which reveals some
common pitfalls of weak CAPTCHAs. In [19], Chellapilla et
al. reported an interesting finding: once a CAPTCHA im-
age based on distorted texts is well segmented, automated
programs can recognize those single characters even bet-
ter than humans. This implies that making segmentation
harder is the main way to enhance security of CAPTCHAs
based on distorted texts. In [20], Yan and Ahmad showed
that a simple pixel-count based attack can break a number
of CAPTCHAs offered at Captchaservice.org and deployed
by some other web sites. In [21], Yan and Ahmad proposed
a new attack on some distorted texts based CAPTCHAs,
which can be used to segment CAPTCHA images into sin-
gle characters with high accuracy.

Most of the existing attacks are designed for CAPTCHA
schemes that use distorted texts. There are also some at-
tacks on other kinds of CAPTCHA schemes. In [22], Golle
showed that a machine learning based attack can achieve a
success rate of 10.3% for a 12-image challenge of the image-
based CAPTCHA scheme Asirra. In [23,24], attacks to some
deployed audio CAPTCHA schemes were reported.

There are also attacks exploiting implementation flaws.
In [25], Hernandez-Castro and Ribagorda proposed a side-
channel attack on a CAPTCHA scheme based on solving
mathematical problems. In [26], Hindle et al. showed that
reverse engineering can help to design new attacks. Recently,
Hernandez-Castro and Ribagorda pointed out some common
problems of many CAPTCHA schemes [27].

2.2 CAPTCHAs for e-banking
One of the main applications of CAPTCHAs is to prevent

automated online password attacks [28]. Therefore, many
financial institutions have deployed CAPTCHAs on the lo-
gin pages of their e-banking systems to protect their cus-
tomers from such attacks. In addition to login CAPTCHAs,
many financial institutions have also deployed CAPTCHAs

172

for transaction verification, in order to prevent automated
MitM attacks. The CAPTCHA-based transaction verifica-
tion works as follows. After receiving a transaction request,
the server generates a CAPTCHA image by embedding the
transaction data, a dynamic TAN (Transaction Authentica-
tion Number) and probably some other information, which
is sent to the user for confirming the transaction. In case
an automated MitM attacker cannot recognize the textual
information embedded in the CAPTCHA image, it will be
unable to forge a CAPTCHA image. Although the security
of transaction CAPTCHAs depend on the same principle of
login CAPTCHAs, there are some essential differences be-
tween transaction CAPTCHAs and login CAPTCHAs: 1)
a transaction CAPTCHA image generally contains much
more characters than a login CAPTCHA image; 2) some
(often most) characters in a transaction CAPTCHA image
are known to the MitM attacker; 3) forging CAPTCHA im-
ages can also break transaction CAPTCHAs. While there
has been a large body of previous work on breaking lo-
gin CAPTCHAs, transaction CAPTCHAs are unique for
e-banking and security analysis of them remains unexplored.

We did not find a comprehensive report on e-banking
CAPTCHAs deployed by the worldwide banking sector, so
we manually checked web sites of many financial institu-
tions. We found e-banking CAPTCHA schemes deployed by
a large number of financial institutions in different countries
such as China, Germany, USA, Australia and Switzerland.

Deployment of e-banking CAPTCHAs in China is so pop-
ular that it has become a standard components of almost ev-
ery e-banking system. We checked 30 major Chinese banks,
among which almost all have deployed login CAPTCHAs,
and at least two have deployed transaction CAPTCHAs. In
Germany, the pattern is a bit different: many banks have
deployed login CAPTCHAs and some have also deployed
transaction CAPTCHAs. A similar pattern is observed for
the banking industry in the USA: a major e-banking solu-
tion provider serving several thousand financial institutions
has developed several different login CAPTCHA schemes.

In addition to China, Germany and USA, we also found
e-banking CAPTCHAs deployed by financial institutions in
other countries. These include a major bank in Switzer-
land (with branches in many other countries in Europe,
Asia, North America and Africa), which has deployed login
CAPTCHAs in its e-banking system. A Pakistani bank is
also using this Swiss bank’s system. Similarly, a private bank
based in Latin America has also deployed login CAPTCHAs
in its e-banking system, which serves its customers in Latin
America, Europe, Asia, Australasia and Africa. Some Aus-
tralian credit unions are also using login CAPTCHAs.

As a whole, we have found three e-banking CAPTCHA
schemes for transaction verifications, one deployed by many
German banks and the other two by two major Chinese
banks. We found 41 e-banking CAPTCHA schemes for lo-
gin. These e-banking CAPTCHA schemes involve hundreds
of millions e-banking customers all around the world. In
this paper, we report our successful attacks on all of these
e-banking CAPTCHA schemes. We sanitized the paper to
anonymize the names of all affected financial institutions
and e-banking security service providers to give them the
chance to amend their systems and to avoid our research
results being abused by criminals. To this end, we use
pseudonyms of the three e-banking CAPTCHA schemes for
transaction verification: GeCapatcha refers to the e-banking

CAPTCHA scheme used by German banks, ChCaptcha1
and ChCaptcha2 refer to the two used by Chinese banks.

There are also some research proposals about applications
of CAPTCHAs for e-banking. In [29], Mitchell discussed
the possibility of applying CAPTCHAs to e-commerce envi-
ronment, where the traditional “security codes” (i.e., TANs)
can be replaced by CAPTCHAs to resist automated attacks.
In [30], Fischer and Herfet proposed to use CAPTCHAs for
e-banking transaction verification. In [31], Szydlowski et al.
proposed a CAPTCHA-based software keypad for securing
web input of online transactions. In [32], a combination of
CAPTCHAs and hardware security tokens is proposed to
enhance e-banking security. Security and usability of these
proposals remains a topic for further research.

Security analysis of e-banking CAPTCHAs is either largely
unexplored or kept confidential. There are very few public
reports on e-banking CAPTCHAs available. In [33], Wieser
described an attack on a login CAPTCHA scheme deployed
by a German bank. This attack depends on a design flaw,
which has been fixed in the current deployed system.

3. CAPTCHA-BREAKING TOOLS
Despite the diversity of the e-banking CAPTCHA schemes

under study, we managed to find a new set of image process-
ing and pattern recognition tools that can break all the e-
banking CAPTCHA schemes with very high success rate.
Some of the tools (such as k-means clustering and mor-
phological operations) have been widely used in the field
or reported by other researchers, however, two basic tools –
digital image inpainting and CW-SSIM based pattern recog-
nition – are introduced for the first time in this paper. In
the following, we briefly describe these tools, and discuss
implementation issues that are common for all our attacks.

k-means layer segmentation: The first step of any attack
on a CAPTCHA scheme is to extract targeted objects from
the CAPTCHA image. This normally requires segmenta-
tion of the CAPTCHA image into several layers. A classic
segmentation method is k-means clustering [6]. Its basic
principle is to look for k cluster centroids minimizing the
average distance of all points to the nearest centroid. The
algorithm starts from an initial condition, and the final so-
lution is obtained by dynamically updating the centroids.

Morphological image processing: Mathematical morphol-
ogy is a theory for analysis and processing of geometrical
structures [9]. It is widely used in binary images process-
ing. The basic idea is to probe an input image with one
or more pre-defined “structuring elements”. There are many
different morphological operations, such as dilation, erosion,
opening, closing, which can be used to filter noises and refine
the shape of object(s) segmented from a given image.

Line detection: Some e-banking CAPTCHAs use random
lines to form a grid in order to make segmentation more
difficult. To break these CAPTCHAs, we can try to detect
these grid lines and then remove them. Traditionally, lines
can be detected by the Hough transform [34]. In e-banking
CAPTCHAs, normally grid lines have only two orientations
(vertical and horizontal) and they go through the whole im-
age. In this case, a simplified Hough transform can be used.

Digital image inpainting: This is the technique to fix miss-
ing parts in a digital image [7]. The theory behind image
inpainting is to predict missing pixels from their neighbors.
Some of our attacks make use of a fast image inpainting
technique proposed in [8] to remove real transaction data

173

and replace them with fake ones in the CAPTCHA images,
and to remove unwanted objects like random grid lines.

Character segmentation: For an attack on an e-banking
CAPTCHA scheme, the ultimate goal is often to recognize
some characters in the CAPTCHA image. This requires
segmentation of each character out of the image. By apply-
ing k-means clustering or simple thresholding, we can get a
layer (i.e., a binary image) containing all characters. Then,
we can segment those characters out of the layer as sepa-
rate connected objects. When a connected object contains
more than one character, they can be split if those charac-
ters have different colors. Sometimes we also need to merge
some disconnected objects into a single character (e.g. “i”
and “j”) according to the geometric relationship between dif-
ferent parts of the character. To ensure the accuracy of the
character segmentation process, different kinds of morpho-
logical operations are often used to remove noises and refine
the shape of segmented characters.

Character recognition: After a character is segmented, it
can be further recognized. In our attacks on transaction
CAPTCHAs, two training-free character recognition meth-
ods are used: CW-SSIM [11] and cross-correlation [10]. Both
methods are based on template matching; i.e., they compare
the input with a number of reference images (templates) to
look for the best match. We avoided training based methods
in this study, due to the following reasons: 1) for transaction
CAPTCHA schemes it was difficult to collect a large num-
ber of images as the training set; 2) the two training-free
character recognition methods work well for the CAPTCHA
schemes we studied; 3) training-based methods are normally
faster than template matching based methods, but the latter
are easier for our proof-of-concept implementations.

Recognition error detection and correction: Due to close
correlation between some reference images, the character
recognition algorithm may produce erroneous results for some
inputs. We developed postprocessing methods to automat-
ically detect and correct some of these recognition errors.
These methods mainly exploit the context semantics and
some inherent features of the recognized characters.

To simplify implementations of our proposed attacks, we
chose MATLAB as the main programming language and
platform. MATLAB has a very convenient Image Process-
ing Toolbox and an interactive programming environment.
Since MATLAB is an interpreted language, its programs
are significantly less efficient than those developed in com-
piled programming languages like C/C++. Despite this
fact, most of our attacks still can run in real time. All ex-
periments reported in this paper were done on a laptop with
an Intel Core2 Duo 2.4 GHz CPU and with 2 GB memory.

4. BREAKING GECAPTCHA
GeCaptcha is a typical e-banking CAPTCHA scheme for

transaction verification and being used by around 800 Ger-
man banks. To use the e-banking system with GeCaptcha,
each user gets a paper list of indexed TANs from the bank in
advance. After the user submits a transaction request, the
e-banking server sends the user a GeCaptcha image like the
one shown in Fig. 2, which is a mixture of a random grid, the
user’s birthday, transaction data and other texts including
one line with a TAN index and the transaction time. After
the TAN index n (in Fig. 2, n = 158) is observed, the user
looks for the n-th TAN in the paper list, sends the TAN
back to the e-banking server for confirming the transaction.

Figure 2: A GeCaptcha image. The big digits in
the background compose the user’s birthday. En-
glish translation of the three text lines: Line 1
– “GeCaptcha control picture for transfer”; Line 2 –
“Amount in EUR: 999,99 Bank code: 10203040 Account
Nr.: 12345678”; Line 3 – “Please enter the 158th TAN”.

In a GeCaptcha image, the user’s birthday is used as a
shared secret between the user and the e-banking server,
so that the server’s identity can be authenticated by the
user. To defeat automated attacks, the birthday is rendered
using the following operations: 1) each digit is randomly
rotated; 2) the font style of each digit is randomly deter-
mined; 3) each digit is randomly located; 4) all the digits
are drawn between the transaction data and the random
grid, which act like decoy objects (noises) in traditional lo-
gin CAPTCHA schemes. The transaction data are on top
of the other layers, and it is assumed that they cannot be
easily manipulated without leaving any noticeable distortion
to the original GeCaptcha image.

4.1 Two Approaches to Breaking GeCaptcha
To launch a MitM attack on GeCaptcha, the attacker (i.e.,

the malicious program) needs to manipulate the transaction
data in real time without being noticed by the user. Let
us assume that the user sends transaction data TD1 to the
server, and the data are manipulated by the malicious pro-
gram to TD2 6= TD1. Then, the malicious program will
get a GeCaptcha image with transaction data TD2 from the
server. To spoof the user, the malicious program has to ma-
nipulate the GeCaptcha image by changing TD2 to TD1.
There are two possible approaches: 1) locate TD2, and re-
place them with TD1; 2) recognize the user’s birthday and
the TAN index, and forge a GeCaptcha image with TD1.

For both approaches, the malicious program needs to first
segment different objects (the transaction data, the user’s
birthday and the TAN index) from the GeCaptcha image.
We examined histograms of many GeCaptcha images and
found out that different objects correspond to different peaks
in the histogram. Since we know the number of layers, the
k-means clustering method [6] can be applied to segment
the GeCaptcha image. For the GeCaptcha image in Fig. 2,
the segmentation result is shown in Fig. 3. Based on the
successful segmentation of GeCaptcha images into several
layers, two automated attacks can be developed using the
two approaches enumerated above.

4.2 Automated Attack 1
In this attack, the malicious program achieves transac-

tion manipulation via the following steps: Step 1) locate the
text line with TD2; Step 2) remove the text line with TD2;
Step 3) add a new line text with TD1.

4.2.1 Step 1: Locating transaction data
The task of Step 1 is to further locate transaction data

from the text layer segmented from the GeCaptcha image.
The text layer contains three lines of texts: the line with
transaction data, the line with TAN index, and the line with
time. The order of the three lines is time-varying, so the

174

(a) different layers rendered with different colors

(b) the text layer

(c) the birthday layer

Figure 3: The segmentation result of the GeCaptcha
image in Fig. 2.

malicious program needs a way to differentiate the line with
transaction data from the other two lines.

One method to differentiate the transaction data from
other texts is to recognize all the texts in the layer and then
search for the keywords “Betrag in EUR”, “Bankleitzahl” and
“Konto-Nr.”, which always appear in the line of transaction
data. The recognition task can be done by an existing OCR
tool due to the nearly perfect segmentation of the text layer.
We tested MODI, the OCR tool included in Microsoft Of-
fice 2007, and the recognition rate is 95% for the text layer
shown in Fig. 3(b). Based on such a nearly perfect recogni-
tion rate, the malicious program can easily know which line
the transaction data belongs to.

While the OCR-based method works well, there is an-
other more light-weight and robust method. It is based on
the following observations: 1) the line with the TAN in-
dex is always boldfaced; 2) the line with time contains less
characters than the other two lines; 3) the line with time
contains a large white space. These observations imply that
the average font weight (AFW) of the three lines can be
very different. Let us denote the number of black pixels in a
line by N1, the number of all pixels in the bounding box of
the line by N2, the actual font size by b and the normalized
font size by b0. Then, the average font weight is defined
by AFW = (b · N1)/(b0 · N2). We tested the AFWs of the
three lines in 100 GeCaptcha images, and confirmed that the
AFW can be used to differentiate different text lines reliably.

Based on the above finding, a more light-weight method
can be easily designed to locate all the three lines. In addi-
tion to being more efficient, another advantage of the AFW-
based method over the OCR-based method is that it is more
robust against noise and segmentation errors.

4.2.2 Step 2: Removing transaction data
After locating the line with transaction data, we can try

to remove the whole line by applying an image inpainting
method. However, most image inpainting methods do not
work well when there are too many edges around the missing
parts. We found that the random grid lines and color shad-
ing of the background do introduce noticeable distortions.
Figure 4 shows the results of applying the image inpainting
method in [8] to the GeCaptcha image in Fig. 2 by taking
the line with transaction data as the mask of the to-be-
filled region. We can see some noticeable distortions such
as broken grid lines.3 We tried two other image inpainting

3Although users are not always sensitive to those subtle dis-
tortions, they can be easily trained to be more careful.

methods [35,36] and got similar results.

Figure 4: The result of removing transaction data
by applying the image inpainting method in [8].

To overcome the problem, we have to handle pixels on the
grid lines separately: they should be predicted from clos-
est (not necessarily neighboring) pixels on grid lines and
should not be used for predicting pixels that do not lie on
grid lines. Based on this idea, we extended the fast image
inpainting method proposed in [8]. The extended method
needs to know where the grid lines are. As we described
in Sec. 3, these (horizontal and vertical) grid lines can be
detected by a simplified Hough transform. After the grid
lines are localized, pixels on the random grid can be han-
dled differently, so that no visible distortion will occur on
and around grid lines. Figure 5 shows the result of the ex-
tended inpainting method. Comparing Fig. 5 with Fig. 4,
we can see that our proposed inpainting method, while hav-
ing the same level of complexity, creates significantly lesser
distortion than general-purpose inpainting methods.

Figure 5: The result of applying the extended in-
painting method to the GeCaptcha image in Fig. 2.

4.2.3 Step 3: Adding user-expected transaction data
After removing the transaction data TD2, it is trivial to

add the user-expected transaction data TD1 to the vacant
place in the GeCaptcha image. Figure 6 shows a forged
GeCaptcha image by changing the transaction data to“Betrag
in EUR: 1,00 Bankleitzahl: 18635402 Konto-Nr.: 1211855”. We
tested the image inpainting based attack on 100 GeCaptcha
images collected from real user accounts and no visual dis-
tortion is observed in any forged GeCaptcha image, thus
leading to the ideal success rate of 100%.

Figure 6: A forged GeCaptcha image from the
GeCaptcha image in Fig. 2.

4.3 Automated Attack 2
The image inpainting based attack described above is blind,

in the sense that it does not depend on a recognition task.
However, if we can recognize the user’s birthday and the
TAN index embedded in the GeCaptcha image, a second
attack can be developed. An additional advantage of the
second attack is that the attacker can get the user’s birth-
day, which is the user’s private information that plays a key
role in some backup authentication systems. The second
attack consists of the following two stages.

Stage 1 – birthday recognition: The malicious program
collects a number of GeCaptcha images, and tries to recog-
nize the user’s birthday. This stage is completely offline.

175

Stage 2 – transaction manipulation: For a new transac-
tion request received from the user, the malicious program
manipulates the transaction data, then locates (probably
also recognizes) the TAN index from the server-generated
GeCaptcha image, and finally sends a forged GeCaptcha im-
age with the user’s transaction data back to the user. This
stage has to be done online in real time.

4.3.1 Stage 1: Offline birthday recognition
As shown in Sec. 4.1, the image segmentation process can

produce a segmented layer with birthday. This layer can be
further segmented to extract each birthday digit. Some mor-
phological operations are needed to filter small objects and
noises, and to refine the shapes of segmented birthday dig-
its. Figure 7 shows the digits segmented from the birthday
layer shown in Fig. 3(c).

Figure 7: The eight birthday digits segmented from
the birthday layer shown in Fig. 3c.

Since the birthday digits are normally rotated and the
segmentation result is not always perfect, OCR tools do not
work very well. Instead, we chose to use a training-free al-
gorithm CW-SSIM [11] to recognize these digits. CW-SSIM
denotes“complex wavelet based structural similarity”, which
is a full-reference image quality assessment (IQA) algorithm
invariant to translation and small scaling/rotation. In [11],
it was demonstrated how CW-SSIM can be used to achieve
robust and highly accurate digit recognition.

To use CW-SSIM, we need a database of reference images
of the to-be-recognized digits. We used a database with
three rotation angles (0 and ±15 degrees) and two different
font styles (boldfaced, boldfaced italic). As a whole, there
are 10 × 3 × 2 = 60 reference images. Based on such a
database, the birthday in Fig. 7 can be successfully recog-
nized. For 100 GeCaptcha images, the success rate is 91%.

The success rate can be further improved by using image
inpainting. The idea is to remove the whole text layer and
the grid lines, which normally leads to a better segmentation
result of the birthday layer and thus also the birthday digits.
Figure 8 shows the result of removing all those unwanted
objects from the GeCaptcha image Fig. 2. One can see that
in the inpainted image the birthday becomes more salient
in the background. For the simplified GeCaptcha image, a
3-means clustering process is used to extract the birthday
for recognition. With the improved method, the success rate
of birthday recognition becomes 100%.

Figure 8: The inpainting result of the GeCaptcha
image in Fig 2, by removing all unwanted objects.

4.3.2 Stage 2: Online transaction manipulation
Once the user’s birthday is broken, the malicious pro-

gram can start manipulating transaction data and forging
GeCaptcha images. To do so, the malicious program needs
to locate the line with TAN index in the server-generated

GeCaptcha image because the server expects a specific TAN
for confirming the (manipulated) transaction. As we de-
scribed in Sec. 4.2.1, we can segment the line with TAN
index from the text layer by using the AFW-based method.

After extracting the line with TAN index, the malicious
program can synthesize a fake GeCaptcha image from the
following known information: the user’s birthday, the line
with TAN index, the original transaction data TD1 and the
current time. We developed an image generation engine
to do this task. Figure 9 shows an example of the forged
GeCaptcha image by our image generation engine.

Figure 9: A GeCaptcha image synthesized from the
image in Fig. 2 after the birthday is recognized.

4.4 Human-involved semi-automated attack
In Automated Attack 2, the first stage is to recognize the

user’s birthday, which is done offline. Instead of building
its own recognizer, the malicious program can also send the
segmented birthday to a human solver to recognize the birth-
day. Such an attack will be useful if GeCaptcha is enhanced
to make the birthday recognition task very difficult.

The human solver is not necessarily the attacker himself.
The malicious program can create a CAPTCHA image from
the segmented birthday and send it to a web site under its
control as a challenge for login, which will be solved by a
visitor of the web site. After the malicious program obtains
the recognized birthday from a human observer, the second
stage of Automated Attack 2 can be launched as usual.

A salient feature of this attack is that the human solver is
needed only once and the whole process afterwards is fully
automated. This explains why we call it “human-involved
semi-automated attack”.

4.5 Efficiency of the proposed attacks
For 100 test images, the average running time of the in-

painting based attack is around 250 ms, and that of Stage 2
(online transaction manipulation) of the recognition based
attack is around 190 ms. The running time starts from read-
ing the real image from hard disk and ends with storage of
the forged image on hard disk.

Stage 1 (the birthday recognition part) of the birthday
recognition attack is relatively slow because the CW-SSIM
values have to be calculated for all the birthday digits and
all the reference images. The average time of birthday recog-
nition is around 5 seconds. The efficiency problem is not a
big issue because: 1) the recognition stage runs offline; 2)
the recognition can be made faster by replacing CW-SSIM
with a training-based recognizer; 3) the MATLAB code we
used has significant room for further optimization.

5. BREAKING CHCAPTCHA1 AND
CHCAPTCHA2

ChCaptcha1 and ChCaptcha2 are e-banking CAPTCHA
schemes used by two major banks in China. The two schemes
are very similar to GeCaptcha, so they can be broken by
generalizing the attacks described in the above section.

176

5.1 Breaking ChCaptcha1
ChCaptcha1 is similar to GeCaptcha, but with three main

differences. First, there is no paper list of TANs issued to
each user. Instead, four digits in the receiver’s account num-
ber are randomly selected and rendered in color. The user is
asked to input these four digits as a transaction-dependent
TAN. Second, there is no secret shared between the user
and the server for server authentication. Third, there are
no random grid lines. Figure 10 shows a ChCaptcha1 image
we collected from a real bank account. In the background
of the ChCaptcha1 image, multiple copies of the bank’s logo
are embedded. We replace these logos by white disks with
gray edges to avoid exposing the bank’s identity.

Figure 10: A ChCaptcha1 image. English transla-
tion of the texts: Line 1 – “receiver’s account”; Line 2
– “receiver’s name”; Line 3 – “TAN Please input the big
red digits in receiver’s account”.

In ChCaptcha1, the TAN is embedded into the CAPTCHA
image, so a recognition based attack is able to break the
CAPTCHA scheme. The attack is similar to Automated
Attack 2 on GeCaptcha: layer segmentation → transaction
data localization → TAN digit segmentation → TAN digit
recognition. The segmentation results of the ChCaptcha1
scheme is nearly perfect and the TAN digits are not ro-
tated, so the simpler correlation based method can be used
for recognition. We tested the recognition based attack on
100 ChCaptcha1 images and achieved a success rate of 100%.
The average running time of the attack is less than 150 ms.

5.2 Breaking ChCaptcha2
ChCaptcha2 does not depend on a paper list of TANs,

either. A 5-digit TAN is dynamically generated and em-
bedded into the CAPTCHA image like the user’s birth-
day in a GeCaptcha image. Different from the ChCaptcha1
scheme, the ChCaptcha2 TAN is not transaction dependent.
There are no random grid lines, either. Figure 11 shows a
ChCaptcha2 image we collected from a real bank account.

Figure 11: A ChCaptcha2 image. English transla-
tion of the texts: Line 1 – “Attention! Please check
the following information carefully”; Line 2 – “receiver’s
account”; Line 3 –“receiver’s name”; Line 4 –“amount”.

Compared with ChCaptcha1, ChCaptcha2 is more sim-
ilar to GeCaptcha. The two attacks on GeCaptcha can
both be generalized. The processes are nearly the same as
those on GeCaptcha, except that the color information is
also used for k-means clustering. We tested both attacks on
103 ChCaptcha2 images, and the success rate is 100%. The
efficiency of the recognition based attack is relatively low,
with an average running time of about 6-7 seconds. Note,

however, that the malicious program does not need to re-
spond to the server in real time as the CAPTCHA images
are supposed to be solved by human users who can be very
slow. On the other hand, the malicious program can still in-
teract with the user in real time because it does not need to
wait for the recognition result to forge a CAPTCHA image.

6. BREAKING LOGIN CAPTCHAS
In addition to the three e-banking CAPTCHA schemes for

transaction verification, we found 41 e-banking CAPTCHA
schemes for login. Our study on these e-banking CAPTCHA
schemes is alarming: all of them are insecure against auto-
mated segmentation attacks. Some of them are designed in
such a naive way that the segmentation information of the
CAPTCHA images have been fully or partially encoded in
the images themselves. Since character recognition is not
difficult if the characters have been well segmented [19, 21],
the success of our segmentation attacks have shown that all
of these e-banking login CAPTCHA schemes are not secure.

Our segmentation attacks on the 41 e-banking CAPTCHA
schemes for login are based on the same set of CAPTCHA-
breaking tools described in Sec. 3, so we do not repeat the
detail about how each login CAPTCHA scheme is broken.
Instead, in Table 1 we show segmentation results of some se-
lected login CAPTCHA schemes4. We also list the tool(s) we
used and weakness(es) we exploited in our attacks. Charac-
ter segmentation is used for all schemes, so it is not listed in
the table to save space. For each e-banking login CAPTCHA
scheme, we have tested the segmentation attack on at least
60 sample images to estimate the success rates.

7. MORE DISCUSSIONS
Our attacks on e-banking CAPTCHAs raise the ques-

tion of whether financial institutions should continue to use
CAPTCHAs for their e-banking services or they should leave
them for more secure solutions. That is, the following ques-
tion needs to be answered: can we enhance the broken e-
banking CAPTCHA schemes so that they are immune to the
proposed attacks? In this section, we first take a look at the
case of e-banking CAPTCHAs for transaction verification
and then discuss all e-banking CAPTCHAs as a whole.

7.1 Can transaction CAPTCHAs be enhanced?
Due to the similarity of the three transaction e-banking

CAPTCHA schemes under study, in this subsection we will
focus on GeCaptcha to ease our discussion.

One simple improvement is to compress the image with
a lossy algorithm like JPEG, in the hope that the bound-
aries between different objects are blurred so that the at-
tacks become difficult. Unfortunately, our attacks can be
easily enhanced to tolerate lossy compression by adding an
additional noise filter. Our experiments showed that the
inpainting based attack works even when the lowest quality
factor of JPEG compression is used. As a consequence, lossy
compression cannot enhance the security of GeCaptcha.

There are some other possible improvements: replacing
the random grid lines by random curves, balancing the three
text lines so that they have similar AFWs, changing the
birthday to a different form such as a number of secret

4Due to the page limit, we cannot list all login CAPTCHA
schemes here. A full list is available at http://www.
hooklee.com/default.asp?t=eBankingCAPTCHAs.

177

http://www.hooklee.com/default.asp?t=eBankingCAPTCHAs
http://www.hooklee.com/default.asp?t=eBankingCAPTCHAs

Table 1: Selected e-banking login CAPTCHA schemes we studied, with results of our segmentation attacks.

Financial institution(s)/e-banking login
CAPTCHA scheme

CAPTCHA
image(s)

Segmentation
result(s)

Tool(s) used, Weakness(es)
exploited

Success
rate

13 German banks
3-means clustering,

morphological operations
100%

Hundreds other German banks
2-means clustering, line

detection, image inpainting
100%

A Swiss bank with branches in Europe, Asia,
North America and Africa

2-means clustering 100%

A bank based in Latin America with branches
in Europe, Asia, Australasia and Africa

2-means clustering 100%

US e-banking CAPTCHA 1
2/3-means clustering, line
detection, image inpainting

100%

US e-banking CAPTCHA 2 3-means clustering 100%

US e-banking CAPTCHA 3 3-means clustering 100%

US e-banking CAPTCHA 4 2/3-means clustering 100%

Three CUs in Australia
3-means clustering,

morphological operations
99.5%

Chinese e-banking CAPTCHA 1 3-means clustering 100%

Chinese e-banking CAPTCHA 2
2-means clustering, image

inpainting
100%

Chinese e-banking CAPTCHA 3
4-means clustering,

morphological opening
100%

Chinese e-banking CAPTCHA 4
morphological cleaning,
character intensity < 120

100%

Chinese e-banking CAPTCHA 5
3-means clustering,

morphological cleaning
98.3%

Chinese e-banking CAPTCHA 6
grayscale foreground vs. colored

noises
100%

Chinese e-banking CAPTCHA 7 2-means clustering 100%

Chinese e-banking CAPTCHA 8 3-means clustering 100%

Chinese e-banking CAPTCHA 9 2/3-means clustering 100%

Chinese e-banking CAPTCHA 10
2-means clustering,

morphological operations
95.1%

icons, changing the order of different layers, etc. Unfortu-
nately, none of these improvements can resist the two pro-
posed automated attacks simultaneously. Even if we com-
bine all of them, the human-involved semi-automated attack
still works, as long as the text layer can be extracted.

A more effective improvement is to change the gray scale
of different objects in the GeCaptcha image so that they
overlap with each other in the histogram. This will make
k-means clustering fail. For an enhanced GeCaptcha image
shown in Fig. 12, none of our proposed attacks works.

Figure 12: An enhanced GeCaptcha image in which
different foreground layers have similar gray values.

Unfortunately, the failure of our proposed attacks does
not mean that more advanced attacks cannot be developed.
In fact, based on an idea similar to the generalized Hough
transform [37], we can develop a more advanced attack. The
basic idea is as follows: since the malicious program knows
many texts embedded in a GeCaptcha image and the types

of distortions applied to these texts, it can build a database
of shape templates of these texts according to all the possible
rendering configurations. Then, the malicious program tries
to search all shape templates in the GeCaptcha image to
find the one leading to the best match at a specific location.
This will tell where the target texts and their contextual
texts are, which can then be segmented and manipulated
or recognized. Here, we can show an example for the en-
hanced GeCaptcha image in Fig. 12. Let us assume that
the malicious program wants to manipulate the receiver’s
account number. Since the malicious program knows the re-
ceiver’s account number, it can create a number of templates
and search for them in the GeCaptcha image. The maximal
correlation will show the correct location of the receiver’s
account number. A 2-means clustering process can be per-
formed before the searching process starts so that only the
foreground will be matched. Since the background and the
foreground have to maintain a considerable contrast to make
the foreground visible, the 2-means clustering should always
work very well. Figure 13 shows the result of searching for
the receiver’s account number. We can see that it is exactly
localized, and hence transaction manipulation becomes easy.

The template searching based attack is very powerful. It

178

(a) result of 2-means clustering based segmentation

(b) correlation map

Figure 13: The result of searching for the account
number “12345678” in Fig. 12. The green rectangle
shows the location with the maximal correlation.

works well for transaction e-banking CAPTCHAs because
many characters known to the malicious program (e.g., trans-
action data/time) have to be embedded into the CAPTCHA
image. To improve security against such an attack, we must
increase the number of distinct text rendering and distortion
methods so that the searching process becomes extremely
slow and/or storing all templates becomes impossible. But
this will increase the complexity of the CAPTCHA scheme
itself. It is also doubtful if there are enough rendering pa-
rameters and distortions because: 1) both machines and hu-
mans are not sensitive to small changes of rendered texts;
2) distortions have to remain light to maintain visibility of
the texts and usability of the CAPTCHA scheme.

7.2 Are CAPTCHAs good for e-banking at all?
While it seems difficult to improve the security of transac-

tion CAPTCHAs, we still have the last (somewhat circular
reasoning) resort: to render all texts as strong CAPTCHAs.
This is also the way to enhance e-banking CAPTCHAs for
login. Here, “strong” means that any automated attacks
based on the state-of-the-art techniques is impractical. Then,
the question becomes if such strong CAPTCHAs do exist.
This question is difficult to answer conclusively as an accu-
rate definition of hard AI problems does not exist. More-
over, unavailability of (publicly) known attacks on a specific
CAPTCHA scheme does not mean that such attacks do not
exist. For instance, Google’s reCAPTCHA uses words that
cannot be recognized by the state-of-art OCR tools to gener-
ate strong CAPTCHA images, which is believed to be secure
due to the creative way of CAPTCHA image generation.
However, recently some automated attacks on reCAPTCHA
were reported [38]. Although reCAPTCHA can be updated,
the attacks will also evolve and new attacks may emerge.

In addition to the security problem of CAPTCHAs, there
is also a well-known tradeoff between security and usabil-
ity [39]. To make a CAPTCHA scheme more secure, often
usability has to be compromised, and vice versa. For e-
banking systems, this security-usability tradeoff is more crit-
ical. This is because customers who have trouble with strong
CAPTCHAs may complain and even switch to other finan-
cial institutions. We believe this is part of the reason why
many financial institutions have not deployed CAPTCHAs
or have deployed less secure (but more usable) CAPTCHAs.

Relying on CAPTCHAs for e-banking has a salient draw-
back related to the tradeoff between security and usability:
financial institutions have to be prepared to patch their sys-
tem at any time since new attacks may appear at any time.
This will inevitably increase maintenance costs. Financial
institutions may choose to patch their e-banking systems
less frequently, thus leaving security holes in their systems.

The nature of CAPTCHAs implies that they are vulner-

able to human-involved attacks. Compared to other appli-
cations of CAPTCHAs, attackers will have more incentives
to employ cheap labor to solve e-banking CAPTCHAs [40].
Although the attacker has to ensure real-time response in
some cases, this can be achieved if the attacker can exploit
the user base of a popular web site. In case the attacker can
infect a large number of computers, which has already been
happening in today’s Internet, the chance to be successful
for at least one victim can be practically high. Since 2007,
some malware has been found to use this strategy [41].

We can also compare e-banking CAPTCHAs with tradi-
tional schemes and from an economic perspective. In tradi-
tional applications of CAPTCHAs, breaking a CAPTCHA
scheme leads to only abuse of the resources protected by the
CAPTCHA scheme. However, for e-banking systems, break-
ing a CAPTCHA scheme can cause a potentially huge loss
for both users and banks. As a whole, we have the feeling
that CAPTCHAs may be incapable of protecting e-banking
systems, due to the higher security requirements. In [42],
Jakobsson expressed the same concern and proposed an al-
ternative solution called “CAPTCHA-free throttling”.

Based on the above discussion, we call for cautions in de-
ploying e-banking CAPTCHAs. For financial institutions
relying only on CAPTCHAs, we suggest moving to alterna-
tive solutions or at least combining CAPTCHAs with other
solutions. Among all alternative solutions, we feel that hard-
ware security tokens are more promising. Not all hardware
based solutions can resist MitM attacks, but at least some
can, using transaction-dependent TANs, encrypted chan-
nels, and/or trusted display/keypad. For instance, if a hard-
ware token is equipped with a trusted display and can sign
the transaction data, the user can ensure “what she sees is
what she signs”, thus rendering MitM attacks impossible.
Of course, hardware based solutions are not perfect, either.
Their main disadvantage is that either the financial institu-
tion or the customer has to bear the additional costs.

8. CONCLUSIONS
This paper reports a comprehensive study on e-banking

CAPTCHA schemes, including three for transaction veri-
fication and 41 schemes for login. We propose a new set
of image processing and pattern recognition techniques to
break all the e-banking CAPTCHA schemes with a suc-
cess rate equal to or close to 100%. We have also shown
that it is a nontrivial task to enhance e-banking CAPTCHA
schemes to ensure both security and usability. We thus
raise the question if financial institutions should rely on e-
banking CAPTCHAs at all. Our opinion is that e-banking
CAPTCHAs are better replaced by other alternative solu-
tions such as those based on hardware security tokens.

9. ACKNOWLEDGMENTS
Shujun Li was supported by the Zukunftskolleg (“Future

College”) of the University of Konstanz, Germany, which is
part of the“Excellence Initiative”Program of the DFG (Ger-
man Research Foundation). The work of S. Amier Haider
Shah, M. Asad Usman Khan and Syed Ali Khayam was par-
tially supported by the Pakistan National ICT R&D Fund.

10. REFERENCES
[1] American Bankers Association. Consumers prefer

online banking. http://www.aba.com/Press+Room/

179

http://www.aba.com/Press+Room/092109ConsumerSurveyPBM.htm

092109ConsumerSurveyPBM.htm, 2009.

[2] Bank Austria. mobileTAN information.
http://www.bankaustria.at/de/19741.html, 2007.

[3] Cronto Limited. Cronto’s visual cryptogram.
http://www.cronto.com/visual_cryptogram.htm,
2008.

[4] Volksbank Rhein-Ruhr eG. Bankgeschäfte online
abwickeln: Mit Sm@rtTAN optic bequem und sicher
im Netz. http://www.voba-rhein-ruhr.de/
privatkunden/ebank/SMTop.html, 2009.

[5] T. Weigold, T. Kramp, R. Hermann, F. Höring,
P. Buhler, and M. Baentsch. The Zurich Trusted
Information Channel – an efficient defence against
man-in-the-middle and malicious software attacks. In
TRUST’2008, pages 75–91.

[6] G. A. F. Seber. Multivariate Observations. John Wiley
& Sons, Inc., 2004.

[7] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester.
Image inpainting. In SIGGRAPH’2000, pages 417–424.

[8] M. M. Oliveira, B. Bowen, R. McKenna, and Y.-S.
Chang. Fast digital image inpainting. In IASTED
VII’2001, pages 261–266.

[9] F. Y. Shin. Image Processing and Mathematical
Morphology. CRC, 2009.

[10] S. J. Orfanidis. Optimum Signal Processing. 2 edition,
2007.
http://www.ece.rutgers.edu/~orfanidi/osp2e.

[11] Z. Wang and E. P. Simoncelli. Translation insensitive
image similarity in complex wavelet domain. In
ICASSP’2005, pages 573–576.

[12] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In
EUROCRYPT’2003, pages 294–311.

[13] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra:
A CAPTCHA that exploits interest-aligned manual
image categorization. In CCS’2007, pages 366–374.

[14] A. Basso and F. Bergadano. Anti-bot strategies based
on human interactive proofs. In Handbook of
Information and Communication Security, chapter 15,
pages 273–291. Springer, 2010.

[15] G. Mori and J. Malik. Recognizing objects in
adversarial clutter: Breaking a visual CAPTCHA. In
CVPR’2003, pages 134–141.

[16] G. Moy, N. Jones, C. Harkless, and R. Potter.
Distortion estimation techniques in solving visual
CAPTCHAs. In CVPR’2004, pages 23–28.

[17] K. Chellapilla and P. Y. Simard. Using machine
learning to break visual Human Interaction Proofs
(HIPs). In NIPS’2004, pages 265–272, 2005.

[18] S. Hocevar. PWNtcha: Pretend we’re not a Turing
computer but a human antagonist.
http://caca.zoy.org/wiki/PWNtcha, 2004.

[19] K. Chellapilla, K. Larson, P. Simard, and
M. Czerwinski. Computers beat humans at single
character recognition in reading based human
interaction proofs (HIPs). In CEAS’2005.

[20] J. Yan and A. S. El Ahmad. Breaking visual
CAPTCHAs with näıve pattern recognition
algorithms. In ACSAC’2007, pages 279–291.

[21] J. Yan and A. S. El Ahmad. A low-cost attack on a
Microsoft CAPTCHA. In CCS’2008, pages 543–554.

[22] P. Golle. Machine learning attacks against the Asirra
CAPTCHA. In CCS’2008, pages 535–542.

[23] J. Tam, J. Simsa, S. Hyde, and L. von Ahn. Breaking
audio CAPTCHAs. In NIPS’2008, pages 1625–1632,
2009.

[24] E. Bursztein and S. Bethard. Decaptcha: Breaking
75% of eBay audio CAPTCHAs. In WOOT’2009.

[25] C. J. Hernandez-Castro and A. Ribagorda. Pitfalls in
CAPTCHA design and implementation: The Math
CAPTCHA, a case study. Computers & Security,
29(1):141–157, 2010.

[26] A. Hindle, M. W. Godfrey, and R. C. Holt. Reverse
engineering CAPTCHAs. In WCRE’2009, pages
59–68.

[27] C. J. Hernandez-Castro and A. Ribagorda. Remotely
telling humans and computers apart: An unsolved
problem. In iNetSec’2009.

[28] B. Pinkas and T. Sander. Securing passwords against
dictionary attacks. In CCS’2002, pages 161–170.

[29] C. J. Mitchell. Using human interactive proofs to
secure human-machine interactions via untrusted
intermediaries. In Security Protocols’2006, pages
164–170, 2009.

[30] I. Fischer and T. Herfet. Visual CAPTCHAs for
document authentication. In MMSP’2006, pages
471–474.

[31] M. Szydlowski, C. Kruegel, and E. Kirda. Secure input
for Web applications. In ACSAC’2007, pages 375–384.

[32] D. J. Steeves and M. W. Snyder. Secure online
transactions using a CAPTCHA image as a
watermark. US Patent 2007/0005500.

[33] W. Wieser. Captcha recognition via averaging.
http://www.triplespark.net/misc/captcha, 2007.

[34] R. C. Gonzalez and R. E. Woods. Digital Image
Processing. Prentice Hall, 2008.

[35] A. Criminisi, P. Pérez, and K. Toyama. Object
removal by exemplar-based inpainting. In CVPR’2003,
pages 721–728.

[36] P. Getreuer. tvreg: Variational imaging methods for
denoising, deconvolution, inpainting, and
segmentation.
http://www.math.ucla.edu/~getreuer/tvreg.html,
2009.

[37] D. H. Ballard. Generalizing the Hough transform to
detect arbitrary shapes. Pattern Recognition,
13(2):111–122, 1981.

[38] J. Wilkins. Strong CAPTCHA guidelines: v1.2.
http://bitland.net/captcha.pdf, December 2009.

[39] J. Yan and A. S. El Ahmad. Usability of CAPTCHAs
or usability issues in CAPTCHA design. In
SOUPS’2008, pages 44–52.

[40] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy,
G. M. Voelker, and S. Savage. Re: CAPTCHAs –
Understanding CAPTCHA-solving services in an
economic context. In USENIX Security’2010.

[41] BBC News. PC stripper helps spam to spread. http:
//news.bbc.co.uk/2/hi/technology/7067962.stm,
2007.

[42] M. Jakobsson. CAPTCHA-free throttling. In
AISec’2009, pages 15–21.

180

http://www.aba.com/Press+Room/092109ConsumerSurveyPBM.htm
http://www.bankaustria.at/de/19741.html
http://www.cronto.com/visual_cryptogram.htm
http://www.voba-rhein-ruhr.de/privatkunden/ebank/SMTop.html
http://www.voba-rhein-ruhr.de/privatkunden/ebank/SMTop.html
http://www.ece.rutgers.edu/~orfanidi/osp2e
http://caca.zoy.org/wiki/PWNtcha
http://www.triplespark.net/misc/captcha
http://www.math.ucla.edu/~getreuer/tvreg.html
http://bitland.net/captcha.pdf
http://news.bbc.co.uk/2/hi/technology/7067962.stm
http://news.bbc.co.uk/2/hi/technology/7067962.stm

FIRM: Capability-based Inline Mediation of Flash Behaviors

Zhou Li, XiaoFeng Wang
Indiana University, Bloomington

{lizho,xw7}@indiana.edu

ABSTRACT
The wide use of Flash technologies makes the security risks
posed by Flash content an increasingly serious issue. Such
risks cannot be effectively addressed by the Flash player,
which either completely blocks Flash content’s access to web
resources or grants it unconstrained access. Efforts to mit-
igate this threat have to face the practical challenges that
Adobe Flash player is closed source, and any changes to it
need to be distributed to a large number of web clients. We
demonstrate in this paper, however, that it is completely fea-
sible to avoid these hurdles while still achieving fine-grained
control of the interactions between Flash content and its
hosting page. Our solution is FIRM, a system that embeds
an inline reference monitor (IRM) within the web page host-
ing Flash content. The IRM effectively mediates the inter-
actions between the content and DOM objects, and those
between different Flash applications, using the capability
tokens assigned by the web designer. FIRM can effectively
protect the integrity of its IRM and the confidentiality of
capability tokens. It can be deployed without making any
changes to browsers. Our evaluation based upon real-world
web applications and Flash applications demonstrates that
FIRM effectively protects valuable user information and in-
curs small overhead.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Security

Keywords
Adobe Flash, Cross-site scripting, Inline Reference Monitor

1. INTRODUCTION
Flash, a multimedia platform first introduced in 1996,

has been extensively used today to deliver dynamic web
contents, including animations, advertisements, movies and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

others. Websites such as YouTube serve hundreds of mil-
lions of videos every day. Popular portals, such as CNN, Ya-
hoo, etc., broadcast news and host advertisements through
Flash contents. The pervasiveness of Flash, however, brings
in new security and privacy concerns. Adobe Flash player of-
fers interfaces for a Flash application (Shock-Wave-Flash file
or SWF) to operate on the DOM (document object model)
objects of its hosting page, other SWF files and file systems.
Through ActionScript functions such as getURL, Flash con-
tent can even inject JavaScript code into web content. With-
out proper control, it is conceivable that malicious Flash
code can wreak such havoc as stealing sensitive informa-
tion (e.g., cookies, passwords) and modifying high-integrity
data (e.g., account balances). Such threats can also come
from legitimate yet vulnerable Flash content: as discovered
recently [29, 34, 18], a large number of existing Flash appli-
cations contain serious security flaws that can be exploited
to launch attacks like cross-site scripting (XSS), cross-site
request forgery (XSRF), and others. As an example, last
year, an XSS flaw was found in the Flash content hosted by
the SSL e-banking site of Marfin Egnatia Bank [23], through
which an attacker can inject malicious scripts to steal cre-
dentials from the bank’s customers.

Adobe Flash player provides security mechanisms to con-
trol interactions between Flash code and its hosting page:
web developers can determine whether a Flash application
should be allowed to operate on DOM objects, for exam-
ple, through script injection. Specifically, when embedding
the Flash application, the web developer declares a prop-
erty named allowScriptAccess with one of the values: al-
ways(scripting allowed), sameOrigin(scripting allowed only
when the hosting page and Flash code are from same origin)
or never(scripting prohibited). Once scripting is allowed,
the injected code automatically acquires unlimited access
to DOM objects. Adobe also controls the interactions be-
tween different SWFs according to Same Origin Policy [38].
SWF files and other files are grouped into sandboxes by
virtue of the domains they originate from. A Flash appli-
cation can directly access the resources within its sandbox
but needs mediation for any cross-domain access. This secu-
rity control, again, is black-and-white, which either grants
a Flash application and other SWF files it downloads full
access or completely denies their access. Such a treatment
turns out to be too coarse-grained to be useful for real-world
Flash serving websites. Many legitimate Flash applications
need script injection. Examples include CNN [5] that lets
Flash advertisements utilize JavaScript to enrich their vi-
sual effects, and Yahoo [15] that allows such advertisements
to track user clicks and profile through scripts. Overly re-
stricting Flash/DOM interactions can significantly reduce
the utility of Flash and is often suggested against [17]. As

181

a result, many websites are forced to give Flash code un-
limited access, which exposes valuable information assets on
the web client to the threat of malicious or vulnerable Flash
content.

Our approach. A practical solution to this problem is
by no means trivial. Modifying the security mechanism of
Adobe Flash player is not feasible, as the software is closed
source. Even if this can be done, deployment of a new mech-
anism requires changes to every client’s browser, a slow and
painful process. In this paper, we present an effective and
convenient alternative. Our techniques allow Flash host-
ing sites to offer immediate protection to their customers’
valuable web contents. This is achieved through an Inline
Reference Monitor (IRM) system, called FIRM, that em-
beds an access control mechanism entirely into web pages.
Through FIRM, the website designer can assign capability
tokens to different Flash applications the site hosts. Each
token is associated with a set of security policies that spec-
ify an application’s privileges over web contents, including
DOM objects and other SWF files. Such a policy is enforced
by an IRM that wraps both ActionScript functions within
SWF files and DOM functions. As an example, consider
a Flash advertisement that needs to run a script to track
viewers’ clicks. Our approach first analyzes the binary code
of the Flash, instruments it with a Flash wrapper and also
grants it a capability token. The new Flash code is served
within a web page that also includes a DOM wrapper and a
set of security policies. When a user is browsing the page,
the Flash wrapper intercepts the getURL call from the ad-
vertisement and works with the DOM wrapper to decide
whether to let the call proceed based upon the capability.

FIRM offers flexible and fine-grained control over Flash /
DOM and Inter-Flash access. It can be completely embed-
ded into a web page by web developers, and therefore avoids
any browser-side changes, which makes its deployment in-
stant. Our technique is also reliable: the design of FIRM
prevents unauthorized dynamic contents, such as scripts and
SWF files, from stealing authorized parties’ capability to-
kens or modifying the IRM and its policy data. We also
built a tool for automatic analysis and instrumentation of
Flash code. We evaluated our approach on phpBB [11],
WordPress [14] and Drupal [6], 3 extremely popular web-
design systems, and 9 real-world Flash applications. Our
study shows that FIRM effectively mediates Flash behav-
iors, incurs small overheads and is convenient to use.

Contributions. We summarize the contributions of the
paper as follows:

•Novel Flash mediation techniques. To the best of our knowl-
edge, FIRM is among the first attempts to enforce inline me-
diation of Flash/DOM interactions. This is achieved through
a novel capability mechanism, which employs randomized,
unpredictable tokens to differentiate the access requests that
come directly or indirectly (through JavaScript) from the
Flash applications with different privileges. Our mechanism
can also effectively protect itself from malicious web con-
tents, and automatically instrument Flash applications and
web pages.

•Capability-based inlined mediation of JavaScripts. The be-
haviors of Flash applications cannot be effectively mediated
without proper control of the scripts they spawn. Differ-
ent from the prior approach [36] that uses the same set of
policies to control all scripts within a web page, FIRM can
enforce different policies on different scripts, according to
the privileges associated with their capability tokens. This
finer-grained access control mechanism is enforced with the

collaborations between the DOM wrapper and the Flash
wrapper.

•Implementation and Evaluation. We implemented a proto-
type of FIRM and evaluated it on popular web applications
and real-world Flash. The outcomes of this study demon-
strate the efficacy of our techniques.

Roadmap. The rest of the paper is organized as follows.
Section 2 introduces the attack techniques in Flash mal-
ware. Section 3 surveys the design of FIRM and the adver-
sary model. Section 4 elaborates the techniques for Flash
inline mediation. Section 5 documents our Flash analysis
and instrumentation techniques. Section 6 reports our ex-
perimental study. Section 7 discusses the limitations of our
techniques and future research. Section 8 compares our ap-
proach with prior work, and Section 9 concludes the paper.

2. FLASH THREATS
In this section, we briefly review the threats FIRM is de-

signed to mitigate. These threats come from malicious or
vulnerable Flash applications.

Illegitimate operations on DOM objects. Through
Adobe Flash player, Flash code can directly access DOM
objects. Such access, if unmediated, could cause leak of sen-
sitive user data (e.g., cookie) as well as unexpected change of
browser behavior. A prominent example is the re-direction
attack [21]: a malicious Flash application can redirect the
user’s browser to a malicious website, where subsequent at-
tacks like drive-by download, phishing, etc. can happen.

Script injection. A Flash application can inject JavaScript
code into its hosting web page through ActionScript calls
such as getURL, which can be exploited to launch an XSS
attack. This threat has been widely reported [18, 8, 34].
An example in Figure 1 shows how it happens through vul-
nerable Flash code. Flash applications (particularly adver-
tisements) often use the variable clickTag to receive URLs
from its hosting page and redirect the user to these links.
This feature can be exploited by the attacker, who can cre-
ate a link that invokes the Flash code with clickTag involv-
ing JavaScript code. Once the victim clicks on that link, the
Flash injects the script into her web page, using the origin of
its hosting page. To eliminate such a threat, a website needs
to detect and fix the flaws in every SWF file it stores or links
to. This can introduce considerable overhead, particularly
for the websites such as Yahoo that host hundreds of thou-
sands of Flash advertisements from other sites. Moreover,
malicious scripts can also be injected by malicious Flash ap-
plications, which allow them to indirectly access the victim’s
data.

vulnerable.swf
...
var location = _root.clickTag;
getURL(location, “_self”);
...

http://url/vulnerable.swf?
clickTag=javascript:evilCode

JavaScript:
EvilCode

Figure 1: Vulnerable Flash with XSS flaw

Other threats. Though less known, other attack avenues
do exist during Flash/DOM interactions and inter-Flash in-
teractions. For example, once a Flash application shares
a single function to another Flash, the Flash player auto-
matically exposes all its functions to the latter. As another
example, Flash can export function interfaces to its hosting
page, which can be invoked by any script in the page. This
channel can be used to bypass the security policy enforced
by the Flash player: consider that a Flash application is not

182

allowed to be touched by another Flash but needs to share
its functions to the hosting page; the latter can then inject
scripts into the page to gain access to those functions.

Assumptions. Our approach protects the user’s valuable
web content, such as cookies, passwords and account num-
bers, from unauthorized access by malicious Flash code or
the vulnerable Flash exploited by the adversary. We as-
sume that the website hosting SWF files is not under the
control of the adversary and implements FIRM correctly.
Also, though FIRM can protect itself against malicious web
contents, it is not resilient to a compromised browser or
operating system. For example, a malware plug-in can cer-
tainly bypass the mediation of our IRM. Such a threat is
out of the scope of this work. Finally, FIRM is designed
to regulate Flash/DOM and inter-Flash interactions. Other
Flash-related attacks, like filling web surfer’s clipboard with
malicious hyperlinks [2], are not the focus of our approach
and left to our future research.

3. OVERVIEW
FIRM includes a Flash wrapper for mediating Flash ac-

tions and a DOM wrapper for controlling the activities of
the scripts. Both wrappers interact with a capability man-
ager that bootstraps the reference monitor with randomly
generated capability tokens, and maintains a policy base to
map these tokens to the security policies set by the web
designer. The wrappers and the capability manager consti-
tute the IRM part of FIRM. The other FIRM component is
the tool that automatically embeds the Flash wrapper into
a SWF file through analyzing and instrumenting its binary
code. Figure 2 illustrates this design.

3.1 Design
The website that uses FIRM first embeds our IRM into the

web page that needs protection. Whenever the page is re-
quested by a web client, the site automatically parameterizes
it with a set of randomized capability tokens, which are as-
sociated with pre-determined security policies (Section 4.1).
These policies grant different privileges to different SWF
files, as determined by the web designer a priori. The token
of each Flash application is checked by the wrappers against
the policies to control the Flash’s access to the web contents
(Section 4.2). This idea can be explained with an exam-
ple in Figure 3, which describes a Flash advertisement with
FIRM instrumentation. In the example, FIRM permits the
Ad script to get the data necessary for counting a viewer’s
clicks, but denies its requests to read cookies, passwords and
other sensitive information. Our approach can also protect
the Flash code through mediating the access of scripts and
other SWF files to the call interfaces it exposes to its hosting
page (Section 4.2).

Flash
Analyzer

Instrument Flash
Wrapper

DOM
Wrapper

DOM
Objects

Token Control

IRM

Capability Manager
Policy Base

Figure 2: Overview.

To protect the IRM, our approach prohibits other scripts
to wrap DOM functions (Section 4.3). This is enforced
through regulating the methods (e.g., __defineGetter__,
__defineSetter__) necessary for performing such an oper-
ation. The IRM also forbids unauthorized parties to read or

Flash
Wrapper

DOM
Wrapper

Blocked

Allowed

Cookie

Function

DOMTouch
Cookie
Invoke
Function

Token

Token

Figure 3: An example demonstrates the design of FIRM.

write its code and the policy base, or access sensitive FIRM
data, such as capability tokens.

Though the DOM wrapper and the capability manager
can be manually built into a web page by the web devel-
oper, an automatic tool is necessary for instrumenting SWF
files with the Flash wrapper, as they are often developed by
third parties and can be updated frequently. FIRM therefore
provides a tool that automatically disassembles the binary
code of a SWF file, identifies its access-related function calls
(e.g., getURL) and internal functions exposed to other do-
mains or JavaScript, and then wraps these functions with
mediation code (Section 5).

4. INLINE MEDIATION
Inline Reference Monitor was proposed in [24] as a mecha-

nism to mediate access to Operating System resources. It is
built directly into an application’s code to control program
behaviors, and therefore does not need OS or hardware level
supports. Similarly, the IRM used in our research is embed-
ded in web contents, which avoids any changes to the client’s
browser. In this section, we elaborate our design and imple-
mentation of the IRM, which is composed of the capability
manager, the Flash and DOM wrappers, and show how these
components work together to mediate Flash behaviors and
safeguard their own integrity and data confidentiality.

4.1 Capability
To mediate access to DOM and Flash functions, the IRM

needs to know the privilege that the caller of these functions
possesses. To this end, FIRM adopts a capability mecha-
nism that requires each caller to produce a capability token
to gain access. A capability [33] is a token that indicates
a set of access rights a subject (e.g., Flash, scripts) has on
objects (e.g., cookie, text item, functions). When the sub-
ject is about to access a protected object, this operation is
checked against the capability: it is allowed to proceed only
when the subject has the access right, as specified by a se-
curity policy associated with the capability. In FIRM, such
capability tokens are maintained by the capability manager,
which was implemented as a JavaScript program in our re-
search. Following we elaborate how the mechanism works.

Capability management. Every subject with access poli-
cies specified by the web designer is assigned a capabil-
ity token. An instrumented Flash application acquires its
token from the capability manager when it is initialized.
Specifically, the Flash exposes a callback function to the
JavaScript, through ExternalInterface.addCallback. The
function is called by the capability manager to parameter-
ize the Flash with its token and the related security policies,
and disabled by the IRM afterwards to prevent unauthorized
invocations. This treatment avoids hard-coding tokens into
these applications, a process that requires recompiling the
applications each time their hosting web page is requested
by a web client.

The capability token used in FIRM is a random string.
It is designed to be sufficiently long (≥ 10 bytes) to de-
feat a brute-force attack in which the adversary tries to use
random guesses to produce a correct token. Each capabil-

183

ity token is associated with a set of security policies that
specify a subject’s access rights to different objects. The
capability manager organizes those tokens and their policies
into a policy base, which is stored in a local variable within
a function called Checker. Checker encapsulates the policy
base to mediate the access to its content. To retrieve poli-
cies, one has to call the function with a capability token.
The IRM also hides its own capability in local variables and
controls all the channels to read the code of Checker and
its other functions. This technique is elaborated in Sec-
tion 4.3. Another measure FIRM takes to prevent leaks of
tokens to unauthorized parties is prohibiting a SWF file to
share its capability with others. To this end, the mediation
code our Flash analyzer injects into the SWF utilizes ran-
domized, unpredictable names for the variables involved in
capability-related operations to preclude any references to
them from other part of the Flash code (see Section 5).

Table 1: Protected objects and properties

Type Objects Properties

DOM

Document
cookie, domain, lastModified

referrer, title, URL

Window defaultStatus, status

Location hash, host, hostname, href, search,

and Link port, protocol, pathname, toString

History current, next, previous, toString

Navigator
appCodeName, appName, systemLanguage

userAgent, userLanguage, platform

Form action

Form checked, defaultChecked, defaultValue

Elements name, selectedIndex, toString, value

Text innerHTML, innerText

Flash Functions -

Security policies. Security policies are specified by the
web designer for controlling subjects’ access rights. A policy
can be described by a 4-tuple < s, o, a, c >, where s, o and c
denotes a subject, an object and the capability of the subject
respectively, and a is the action s requests to perform on
o. In FIRM, a subject is either a Flash application or the
JavaScript code from a specific domain; an object describes
DOM objects, or the functions or variables of JavaScript
code and SWF files (see Table 1 for examples); the action
element in the tuple can be “read”, “write”, “execute” or left
blank to indicate denial of access.

Whenever a capability token appears with a request from
a subject s′ with an operation a′ on the object o′, the IRM
searches the policy base to retrieve all the policies containing
c′. The request is permitted if one of the policies contains s′,
o′, a′ and c′, and denied otherwise. FIRM also includes a set
of default policies specified by the web developer, which use
a wildcard symbol ‘*’ to match any subject, object, action
or capability token. When the symbol is applied to c in the
tuple, the policy is used on a subject that does not carry
any capability. The default policies can be used to define a
set of basic operations open to even untrusted Flash content
or scripts, for example, a read on a nonsensitive text item,
or avoid verbose specifications of the permissions for every
subject/object pair. They are overruled by other policies
once a conflict happens. For example, given two policies
< s, cookie, , c > and < s, ∗, read, c >, a Flash code s is
denied the access to the cookie.

4.2 Mediation
The objective of inline mediation is to ensure that the

web content under our protection can only be accessed by

subjects with sufficient privileges, as indicated by their ca-
pability tokens. To this end, we designed and implemented
a DOM wrapper and a Flash wrapper that work together to
control both Flash/DOM interactions and inter-Flash inter-
actions. We elaborate this approach below.

Flash and DOM wrappers. To mediate Flash code and
its script’s access to web contents, we need to control DOM
and ActionScript functions used in such an access. This is
achieved in our research through wrapping these functions
with mediation code. Specifically, we developed two wrap-
pers, the DOM wrapper that controls DOM functions and
the operations of scripts, and the Flash wrapper that medi-
ates the use of ActionScript functions.

Sample code for wrapping the getter of document.cookie
//1. get pointer to the old getter
var oldGetter = document.__lookupGetter__("cookie");
//2. define the new getter
function newGetter() {
 if(Checker(currentToken))
 return oldGetter();
 else
 throw “unauthorized access”;
}
//3. replace the old getter with new getter
document.__defineGetter__("cookie", newGetter);

Figure 4: An example of redefining getter.

The DOM wrapper redefines the get and set methods of
the DOM objects that need to be protected. Most DOM
objects, such as document, window, forms, and the input
box offer these methods for scripts to read or write their
properties such as cookies, locations and others. In Mozilla
Firefox 3.5, FIRM wraps these methods through __defi-
neGetter__ and __defineSetter__, two methods specified
under Object.prototype. Other browsers, including IE8,
Google Chrome, Safari and Opera, use different methods,
as described in Table 2. The web server that implements
FIRM can use scripts to identify the type of the browser
a client is running (from Navigator.appName) before ren-
dering a web page that wraps its methods. Figure 4 il-
lustrates an example in which the get method of docu-
ment.cookie is supplemented with the code that mediates
the access to the property. Different from most properties,
document.location and window.location do not have get
and set. On the other hand, these two properties need
protection because otherwise, untrusted scripts can modify
them to redirect the browser to malicious websites. Our
solution is to make use of the method Object.watch to
monitor these properties: once the method detects that the
properties are about to be changed by the party without
a proper capability1, the IRM simply aborts the redirec-
tion operation if the target is not permitted. Our approach
also wraps DOM functions like document.alert, which pops
up windows (e.g., an alert). These functions could be used
in social engineering, and therefore need mediation. Other
part of the hosting page that the DOM wrapper modifies
includes the JavaScript code for accessing DOM objects or
Flash resources (through the call interfaces exposed by SWF
files). Such code is instrumented to add in the mechanism
that checks the capability tokens of the party invoking it or
attaches its token to every access request it makes.

The Flash wrapper controls ActionScript functions like
getURL, navigateToURL, ExternalInterface.call and fs-
command. These functions can be used to invoke the script

1watch can intercept the operations that modify the objects
it is monitoring. An authorized party who wants to change
the object needs to place its capability token to a “mark”
variable, which is discussed later in this section.

184

Table 2: API variations in different browsers

Browser Define Getter Define Setter Get Setter Get Setter Watch

Mozilla Firefox 3.5 defineGetter defineSetter lookupGetter lookupGetter watch

IE 8 defineProperty defineProperty getOwnPropertyDescriptor getOwnPropertyDescriptor onPropertyChange

Google Chrome 4 defineGetter defineSetter lookupGetter lookupGetter -

Safari 4 defineGetter defineSetter lookupGetter lookupGetter -

Opera 10 defineGetter defineSetter lookupGetter lookupGetter -

already in the hosting web page or inject new scripts. In-
dividual SWF files stored in the hosting website are also
instrumented with the code for acquiring capability tokens
and their policies from the capability manager as soon as
they are bootstrapped. This is achieved by exposing an
ActionScript function to JavaScript, through which the ca-
pability manager parameterizes the SWF file. The mission
of the Flash wrapper includes letting a Flash program use
its capability to execute JavaScript code, and protecting its
functions from being misused by scripts or other Flash ap-
plications.

Mediating access to DOM objects. A Flash application
relies on JavaScript code to access DOM objects. To mediate
the access, FIRM wraps all the ActionScript calls related to
JavaScript, as discussed above. Whenever the Flash makes
such a call, the Flash wrapper supplies the capability token
of the Flash to the call, and the mediation code inside the
JavaScript functions to be invoked calls Checker to look up
the security policies regarding the token and makes access
decision based upon the policies.

SWF Files

Token

getURL(JSCode)

Sandwich
Save Token to Mark

eval(JSCode)

Remove the Token

Figure 5: Sandwiching the injected script.

A challenging problem is how to let the JavaScript code
injected by a Flash application run at the Flash’s privilege.
The IRM may not have access to such code until the runtime:
for example, the code can be downloaded by the Flash from
another site. Automatic analysis of JavaScript code is well
known to be hard [27], which makes it difficult to instrument
the code on the fly. We tackled this problem by leveraging
a special feature of JavaScript: JavaScript code in a web
page actually runs in a single thread, and as a result, its ex-
ecution is sequential [42]2. This feature allows us to develop
a “marking” mechanism that labels the script code running
on a Flash program’s behalf. Specifically, the DOM wrap-
per maintains a “mark” variable, which is initialized to zero
and later used to keep the capability token of the running
script. After the Flash wrapper identifies a script injection
operation in a Flash program, for example, from the prefix
javascript: within the input content of getURL, it sets the
script code as the input string to an eval command, and
inserts one JavaScript command before the eval to set the
mark to the Flash’s capability and one after to zero out the
mark. This transformation, which we call “sandwiching”,
is illustrated in Figure 5. When the script is running, the
IRM refers to the mark for the script’s privilege. Note that
other scripts cannot read the mark before the sandwiched
code runs to completion, due to the sequential execution of

2The registered user events are triggered sequentially: they
cannot be executed until the script stops running. Similarly,
delayed execution with function setTimeout is also sequen-
tial.

JavaScript [42]. On the other hand, the code cannot esca-
late its own privilege by changing the mark, as it does not
know other capability tokens.

As stated in Section 2, a Flash application can redirect a
visitor to a malicious site and install malware. To defend
against this attack, FIRM mediates functions like getURL: if
the input parameters of these functions are found to contain
URLs (started with http, for example), they are used to
check against a whitelist; only redirection to the URLs on
the list are allowed.

Mediating access to Flash. A Flash application can
choose to expose some of its functions (through Action-
script calls such as ExternalInterface.addCallback) to let
JavaScript code access their resources. A problem here is
that there is no restriction on who can call these functions.
For example, a malicious Flash program can take advantage
of these functions to gain access to another Flash that it is
not allowed to access within the Flash player.

Our solution to this problem is instrumentation of the
exposed functions. Mediation code, as part of the Flash
wrapper, is inserted to the beginning of such functions after
static analysis of Flash code. Once an exposed function is
invoked, our code checks the capability token supplied by
the caller, and decides whether to let the call go through
according to the security policies tied to the token.

Inter-Flash access control. Adobe Flash player main-
tains a boundary between different Flash applications. Such
a boundary, however, can be crossed if one Flash shares
its functions to another Flash through a LocalConnection
object. The problem here, again, comes from the “black-
and-white” strategy adopted by the Flash player: a Flash
program shares either all its functions or none at all. A se-
rious consequence of this treatment is that untrusted Flash
code can call the function of privileged Flash code to gain
access to the resources it is not entitled to, once the lat-
ter inadvertently exposes its functions. Our solution to this
problem, again, is based upon code instrumentation and call
wrapping: for the Flash application that is found to build
a LocalConnection with others, our analysis tool instru-
ments all its functions with mediate code; the code checks
the caller’s capability token once a function is invoked, and
aborts the call if the token does not carry a sufficient privi-
lege.

A Flash application can load another Flash with load or
loadBytes as a resource and then use addChild to make the
latter its child Flash. When this happens, the child acquires
the full access to the father’s resources, including functions,
variables and others, and is able to leak them out. FIRM
mitigates such a threat by automatically reducing a Flash’s
privilege once it is found to have downloaded untrusted child
Flash.

4.3 Protecting FIRM
Since an IRM works on the same layer as the subjects it

controls, it is under the threats these subjects pose. With-
out proper protection, FIRM can be subjected to various

185

attacks from malicious scripts [25] or Flash applications,
including compromising the integrity of its code and poli-
cies, and stealing its capability tokens. In this section, we
elaborate the measures our approach takes to mitigate these
threats.

Integrity Protection. The obvious targets of attacks are
the DOM and Flash wrappers. As Flash content is not able
to alter its code in runtime (See Section 5), malicious Flash
code cannot get rid of the Flash wrapper after it is instru-
mented. This feature automatically ensures the integrity of
the Flash wrapper. Hence, our integrity protection is fo-
cused on the DOM wrapper.

As discussed before, the DOM wrapper mediates the get
and set functions of important DOM objects. The adver-
sary may try to replace the wrapper with his own functions.
To eliminate this threat, our IRM has been designed to wrap
these important objects before any other subject, and block
any request without a proper privilege to change the getters
and setters of the objects. This is achieved through me-
diating the methods __defineGetter__ and __defineSet-
ter__. To prevent malicious scripts from tampering with
the wrappers for these methods, we employ Object.watch3

(onPropertyChange in IE8) to monitor the operations on
the methods: any change to their function pointers will be
detected by watch and aborted by the IRM before it hap-
pens. The watch method itself is protected in the same way:
it is watching itself and interrupts any attempts to replace
it. The IRM also mediates all the methods of prototype, a
property under Object, Array and Function. This is neces-
sary for protecting the functions associated with these global
variables, such as toString, which could also be modified by
the adversary [19].

Prior research [36] discovered that a malicious script can
delete all wrapped objects from the memory, which could
lead to the restoration of the original, unwrapped objects.
This threat, however, is limited to Firefox, and can be elimi-
nated by setting constraints on the deletion operation, which
is permitted under Standard ECMA-262 5 [12], the next
generation JavaScript specification. FIRM also takes mea-
sures to mitigate the threat: once the IRM finds itself in
Firefox and a Flash program is about to execute the scripts
within the “sandwich” (See Section 4.2 and Figure 5), the
Flash wrapper works with the DOM wrapper to calculate
the hash values of the instrumented DOM methods and their
function pointers and save them to the variables within the
Flash wrapper. They also move all the valuable data, such
as cookies, into the Flash wrapper. After the execution of
injected scripts, the Flash wrapper verifies the integrity of
these function pointers and methods. If no foul play is found,
the valuable data is restored. Otherwise, it aborts its oper-
ation and warns the user through a pop-up window. The
Flash variables used to save such data assume randomized
names to protect them from being accessed by the origi-
nal, uninstrumented Flash content. They are also beyond
the reach of injected scripts, as they are located within the
Flash.

Confidentiality Protection. The most sensitive FIRM
data are capability tokens, which, once seized by unautho-
rized parties, can be used to escalate their privileges. During

3According to ECMA-262 5 [12], any property of a
JavaScript object has an attribute named Configurable.
When set to false, assigning new value to the property
will throw an exception, which achieves the same goal as
Object.watch. Though the current versions of Google
Chrome, Safari and Opera do not support the function, they
will certainly move towards this standard.

the operations of FIRM, these tokens are stored in the lo-
cal variables of JavaScript and the variables of SWF files.
Since these local variables cannot be referred by the script
code outside their related functions, the only way an unau-
thorized party can access the capabilities is to read the
code of these functions. This path is also blocked by the
IRM, which is configured to allow none but itself to read
its code, through mediating the get methods for the in-
nerHTML and innerText properties under its script object,
and the toString, toSource and valueOf methods under
the prototype of Function object.

To protect the capability tokens stored in the instrumented
Flash code, the names of the variables that accommodate
these tokens are randomized, making them unpredictable
to the adversary. Such an operation only needs to be per-
formed once when instrumenting the code. As a result, a
malicious Flash program is unable to access the capability
tokens and other data stored in the Flash wrapper. Note
that an instrumented Flash does not carry hard-coded ca-
pability token. Instead, it gets the token from the capability
manager once it is bootstrapped by the Flash player.

As discussed in Section 4.2, the variables and functions of
a Flash program are completely exposed to the child Flash it
downloads. This lets the child inherit the father’s capability,
which can be risky in some circumstances. For example, a
Flash-based video player could run an untrusted Flash Ad as
its child. It is evidently undesired to grant the Ad the priv-
ilege of the video player. We solve this problem by instru-
menting the ActionScript calls for downloading and creating
a child Flash: once a child Flash is found to come from an
untrusted domain, our mediation code automatically lowers
down the father’s privilege.

5. FLASH ANALYSIS AND INSTRUMENTA-
TION

To embed the Flash wrapper into a Flash, we need to
analyze its binary code and instrument the code with me-
diation mechanisms. As Flash contents are often submitted
by the third party and in binary forms, manual analysis of
such contents can be time consuming and even unrealistic
for the Flash serving sites like Yahoo that receive a large
number of uploads every day. In our research, we developed
an automatic Flash analyzer to work on Flash code. Our
analyzer can decompile a binary SWF file, identify the func-
tions related to resource access and wrap them with FIRM
instrumentation. In this section, we elaborate the design
and implementation of this tool.

ActionScript. ActionScript is a scripting language based
on ECMAScript [7], which is designed to control the behav-
ior of Flash. Compared with JavaScript, ActionScript code
is easier to analyze and instrument: 1) a Flash program is
not allowed to modify its code during the runtime, which
makes a malicious Flash impossible to get rid of our instru-
mentations; (2) Flash cannot parse and execute an input
string as eval does, which avoids the complication in stat-
ically analyzing such a string; (3) a Flash program cannot
access the code and data within another Flash without per-
mission. These features allow us to perform a static analysis
of Flash code to add mediation to the code.

Static analysis of Flash. The prototype we built first uti-
lizes SWFScan [13], a free decompiler, to convert SWF bina-
ries into the ActionScript code. Then, it identifies the pro-
gram locations from the code where instrumentations need
to be done. Specifically, our implementation looks for four
types of ActionScript APIs: getURL and navigateToURL that

186

allow a Flash to inject scripts into its hosting page, Exter-
nalInterface.call and fscommand that enable the Flash to
call a JavaScript function defined in the page, ExternalIn-
terface.addcallback that lets Javascript call ActionScript
functions, and LocalConnection that shares the functions
of one Flash program with others.

To accurately locate these functions, we parsed the Flash
code into a grammar tree. The parser implemented in our
prototype was generated by ANTLR (or ANother Tool for
Language Recognition) [3], a popular parser generator. We
manually translated ActionScript grammar into the form
accepted by ANTLR, which then converted it into an LL
parser. From the grammar tree the parser creates, our ana-
lyzer can identify both the direct use of script-related APIs,
for example, a call to getURL(), and the indirect use, for
example, var a = getURL; a();.

Instrumentation. After relevant program locations are
identified, our tool automatically instruments the code at
these locations with mediation mechanisms. The mediation
code allows the caller to supply its capability token for priv-
ilege checking, and invokes the original function if the caller
is authorized. After instrumentation, the new Flash pro-
gram is compiled into a SWF binary using the compiler of
Adobe Flash CS [1].

Discussion. Though ActionScript is easier to analyze than
JavaScript, it does include some language features that can
be used to obfuscate its code. Particularly, ActionScript 2.0
allows the _root object to invoke a function through pars-
ing an input string. For example, _root[’getURL’]() will
be interpreted as getURL() during an execution. This tech-
nique, however, seems no longer supported by ActionScript
3.0. Moreover, some API functions like asFunction can be
exploited to inject scripts [8]. To mitigate the threat, we
can mediate their operations using the Flash wrapper. Note
that all these language features are not frequently used by
legitimate Flash code. On the other hand, a malicious Flash
that uses them to obfuscate its code could end up decreasing
its privileges, as uninstrumented calls cannot use any capa-
bility tokens. They are ensured by FIRM to have nothing
but the lowest privilege.

6. EVALUATION
We evaluated our implementation of FIRM on real web

applications and Flash contents. Our objective is to under-
stand the effectiveness of our technique in mediating Flash
activities, and the performance impacts it could bring to web
services. In this section, we first explain our experiment set-
tings (Section 6.1), and then elaborate on this experimental
study and its outcomes (Section 6.2 and 6.3).

6.1 Experiment Settings
Here we describe the web applications, Flash and compu-

tation platforms used in our study.

Web applications. We utilized three extremely popular
open source web-design systems in our study:

• phpBB is one of the mostly used open source forum solu-
tions, with millions of installations worldwide [11]. It serves
as a template, which one can customize, e.g., adding plug-
ins, to build her own forum. The forums based upon phpBB
allow users to post Flash contents through the tag [Flash]
in BBCode [4].

•WordPress is a blog publishing application known as the
largest self-hosted blogging tool, with millions of users world-
wide [14]. Through the application, a blog author can pub-
lish Flash content, which is handled by a plugin called Kimili

Flash Embed [9].

•Drupal is an open source content management system (CMS
) that supports a variety of websites ranging from personal
weblogs to large community-driven websites [6]. The sys-
tem can be used to publish different types of web contents,
including Flash.
Flash. Also used in our experiments were 9 real-world Flash
applications, as illustrated in Table 3. Specifically, we uti-
lized 3 vulnerable Flash advertisements, a malicious Flash
game and a Flash player to understand whether our tech-
nique can effectively control the scripts they invoke. To
study our protection of the call interfaces Flash exposes to
scripts, an experiment was conducted to let malicious Flash
code spawn scripts that attempted to access the functions
another Flash exported to its hosting page. Inter-Flash ac-
cess control was evaluated with another pair of Flash appli-
cations: one attempted to share only some of its functions,
whereas the other tried to access other functions. All these
Flash applications were instrumented with our analysis tool
and executed within the aforementioned web services.

Computation platforms. All our experiments were con-
ducted on a laptop with 3G memory and 2G Dual-core CPU.
The laptop ran Windows Vista, with Apache 2.2.9/PHP
5.2.6 as web server and MySQL 5 as database server. Our
experiments were conducted in Firefox 3.5 and IE 8.

6.2 Effectiveness
Installing FIRM. We modified these web applications to
install the DOM wrapper and the policy manager. A phpBB-
based forum could receive posts with Flash contents, for ex-
ample, [flash]a.swf[/flash], which will be activated in
a viewer’s browser4. In the absence of mediation, such a
Flash can spawn scripts to compromise the integrity and
confidentiality of the viewer’s information assets. To embed
our IRM into the web pages generated by the forum, we
changed a PHP file tpl/prosilver/viewtopic/body.html
.php, making the program inject the JavaScript code of the
IRM into every web page it created. Similarly, a blog pub-
lishing system built upon WordPress can be used by the
malicious blogger to spread Flash malware. In our experi-
ment, we inserted code to index.php under the folder wp-
content/themes/classic so as to embed our IRM scripts
into the web content produced by the system. A website
developed using Drupal can also inadvertently include ma-
licious Flash contents, for example, an advertisement Flash
that picks a web surfer’s cookie. Like the other two appli-
cations, the system includes a PHP program page.tpl.php
under themes/garland for dynamic page generation. This
program was also modified in our research to build our IRM
into its pages. We also ran our Flash analyzer to instrument
the aforementioned Flash applications.

Experiment outcomes. To evaluate the effectiveness of
FIRM, we first attacked the unprotected web applications
through the Flash contents they hosted, and then made the
same attempts on these applications when they were under
the protection of FIRM. Following we elaborate our findings.

The mediation on Flash’s access to DOM objects was
studied using the five Flash applications described in Sec-
tion 6.1 and Table 3. Without mediation, we found that the
malicious Flash game could steal the cookie from the hosting
page and the three Flash advertisements could be exploited
to launch XSS attacks. Once the IRM was activated, all

4We changed a PHP file bbCode.html under
styles/prosilver/template of phpBB3 to allow Flash
executing JavaScript code.

187

Table 3: Effectiveness

Type No Flash Operations
Result

phpBB WordPress Drupal

1 Puzzle Game read cookie Reject Reject Reject

2 Adobe Demo read cookie Reject Reject Reject

Flash 3 CNN Ad change Location Reject Reject Reject

to DOM 4 CNET Ad read user account text Reject Reject Reject

5 Flow Player
O1: read Location O1 Reject O1 Reject

Allow
O2: call script function O2 Allowed O2 Allow

DOM to 6 Color Widget expose functions - - -

Flash 7 Invoker call functions of Color Widget Reject Reject Reject

Flash 8 Sender call functions of Receiver Reject Reject Reject

to Flash 9 Receiver receive message - - -

these attacks were found to be successfully deflected. Specif-
ically, the instrumented phpBB and WordPress adopted the
security policies that disallowed Flash contents to access
any document objects. As a result, we observed that the
JavaScript calls for accessing cookies, initiated by the Flash
game and the Flash advertisements, were all blocked. A side
effect was that the legitimate Flash, the Flow player, could
not access the URL of the hosting page either. The poli-
cies specified for Drupal differentiated the legitimate Flash,
Flow Player, from the other Flash applications: the player
was allowed to access document objects, except the cookie,
whereas the Flash games and advertisements were denied
the access. We found that these policies were faithfully en-
forced by our implementation, which defeated all our attacks
without interfering with the legitimate Flash’s operations.

We employed two Flash applications to evaluate the pro-
tection of the call interfaces a Flash exposed to JavaScript.
One of these applications share its functions with the host-
ing page, which could be accessed by the other Flash from a
different domain through injecting script. After instrument-
ing the exposed functions with mediation code, we observed
that the second Flash was no longer able to use the functions
without legitimate capability tokens.

We also studied the situation when two Flash applications
attempted to share resources between them. One Flash tried
to let the other Flash call some but not all of its functions.
In the absence of FIRM, this could only be done through
establishing a LocalConnection, which unfortunately made
all functions within the first Flash available to the other.
After the IRM was installed, we could assign the second
Flash a capability token that only granted it access to some
of these functions. Such security policies were found to be
successfully enforced by our prototype.

6.3 Performance
The performance of FIRM was evaluated in our research

from three perspectives: (1) the performance impact of FIRM
on page loading, (2) runtime overheads for mediating DOM
and Flash operations and (3) the cost for performing static
analysis on SWF files. We elaborate this study below.

Table 4: Performance of page loading

phpBB3 (s) WordPress (s) Drupal (s)

No FIRM 3.927 1.66 3.555

FIRM 4.117 1.923 3.96

Overhead 4.80% 15.80% 11.40%

Bootstrapping FIRM could add further delay to a page
loading process. To understand such a performance im-
pact, we measured the page loading time of the three web

applications described in Section 6.1 using a plugin (e.g.,
Firebug [35] in Firefox). The experiment was designed to
compare the loading time of unprotected pages with that of
instrumented pages. We collected the data from 10 indepen-
dent tests under the settings when FIRM was installed and
when it was not to compute averages, which are reported
in Table 4. As we can see from the table, the overhead in-
curred by FIRM was reasonable: it was kept below 20% in
the worst case (WordPress), and acceptable for other web
applications.

Table 5: Mediation overheads

Flash to DOM to Flash to

DOM(ms) Flash(ms) Flash(ms)

Tasks Read cookie Call func Call func

Browsers IE FF IE FF IE FF

No FIRM 0.641 0.799 6.52 4.92 0.675 0.67

FIRM 0.995 1.87 6.81 4.96 0.686 0.698

Overhead 55.20% 134.00% 4.40% 1% 1.60% 4%

We further studied the overheads incurred by instrumented
operations, which include the delay caused by mediating the
interactions between Flash and JavaScript, as well as those
between different Flash applications. We collected data from
1000 independent tests of individual operations, with or
without mediation. Averaged delays computed from such
data are displayed in Table 5. From the table, we can ob-
serve that mediation was lightweight, incurring an overhead
of 5%. A more significant delay appeared when the IRM was
controlling the JavaScript code invoked by a Flash, which
went up to 134%. A closer look at the overhead revealed
that it was caused by eval the IRM employed to wrap the
injected code (Section 4.2). Running JavaScript within the
function turned out to be more time-consuming than a di-
rect execution of the code in a hosting page. However, given
the small execution time of the code, the delay introduced
thereby was actually hard to notice in practice.

The overhead of analyzing and instrumenting Flash con-
sists of the latencies incurred by decompiling binary code,
analyzing, instrumenting and compiling the source code. We
measured these latencies from the 9 Flash applications used
in our study, each of which was run 10 times to get the
average. The outcomes are presented in Table 6. The ta-
ble shows that in most cases, the whole analysis took less
than 10 seconds on the low-end laptop used in our experi-
ment. Analyzing and instrumenting Flow player takes over
one minute as it contained over 20,000 lines of code, while
most Flash programs, particularly advertisements, are much
smaller, typically below 1,000 lines.

188

Table 6: Perfomance of static analysis

Flash
Decompile Analysis Compile Total

(s) (s) (s) (s)

Puzzle Game 3.46 0.665 2.66 6.785

Adobe Demo 2.3 0.563 2.62 5.483

CNN Ad 4.9 0.723 2.8 8.423

CNET Ad 6.08 0.865 2.9 9.845

Flow player 14.6 3.582 49 67.182

Color Widget 3.6 0.848 3.98 8.428

Invoker 2.88 0.571 2.3 5.751

Sender 2.82 0.717 2.1 5.637

Receiver 2.5 0.631 2.74 5.871

7. DISCUSSION
FIRM is designed to be the first inline policy enforce-

ment system that mediates Flash/DOM and Flash/Flash
interactions. Also of great importance to Flash security,
naturally, is well-designed security policies. The current de-
sign of FIRM can support simple policies, as described in
Section 4.1. These policies seem to be sufficient for miti-
gating traditional threats such as XSS [29, 34, 18]. How-
ever, questions remain whether they offer enough protection
against the new threats posed by malicious Flash, for ex-
ample, seizure of the clipboard [2]. Further study is needed
to understand this problem and improve FIRM to support
more complicated policies, if necessary.

FIRM instruments the dynamic contents including Flash
and JavaScript located at the websites that adopt our tech-
nique. For the Flash or scripts downloaded to the client’s
browser from other domains during the runtime, the control
we could achieve is still coarse-grained: our current treat-
ment just grants them the lowest privilege. A more desirable
approach could be applying different policies to the dynamic
contents from different domains. This could requires estab-
lishing certain trust relations between websites. Alterna-
tively, our IRM could pass the scripts and Flash acquired
during the runtime to its website (the one that offers the
hosting page) for analysis and instrumentation. Study of
these approaches is left to our future research.

As discussed in Section 4.3, a Flash can download and
run another Flash as its child. The child Flash, which can
be untrusted, inherits the privilege of its father. Our cur-
rent solution is de-escalation of the father’s privilege, which
results in rather coarse-grained control. In the follow-up re-
search, we plan to look into the possible approaches that can
be used to mediate the child’s activities without demoting
the father.

The techniques we propose can be applied more generally:
for example, they can be extended to mediate JavaScript
code from different domains. On the other hand, our ap-
proach cannot protect a web service from a denial of service
attack: for example, a malicious Flash or script can delete
DOM objects to disrupt the normal operations of the ser-
vice. Further research is needed to understand the feasibility
of making IRM more resilient to the attack.

8. RELATED WORK
Inline reference monitor. The idea of moving a reference
monitor into an application has been applied to protect bi-
nary executables [45, 16, 39] and Java applications [24, 20].
Compared with other access control mechanisms, an IRM
is often more efficient and has more information about an
application’s internal states, but can also be more prone to
the attacks that aim at its integrity and data confidentiality.

Concurrently with this research and independently, Phung
et. al. [36] proposed a JavaScript IRM that mediates ac-
cesses to sensitive DOM objects and properties. A problem
with this approach is that all the scripts within a web page
are granted the same privilege. In contrast, FIRM offers
a fine-grained control of the scripts and Flash applications
with different privileges, according to their capabilities. An-
other concurrent work from Meera et. al. [41] devised a
Flash IRM to verify if certain functions violate pre-defined
policies. To mitigate XSS attack, their framework sanitizes
the input of the functions like getURL. Nevertheless, this ap-
proach is black-and-white which only allows or prohibits the
whole script from input. Conversely, our framework can al-
low the legitimate script code while prohibits the malicious
one.

Access control in web contents. The rapid development
of new web services and applications, such as Mashup [10],
makes the classic Same Origin Policy [38] increasingly in-
sufficient for mediating dynamic web contents. New pol-
icy models and enforcement platforms, for example, Mashu-
pOS [44], OMash [22], xBook [40] and BFlow [46], are pro-
posed to achieve finer-grained control of web activities, par-
ticularly those involving JavaScript. FIRM is designed to
control Flash applications and the scripts they spawn, which
has not been done before. Moreover, all these existing ap-
proaches require installing browser plug-ins. This raises the
bar for their practical deployment. Our approach, however,
does not need the web client to do anything: all the policies
and enforcement mechanisms are completely embedded in
the web pages delivered to the browser, and therefore can
be deployed easily. Grier et. al. proposed a new browser
named OP Browser [26] which embeds security policy in
browser kernel to mediate the access from plugins like Adobe
Flash player. However, their approach does not differentiate
the security demands of different Flash contents and turns
out to be too coarse-grained.

XSS defense. As a well-recognized threat to integrity
and confidentiality of valuable web contents, XSS has re-
ceived great attentions from security researchers. Promi-
nent countermeasures include Beep [30], BrowserShield [37],
Noxes [32], and BluePrint [43]. Different from the prior
work, FIRM focuses on the XSS caused by vulnerable or ma-
licious Flash applications. Controlling such a threat needs
effective mediation of the interactions between Flash con-
tents and JavaScript, which has not been explored by the
prior research.

Instruction set randomization. FIRM protects its IRM
through randomizing capability tokens, and the JavaScript
and ActionScript variables that maintain those tokens and
their related policies, which makes these critical resources
out of the reach of malicious web contents. This idea has
been inspired by previous research on Instruction Set Ran-
domization (ISR) [31]. ISR was designed to defeat code-
injection attack, through creating process-specific random-
ized instruction set. Recently, researchers move towards uti-
lization of the technique to protect web applications. A
prominent example is Noncespaces [28], which randomizes
the namespace prefixes within a document to eliminate the
scripts not created by the server. However, such a control
can be coarse-grained: for example, the reference monitor ei-
ther permits or denies execution of script code, but cannot
decide what resources a running script can access.

9. CONCLUSION
Flash contents have been increasingly utilized for video

189

playing, advertising and other purposes. However, it is re-
vealed [29] that Flash can be exploited by an adversary to
launch various attacks, including XSS and XSRF. The in-
trinsic protection of Adobe Flash player is not sufficient in
that it either denies a Flash’s access to web resources or gives
it unconstrained access. Patching such a security mechanism
turns out to be nontrivial: Adobe Flash player is closed
source, and deploying the patch on every browser cannot
be accomplished easily. In this paper, we present FIRM, a
novel solution that avoids these hurdles while still achiev-
ing effective mediation of Flash activities. FIRM builds an
inline reference monitor into the web page hosting Flash
contents. The IRM effectively mediates the interactions be-
tween Flash and DOM objects, and between different Flash
applications, according to the capability token possessed by
the Flash. Our approach protects the IRM through control-
ling DOM methods and randomizing the names of the vari-
ables that hold sensitive data, such as capability tokens. We
implemented a prototype of FIRM and evaluated it on popu-
lar web applications, including phpBB, WordPress and Dru-
pal, and 9 real-world Flash applications. Our study shows
that the technique effectively protects user data, incurs small
overheads and is convenient to deploy.

10. ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful com-

ments. This work was supported in part by the NSF under
Grant No.CNS-0716292 and CNS-1017782.

11. REFERENCES
[1] Adobe flash cs4. http://www.adobe.com/products/flash/.
[2] Adobe flash player clipboard security weakness.

http://www.securityfocus.com/bid/31117.
[3] Antlr parser generator. http://www.antlr.org/.
[4] Bbcode. http://www.bbcode.org/.
[5] Cnn. http://http://www.cnn.com.
[6] drupal community pluminbing. http://drupal.org.
[7] Ecmascript. http://www.ecmascript.org.
[8] Flash url parameter attacks. http:

//code.google.com/p/doctype/wiki/ArticleFlashSecurityURL.
[9] Kimili flash embed.

http://kimili.com/plugins/kml_flashembed/.
[10] Mashup dashboard - programmableweb.

http://www.programmableweb.com/mashups.
[11] phpbb - creating communities worldwide. http://www.phpBB.com.
[12] Standard ecma-262. http://www.ecma-international.org/

publications/standards/Ecma-262.htm.
[13] Swfscan. https://h30406.www3.hp.com/campaigns/2009/

wwcampaign/1-5TUVE/index.php?key=swf.
[14] Wordpress - blog tool and publishing platform.

http://wordpress.org.
[15] Yahoo! http://www.yahoo.com.

[16] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity. In ACM Conference on Computer and
Communications Security, pages 340–353, 2005.

[17] Adobe. Flash player security - controlling outbound url access.
http:
//help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/
WS5b3ccc516d4fbf351e63e3d118a9b90204-7c9b.html, 2009.

[18] Y. Baror, A. Yogev, and A. Sharabani. Flash parameter
injection. Technical report, IBM, As of September 2008.

[19] A. Barth, C. Jackson, and W. Li. Attacks on javascript mashup
communication. In Proceedings of Web 2.0 Security and
Privacy 2009 (W2SP 2009), 2009.

[20] L. Bauer, J. Ligatti, and D. Walker. Composing security
policies with polymer. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation, pages 305–314, New York, NY, USA,
2005. ACM.

[21] S. Chenette. Malicious flash redirectors - security labs blog.
http://securitylabs.websense.com/content/Blogs/3165.aspx,
2008.

[22] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web
mashups via object abstractions. In Proceedings of the 15th
ACM conference on Computer and communications security
table of contents, pages 99–108. ACM New York, NY, USA,
2008.

[23] DP. Flash clicktag parameter xss. banks, e-shops, adobe and
others vulnerable. http://xssed.org/news/98/Flash_clickTAG_
parameter_XSS._Banks_e-shops_Adobe_and_others_vulnerable/,
2009.

[24] U. Erlingsson and F. B. Schneider. Irm enforcement of java
stack inspection. In IEEE Symposium on Security and
Privacy, pages 246–255, 2000.

[25] Google. Attackvectors.
http://code.google.com/p/google-caja/wiki/AttackVectors,
2010.

[26] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the op web browser. In SP ’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pages 402–416,
Washington, DC, USA, 2008. IEEE Computer Society.

[27] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static
enforcement of security and reliability policies for javascript
code. In Proceedings of the USENIX Security Symposium,
Montreal, Canada, August 2009.

[28] M. V. Gundy and H. Chen. Noncespaces: Using randomization
to enforce information flow tracking and thwart cross-site
scripting attacks. In NDSS’09: Proceedings of the 16th
Network and Distributed System Security Symposium, 2009.

[29] P. Jagdale. Blinded by flash: Widespread security risks flash
developers don’t see. In Black Hat DC 2009. Hewlett-Packard,
2009.

[30] T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In WWW
’07: Proceedings of the 16th international conference on
World Wide Web, pages 601–610, New York, NY, USA, 2007.
ACM.

[31] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 272–280, New
York, NY, USA, 2003. ACM.

[32] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a
client-side solution for mitigating cross-site scripting attacks. In
SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 330–337, New York, NY, USA, 2006.
ACM.

[33] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[34] S. D. Paola. Testing flash applications. In 6th OWASP AppSec
Conference, 2007.

[35] I. Parakey. Firebug - web development evolved.
http://getfirebug.com/, 2009.

[36] P. H. Phung, D. Sands, and A. Chudnov. Lightweight
self-protecting javascript. In ASIACCS ’09: Proceedings of the
4th International Symposium on Information, Computer, and
Communications Security, pages 47–60, New York, NY, USA,
2009. ACM.

[37] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
Browsershield: Vulnerability-driven filtering of dynamic html.
In Proc. OSDI, 2006.

[38] J. Ruderman. The same origin policy. http://www.mozilla.org/
projects/security/components/same-origin.html, 2008.

[39] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

[40] K. Singh, S. Bhola, and W. Lee. xbook: Redesigning privacy
control in social networking platforms. In Proceedings of the
USENIX Security Symposium, Montreal, Canada, August
2009.

[41] M. Sridhar and K. W. Hamlen. Actionscript in-lined reference
monitoring in prolog. In Proceedings of the Twelfth Symposium
on Practical Aspects of Declarative Languages (PADL), 2010.

[42] E. Stark, M. Hamburg, and D. Boneh. Symmetric cryptography
in javascript. In 25th Annual Computer Security Applications
Conference (ACSAC), 2009.

[43] M. Ter Louw and V. Venkatakrishnan. Blueprint: Precise
browser-neutral prevention of cross-site scripting attacks. In
30th IEEE Symposium on Security and Privacy, May 2009.

[44] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for web browsers in mashupos. In
Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP 2007), pages 1–16, 2007.

[45] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. In Proceedings of the 15th USENIX Security
Symposium, Vancouver, BC, Canada, August 2006.

[46] A. Yip, N. Narula, M. Krohn, and R. Morris.
Privacy-preserving browser-side scripting with bflow. In
EuroSys’09, 2009.

190

T-DRE: A Hardware Trusted Computing Base for Direct
Recording Electronic Vote Machines

Roberto Gallo
∗

University of Campinas
Campinas, SP, Brazil

gallo@ic.unicamp.br
gallo@kryptus.com

Henrique Kawakami
KRYPTUS Cryptographic

Engineering Ltd.
Campinas, SP, Brazil

kawakami@kryptus.com

Ricardo Dahab
†

University of Campinas
Campinas, SP, Brazil

dahab@ic.unicamp.br

Rafael Azevedo
Tribunal Superior Eleitoral

Brasilia, DF, Brazil
rafael@tse.gov.br

Saulo Lima
Tribunal Superior Eleitoral

Brasilia, DF, Brazil
saulo@tse.gov.br

Guido Araujo
‡

University of Campinas
Campinas, SP, Brazil

guido@ic.unicamp.br

ABSTRACT
We present a hardware trusted computing base (TCB) aimed
at Direct Recording Voting Machines (T-DRE), with novel
design features concerning vote privacy, device verifiability,
signed-code execution and device resilience. Our proposal
is largely compliant with the VVSG (Voluntary Voting Sys-
tem Guidelines), while also strengthening some of its rec-
comendations. To the best of our knowledge, T-DRE is the
first architecture to employ multi-level, certification-based,
hardware-enforced privileges to the running software. T-
DRE also makes a solid case for the feasibility of strong se-
curity systems: it is the basis of 165,000 voting machines, set
to be used in a large upcoming national election. In short,
our contribution is a viable computational trusted base for
both modern and classical voting protocols.

1. INTRODUCTION
Electronic voting systems (EVSs) are a very interesting

subject, as they are comprised of system components which
interact within an complex environment with boundary con-
ditions of different nature, legal, cultural, logistical and fi-
nancial. Several countries have adopted EVSs, tailoring
them to meet their specificities.

The Brazilian voting system currently has over 135 mil-

∗Partially funded by KRYPTUS and SERASA Experian re-
search grants
†Partially funded by FAPESP (2007/56052-8), CNPq
(309491/2008-8), and SERASA Experian research grants
‡Partially funded by FAPESP (2010/14492-4) and CNPq
(305371/2009-6) research grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

lion registered voters [2], with variable literacy degree. Thus,
electronic voting is a very simple procedure, which con-
sists of typing candidates’ numbers on a reduced keyboard,
guided by simple instructions on a small screen. Brazil
adopted Direct Recording Electronic voting machines (DREs
from now on) in 1996. In 2009 a decision was made to re-
place part of the aging hardware base with a newly designed
version, while maintaining backward compatibility.

Voting Systems Fundamental Goals
In spite of local constraints, EVSs share six common, fun-
damental, goals (Sastry [24]):

Goal 1. One voter/one vote. The cast ballots should ex-
actly represent the votes cast by legitimate voters. Ma-
licious parties should not be able to add, duplicate, or
delete ballots.

Goal 2. Cast-as-intended. Voters should be able to re-
liably and easily cast the ballots that they intend to
cast.

Goal 3. Counted-as-cast. The final tally should be an
accurate count of the ballots that have been cast.

Goal 4. Verifiability. It should be possible for participants
in the voting process to prove that the voting system
obeys certain properties.

Goal 5. Privacy. Ballots and certain events during the vot-
ing process should remain secret.

Goal 6. Coercion resistance. A voter should not be able
to prove how she voted, to a third party not present
in the voting booth.

These goals are related (e.g. a voting system that does
not satisfy goal 5 will hardly satisfy goal 6) and potentially
conflicting (e.g. it is not trivial to build a voting system
that is totally verifiable while preserving voters’ privacy).
Third-party end-to-end verifiability has been a recurrent
subject [20]. Usually, verifiability is linked to the concept
of (statistical) confidence level. Different cultures, and thus
electoral laws, have different thresholds for the level of con-
fidence they consider adequate for the electoral process.

191

Software independence is not enough. Different vot-
ing protocols [3, 17, 5] have been proposed to meet the
above goals, with variable degrees of success and effective-
ness. Unfortunately, most of them can be defeated by com-
promised software or hardware running in the underlying
computing base. In order to mitigate such threats, software-
independent systems were proposed by Rivest and Wack [21]:
A voting system is software-independent (SI) if an unde-
tected change or error in its software cannot cause an un-
detectable change or error in an election outcome. However
strong, this concept ensures most of the above requirements
but not all.

For instance, coercion resistance and vote privacy are es-
pecially susceptible to attacks based on tampered hardware
and software, as vote input devices themselves can leak in-
formation [12, 22, 24]. Hardware protection and verification
is thus an essential aspect, regardless of whether SI systems
are employed or not. While some effort has been done to-
wards the specification of hardware functionalities in order
to provide sufficient device accreditation and tamper resis-
tance [19, 8, 24], there is much room for improvement on
the path to feasible implementations. Here we follow that
path, presenting a hardware trusted computing base (TCB)
for direct recording electronic voting architecture, T-DRE
in short, suitable for a variety of existing voting protocols
and systems.

Summary of our Contributions
Our contributions are present both in the novelty of the T-
DRE components and in their composition. Namely, we
propose a trusted hardware architecture that extensively
employs signed code execution with hardware-enforced ac-
cess control to peripherals in order to prevent a number of
attacks. Further advancements include human-computable
device integrity verification mechanisms, strong accountabil-
ity, and improved signed-code execution assurance, all sup-
ported by a certification hierarchy which takes advantage of
the proposed hardware.

The T-DRE architecture described herein was adopted by
the Brazilian National Election Authority (Tribunal Supe-
rior Eleitoral - TSE). In order to fully validate the speci-
fication, we first implemented a prototype evaluation plat-
form. Subsequently, the specification was realized by a
vendor under TSE’s control, using another hardware plat-
form, and taking into account additional costs and strin-
gent field, legal, and resilience restrictions, while maintain-
ing backward compatibility with the deployed base. This
endeavor, which resulted in 165,000 produced units, further
supports our claims on the feasibility of the architecture.

Our proposal is not an airtight solution to electronic vot-
ing; we discuss its limitations in Section 5. However, we do
claim that it provides a layer of security to SI and non-SI
systems alike, whose strength is degrees above that of vot-
ing systems currently deployed around the world, by making
it extremely difficult and costly for a fraud attempt to go
undetected. Also, although we target centralized elections,
in Section 4.2 we discuss how T-DRE can be naturally ex-
tended to decentralized environments such as in the USA.

This paper is organized as follows: Section 2 gives practi-
cal goals and boundary conditions of voting systems; Sec-
tion 3 discusses related work; Section 4 details our pro-
posal; Section 5 reports implementation efforts; Section 6
concludes, with ideas for future work.

2. VOTING SYSTEMS PRACTICAL GOALS
AND BOUNDARY CONDITIONS

Attaining the fundamental goals is subject to practical
boundary conditions, especially in large elections. Three
important constraints are:

Availability. Voting systems must be available during the
critical periods (election day, tallying, etc.) and resist
denial of service attempts. DRE machines must resist
tampering;

Credibility. An aspect of utmost importance, it is at the
basis of fair representativity. Accordingly, implemen-
tations of voting systems should minimize the chance
of operational errors and resist tampering. Here, again,
DRE hardware security and verifiability plays an im-
portant role;

Resource Rationalization. The practical realization of vot-
ing systems should take into account various cost-related
variables, such as auditing and hardware cost and main-
tenance. When security is considered, a clear budget
trade-off exists between built-in security mechanisms
and the security procedures employed by the Electoral
Authority (EA). While the first is typically a one-time
expenditure which is multiplied by the number of DRE
machines, the second is recurrent, flexible, and propor-
tional to the number of polls. The security targets for
DRE machines must take this into account.

Security Targets
The specification of security targets should make provisions
for many different variables (Common Criteria [27]). In face
of the current Brazilian Electoral Laws, the following vari-
ables demand special attention:

Window of opportunity. Our implementation should take
into account that attacks on DRE machines can occur
at any time, but more easily in the interstices between
elections. Pre-election time is the most vulnerable due
to transportation of DRE machines across huge dis-
tances.

Surface and scope of attacks. Voting machines are sub-
ject to different levels of adversarial exposure between
procedural checkpoints established by the EA: during
election interstice, an adversary can have physical ac-
cess to the DREs; in the pre-election (setup) phase, ad-
versaries may have media (logical) access to the DREs;
at election day, adversaries typically have only opera-
tional access to DREs, as all non-HID I/O are sealed
and the machines operate offline. Our security tar-
get take these conditions into account. It provides
tampering resistance and tampering evidence on the
Critical Security Parameters (CSP) such as keys and
key counters, with a physical security target of FIPS
140-2 level 3 [18] (passive resistance). Moreover, a suc-
cessful attack must have limited scope - breaking one
DRE should not increase the chances of an adversary
of breaking another.

Level of adversarial expertise. Attacks on a DRE, es-
pecially those which adulterate or recover key material
or CSPs, must demand multiple experts, considerable

192

time (impossible to execute during election day) and
removal to a laboratory with special equipment.

Audit control points, mechanisms and equipments.
Audit points shall be precise, clear and accessible. There
should be an audit point aggregator that simply ex-
presses the DRE’s state (fully operational, in error, in
service). The interpretation of this audit point should
not require additional equipment nor complex proce-
dures, being accessible to all parties involved in the
electoral process: voter, electoral authority, poll worker,
and party advocates.

3. RELATED WORK
In this section we discuss related work regarding T-DRE’s

features.

3.1 Signed Code Execution
Signed code execution [4, 1] is an important tool in vot-

ing systems [23, 28]. Many security issues faced by EVSs
can be directly mitigated by the proper use of signed code
execution. Benefits include:

• ensuring that only official voting software is executed
in DREs, enhancing resilience against deliberate adul-
teration and operational errors which may violate EVS
fundamental goals such as vote secrecy and coercion
resistance;

• tracing and accountability of incidents, enabling secu-
rity through legal means;

• simple verification of binaries’ integrity in pre, intra
and post-election phases, which facilitates auditing by
parties, voters, and the Electoral Authority.

Hardware-based signed code execution can be achieved
by various means, the de facto standard being the Trusted
Computing Group (TCG, now ISO/IEC 11889) Personal
Computer Trusted Platform Module (TPM) [11], a com-
panion chip to the main system CPU, usually connected via
LPC bus. The TPM has functional characteristics similar
to a smart card. In cryptographic terms, the TPM per-
forms several operations: key generation, storage and use
of cryptographic keys, protected by a key that represents
the system’s root of trust. Moreover, unlike typical smart
cards, the TPM has mechanisms for software attestation,
which allows certain running application parameters to be
anonymously verified and certified as not tampered. The
module is recommended by the VVSG ([28], Section 5.5.1)
for protection of the DRE software stack.

One of the drawbacks of PC TPM modules is that they
work passively, in hardware terms, with respect to the main
system CPU. TPMs, by design, can be completely bypassed
by the system’s boot sequence if the BIOS (especifically, the
“Core Root of Trust for Measurement”, CRTM) is tampered
with, and thus “deceived” when used in application verifica-
tion tests. Extensions to the TPM as the TEM from Costan
et al [6], being also passive with respect to the CPU, repre-
sent no improvement in this regard.

To overcome this master-slave problem, one can consider
the sole use of secure processors as the main component
of a TCB aimed at DREs. However, even state-of-the-art
processors with security features, such as AEGIS [26], USIP-
PRO [13] and Cell [25], suffer from impeditive shortcomings.

While the AEGIS specification is completely open, to the
best of our knowledge there are no commercially available
realizations of it. The USIP-PRO, in turn, has limited pro-
cessing power, its architecture is proprietary and the vendor
makes no assertions regarding memory protection against
data modification. Finally, the Cell processor is proprietary,
not allowing full access to hardware features from indepen-
dent software vendors, thus adding undesirable obscurity to
the design.

3.2 Key Management and Certification
Entertainment platforms have guided the industry regard-

ing the execution of signed code for DRM purposes. Mi-
crosoft’s Xbox [10] and Sony Playstation 3 execute only code
signed by keys directly under vendors’ root CAs. With the
Cell Processor [25], Sony advances further: unsigned code
running on PS3 has limited access to the device’s peripher-
als, notably the GPU. Only signed code has full access to
hardware features. The VVSG (Section 5.5.1) forbids non-
signed code from running on DRE hardware, similarly to
console platforms. The VVSG also recommends a TPM-like
component for controlling software execution.

In addition to certifying (signing) the voting machine soft-
ware stack, cryptographic key material is extensively used
in many voting systems [28, 23, 3, 16, 17] for other reasons,
from voting, to producing closeout records, audit log signa-
ture and verification, to encryption/decryption of votes and
other sensitive material.

Although key management and storage could be handled
in software by the DRE, cryptographic tamper-resistant hard-
ware is preferred. The VVSG recommends the existence of
a hardware tamper-proof signature module (SM) in DREs,
whose primary function is to manage the life cycle of two
asymmetric key pairs: i) the Election Signature Key (ESK),
a unique per-election/per-device key used to sign votes and
closeout records; and b) a per-device DRE Signature Key
(DSK), which identifies the device and is used to produce
certificates for the ESK. The usage of DSK and ESK is
strictly controlled by the SM by means of two counters:
CountESK and CountDSK. CountDSK counts the number
of generated ESK certificates ever signed by DSK. CountESK
counts the number of ESK usages. When the closeout record
is produced, ESK is erased by the MSM and both counters
are included in the resulting record.

3.3 DRE System Verification
Easy auditing is a paramount requirement for voting sys-

tems as it is central to the establishment of trust on the
DREs’ integrity and correct operation. The concerns with
integrity verification of the entire DRE system stack (hard-
ware, firmware, and software) are not new. Although auxil-
iary devices (software or hardware) can be used, ideally so-
lutions should provide effective user-computable verification
mechanisms of the DRE integrity, so that less, not more,
hardware and software components are used to verify the
main system. In this sense, device integrity verification it-
self should be also software-independent.

Sastry [24] describes a handful of desired DRE verifying
properties, mainly aiming at software insulation, by con-
structing a proof-of-concept DRE with multiple (seven) pro-
cessors. Gennaro et al [9] establish a condition for tamper-
proofness of general hardware and give some clues on how
to check device integrity by means of cryptographic chal-

193

lenges. Öksüzoglu and Wallach [19] present, in VoteBox
Nano, an elegant human-verifiable software and firmware
(FPGA bitstreams) checking mechanism based on random
“session identifiers”, which change every time the DRE is
rebooted. Gallo et al [8] generalize Gennaro et al’s con-
ditions, prototyping a human-readable, cryptographically-
strong system verification method called Time-Base One-
Time Verification (TOTV), which allows for multiple device
verification in a trust amplifying fashion, making humans
part of the verification protocol. Although both [19, 8] can
be used by poll workers and party advocates to assert DRE
integrity, they are not practical for large-scale verification
by voters, as they require comparison of multiple digit veri-
fication numbers, a hindrance when illiterate voters are con-
sidered.

4. OUR PROPOSALS

4.1 The T-DRE Architecture and the Master
Security Module

The T-DRE architecture was devised to meet security and
availability requirements, as well as cost restrictions. Some
key requirements are:

• (R1) Run solely signed code, even if the opponent has
operational access to the DRE media.

• (R2) Enforce the verification of the entire software
stack, from the BIOS to the voting application, estab-
lishing an effective software trust chain;

• (R3) Allow the system state (integrity) to be widely
attested by any user. Voters, party advocates and the
electoral authority (EA) should be able to verify the
integrity of the DRE without additional electronic de-
vices;

• (R4) Resist physical and logical attacks, preventing
unauthorized access to key material and application
tampering;

• (R5) Contain only fully auditable components, en-
abling thorough system verification by the EA and the
society;

• (R6) Allow the use of low cost, widely available hard-
ware components, with reasonable computing power
and fully open source development chain;

• (R7) Allow maintenance of the DRE machine and up-
grade of its cryptographic mechanisms during its long
expected lifetime (10 years);

• (R8) Enable and ease software and firmware devel-
opment cycle, including field testing and simulations;
allow faithful simulations which are clearly verifiable
as such, which includes the production of non-valid
results only.

In order to achieve these objectives, we based our proposal
on the fundamentals of secure hardware presented by Gen-
naro et al [9] and Gallo et al [8]. The latter introduces the
concept of cryptographic identity, which states conditions
for the establishment and verification of a root of trust for
general secure hardware. Both suggest the use of their ver-
ification schemes in DREs. Here we go further, presenting

Figure 1: PC-TPM architecture (left) and the T-
DRE architecture. The T-DRE components sur-
rounded by the dotted box are under physical pro-
tection; BIOS physical protection is optional. Dark-
gray components are under MSM direct control.

a DRE system architecture which also brings new control
mechanisms and a new verification method (Section 4.3).

Our architecture is depicted in Figure 1, along with a clas-
sical PC-TPM system. In both, the CPU pool (one or more
main processors) is the main processing unit, which runs the
voting application (and software stack). In the PC-TPM
design, the CPU pool is the bus master of all peripherals,
including the TPM chip, which can be completely bypassed
by tampered software at boot time. There is no way for the
TPM to prevent CPU access to peripherals, nor to inform
users that non-signed code is running.

The T-DRE Architecture, in contrast, is fundamen-
tally different from the PC-TPM: the security is based on
the proposed Master Security Module (MSM), which con-
centrates the DRE’s cryptographic mechanisms and controls
system peripherals (encrypted voter keypad, poll worker ter-
minal, status lights), BIOS, and CPU pool. This centraliza-
tion allows for a multi-level certification-based peripherals’
access policy which can be enforced on the software running
on the CPU pool. This is further explained in Section 4.2.
The MSM control over the human interface devices (HID)
also plays crucial role in our solution. Its implications are
explored in Section 4.3. The MSM is also a CID-enabled de-
vice, i.e. a device whose root of trust, represented by a cryp-
tographic key, is bound to the device’s physical integrity:
crossing the cryptographic boundary is highly likely to cause
the device’s root key destruction (and thus its identity), pre-
venting the production of valid closeout voting records.

The T-DRE Software Verification, in contrast to PC-
TPM, allows for full software stack verification, including
BIOS. Prior to the CPU boot, after the DRE hardware
power-up, the MSM checks the authenticity (and possibly
decrypts) the BIOS contents; only if a valid (signed) BIOS
is found, the CPU pool is able to boot. Now the CPU
runs signed code from the very beginning of the boot se-
quence and is able to use the MSM to check the remaining
of the software stack (bootloader, O.S., voting applications,
scripts, configuration data). The differences between the
T-DRE and the PC-TPM boot processes are illustrated in
Figure 2. It goes beyond VVSG’s required signed code ver-
ifier hardware module (VVSG, Section 5.5.1).

Both the T-DRE peripheral architecture and the software
verification mechanisms are novel to DREs. Moreover, the
MSM also acts as a VVSG Signature Module (VVSG Sec-
tion 5.1.2). In spite of these advancements, our architec-
ture can be implemented with off-the-shelf electronic com-
ponents, enabling secure, fully auditable systems and low
cost realizations. In Section 5 we describe a prototype using
only commodity, general purpose components.

194

Figure 2: Verification chain for code execution, PC
TPM and our proposed MSM

4.2 Hardware-Reinforced Certification-Based
Privileges

Satisfying Section 1 goals (in special privacy) and Sec-
tion 4.1 requisites (in special R3, 5, 7, and 8) requires strict
control over the DRE software. Only official (highly au-
dited) voting software must be able to produce valid close-
out records. Maintenance (loosely audited) software must
be prevented from accessing the DRE’s key material (thus
preventing production of valid closeout records) and from
running an apparently valid, but otherwise fake poll (thus
breaking privacy). Also, voting software being developed
must be able to exercise all DRE features without being
able to produce valid tallies or deceiving voters.

To attain the desired software control, we combined the
MSM’s control over the DRE’s peripherals and the running
software stack, with a custom key hierarchy based on Public
Key Infrastructure (PKI) technology (with established pro-
cedures and audit controls), thus reducing required audit
points. Our proposal centers the confidence of the electoral
system on the EA root certification authority (EA-rootCA),
which is audited (cryptographically) by the parties and the
society. Figure 3 illustrates the PKI architecture with its
three intermediate CAs, VoteCA, DevelCA, and ServiceCA,
each with distinct purposes and privileges. In common,
these CAs are responsible for”: a) managing the DSK cer-
tificate life cycle; b) signing the DRE’s software stack; and
c) decrypting any messages coming from the DRE, when
the voting protocol so demands. Software signed under each
certification branch has different execution privileges and
access to different key materials. Each DRE has three DSK
certificates (and key pairs), one for each tree branch. All
DRE certificates (and corresponding keys) are stored within
the MSM, which controls both the key usage and the signed
code execution privileges.

Vote CA Branch: Binaries signed under this branch
have total control over the DRE hardware and are used in
the actual election days - they have access to the official
voting key material (DSKvote, ESKvote), producing valid
election closeout records, controlling the voter’s keypad use,
the poll worker’s keypad use, and the access to the Secure
Output HID (Section 4.3). The MSM is responsible for en-
forcing the privileges of the signed code over the DRE hard-
ware, without any software interference.

Development CA Branch enables the necessary func-
tions for development and election simulation activities ,
granting restricted access to peripherals and keys: i) the
MSM produces signatures only with DSKdevel, ESKdevel,
Otherdevel keys; and ii) the signed code has no access to the

Figure 3: Certification hierarchy, code and data, and
key usage

CA VoteCA DevelCA ServiceCA
Privilegies

Key (DSK)vote (DSK)devel DSKservice

Material (ESK)vote (ESK)devel
(Others)vote (Others)devel

Input HID Full Full Restricted
access

Output HID Full Full Only test
access results

Security API Full Restricted None
(Secure HID)

Table 1: Signed code execution privileges for our
DRE proposal; MSM enforcement

secure output HID which signals valid polls. This prevents
in-development code from being used to deceive voters, and
easily distinguishes valid signatures on real closeout records
from those produced under simulation.

Service CA Branch enables DRE maintenance (mem-
ory, battery, peripherals testing and systems components
replacement). Servicing operations are highly distributed,
thus hard to audit. Under ServiceCA, signed code is not al-
lowed access to keypads nor the secure output HID nor any
ESK key material. The allowed operations are: a) re-pairing
the input/output of cryptographic devices, and b) signatures
of maintenance logs. Table 1 summarizes the privileges en-
forced by the MSM in each certification branch.

Other Considerations: Although our proposal targets
centralized elections, it can be naturally extended to de-
centralized scenarios, as those in the USA, by adding Lo-
cal Electoral Authorities CAs (as additional intermediate
CAs) to the tree of Figure 3. Then, each local author-
ity would maintain three CAs (VoteCAlocal, DevelCAlocal,
ServiceCAlocal). This allows a great deal of independence
and flexibility, where local authorities can produce and run
their own software without depending on the national au-
thority. Furthermore, DREs can be easily shared by local

195

authorities.

4.3 T-DRE Verification: Secure Human Inter-
face - S-HI

Integrity verification schemes provide variable confidence
level in their output. As a rule, the better the scheme the
more intrusive an adversary has to be in order to fake a
result. From less to more intrusive we list: software mod-
ification (SWM), hardware modification (HWM), and key
extraction from hardware (KXT). Human verification is es-
pecially hard to attain if tampering with the communication
channel between the user and the system under verification
is a possibility. We call a human interface secure (S-HI)
up to a class of intervention (S-HI-SWM, S-HI-HWM, S-
HI-KX) if it does not produce false results even when it is
subject to tampering of that class.

The VoteBox Nano random number display (along with
its verification scheme) is S-HI-SWM, i.e., it resists logi-
cal (bitstream) attacks, but not S-HI-HWM. In T-DRE we
provide users with two interfaces: one S-HI-SWM and one
S-HI-HWM. For the S-HI-SWM interface, we employ the
MSM (hardware-)controlled ’out SHID’ (Figure 1) as a four-
state LED which indicates VoteCA, DevelCA, ServiceCA,
and non/corrupted signed code. This is a clear improve-
ment over VoteBox nano, as we attain the same security
level with a much simpler user verification scheme.

For the S-HI-HWM interface, we employ a modified ver-
sion of TOTV [8] that does not require the high-stability se-
cure real-time clock (HSSRTC) of Gallo et al’s solution. The
TOTV protocol is similar to the Time-Base One-Time pass-
word (TOTP) described in [15]; TOTP derives, from time
to time, an n-digit sequence from a secret key known to the
verified device and possibly to the verifier. It is defined as
TOTP = HOTP (K,T) where T represents the number of
time steps between the initial counter time T0 and the cur-
rent Unix time. K is a key, and HTOP is the HMAC-based
One-Time Password Algorithm defined (RFC 4226 [14]) as
HOTP (K,C) = Trunc(HMAC − SHA − 1(K,C)). The
TOTV proposal binds the secret derivation key K to the
device’s cryptographic identity (CID), so that any attempt
to tamper with the device, by construction, should destroy
the CID and thus cease the TOTV sequence creation. In our
architecture, we maintain two TOTV keys (Kvote,Kdevel)
protected by DSKvote and DSKdevel keys.

In order to check the integrity of a specific DRE, a user
has to access a TOTV sequence produced by the electoral
authority. In other to avoid replay attacks, this access must
be either i) confidential and prior to the DRE display of the
TOTV, or ii) real-time, on-demand, and signed.

In our proposal, we use the same construction as the
TOTV, but instead of having a single T representing the
number of time steps since Unix epoch, we use two T vari-
ables (Tvote, Tdevel). These represent the time steps accumu-
lated during every DRE usage when running in voting mode
and development mode, respectively. The time counters nec-
essary for this are made persistent and are protected by the
MSM from stalls or decrement. In order to avoid other types
of replay attacks, and after signed closeout records are pro-
duced by the DRE, it stalls the counter and includes it in the
certificate, pausing the timing increments. In the next DRE
usage (possibly on the next election), the electoral authority
sends the poll workers TOTV = HTOP (K,T), with T =
max(Tcloseout, Tuser−access), which allows for DRE boot-up

and counter resumption. The modification from the original
TOTV proposal is motivated by the cost of a high stability
secure real time clock. The usage of our proposals is further
illustrated in Section 5.

5. T-DRE IMPLEMENTATION & RESULTS
The practical realization of our proposals was done in two

phases, a prototyping and a mass production phase. In the
first, the theoretical, technological, and procedural solutions
were tested and validated. In the second, any necessary
modifications were implemented.

5.1 Hardware and Firmware Implementation
Prototype Due to the large number of DREs to be pro-

duced (165,000), our proposals were thoroughly tested in a
prototype prior to the delivery of final specifications to the
chosen vendor for mass production. In the prototype (com-
posed by two connected boards: B1 and B2), we instantiated
all of the T-DRE main peripherals (Figure 1, namely: MSM,
BIOS memory, encrypted voter keyboard (in SHID), out-
put device (serial display), secure output (out SHID), main
CPU, among others. The B2 board is a commercial em-
bedded PC, with an AMD Geode LX800 CPU, with 256MB
RAM. The B1 is a custom board specifically built for the
prototype. It hosts the MSM and other devices, and con-
nects the security module to the bottom board by means of
an ISP connection (to BIOS delivery) and a USB connection
(for other, cryptographic, services).

Considerable effort was spent on the correct choice of the
micro-controller (uC) employed for the MSM as it must con-
form to many requirements: a) have internal code and data
memory (both persistent and volatile); b) the entire memory
must be lockable (no read/write access); c) memories must
be large enough to handle cryptographic mechanisms (RSA,
ECDH, ECDSA, SHA-2, homomorphic DH) and store keys
and certificates; and d) reasonable performance, in order to
handle quick BIOS verification and cryptographic services.

In our prototype, the MSM was implemented using a
NXP LCP2000 (ARM) family uC which meets these re-
quirements: a) up to 1MB internal FLASH memory with
code read protection, b) up to 40KB RAM, enough for the
implementation of asymmetric algorithms; c) 72MHz, 32-
bit core, with 64 DMIPS performance. The voter input
device (cryptographic, tamper-resistant physical keyboard)
was simulated using a MSP430 uC, connected to the main
uC by an SPI bus. The output secure HID is composed by
three light emitting diodes (LEDs) which are directly con-
nected to the MSM. In order to provide an onboard source
of entropy, we implemented two random number generators
using avalanche-effect semiconductor noise.

For the asymmetric algorithms on the MSM and the cryp-
tographic keyboard we used the RELIC library [7]. For our
prototype, the implementation of the required MSM func-
tionalities, including DSK and ESK handling, binary code
verification, CSR exportation, secure firmware update and
cryptographic keyboard handling required about 180Kbyte
FLASH (code) memory and 24Kbyte RAM. Employed func-
tions were: signing and verification, asymmetric encryp-
tion/decryption (RSA-2048 PKCS#1); hash (FIPS 180-3
SHA-512); block ciphers (FIPS 197 AES 256).

A prototype software stack was also implemented. The
bottom board BIOS was modified so that it uses the MSM
slave interface to check the bootloader’s authenticity. The

196

bootloader was also modified (from GRUB) to test the boot
image, rather than files, using the MSM.

5.1.1 Attacks and Countermeasures
T-DRE, as PC-TPM, has no effective runtime (after boot)

countermeasures against defective software nor buffer over-
flow attacks (data execution). While the first problem can
be traced (and later dealt with) due to the sole use of signed
code, the second demands more attention. In Brazil DREs
have no data links, so buffer overflow attacks from voters
or poll workers keypad is highly unlikely. For further pro-
tection, one may consider the “reboot prior to each vote”
approach.

Hardware systems are subject to many implementation
attacks, in special side-channel analysis (SCA) [12]. SCA use
information leaked through side-channels from real systems.
More information can be found in [12] and [22]. SCA-aware
cryptographic hardware usually resists, to a certain extent,
side-channel attacks. However, they typically suffer from
lack of transparency on the employed security mechanisms
(see Section 3). As we privilege transparency over off-the-
shelf solutions, our solution uses a standard uC and added
FIPS 140-2 level 3 equivalent physical protection and SCA
counter measures:

• The entire top board was immersed in tamper-resistant
and -evidencing resin;

• In order to weaken power attacks (SPA, DPA, CPA),
we adopted two countermeasures: a) we used decou-
pling elements in all external communication paths;
and b) we filtered and stabilized the power input to
prevent energy consumption variation;

• Timing attacks are weakened by using constant-time
cryptographic operations.

5.1.2 Mass Production Versions
After validation, our architecture was realized in a mass

production version, and is set to be used on the 2010 Brazil-
ian national election, with more than 165,000 DREs. This
version differs from our prototype in some implementation
decisions and functions: a) there is a single board contain-
ing all the components required in our architecture; b) the
CPU pool was implemented as a single x86 processor; c) the
MSM master interface was replaced by an assistive (super-
visor) interface; if the MSM perceives any BIOS change, it
resets the CPU pool (the main drawback being that BIOS
cannot be encrypted). A second mass production version
is expected to be manufactured in the fourth quarter of
2010, with more than 200,000 DREs. These will present
further side-channel countermeasures and incorporate im-
provements deemed necessary.

5.2 Usage Procedures

5.2.1 Pre-Election, Election, and Post-Election Pro-
cedures

Since valid (non-tampered) voting machines run only code
signed by the electoral authority, it is easy for a verifier to
check whether the voting application is correct and that the
voting machines have not been tampered with:

• In the pre-election phase, a human verifier must: a)
Check for any physical tamper evidences on the DRE;

if any are found, stop and report; b) switch on the
DRE and enter the “resume TOTV” provided by the
electoral authority (Section 4.3); if the DRE fails to
continue the boot process, stop (either it is not the
correct DRE or the device has been tampered with);
c) check for the next TOTV to be shown by the DRE;
if it is not the expected one, stop (the DRE has been
tampered with); d) perform other verification proce-
dures (e.g. audit procedures).

• On election day, human verifiers can, at any time: a)
check for software stack integrity, by simply checking
a DRE’s status S-HID (indicative LED); if the S-HID
does not present a valid status, the use of that DRE
must be prevented (either it has been tampered with
or it is not running the correct voting software stack);
b) from time-to-time, electoral judges and voters can
check for device integrity by comparing the TOTV pro-
duced by the DRE with those from the electoral au-
thority; if any comparison fails, stop that DRE’s use
(it has been tampered with).

• In the post-election phase, a human verifier must
check whether the final TOTV present in the closeout
record is valid; if not, the device has been tampered
with and the produced closeout record is deemed in-
valid.

5.2.2 Other Procedures: Development, Testing, and
Maintenance

We chose a PKI model for key management, so that its
established practices and procedures can be used. The use
of the root CA’s and the VoteCA’ authorization keys is
only granted to the highest rank staff of the EA (in Brazil,
Supreme Court judges preside the Supreme Electoral Court),
audited (cryptographically) by political parties, Congress
and society representatives.

6. CONCLUSION AND FUTURE WORK
In this paper we propose T-DRE, a trusted computing

base for direct recording electronic voting machines, which
is mostly independent of the voting application and largely
VVSG-compliant. T-DRE’s novel combination of technolo-
gies enable device verifiability by humans, deep PKI integra-
tion and simple auditing. Our architecture was prototyped
and then reengineered for large scale manufacturing, with
165,000 devices produced. These DREs will be used in the
Brazilian 2010 presidential election.

T-DRE’s main component, the Master Security Module
(MSM), unifies the TPM and SM modules proposed in the
VVSG and adds key new features by: a) enforcing, over
the entire software stack, a policy of multi-level, certificate-
based access to peripherals and key material; and b) taking
control of human interface devices, thus amplifying vote pri-
vacy and user DRE tamper detection.

We also indicate how the new audit and control mecha-
nisms present in our architecture can be integrated into the
usual electoral cycle, the voting itself, election simulation,
device testing and servicing, and software development.

Currently, we are working on the design of a fully-auditable
secure processor to be used as a CPU-MSM for DREs.

7. REFERENCES

197

[1] R. Anderson, M. Bond, J. Clulow, and
S. Skorobogatov. Cryptographic processors—a survey.
Proceedings of the IEEE, 94(2):357–369, 2006.

[2] Brazilian Superior Electoral Court (TSE). Election
statistics, April 2010.

[3] D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security & Privacy, 2(1):38–47, 2004.

[4] B. Chen and R. Morris. Certifying program execution
with secure processors. In HOTOS’03: Proceedings of
the 9th conference on Hot Topics in Operating
Systems, pages 23–23, Berkeley, CA, USA, 2003.
USENIX Association.

[5] M. Clarkson, S. Chong, and A. Myers. Civitas: A
secure voting system. 2007.

[6] V. Costan, L. F. Sarmenta, M. van Dijk, and
S. Devadas. The Trusted Execution Module:
Commodity General-Purpose Trusted Computing. In
CARDIS ’08: Proceedings of the 8th IFIP WG
8.8/11.2 International Conference on Smart Card
Research and Advanced Applications, pages 133–148,
Berlin, Heidelberg, 2008. Springer-Verlag.

[7] C. G. Diego Aranha. Relic is an efficient library for
cryptography. http://code.google.com/p/relic-toolkit/,
April 2010.

[8] R. Gallo, H. Kawakami, and R. Dahab. On device
identity establishment and verification. In Proc of
EuroPKI’09 Sixth European Workshop on Public Key
Services, Applications and Infrastructures, September
2009.

[9] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali,
and T. Rabin. Algorithmic Tamper-Proof (ATP)
Security: Theoretical Foundations for Security against
Hardware Tampering, 2004.

[10] A. Huang. Keeping Secrets in Hardware: The
Microsoft XBox TM Case Study. Cryptographic
Hardware and Embedded Systems-CHES 2002, pages
355–430, 2002.

[11] International Organization for Standardization (ISO).
ISO/IEC 11889:2009 Information technology –
Trusted Platform Module. ISO/IEC, 2009.

[12] M. Joye. Basics of Side-Channel Analysis, pages
365–380. Cryptographic Engineering. Springer, 1
edition, 2009.

[13] Maxim Integrated Products Inc. Usip-pro component
datasheet, April 2010.

[14] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache,
and O. Ranen. RFC 4226: HOTP: An HMAC-based
one-time password algorithm, December 2005.

[15] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. RFC
draft: TOTP: Time-based one-time password
algorithm, January 2009.

[16] C. Neff. A verifiable secret shuffle and its application
to e-voting. In Proceedings of the 8th ACM conference
on Computer and Communications Security, page 125.
ACM, 2001.

[17] C. A. Neff. Practical high certainty intent verification
for encrypted votes, October 2004.

[18] NIST. Security requirements for cryptographic
modules, Federal Information Processing Standards
Publication (FIPS PUB) 140-2, 2002.

[19] E. Oksuzoglu and D. Wallach. VoteBox Nano: A

Smaller, Stronger FPGA-based Voting Machine (Short
Paper). usenix.org, 2009.

[20] E. Rescorla. Understanding the security properties of
ballot-based verification techniques. In Electronic
Voting Technology Workshop / Workshop on
Trustworthy Elections, August 2009.

[21] R. L. Rivest and J. P. Wack. On the notion of
“software independence” in voting systems. System,
2006.

[22] P. Rohatgi. Improved Techiniques for Side-Channel
Analysis, pages 381–406. Cryptographic Engineering.
Springer, 1 edition, 2009.

[23] D. R. Sandler. VoteBox: A tamper-evident, verifiable
voting machine. PhD thesis, Rice University, April
2009.

[24] N. K. Sastry. Verifying security properties in electronic
voting machines. PhD thesis, University Of California,
Berkeley, 2007.

[25] K. Shimizu, H. P. Hofstee, and J. S. Liberty. Cell
broadband engine processor vault security
architecture. IBM J. Res. Dev., 51(5):521–528, 2007.

[26] G. E. Suh, C. W. O’Donnell, and S. Devadas. Aegis:
A single-chip secure processor. IEEE Design and Test
of Computers, 24(6):570–580, 2007.

[27] The Common Criteria Recognition Agreement.
Common criteria for information technology security
evaluation v3.1 revision 3, July 2009.

[28] USA Election Assistance Commission.
Recommendations to the EAC voluntary voting
system, guidelines recommendations, 2007.

198

Hardware Assistance for Trustworthy Systems
through 3-D Integration

Jonathan Valamehr†, Mohit Tiwari‡, and Timothy Sherwood‡
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
{valamehr@ece,tiwari@cs,sherwood@cs}.ucsb.edu

Ryan Kastner
Dept. of Computer Science and Engineering

Univ. of California, San Diego
La Jolla, CA 92093

kastner@cs.ucsd.edu

Ted Huffmire, Cynthia Irvine, and Timothy Levin
Dept. of Computer Science
Naval Postgraduate School

Monterey, CA 93943
{tdhuffmi,irvine,levin}@nps.edu

Abstract

Hardware resources are abundant; state-of-the-art proces-
sors have over one billion transistors. Yet for a variety of
reasons, specialized hardware functions for high assurance
processing are seldom (i.e., a couple of features per vendor
over twenty years) integrated into these commodity proces-
sors, despite a small flurry of late (e.g., ARM TrustZone, In-
tel VT-x/VT-d and AMD-V/AMD-Vi, Intel TXT and AMD
SVM, and Intel AES-NI). Furthermore, as chips increase in
complexity, trustworthy processing of sensitive information
can become increasingly difficult to achieve due to extensive
on-chip resource sharing and the lack of corresponding pro-
tection mechanisms. In this paper, we introduce a method
to enhance the security of commodity integrated circuits,
using minor modifications, in conjunction with a separate
integrated circuit that can provide monitoring, access con-
trol, and other useful security functions. We introduce a new
architecture using a separate control plane, stacked using 3-
D integration, that allows for the function and economics
of specialized security mechanisms, not available from a co-
processor alone, to be integrated with the underlying com-
modity computing hardware. We first describe a general
methodology to modify the host computation plane by at-
taching an optional control plane using 3-D integration. In a
developed example we show how this approach can increase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

system trustworthiness, through mitigating the cache-based
side channel problem by routing signals from the computa-
tion plane through a cache monitor in the 3-D control plane.
We show that the overhead of our example application, in
terms of area, delay and performance impact, is negligible.

1. INTRODUCTION
The development effort required to build a system is di-

rectly proportional to the cost of its failure; hence critical
systems used in space shuttles and banks undergo much
more rigorous development cycles than systems for home
users. High assurance systems, which are designed to with-
stand attacks by professional, well-funded adversaries, re-
quire a tremendous investment of time, effort, and money
by their small user base. In comparison to commodity sys-
tems, these systems generally lag far behind in performance
and programmability. Unfortunately, for commodity proces-
sors, security threats are often not considered at the rapidly
changing ISA [8] or micro-architecture levels. Clearly, a
method that allows commodity parts to be retrofitted with
protection mechanisms without increasing the cost for ordi-
nary users and without decreasing the performance of the
commodity processor will offer a significant advantage for
high assurance system development.

Economics of Hardware Trust: The economics of trust-
worthy system development puts designers under constraints
not faced by low assurance, commodity systems. For exam-
ple, the expense of special-purpose hardware can make it
costlier to provide both high performance and strong secu-
rity. Even when hardware vendors incorporate security en-
hancements, integrating these mechanisms into a complex
system design may present many practical and theoretical
problems, driving up the costs and driving out the release
schedule. In addition to the fact that such system devel-

199

opment costs per unit are very high, users requiring such
functionality make up a small portion of the market. So-
phisticated security mechanisms at the hardware level are
typically targeted at a relatively small market sector and
add unacceptable costs to commodity products.

Performance Ramifications: The design cycle of trust-
worthy systems also places constraints on the performance
that can be realized in the final version of these systems.
Due to the high non-recurring engineering (NRE) cost of
manufacturing custom hardware and the small amortization
base of low volume products, manufacturers are often forced
to choose less costly alternatives, such as an older, cheaper
process (e.g., 0.5um vs. 45nm).

As a result of these economic factors, designers of trust-
worthy systems requiring high performance need some way
to incorporate commercial hardware components without
compromising security. To address this challenge, a method
of bridging the gap between cutting-edge technology and
trustworthy systems is of paramount necessity.

3-D Integration for High Assurance: The primary
goal of this paper is to introduce a new method by which se-
curity functionality can be added to a processor as a foundry-
level configuration option. Specifically, we propose a new
and modular way to add security mechanisms to current and
next-generation processors through the use of 3-D integra-
tion. We advocate consolidating these security mechanisms
into a physical overlay, literally a separate plane of circuitry
stacked on top of a commodity integrated circuit. The secu-
rity mechanisms that reside in this overlay can then be con-
nected to the underlying chip with a variety of interconnect
technologies, yet can be completely omitted without change
to the commodity chip’s function and without affecting its
cost. Using 3-D hardware to alleviate this problem offers
many advantages over other hardware solutions as well as
software solutions. These advantages are fully explored in
Section 2.

Contributions: In this paper, we show that an active
layer1, which we call a 3-D control plane, specifically dedi-
cated to security, has the potential to implement a variety
of security functions in a cost-effective and computationally
efficient way. Specifically, this paper makes the following
contributions:

• We are the first to develop a method of using 3-D
integration for trustworthy system development, and
propose to combine an independently fabricated 3-D
control plane containing arbitrary security functions
(such as micro-architectural protection mechanisms)
along with a commodity integrated circuit, which we
refer to as the computation plane.

• Security functions can be broadly classified as either
active or passive monitors, depending upon whether
the 3-D control plane modifies signals on the compu-
tation plane. We describe precise circuit-level primi-
tives required to build both active and passive moni-
tors such that signals on the computation plane can be
arbitrarily tapped, disabled, re-routed, or even over-
ridden. We also outline how the 3-D control plane can

1The active layer is the silicon layer where transistors re-
side, and metal layers are fabricated above that connect the
transistors together. We define a “plane”as the combination
of the silicon and metal layers that compose a typical 2-D
integrated circuit.

be integrated in a purely optional and minimally in-
trusive manner with very minor modification to the
commodity computation plane.

• We demonstrate our circuit-level primitives using an
active monitor that implements a well-known micro-
architectural protection mechanism: a cache monitor
that can prevent access-driven cache side channel at-
tacks.

• Finally, we validate the functionality of our circuit-
level primitives using SPICE simulations, and build a
synthesizable prototype of our 3-D cache monitor to
evaluate the area-delay cost of its inclusion. We also
quantify the impact of our cache protection mechanism
on the performance of SPEC benchmark programs,
through detailed timing simulations on an out-of-order
CPU simulator.

Before describing the circuit-level modifications required
of the computation plane, we begin with a discussion of 3-D
integration and the opportunities it presents for trustworthy
system design.

2. MOTIVATION FOR 3-D SECURITY
In this section, we provide a short background on 3-D

integration and present our motivation for using 3-D hard-
ware to address the concerns raised in Section 1. Since 3-D
integration is an existing technology already used in indus-
try [24, 26], our work does not discuss the feasibility of 3-D
integration but rather focuses on the security ramifications
of a 3-D control plane.

2.1 3-D Integration
While the details of how we use this technology are more

fully described in Section 3, the main idea is that two pieces
of silicon are fused together to form a single chip. The
two active layers of the silicon (the commodity computation
plane and 3-D control plane) are connected through inter-
die vias2 (micron-width wires that are chemically “drilled-
and-filled” between the layers) which run vertically between
them. This ability to interconnect multiple active layers
enables the addition of an optional die that specifically im-
plements security functions to a commodity processor die.
This 3-D control plane would have access to the security-
dependent signals of the system. Such a system could be
sold to customers requiring application-specific security pol-
icy enforcement, information flow control, or other security-
specific support. Commodity systems, on the other hand,
are unlikely to include this additional, more costly function-
ality that only benefits a small number of customers.

Attaching multiple layers of silicon together in 3-D stacks
is a relatively new, yet already marketed technology [26],
which is being explored by most of the major microproces-
sor manufacturers [6]. As opposed to most current 2-D cir-
cuits, which use only one active layer for computation, 3-D
circuits contain multiple active layers, or planes, which are
then connected using techniques such as inter-die vias (or
“posts”). Several 3-D interconnect technologies are currently
being evaluated in industry as a means of stacking multi-
ple chips together. Some potential applications include the

2Vias are physical connections between two wires on differ-
ent metal layers.

200

Security Architecture Power Bandwidth Delay

Security Functions On-chip

Security Functions on a
Co-Processor

Security Functions on a
3-D Control Plane

Low power consumption, with
the only addition being the
power used by security logic and
interconnect

In addition to powering another
chip, driving long off-chip bus
wires consumes large amounts
of power

3-D security only slightly
increases power consumption,
and can use less power than
on-chip due to exploitation of
locality of security modules

Bus width is limited due to
contending traffic and
component congestion
throughout the chip (1-16
bytes) running at core clock
speed (>2 GHz)

Low data bus widths due to I/O
pin availability (1-8 bytes)
running at external clock speed
(~ 400 MHz)

3-D allows bus widths to be
increased significantly (up to
128 bytes) running at core clock
speed (>2 GHz)

On-chip delay is dictated by the
length of interconnect, which is
often very large between
components

Very large delay between off-
chip co-processor and CPU
(>200 cycles)

3-D exhibits low delay due
to the short length of inter-die
vias, as well as the locality that
can be exploited to shorten
critical paths

Figure 1: This table compares other hardware options for security against a 3-D control plane and shows the
advantages and disadvantages in terms of power, bandwidth, and delay [11, 20].

stacking of DRAM or bigger caches directly onto the pro-
cessor die to alleviate memory pressure [17] and designing
stacked chips of multiple processors [2].

Toshiba has applied 3-D integration to a CMOS image
sensor camera module for mobile phones, which they call
a Chip Scale Camera Module (CSCM), achieving a signif-
icant reduction in size while satisfying high-speed I/O re-
quirements [24]. The Toshiba work demonstrates that cost
savings are possible with 3-D integration because passive
components, which provide load matching between the chip
and the camera, can be integrated into the chip. This makes
the passive components cheaper, smaller, and faster than
board-level components; therefore, savings can be realized
in power, resistance, and capacitance, as driving lines be-
tween layers consumes much less power than between chips.
Furthermore, multiple layers, each optimized for its partic-
ular function, can be combined into a single stack.

Large microprocessor manufacturers are unlikely to inte-
grate support for highly specialized security mechanisms be-
cause the market for such features represents such a small
portion of their total customer base. This is an example of
Gresham’s Law: if a manufacturer incurs the cost of security
mechanisms deemed unnecessary by the general commod-
ity market, a competing, less costly product without such
mechanisms will dominate. By fabricating the optional 3-
D control plane with functions that are complementary to
(but separate from) those of the main processor, stacked in-
terconnect offers the potential to add security mechanisms
to a small subset of devices without impacting the overall
cost of the commodity processor.

Just to be clear, we are advocating the development of
a processor which is always fabricated with special connec-
tions built in for joining it with a control plane. The differ-
ence between the system sold for the cost-sensitive consumer
market and the one that is sold to the security-sensitive cus-
tomer is only whether a specialized security device is actually
stacked on top of the standard integrated circuit, utilizing
the special connections. Additional benefits to this approach
are that security mechanisms implemented in hardware are
faster than software-only approaches, and the security mech-
anisms can be specialized for particular sets of applications,
systems, and customers.

2.2 3-D vs. Other Hardware Solutions
This section discusses the advantages of using 3-D integra-

tion over other hardware methods such as on-chip and co-
processor implementation of security functions. In general,
implementing security functions in software is less costly
than in hardware, but software implementations have worse
performance and are more susceptible to tampering. Imple-
menting security functions in hardware is more expensive,
but the result has better performance and is more resilient
to manipulation.

Why not On-Chip?: Implementing security features
on-chip creates many issues and discrepancies. It would
force all users of the chip uninterested in system trustwor-
thiness to incur the possible negative effects of the added
security logic. As discussed previously, an unacceptable
consequence of on-chip security is the increase in cost for
all consumers. In addition, on-chip security functions have
the potential of decreasing the overall performance of the
chip, as security modules may need long interconnect wires
to data and control lines spanning the whole chip area; this
can be mitigated by the exploitation of locality in the 3-D
layer as well as short interconnect through inter-die vias as
explained in Figure 1. The large majority of microproces-
sor consumers are chiefly concerned with the performance of
the chip, and on-chip security could provide advantages to
competing chip manufacturers who do not incorporate these
security features. Because of market pressures, chip manu-
facturers are reluctant to pursue such a course. With 3-D
security, the small percentage of consumers who need the
added security logic have the option of including it in their
systems, while consumers who do not need this extra logic
can omit it.

Why not use a Co-processor?: A co-processor solu-
tion, much like 3-D security, allows the consumer to have the
option of including additional security logic. However, un-
like 3-D security, an off-chip co-processor can not safely ac-
cess internal micro-architectural control signals without pos-
sibly making them susceptible to outside tampering. This
makes 3-D security much more attractive and feasible, as
any resource or control signal can be accessed and modified
by the 3-D control plane. Also, co-processor solutions suf-

201

fer from the utilization of slow, power-hungry off-chip buses.
These off-chip buses operate at much slower frequencies than
can be realized with a 3-D solution (Figure 1), and they can
introduce large delays in processor speed. In addition, off-
chip buses have to interface with the main processor through
the main processor’s I/O pins, and they are limited in size
based on available pins. This equates to smaller bus widths
(Figure 1), which can further hinder performance. Choos-
ing which pins to interface between the processor and the
co-processor also creates inflexible co-processor designs, be-
cause we are limited to accessing or modifying those pins,
whereas with a 3-D solution we can create any number of
different co-processor designs and access any internal signal.
Aside from performance, a co-processor solution also entails
increased power usage, as driving long off-chip buses requires
much more power than driving short inter-die vias to a 3-D
control plane. A 3-D security scheme does not fall victim to
any of these issues.

Disadvantages of 3-D Security: 3-D security holds
much promise as a solution; however, it is not without trade-
offs. Chips fabricated using 3-D integration need greater
thermal management, and, without additional cooling, will
run at higher temperatures due to the proximity of com-
ponents [11]. While this is a known issue, it is not insur-
mountable and can be addressed with more expensive cool-
ing solutions. Another disadvantage of 3-D chips is their
expected manufacturing yield, as the functionality of the
complete chip is dependent on the individual yield of each
of the two dies.This can create lower overall yield than the
individual dies. However, the cost of this lower yield will
not be incurred by most consumers, as the decrease in yield
only applies to the systems that need the 3-D control plane
attached.

This section has compared 3-D security with other soft-
ware and hardware solutions for trustworthy systems. The
3-D control plane can include different types of security mon-
itors. In the next section, we will discuss both of these types
of monitors, and follow with our novel circuit architecture
to allow the use of an optional 3-D control plane.

3. 3-D SECURITY ARCHITECTURE
The 3-D control plane can include several security func-

tions on one die, implemented as either passive or active
monitors. While passive monitoring in 3-D for system pro-
filing has been explored previously [12], a novel contribution
of this work is providing active monitoring in a 3-D con-
trol plane. In the following section we explain the uses of
these two types of monitors, and describe a novel circuit-
level architecture that allows us to make the functions of
these monitors available as a fabrication option in an over-
lay.

3.1 Passive and Active Monitors
Passive Monitors: One potential use of the 3-D control

plane is to act as a passive monitor, simply accessing and
analyzing data from the computation plane. For instance,
we may wish to monitor accesses to a particular region of
memory or audit the use of a particular set of instructions.
To monitor these events, we must understand when such
events are occurring, which necessitates tapping some of the
wires from the processor. This requires posts and vias to
the instruction register and memory wires, which gives us

direct access to the currently executing instruction.
Passive monitoring is reasonably straightforward to im-

plement in 3-D technology, as it just requires a set of vias
to the top of the computation plane, and then a post from
there to the 3-D control plane. Figure 2 shows such a post.

3-
D

 C
on

tr
ol

Pl
an

e
C

om
pu

ta
tio

n
Pl

an
e

Reference

TSV

Sleep
Transistors

Buffer

bus

Metal
Layers

Silicon Substrate

vias

CMOS
Logic

TSV

Post Carries Rerouted

Metal
Layers

Monitor
Logic

Signal from Computation Plane

Diabled by
Bus Is

Contact Point

Figure 2: This figure shows the low level architec-
ture for a method to route data/control lines on the
computation plane through the 3-D control plane.
This can be performed to isolate resources in the
computation plane by disabling a bus, for example.
The computation plane and the 3-D control plane
are connected by inter-die vias or through-silicon
vias (TSVs). Posts are required to tap the required
signals needed by the security logic, and sleep tran-
sistors are used to either reroute, override, or dis-
able lines on the computation plane. Using these
primitives, we can build mechanisms to monitor the
computation plane.

The area overhead of this passive style monitoring in a 3-
D layer was analyzed by Mysore et al. [12] in the context of
hardware support for analyzing the processor in real time
for debugging and performance profiling, which has high
throughput requirements and is very slow to implement in
software. Their conclusion was that, even with very pes-
simistic assumptions about the technology, there would be
less than a 2% increase in the total area on the computation
plane and that there would be no noticeable delay added.
The small amount of area overhead is due to the need to
save space for the vias across all of the layers of metal.

Active Monitors: Whereas passive monitoring allows
for auditing, anomaly detection, and the identification of
suspicious activities, systems enforcing security policies of-
ten require strong guarantees about restrictions to overall
system behavior. A novel contribution of our work is the
employment of active monitors; an active monitor enables
control of information flow between cores, the arbitration of
communication, and the partitioning of resources.

The key ability needed to support such functionality is to
reroute signals to the 3-D control plane and then override
them with potentially modified signals. With this technol-
ogy and minor modification of the computation plane, we

202

can force all inter-core communication, memory accesses,
and shared signals to travel to the 3-D control plane, where
they are subject to both examination and control. For in-
stance, we can ensure that confidential data being sent be-
tween two cores (which are traditionally forced to traverse
a shared bus) is not leaked to a third party with access to
that bus.

We have developed a method to modify signals on the
computation plane that is accomplished in two parts. The
first part is to ensure that the monitor has unfettered access
to all the signals (tapping), which is, in essence, the same
as the passive monitoring scenario described above. The
second part is to selectively disable those links, essentially
turning off portions of the computation plane (e.g., a bus),
or overriding them to inject different values. The difficulty
is that we must remove a capability (the connection between
two components) only by adding a 3-D control plane (which
cannot physically cut or impede that wire). The compu-
tation plane must be fully functional without an attached
3-D control plane, yet it needs to be constructed so that by
adding circuitry, the targeted capability can be completely
disabled. To accomplish this, components in the computa-
tion plane must be modified to support active monitoring.

3.2 Circuit-level Modifications
This section introduces the circuit level modifications we

will make in order for the 3-D control plane to perform its
intended function and for the computation plane to be able
to execute in its absence. These primitives are illustrated in
Figure 4.

Sleep Transistors: A novel and alternative method for
disabling links is to physically impede the connection itself.
While this sounds intrusive, we are the first to leverage an
existing circuit technique called power gating [18] for this
application. Support for power gating is added through the
addition of sleep transistors placed between a circuit’s logic
and its power/ground connections. The sleep transistors
act as switches, effectively removing the power supply from
the circuit. The circuit is awake when the transistors are
activated by a specific signal, which provides power to the
circuit, allowing it to function normally. Alternatively, the
sleep transistors can be given the opposite input and turned
off, thus disconnecting the power to the circuit, temporarily
removing all functionality, and effectively putting the circuit
to sleep.

Sleep transistors are traditionally used to temporarily dis-
able unused portions of an integrated circuit, saving power
by preventing leakage current [19]; however, their use is also
beneficial for providing the isolation an active monitor re-
quires. With only a small amount of added hardware (two
transistors and two resistors, shown in Figure 3) and posts
for connectivity to the 3-D control plane, we can selectively
turn off portions of the computation plane to force adherence
to any specific security policy enforced in the control layer.
Finally, many modern chips already employ power gating.
This reduces the amount of additional hardware necessary
to apply our security primitives, since only posts to the 3-D
control plane to carry the control signal are required.

In addition to selectively removing power from some com-
ponents on-chip, sleep transistors may be used to perform
several key functions on data and control lines required by
active monitors. Sleep transistors can be placed on any link
that may need to be disabled or controlled. They can be

Pull-up
logicin

pu
t

output

pull-down

pull-up

Signal Post
(to Control

Plane)

Pull-
down
logic

PMOS Sleep
Transistor

NMOS Sleep
Transistor

Override Posts
(Controlled by
Control Plane)

Figure 3: A circuit diagram of sleep transistors in
the computation plane being used to remove power
from a circuit.

managed by the 3-D control plane by simply providing a
post that connects to their gate input. The following func-
tions all use only one or two transistors per line and present
a new set of options for trustworthy system development.

Tapping: Tapping can be used to send the requested sig-
nals to the 3-D control plane without interrupting their orig-
inal path. As shown in Figure 4a, we use a transistor and
apply the correct voltage to the gate of the transistor to cre-
ate the additional path of the signal to the 3-D control plane.
This is particularly useful when we are performing analysis
(e.g., dynamic information flow tracking) on the flow of in-
formation on the computation plane without affecting its
original functionality (Figure 6). Tapping can also be used
when security logic on the 3-D control plane is dependent
on some data in the computation plane, without the need to
change their values in the system. In our 3-D cache eviction
monitor (Section 3.3) we use tapping to access the address
of a load or a store instruction to determine whether a cache
eviction is allowed without interfering with the normal flow
of the address through the bus.

Re-routing: Re-routing (Figure 4b) uses two transistors
per line to send the requested signals to the 3-D control plane
and block their transmission to the originally intended path.
A pull-up resistor is attached to the gate of the transistor
that is disabling the line, to force a connection when the
3-D control plane is not attached. Re-routing can be used
in situations where we want to create new buses between
resources on-chip.

Another use of re-routing is using a signal for a different
purpose than was originally intended. Once on the 3-D con-
trol plane, the signal can be analyzed and combined with
other data from the 3-D control or computation planes, or
simply stored for later use. This can then be coupled with
overriding (Figure 4c) to change control or data outputs on

203

(a) Tapping (b) Re-routing

X

X

(c) Overriding

X

(d) Disabling

X

X

X

= Post to the 3-D control plane X = Signal flow

X

X

X

Figure 4: This figure shows the four different kinds of circuit level modifications that can be made and
their respective diagrams. The sample base circuit is an AND gate and is found to the left of each circuit
modification. Tapping requires only one transistor to optionally propagate the signal to the 3-D control plane,
while re-routing and overriding need transistors with pull-up resistors to ensure their continued function
for systems omitting the 3-D control plane. Disabling uses a transistor and a pull-up resistor to uphold
the connection in the absence of the 3-D control plane, while giving the 3-D control plane the option of
disconnecting the line for systems utilizing it.

the computation plane based on new logic in the 3-D control
plane (Figure 7).

Overriding: Overriding (Figure 4c) allows us to block
the intended value of a signal and modify it to a desired
value for the security layer’s function (Figure 6 and Fig-
ure 7). Overriding uses two transistors and a pull-up resistor
much like re-routing. For some security applications, criti-
cal control signals need to be changed in order to adhere to
a security policy that is being enforced by the 3-D control
plane. In our 3-D cache eviction monitor (Section 3.3), we
use overriding to change the value of a cache’s write-enable
signal (see Figure 8), allowing us to inject a value to allow
or deny the eviction of a specific cache line.

Disabling: Disabling (Figure 4d) allows us to completely
stop the flow of data on a common bus or a specific sig-
nal line. Uses of disabling include the ability to isolate a
specific resource from unintended accesses, or enforcement
of policies that require tight guarantees on the integrity of
data on a shared bus. Many bus protocols work on a mutual
trust system, where access to the bus is controlled by the
devices that are connected, not by a trusted arbiter. In sit-
uations such as this, it is important to preserve trustworthy
execution and the confidentiality of data during a sensitive
computation. Disabling can be used to forcibly block access
to a bus to ensure secure transactions without the possibility
of unintended access (Figure 5).

3.2.1 Spice Simulation Results:
To verify the correctness of our circuit-level modifications,

we developed Spice circuit models for each of the circuits in
Figure 4 and used Spice simulations to read the voltage val-
ues at certain nodes for each circuit. Two experiments were
performed, with input voltages at the transistor terminals
corresponding to the 1) absence of the 3-D control plane and
corresponding to the 2) presence of the 3-D control plane.
NMOS transistors from 45nm predictive technology mod-
els [1] were used to characterize the sleep transistors, but
PMOS transistors can also be used. Regardless of which
transistor type we use, we need to buffer the signal after it
has traveled through the transistor to ensure a strong signal
propagation. During the experiment where the 3-D control
plane is omitted, the transistor gates are not powered, and

the pull-up resistors successfully power the transistor’s gate
and create a short, allowing the signal to pass normally.
When the transistor gates are powered, we can successfully
control the circuit and perform the function for each respec-
tive circuit. These experiments verify our ability to create
functional systems with the option to add a modular 3-D
control plane.

3.3 Theoretical 3-D Applications
Isolation: One potential application of our circuit-level

primitives is the active isolation of resources in a system. For
example, in multi-core processors there are shared data and
address buses that rely on a mutually trusting shared bus
protocol, where each core is responsible for its own arbitra-
tion. This is problematical for the security of bus traffic on
a system running code of varying trust levels on each core.
Figure 5 outlines this situation and how we can use Disabling
to disconnect a core from the bus for any given amount of
time, creating a Time Division Multiple Access (TDMA)
protocol between the cores and the shared resources of in-
terest.

Shared L2 $

Core 1

L1 $

Core 0

L1 $ XXX

Shared Bus

= Post to the 3-D control planeX

= Signal flow

Figure 5: A multi-core processor with two cores that
we wish to isolate. This is achieved using Disabling
to block the connections to the bus for the core that
is not currently allowed to use the bus.

204

Standard Execution Pipeline

Tag
Prop.
Logic

3-D
Control

Plane

C
om

pu
ta

tio
n

Pl
an

e

1. Instruction bits 2. Tag miss
 exception signal

Reg File

L1 $

Control Logic

Tag Reg File

Range $

X

X

X

X
X

X

X

1. 2.

Figure 6: A 3-D system monitor tracking data flow
on the computation plane. This is achieved using
Tapping(1) to read signals that we want to track and
Overriding(2) to raise an exception signal.

System Analysis and Monitoring: It is often useful
to monitor the activity of the computation plane for audit-
ing, intrusion detection, or post-mortem analysis. Informa-
tion flow tracking in the 3-D control plane, for example, at-
tempts to identify, track, mitigate, and deter the execution
of malicious code. The basic premise of dataflow tracking is
the storage of metadata in the form of tags associated with
each individual address in memory. A dataflow tracking
architecture with a small cache [21] that compresses mem-
ory addresses with matching metadata tags can be utilized
in the 3-D control plane (Figure 6), to raise an exception
in the event that malicious execution on the computation
plane is detected. For such a monitor, we can use Tapping
to read signals of interest on the computation plane and use
Overriding to optionally modify an exception signal without
tampering with normal use.

Secure Alternate Service: Another potential appli-
cation is augmenting the functionality of the computation
plane with additional hardware for security computations.
For systems requiring high-bandwidth cryptographic func-
tionality, we can implement a cryptographic engine on the
3-D control plane that can accept cryptographic instructions
being executed on the computation plane, performing the
operation immediately before sending the result back to the
execution pipeline. This is achieved by using Re-routing
to extract the cryptographic instructions from the standard
execution pipeline, execute the instruction, and use Over-
riding to inject the result into the pipeline as if it were
part of the normal instruction execution flow. While crypto-
graphic hardware has been included in microprocessors [8],
3-D security allows the addition of any cryptographic algo-
rithm or implementation to be included in the system as
a foundry-level option. Essentially, 3-D security introduces
flexibility in the system hardware, allowing any number of

Standard Execution Pipeline

AES
3-D

Control
Plane

1. Crypto Instruction 2. Result

Reg File

L1 $

Crypto
Control

X

X

X

X
X

X

1. 2.

C
om

pu
ta

tio
n

Pl
an

e

RSA DES

XX

X

X

X

Unit

Figure 7: A 3-D cryptographic engine used to per-
form secure cryptography in the 3-D control plane,
using Re-routing(1) to block the instruction execu-
tion on the computation plane and to send the in-
struction to the 3-D control plane to be executed.
The result can be placed back in the execution
pipeline using Overriding(2).

cryptographic cores to be optionally added to the processor.
The techniques described in this section provide power-

ful tools for implementing active monitors in the 3-D con-
trol plane, thereby allowing the addition of security-critical
functionality. If used appropriately, this can eliminate cer-
tain types of side channels by mediating the use of a shared
resource. In the following section we present the architec-
ture of an active cache eviction monitor that we have im-
plemented for the 3-D control plane using the previously
discussed circuitry.

3.4 Architecture of a 3-D Cache Monitor
This section presents the custom architecture shown in

Figure 8, implemented in the 3-D control plane, for elim-
inating access-driven cache side channel attacks. Concur-
rent processing platforms present several security issues; al-
though these architectures provide increased performance
through instruction-level parallelism, their methods of re-
source sharing leave them vulnerable to side channel at-
tacks. One side channel attack [16] uses a simultaneous mul-
tithreading processor’s shared memory hierarchy, exploiting
the process-to-process interference arising from the cache
eviction policy to covertly transfer information. As a result,
an attacker thread may be able to extract information from a
victim thread, such as a cryptographic key. This threat was
demonstrated by Percival [16], where an implementation of
the RSA encryption standard was attacked using the cache
eviction protocol and used to observe, in small chunks, the
total cryptographic key. This was achieved by having a ma-

205

Mem

Cache

CPU =
Cache

Controller

Write
Enable

Hit?

V

In
de

x
Ta

g

Ta
g

C
ac

he
 D

at
a

Memory Data

Data

R/WData Address

PID

Lock bit

=

Grant

Address

Lo
ck

ed
?

PI
D

Security
Bits

Computation Plane

3-D Control Plane

Figure 8: The architecture of a CPU/cache memory hierarchy and our 3-D cache eviction monitor working
in concert. The address of the corresponding load/store is tapped to be sent to the 3-D control plane, and
the cache write-enable signal is overridden in the case of a locked cache line eviction. The Lock bit as well
as the Process ID (PID) are also provided to the 3-D control plane. We discuss options on how to access
this information in Section 4. Once the cache monitor receives the load/store address, the Lock bit, and the
PID, it can determine whether a cache eviction can be granted based on whether the cache line is locked or
whether the PID matches, and issue the appropriate override signal on the cache write-enable signal.

licious thread consume sufficient memory so that when the
victim thread executed, the spy thread’s cache lines would
be evicted. Thus by measuring subsequent access times for
its cached items, the spy thread can observe which of its
cache lines had been evicted by the victim. Once the spy
thread knows these cache lines, it can infer parts of the cryp-
tographic key due to the nature of the table look-ups per-
formed during the encryption. Slowly but surely, the whole
key can be compromised with a relatively low margin of er-
ror.

Our method to prevent these attacks is based on a pre-
viously proposed hardware solution [23]. In our application
of this scheme, the 3-D control plane maintains a cache pro-
tection structure that indicates, for each cache line, whether
it is protected, and if so, for which process. When a differ-
ent process loads or stores data related to a protected cache
line, no eviction will occur, and the data is not cached un-
less an alternate line is available in the cache protocol being
used. Figure 9 shows a flowchart describing this new proto-
col, while Figure 10 provides a high-level overview of how the
cache and the 3-D control plane will interact. Specifically,
the cache protection structure contains memory elements
on the 3-D control plane to store security bits, which hold
the permissions of a process to evict shared cache entries
of other processes. With this in place, when instructions
proceed to load or store data, these security bits are first
checked to determine whether to grant a cache eviction that
might otherwise have occurred without policy oversight. As
mentioned previously, when the 3-D control plane is not at-
tached to the processor, the cache functions as normal. How-
ever, when the 3-D control plane is added, we can utilize the
above strategy to avoid undesirable cache evictions. This is
performed with an updated version of the load and store
instructions. These instructions, named secure load and se-

cure store, change the security bits in the 3-D control plane
to reflect the process that currently occupies the line. Ef-
fectively, secure load and secure store modify the necessary
bits to ensure that once a cache line is occupied by a process
that needs cache eviction control, it cannot be evicted by any
other process. This will control a simultaneous multithread-
ing processor’s shared memory and eliminate any threat of
an access-driven side channel attack.

Perform load or
store without
change to any

cache line

Load or Store
Instruction

being executed

Deny

Secure
instruction?

Grant

Yes

No

Update security
bits on control
plane to reflect
new permissions

Perform load
or store

normally

Next
Instruction

Check security
bits on control
plane to grant

or deny
eviction

Figure 9: This flow chart describes how loads and
stores are executed when the 3-D control plane is in
place.

206

Cache/Cache
Controller

3-D Control Plane

Address

Grant

To Processor

Security
bits

V PID L

Responsible for
two main
functions:
1. Given any load
or store; return
whether cache
eviction is
granted
2. Given secure
load or store;
update security
bits on control
plane

To Memory

Figure 10: A high-level logical overview of how the
cache and the 3-D control plane interact in our cache
monitor, as well as the 3-D control plane’s respon-
sibilities when active.

As a proof of concept, we have developed a synthesizeable
version of our security mechanism in Verilog. We designed
our security mechanism as a separate module that is inter-
faced with a simple cache that we also implemented as a
hardware design. Our design uses a straightforward 4-way
set associative cache. For every load or store instruction,
the cache controller first checks the 3-D control plane mod-
ule to determine whether the related cache line is protected
from evictions. The security bits on the 3-D control plane
hold a valid bit, a process ID, and a lock bit for each cache
line. During the loads and stores, these security bits are
checked in the 3-D control plane, and a grant signal is gen-
erated if the cache line is open to eviction. While every load
and store will be forced to check the security bits before
proceeding, these security bits can only be manipulated by
using secure load and secure store.
We synthesized both modules and have verified that the

design is functional, easily scaled, and can be implemented
with low overhead. This will be discussed in further de-
tail in the following sections where we analyze performance
metrics, overhead for a modern processor, and feasibility.

4. EXPERIMENTAL RESULTS
This section outlines our synthesis results, and discusses

the effect of including the 3-D cache eviction monitor, both
in terms of critical path and cache performance. We find
that the 3-D cache eviction monitor does not increase the
critical path of the circuit, and we observe that this type of
cache-line locking produces very little performance degrada-
tion for many programs. We also discuss integration options
and feasibility for the 3-D control plane on a sample com-
modity processor.

4.1 Performance and Analysis
Synthesis Results: In this section, we analyze the per-

formance and area overhead of the 3-D cache eviction mon-
itor. We use Altera Quartus to synthesize our design and
extract specific timing and area information (Figure 11). To
provide a clear picture of the overhead and performance ef-
fects of our design, we gathered timing and area informa-
tion for both the cache/cache controller alone, as well as the
cache/cache controller being interfaced with the 3-D cache

eviction monitor module. The synthesis was performed for a
Stratix II device, with the compiler set to optimize for per-
formance. The standalone cache was able to run at approx-
imately 151MHz; when we include our 3-D cache eviction
monitor, the maximum frequency remains at 151MHz. The
3-D cache eviction monitor synthesized by itself has a maxi-
mum frequency of 217MHz. These maximum frequencies in-
dicate that the critical path in the circuit including the 3-D
cache eviction monitor resides in the underlying cache/cache
controller, resulting in no change in cycle time for the circuit
with the addition of the 3-D cache eviction monitor.

Design Max Frequency Area (LUTs)

Cache/Cache
controller

~151MHz 468

3-D cache
eviction monitor

~217MHz 291

Cache/Cache
controller with
3-D monitor
attached

~151MHz 749

Figure 11: The synthesis results produced by Quar-
tus for the cache and cache controller, as well as the
3-D cache eviction monitor.

The above performance metrics do not take into account
the delay of the vertical posts between the computation
plane and the 3-D control plane. Loi et al. [11] charac-
terized the worst-case delay of a 3-D bus that travels from
one corner of a chip to the opposite corner on a 3-D layer
above, and they found this delay to be about .29ns. Even
with the addition of this bus delay to the 3-D cache eviction
monitor’s critical path, the new critical path is still less than
that of the cache/cache controller, further confirming that
the addition of the 3-D cache eviction monitor will have no
effect on the performance of the cache subsystem.

Performance Evaluation: We evaluated the perfor-
mance impact of locking specific cache lines with our 3-D
cache eviction monitor. We used PTLsim [25], a cycle-
accurate x86 simulator, to execute the SPEC2000 bench-
mark suite. The experiments we developed outline two sce-
narios:

• 1) Running each benchmark with a 32KB 4-way set
associative cache, representing a 32KB L1 cache with
no cache line locking. This is a best-case performance
bound because running the benchmark and the AES
program together will be slower than running the AES
program by itself.

• 2) Running each benchmark on a 32KB 4-way set as-
sociative cache, with one of the ways locked, effectively
resulting in a 24KB 3-way set associative cache. This
is a worst-case performance bound because the AES
program is smaller than an entire way of the cache
(8192 bytes).

We modeled our cryptographic process after the AES algo-
rithm, which can occupy up to 4640 bytes with an enlarged
T-Box implementation [5]. With this in mind, 8192 bytes is

207

-1.4%

-1.2%

-1.0%

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

18
8.

am
m

p
(m

ed
)

17
3.

ap
pl

u
(lg

)
30

1.
ap

si
 (l

g)

17
9.

ar
t (

lg
)

25
6.

bz
ip

2
(lg

/p
ro

g)

25
6.

bz
ip

2
(lg

/s
rc

)
18

6.
cr

af
ty

 (m
ed

)
18

3.
eq

ua
ke

 (l
g)

18

3.
eq

ua
ke

 (t
es

t)
25

4.
ga

p
(lg

)
17

6.
gc

c
(m

ed
)

16
4.

gz
ip

 (s
m

/s
rc

)
16

4.
gz

ip
 (s

m
/p

ro
g)

18

1.
m

cf
 (l

g)

17
2.

m
gr

id
 (l

g)

19
7.

pa
rs

er
 (m

ed
)

25
3.

pe
rlb

m
k

(s
m

)
17

1.
sw

im
 (l

g)

30
0.

tw
ol

f (
sm

)
25

5.
vo

rt
ex

 (l
g)

17

5.
vp

r (
pl

ac
e/

sm
)

17
5.

vp
r (

ro
ut

e/
sm

)
16

8.
w

up
w

is
e

(lg
)

av
er

ag
e

In
cr

ea
se

 in
 IP

C
 (%

)

Benchmark

Figure 12: The results of our cache experiment using SPEC2000 benchmarks that were executed in PTLsim.
We use two different sizes of cache to calculate a bound on the performance impact of locking a cryptography
program like AES to one way of the cache. The average degradation in IPC between the two different cache
sizes is 0.2%, indicating that this form of cache line locking has a small impact on performance for many
different types of programs.

more than enough to store all of the necessary information
(state vectors, round keys, and look-up tables) for AES.

Results for this experiment can be found in Figure 12. The
average degradation in IPC is 0.2%, indicating that this form
of cache line locking has a small impact on performance for
many different types of programs. We were not able to build
the binaries for mesa, galgel, facerec, or fma3d. In addition,
we encountered technical difficulties with lucas, eon, and
sixtrack.

4.2 Discussion and Integration Options
When integrating our security scheme for cache manage-

ment with a processor, several factors must be considered.
Implementing security functionality requires the following
capabilities: access to the process ID of a thread during its
execution, access to the address bus, and a method of dis-
cerning between normal and secure loads and stores. These
are the high-level requirements of the 3-D control plane;
some vertical posts are also needed to propagate this in-
formation to the 3-D control plane.

For our 3-D cache eviction monitor to function, we need
to know the process ID of the thread performing the cur-
rent load or store function. One option we have explored
is accessing the process ID register that some architectures
have, such as the ARM926EJ-S [10]. Accessing this register
through the vertical posts will give the 3-D control plane
direct access to the current process ID, allowing the control
plane to compare it to the security bits.

We also need to know when loads and stores are being ex-
ecuted. One option is tapping the instruction bus, allowing
us to monitor the execution of loads and stores and subse-
quently apply our security functions to those instructions.
During the execution of loads and stores, the control plane
will follow the protocol outlined in Figure 9.

Finally, the 3-D control plane must know whether each
load and store operation is secure or not, so that the system

can determine whether the security bits in the 3-D control
plane need to be updated. One way to supply this informa-
tion is to modify the instruction set to include two special
instructions, secure load and secure store. This would create
separate instructions of which the 3-D control plane is aware
in order to distinguish between normal load/store and secure
load/store operations. Another option is to add a register to
the computation plane that reflects whether the current in-
struction is secure or not. The operating system can control
this bit based on whether the instruction is secure or not,
and the control plane could read this register. Both options
are feasible and have no negative implications on the rest of
the system.

3-D Control
Plane

Computation
Plane

Posts

Figure 13: This figure is a visualization of the phys-
ical circuit-level diagram of our 3-D cache monitor.
Gate-level diagrams were compiled in Quartus after
synthesis of the modules.

208

Delivery of the previously mentioned required information
to the 3-D control plane will be through the vertical posts.
A general idea of the number of posts the 3-D control plane
needs on a given system is the sum of the number of bits of:
the address size, the process ID size, possibly one post for the
secure register, and a grant bit post. For the ARM926EJ-
S, this results in under 100 vias, which equates to about
the silicon space for 50 bits of memory; this is a small and
reasonable number of vertical posts to implement a strong
security measure.

5. RELATED WORK
In this section, we discuss other work associated with

cache side channel problems. We also discuss related work
on the use of 3-D technology for security and communication
as applied to CMP architectures.

On-chip and board-level resource sharing between cores
is often used to enhance CMP performance. However, con-
tention for those resources at the microarchitectural level
can provide the basis for side-channel cryptanalysis attacks
and other covert timing channels. Code and data caches, as
well as the branch prediction unit, are some of the shared
resources that can be exploited in these attacks [9, 4, 3].
In these cases, one process’s use of the resource perturbs
the response time of the next process that accesses it, in a
predictable manner. Single-core computers with simultane-
ous multithreading, and SMP systems with cache coherency
mechanisms, can have similar problems.

One approach to prevent resource contention in a concur-
rent execution model is to utilize separate physical caches
for each core, or provide separate virtual caches within the
physical cache (if virtual cache support is available in hard-
ware) [15, 23]. Various forms of cache disablement are pos-
sible, including turning it off, turning it off for certain cores
or processes, or turning off the eviction and filling of the
cache through use of the processor no-fill mode. The lat-
ter can be used to create sensitive sections [13] of code that
could not interfere with the cache behavior observable by
other cores or processors – assuming that the code is not in-
terruptible or that the previous processor mode is restored
on interrupt, as otherwise, other processes might sense the
change to the state of the processor (i.e., to no-fill), creating
another covert channel [5].

Specific cryptographic attacks can be defeated or mini-
mized by lowering the bandwidth of the cache channel, such
as through nondeterministic ordering of access to cache [14]
which makes detailed cache-use profiling difficult; and non-
deterministic cache placement [22, 15] or nondeterministic
polyinstantiation [7] of cache entries, [23] which, while the
specific cause of the interference may be masked, still allows
detection of cache misses caused by another process. The
3-D approach has the advantage of being able to implement
many of these schemes for resolving cache contention, while
doing it in an isolated environment, without modification to
the processor ISA.

6. CONCLUSIONS
3-D integration offers the ability to decouple the devel-

opment of security mechanisms from the economics of com-
modity computing hardware. We described the technology
to enable passive and active monitoring of the computation
plane by adding a minimal amount of hardware. Passive

monitoring requires vias and posts, while active monitor-
ing uses sleep transistors to perform several novel functions
on the computation plane. Using these techniques, we de-
scribed a number of broad strategies to enhance the secu-
rity of the computation plane with a control plane. To pro-
vide quantitative measurements of the impacts of the control
plane, we considered cache side channels, developing a com-
plete hardware description for a cache with a control plane
that eliminates eviction-based side channels. This work pro-
vides a pathway for the high-assurance community to utilize
high-performance hardware while shortening development
cycles for trustworthy systems.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their insightful comments. This research was funded in
part by National Science Foundation Grant CNS-0910734.

7. REFERENCES
[1] Arizona State University Predictive Technology

Models, Predictive Technology Models for 45nm
Processes, Available at.
http://www.eas.asu.edu/~ptm/.

[2] N. G. A. Akturk and G. Metze. Self-Consistent
Modeling of Heating and MOSFET Performance in
3-D Integrated Circuits. IEEE Transactions on
Electron Devices, 52(11):2395–2403, 2005.

[3] O. Acıiçmez. Yet another microarchitectural attack:
Exploiting I-cache. In Proceedings of the First
Computer Security Architecture Workshop (CSAW),
Fairfax, VA, November 2007.

[4] O. Acıiçmez, J. Seifert, and C. Koc.
Micro-architectural cryptanalysis. IEEE Security and
Privacy Magazine, 5(4), July-August 2007.

[5] D. J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf, Apr. 2005. Revised
version of earlier 2004-11 version.

[6] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale,
L. Jiang, G. H. Loh, D. McCauley, P. Morrow, D. W.
Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb. Die Stacking (3D)
Microarchitecture. Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 469–479, December 2006.

[7] D. E. Denning and T. F. Lunt. A multilevel relational
data model. In Proc. IEEE Symposium on Security
and Privacy, pages 220–234, 1987.

[8] S. Gueron. White paper: Advanced encryption
standard (AES) instructions set, Intel corporation,
July 2008.

[9] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Side
channel cryptanalysis of product ciphers. Journal of
Computer Security, 8(2–3):141–158, 2000.

[10] A. Limited. ARM926EJ-S technical reference manual,
2001-2008.

[11] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin,
T. Sherwood, and K. Banerjee. A Thermally-Aware
Performance Analysis of Vertically Integrated (3-D)
Processor-Memory Hierarchy. In Proceedings of the
43nd Design Automation Conference (DAC), June
2006.

209

[12] S. Mysore, B. Agrawal, S. Lin, N. Srivastava,
K. Banerjee, and T. Sherwood. Introspective 3-D
chips. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San
Jose, CA, October 2006.

[13] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES: (extended
version). Technical report, Department of Computer
Science and Applied Mathematics, Weizmann
Institute of Science

”
Rehovot 76100, Israel, Oct. 2005.

[14] D. Page. Theoretical use of cache memory as a
cryptanalytic side-channel. Technical Report
CSTR-02-003, Department of Computer Science,
University of Bristol, June 2002.

[15] D. Page. Partitioned cache architecture as a side
channel defence mechanism. In Cryptography ePrint
Archive, Report 2005/280, August 2005.

[16] C. Percival. Cache missing for fun and profit. In
Proceedings of BSDCan 2005, Ottowa, Canada, May
2005.

[17] K. Puttaswamy and G. H. Loh. Implementing Caches
in a 3D Technology for High Performance Processors.
In IEEE International Conference on Computer
Design (ICCD) 2006, pages 525–532, October 2005.

[18] K. Roy, S. Mukhopadhyay, and
H. Mahmoodi-Meimand. Leakage current mechanisms
and leakage reduction techniques in
deep-submicrometer CMOS circuits. Proceedings of
the IEEE, 91(2), February 2003.

[19] K. Shi and D. Howard. Sleep transistor design and

implementation simple concepts yet challenges to be
optimum. IEEE VLSI-DAT Taiwan, 2006.

[20] H. Sun, J. Liu, R. S. Anigundi, N. Zheng, J.-Q. Lu,
K. Rose, and T. Zhang. 3D DRAM design and
application to 3D multicore systems. Design and Test
of Computers, IEEE, 26(5), September 2009.

[21] M. Tiwari, B. Agrawal, S. Mysore, J. K. Valamehr,
and T. Sherwood. A small cache of large ranges:
Hardware methods for efficiently searching, storing,
and updating big dataflow tags. In Proceedings of the
International Symposium on Microarchitecture
(Micro), Lake Como, Italy, November 2008.

[22] Topham and Gonzalez. Randomized cache placement
for eliminating conflicts. IEEETC: IEEE Transactions
on Computers, 48, 1999.

[23] Z. Wang and R. Lee. New cache designs for thwarting
cache-based side channel attacks. In Proceedings of the
34th International Symposium on Computer
Architecture, San Diego, CA, June 2007.

[24] H. Yoshikawa, A. Kawasaki, T. Iizuka, Y. Nishimura,
K. Tanida, K. Akiyama, M. Sekiguchi, M. Matsuo,
S. Fukuchi, and K. Takahashi. Chip scale camera
module (CSCM) using through-silicon-via (TSV). In
Proceedings of the International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, February
2009.

[25] M. T. Yourst. PTLsim: A cycle accurate full system
x86-64 microarchitectural simulator. In Performance
Analysis of Systems & Software, 2007. ISPASS 2007.
IEEE International Symposium on, pages 23–34, 2007.

[26] I. Ziptronix. 3D integration for mixed signal
applications, 2002.

210

SCA-Resistant Embedded Processors—The Next
Generation

Stefan Tillich
University of Bristol
Computer Science

Department
Merchant Venturers Building
Woodland Road, BS8 1UB,

Bristol, UK
tillich@cs.bris.ac.uk

Mario Kirschbaum
Graz University of Technology

Institute for Applied
Information Processing and

Communications
Inffeldgasse 16a, A–8010

Graz, Austria
mkirschbaum@iaik.at

Alexander Szekely
Graz University of Technology

Institute for Applied
Information Processing and

Communications
Inffeldgasse 16a, A–8010

Graz, Austria
aszekely@iaik.tugraz.at

ABSTRACT
Resistance against side-channel analysis (SCA) attacks is
an important requirement for many secure embedded sys-
tems. Microprocessors and microcontrollers which include
suitable countermeasures can be a vital building block for
such systems. In this paper, we present a detailed concept
for building embedded processors with SCA countermea-
sures. Our concept is based on ideas for the secure imple-
mentation of cryptographic instruction set extensions. On
the one hand, it draws from known SCA countermeasures
like DPA-resistant logic styles. On the other hand, our pro-
tection scheme is geared towards use in modern embedded
applications like PDAs and smart phones. It supports multi-
tasking and a separation of secure system software and (po-
tentially insecure) user applications. Furthermore, our con-
cept affords support for a wide range of cryptographic al-
gorithms. Based on this concept, embedded processor cores
with support for a selected set of cryptographic algorithms
can be built using a fully automated design flow.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Microprocessors and microcomputers; K.6.5 [Computing
Milieux]: Management of Computing and Information Sys-
tems—Security and Protection; C.3 [Special-Purpose and
Application-Based Systems]: Smartcards

General Terms
Security

Keywords
Side-channel analysis, SCA countermeasures, embedded pro-
cessors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

1. INTRODUCTION
So far, most SCA countermeasures proposed in literature

deal either with the protection of dedicated hardware (e.g.
cryptographic coprocessors) or of software implementations.
However, some works have addressed the issue of integrating
protection mechanisms directly into the processor. May et
al. proposed the concept of non-deterministic processors [9],
where the instructions are executed in a more or less ran-
dom fashion. A potential issue for such non-deterministic
processors is the dependency of security and efficiency on
the parallelism of the executed code. Regazzoni et al. [12]
have developed an automated design flow which can inte-
grate custom functional units protected by a secure logic
style into a basic processor architecture. While automati-
zation is very desirable, their work so far only addresses a
fraction of the problem, as side-channel leakage not only em-
anates from the processor’s functional units but also from
several other parts which hold critical data (e.g. pipeline
registers and memory). It is currently unclear how their
solution can be extended to protect the whole processor.

We have drawn the basic idea for the protection mech-
anism described in this paper from the paper of Tillich et
al. which describes SCA countermeasures in the context of
cryptographic instruction set extensions [15]. In this con-
cept, a part of the processor is protected by a secure logic
style, while the rest of the hardware is left unchanged. One
of the key advantages of our solution is that only a fraction
of the processor needs to be implemented in the costly secure
logic style, whereas a naive approach would incur this imple-
mentation overhead for the complete processor system. Note
that the naive approach would require also the complete ex-
ternal memory to be implemented with a side-channel re-
sistant memory technology in order to achieve protection
equivalent to our solution. The authors are currently not
aware of a satisfying solution for implementing large mem-
ories with resistance to power analysis which could be used
for protecting the external memory. Furthermore, any such
solutions are likely to incur a substantial overhead in terms
of area and power. Finally, the simple use of standard mem-
ory technology for external memory would be prevented. In
contrast, our solution protects all values occurring outside
of the secure part of the processor (including external mem-
ory) with a mask. The masks themselves reside only in the
secure part.

This paper consists of three main contributions. First, we

211

significantly extend the concept from [15] with functional-
ity which allows flexible application in secure multi-tasking
operating systems with full process isolation. Second, we
present concrete implementations of the proposed protec-
tion mechanism with different tradeoffs in a typical embed-
ded processor and provide concrete cost estimations. Third,
this paper presents the first practical side-channel evaluation
of the secure zone concepts (without secure logic), which
demonstrates the soundness of the approach.

With the exception of the implementation of the NON-
DET processor architecture by Grabher et al. [6], this pa-
per is the first to present a concrete implementation of an
embedded processor with a generic protection mechanism
against side-channel attacks. Our solution is not quite as
generic as the NONDET processor, but on the other hand
its security is inherently independent from the parallelism
of the underlying workload.

Our work differs from other secure processors like the
Aegis processor [13] in the model of the attacker. We as-
sume that an attacker has only access to the input and out-
put of the device and can measure its power consumption,
but that the contents of the memory is not directly accessi-
ble. On the other hand, the Aegis processor is designed to
withstand probing and manipulation of the external mem-
ory, but not to withstand power analysis attacks. Thus,
our proposal is suited for applications where the attacker
does not have direct memory access, e.g. devices with se-
cure on-chip storage or tamper-proof casings, whereas the
Aegis processor is more suited for applications where power
analysis is not considered a threat.

Our security concept is conceived as a building block to
enable SCA-resistant implementations if used in conjunction
with suitable components like development tools, secure op-
erating systems and/or applications. Furthermore, our con-
cept is compatible with other often-required security fea-
tures like process isolation. However, we would like to point
out that our concept can not safeguard against all possible
problems which may arise from an incorrect implementation
of other security-related components (e.g. software writing
keys to user-accessible interfaces).

The rest of the paper is structured as follows. The basic
principles of our proposed countermeasures are described
in Section 2, while extended functionality is presented in
Section 3. Details and design choices for our prototype im-
plementation are given in Section 4. Section 5 shows how
protected processors can be built using an automated de-
sign flow and that most of the tasks for administering the
secure zone can be offloaded to the compiler. Practical re-
sults regarding the hardware size of different implementa-
tion options of the countermeasures and a preliminary SCA
evaluation are given in Section 6. Conclusions are drawn in
Section 7.

2. BASIC CONCEPT
In the context of SCA resistance, critical operations are

those which involve data that can be exploited in an SCA at-
tack. For DPA attacks, this are typically intermediate values
of cryptographic algorithms which depend on a small portion
of the key and a part of the input or output. For example,
some of the round transformations of an AES encryption
would be critical operations. In processors equipped with
our protection mechanism, all critical operations are exclu-
sively executed within the boundaries of a single hardware

FU

Mask
storage

Mask
generator

op1m

op1
addr

op2
addr

res
addr

op1 mask

op2 mask

res mask

op2m

op1 op2

res

resm

S
ec

ur
e

zo
ne

Figure 1: Overview of the basic components of the
secure zone.

sub-module (the so-called secure zone). The secure zone is
implemented in a secure (DPA-resistant) logic style, while
the rest of the processor is implemented in standard CMOS.
For the processor, the secure zone behaves like any other
ordinary functional unit1. It offers a range of instructions
which are useful for implementing cryptographic algorithms.
An overview of the components of the secure zone is depicted
in Figure 1.

All instruction operands and results outside of the secure
zone are masked. The corresponding masks are held exclu-
sively in the mask storage component within the secure zone.
The masks can be retrieved from the mask storage and re-
moved from the operands yielding the unmasked operands
op1 and op2. The functional unit (FU) produces the result
res of the current processor instruction. The mask generator
outputs a fresh mask which is applied to the result (yield-
ing resm) and written to the mask storage. The masked
result then leaves the secure zone and is handled by the pro-
cessor like any other “normal” register value, i.e. it can be
written to memory or can be used as operand in subsequent
instructions.

Many previous masking solutions manipulate masked val-
ues and compensate for the change of the mask afterwards.
Note that this is not the case for our countermeasure, where
we always use a fresh mask whenever a masked value is up-
dated by the cryptographic algorithm. Thus there is a total
independence of the performance of cryptographic opera-
tions and the applied masks. Hence, no special effort is
necessary to cater for the protection of non-linear crypto-
graphic operations, which is usually an issue in traditional
masking countermeasures.

Some form of addressing mechanism is required to asso-

1A functional unit of a processor is a hardware module
within the execute stage which takes a number of operands
and produces the according result for a single or a range of
instructions. Typical functional units include adders, mul-
tipliers, barrel shifters, and modules implementing bitwise
logical functions.

212

ciate masked operands and masks during operation of the
processor. A simple example for such an addressing mecha-
nism is the employment of the operands’ register addresses.
The addresses for the masked input operands op1m and
op2m are used to retrieve the corresponding masks from
the mask storage. Similarly, the address of the instruction’s
masked result needs to be associated with the corresponding
mask, so that the masked result can be used as an instruc-
tion operand in subsequent instructions.

As the masks never leave the secure zone, the power con-
sumption of the CMOS part should only contain leakage
from the masked value. As a traditional higher-order DPA
attack would require leakage from both the masked value
and the mask, it can not be mounted using the CMOS leak-
age alone. Thus, a higher-order attack would also have to
exploit the leakage from the secure logic style, which should
increase its complexity considerably. An alternative avenue
of attack which targets the unmasked values in the secure
zone, requires the attacker also to overcome the protection
of the secure logic style. Thus, the protection offered by
the secure logic style can be seen as being rolled over to the
complete processor system, even though only a fraction of
the system is actually implemented in this logic style.

3. EXTENDED FUNCTIONALITY
The basic concept can be extended with additional fea-

tures which offer further functions or facilitate the use of
the hardware protection mechanism by the compiler and/or
the software developer.

3.1 Explicit Association of Masked Values and
Masks

In Section 2, the requirement for an addressing scheme
for associating masked values and masks has already been
mentioned. It is possible to use a pre-existing scheme of the
processor or to introduce a new custom scheme. Reusing
an already existing addressing scheme might lead to a sim-
pler implementation. Potential candidates are logical and
physical register addresses and memory addresses. A disad-
vantage is that masked values are associated to their masks
only indirectly via the storage location of the masked value.
Thus, whenever a masked value is moved to a different stor-
age location, e.g. flushed from a register to memory, a mech-
anism is required to uphold the association with the mask.
The compiler is usually in charge of managing the storage
location of values, so it could take care of this task.

A more elegant solution is the introduction of a new cus-
tom addressing scheme. The processor is thought to have a
range of storage locations with unique addresses where each
can hold a single masked value and its associated mask. We
denote these virtual storage locations as masked registers
and their addresses accordingly as masked register addresses.
The masked register address can remain constant and inde-
pendent of the actual physical location of the masked value
and the mask. Such a solution is principally independent of
a specific processor architecture and is also much closer to
the implementation of a cryptographic algorithm in a high-
level language. When cryptographic algorithms operate on
(intermediate) values the actual physical location of these
values is usually not an issue. Only at compilation time
these values are mapped to the storage resources of the pro-
cessor architecture at hand.

3.2 Alternative Representation of Masks
The security of the protection scheme is based on the con-

dition that masks must never leave the secure zone. As the
mask storage unit of the secure zone can only hold a limited
number of masks, the number of manageable masked values
would also be limited. However, depending on the mecha-
nism for mask generation, it can be possible to find an al-
ternative representation of masks which can leave the secure
zone without compromising the overall security. Using this
mechanism, the mask storage can be virtually extended or
can be shared between different processes in a secure man-
ner.

Finding an alternative representation of masks precludes
the direct use of random number generators (RNGs)2 as
mask generators, as their output is not reproducible. How-
ever, various kinds of pseudo-random number generators
(PRNGs) appear suitable as such mask generators. Seeding
of a PRNG must naturally be resistant against reset attacks,
where an attacker tries to recreate the system’s state by re-
setting. This can be done for example by seeding the PRNG
from an RNG.

The most important characteristics required of the mask
generator are the production of at least one fresh mask per
clock cycle, ease and efficiency of implementation, sufficient
“quality” of the randomness of the sequence of masks, and
the capability to reconstruct previous masks via the alterna-
tive representation. Regarding the protection against side-
channel attacks, it is not necessary to achieve ideal random-
ness for masks, but it is sufficient to have masks that are
uniformly distributed and unpredictable by an attacker [8].
Potential candidates include linear-feedback shift registers
(LFSRs) and hardware-efficient stream ciphers, e.g. Triv-
ium [3] or Grain [7].

For our implementation we have chosen a mask genera-
tor based on a large maximum-length LFSR, which conse-
quently has a very long period. If the starting point is chosen
each time at random (which should be fulfilled by seeding
from an RNG), then an attacker should not be able to pre-
dict the sequence of produced masks. We stress that it is
crucial that the LFSR is seeded from an RNG in order to
achieve sufficient quality for the masks. We do not make any
claims about the security of the system under the usage of a
non-random seed. An attacker could try to use side-channel
information from some parts of the LFSR state which cir-
culate outside of the secure zone as part of the alternative
representation of masks. We estimate that with the side-
channel information available to an attacker it is infeasible
to reconstruct the LFSR state or masks. However, we note
that this issue remains an open research problem. Further-
more, a maximum-length LFSR will cycle through all pos-
sible internal states (except the “dead” state), resulting in a
nearly perfect uniform distribution of its output. As alter-
native representation of a mask we use a given LFSR state
and the number of advancements (or steps) of the LFSR
from that state which finally produced this mask. We de-
note this number of steps as the mask index. Masks can
be stored to memory as a given LFSR state plus the num-
ber of steps from that state and the corresponding entry in
the mask storage can be reused for a mask with a different
masked register address.

2Note that RNGs are sometimes also referred to as
true/truly random number generators (TRNGs).

213

If the period of the LFSR is sufficiently long, then masks
will not repeat. Thus it is only necessary to use the RNG for
seeding of the LFSR at device startup with all masks being
subsequently produced by the LFSR. The speed of the RNG
thus only dictates some startup cost but has no bearing on
the device performance during normal operation. Therefore,
a slower but cheaper RNG can be used if the startup cost
can be tolerated to be longer. However, it is also possible
to build relatively fast and simple RNGs [4] to reduce this
initial cost.

Note that any given state of the LFSR can be used as
basis for reconstructing masks, as an LFSR can be run in
both forward and inverse direction. This property can be
used to make the regeneration of masks efficient. Whenever
a mask needs to be stored to memory, the current LFSR
state can be saved along with it. By the principle of locality,
the masks held in the mask storage will not be“far” from the
current LFSR state, and thus regenerating them from that
state will only take a few steps. In order to uphold security,
care must be taken that the words of an LFSR state which
is stored to memory are never be used as masks themselves.

All information about the state of the mask generator and
mask storage which is held in memory should not be directly
readable by an attacker. This is the same requirement im-
posed on any sensitive data typically stored in memory, e.g.
cryptographic keys. Achieving such protection is thus a gen-
eral issue for any secure embedded system, e.g. by use of a
secure operating system preventing dumps of the complete
memory, and is out of scope of this work.

It is important to note that instructions which are exe-
cuted within the secure zone and which have masked operands
can only be executed when the corresponding masks are lo-
cated in the mask storage. If the required masks happen to
be stored in memory in their alternative representation, they
first need to be restored to the mask storage before regular
execution can continue. Flushing out masks from the mask
storage can also be used to share the secure zone among
multiple processes in a multi-tasking environment. By re-
moving all masks from the mask storage and the clearing of
the current state of the mask generator, a complete sepa-
ration of processes is achievable as it would be required for
any environment which runs a secure operating system with
potentially insecure user applications. Thus, our solution
could be seamlessly integrated into such environments, e.g.
processors which support the ARM TrustZone concept [1].

3.3 Exceptional Conditions
The described functionality of the hardware countermea-

sures can lead to a number of exceptional conditions in the
processor. When a new mask needs to be written to the
mask storage, there might not be any free entries left (mask
storage full exception). Furthermore, the mask generator,
which keeps track of the mask index of the generated masks,
might encounter an overflow condition of the counter for
the mask index (mask index overflow exception). Finally,
a mask which is required to execute an instruction with
masked operands might not be present in the mask stor-
age, e.g. because it is stored in memory in its alternative
representation (mask missing exception). Exceptional con-
ditions should cause hardware traps, so that the according
trap handler routines can rectify the situation before normal
execution resumes.

4. IMPLEMENTATION DETAILS
We have implemented our protection mechanisms in the

32-bit SPARC V8-compliant Leon-3 processor. Our concrete
design decisions are described in the following sections.

4.1 Functional Unit
The functional unit must support all instructions to imple-

ment all required cryptographic algorithms. More precisely,
all instructions which manipulate critical data, which can
potentially be subjected to an SCA attack need to be real-
ized by the protected functional unit. Uncritical operations
like updating of round counters, loop condition checking,
etc. can still be implemented outside of the secure zone using
native instructions of the processor. Note that our counter-
measures cannot relieve the software developer from avoid-
ing traditional well-known SCA vulnerabilities like data-
dependent conditional jumps.

The only class of typical processor operations which can
not be protected in our solution are table lookups, as they
inherently involve access to the memory. Although data-
dependent table lookups are used in some cryptographic
implementations, their use should be discouraged as they
lead to potential vulnerabilities against cache-based timing
attacks [2, 17]. Instruction set extensions can usually be em-
ployed to remove the need for table lookups completely, so
there is no need to support them in the secure zone concept.

For our implementation we have chosen to include support
for AES in the form of the “Advanced Word-Oriented AES
Extensions with Implicit ShiftRows” from [14] and a pro-
tected XOR instruction. These instructions support all AES
round functions and the AES key schedule. Note that as we
employ Boolean masking to protect critical values outside
of the secure zone, the AES AddRoundKey transformation
can also be performed directly on the masked values using
an unprotected XOR instruction.

4.2 Mask Generator
For a w-bit processor, the mask generator must be able to

deliver a fresh w-bit mask for the result of each instruction
with masked operands. In order to sustain an execution rate
of one instruction per clock cycle, one fresh mask per cycle
is required. Section 3.2 already mentioned our choice of an
LFSR-based mask generator. More precisely, we selected
a Fibonacci-type LFSR based on the pentanomial x127 +
x87 + x59 + x37 + 1. This irreducible polynomial generates
a multiplicative group of order 2127 − 1, which is identical
to the period of the LFSR. Thus, after seeding, the LFSR is
capable of producing about 2122 masks (32 bits each) before
the sequence of masks starts repeating.

The choice of the pentanomial has two key advantages.
First, the input bit generation can be efficiently parallelized,
so that 32-bit pseudo-random masks can be produced in a
single clock cycle. Second, the LFSR can also be configured
to run in the inverse direction at low extra hardware cost.
This functionality is very useful to re-generate masks from
their alternative representation in an efficient manner.

The mask generator keeps track of the mask index of the
current mask, i.e. the number of steps taken from the last
seed value. The mask index is written to the mask stor-
age along with the mask and it is an essential part of the
alternative representation of the mask. This alternative rep-
resentation of the mask is used when it needs to be flushed
out to the unprotected memory.

214

4.3 Mask Storage
The mask storage holds a number of masks which can be

readily used for any instruction with masked operands. The
association of masked values and masks is established via the
masked register address (cf. Section 3.1). Each logical reg-
ister of the processor, i.e. in SPARC V8 architectures each
of the 32 registers of the current register window, is mapped
to a specific masked register address via a custom hardware
table (the so-called masked-register table or MRT). Moving
a masked value from one logical register to another must
therefore be reflected by an update of the MRT. Further-
more, the masked register address associated with the mask
is contained in the mask storage along with the mask itself.
Consequently, the processor can associate masked operands
in the logical registers with their respective masks via the
masked register address.

We have set the number of entries of the mask storage
unit to eight. Each entry consists of a valid bit, a dirty bit,
a 10-bit masked register address, the 21-bit mask index, and
the 32-bit mask. A mask can be written to any of the eight
entries and therefore the organization of the mask storage
resembles a fully-associative cache with address-dependent
lookup. Mask missing exceptions (cf. Section 3.3) can thus
be regarded as the equivalent of cache misses. The valid
and dirty bits set automatically by the hardware and can
be retrieved via special management instructions. The valid
bit indicates whether a specific entry is valid. The dirty bit
is set when the mask has no alternative representation in
memory3.

The valid bit, the masked register address, and the mask
index of each entry can be read as a single 32-bit word with
the help of a custom instruction. Together with the original
seed state of the LFSR, this 32-bit word is sufficient to re-
construct the mask and its context at any later point in time.
An illustrative example of the interplay of logical registers,
the MRT, and the mask storage is provided in Section 4.5.

4.4 Management of Masked Register Addresses
The masked-register table (MRT) is used by the compiler

or the developer of the cryptographic application to indicate
the presence of specific masked values (with masked register
addresses) in the logical registers of the processor. Thus,
masked values can be moved freely between logical registers
and memory, giving the greatest degree of flexibility to the
software. The entries of the MRT can be read and written
by custom instructions. As the MRT does not contain any
critical data it can be implemented in standard CMOS.

4.5 Masked Values and Masks
In the following, we illustrate the software usage of masked

registers with a simple example. An assembly-code example
of using the secure zone is given in Figure 3.

Figure 2 shows an example of how masked values are as-
sociated to their masks. The standard register file of the
Leon-3 with the 32 logical registers is depicted on the left
(logical register address and register contents). The MRT
with its mapping from logical register addresses to masked
register addresses is shown in the middle. For each of the 32
logical registers there is exactly one entry in the MRT. On

3If an entry with a set dirty bit is flushed to memory, its
alternative representation must be written to memory. If
the dirty bit is not set, the entry can just be deleted from
the mask storage.

the right, the mask storage with a capacity of eight entries
is shown (only masked register address and mask).

In this example, the register file contains four masked val-
ues (Am, Cm, Em, and Fm). The mask storage holds five
masks (mA, mB , mC , mD, mF). The masked register with
address 0 encompasses the masked value Am (held in i0)
and the mask mA (held in the first entry of the mask stor-
age). As both values are resident in the register file and the
mask storage, the masked register 0 can be readily used as
operand in a secure zone instruction. The same is true for
masked register 3 (Cm in i1 and mC in third entry of mask
storage) and for masked register 9 (Fm in o7 and mF in
fifth entry of mask storage). However, the masked register
7, with its masked value Em in i3, cannot be used, because
the associated mask is not present in the mask storage. To
become useable, the mask for masked register 7 must first
be restored in the mask storage. There are also two masks
(mB and mD) in the mask storage which are associated with
masked registers 2 and 5, respectively. However, the corre-
sponding masked values (Bm and Dm) are not present in the
register file. In order to use the masked registers 2 and 5,
the masked values must be loaded into a logical register and
these registers must be associated with the masked register
addresses 2 and 5 by updating the MRT. For example, Bm

could be loaded from memory into i2 and the MRT entry
for i2 could be updated to point to masked register address
2.

Figure 3 gives an example of implementing a single round
of AES on the secure zone in AT&T assembly notation. In
this notation, register names are prefixed by % and the des-
tination register of an instruction (if any) is written as the
final operand of the instruction. First, the MRT is updated
so that the masked register addresses 0-7 are assigned to
the logical registers o0-o3 and l4-l7 (szwwrmrtdir instruc-
tion). Then the AES state in registers o0-o3 is masked
(szmask instruction). The round key in o4-o7 is applied
to the masked AES state via the standard xor instruction
(cf. Section 4.1). The rest of the round transformations is
done via the szsbox4s and szmixcol4s instructions (cf. [14])
using the temporary registers l4-l7. The result is then un-
masked (szunmask instruction).

4.6 Integration of the Secure Zone into the Pro-
cessor Pipeline

Figure 4 gives a simplified view of three pipeline stages of
the Leon-3 processor and the logical structure of the secure
zone. Each register stage has feedback paths to the previous
stages in order to cater for potential data dependencies of
subsequent instructions, e.g. if an instructions uses the result
of the previous instruction as operand.

While the functional unit with unmasking and masking
logic resides on the same level as the execute stage (which
contains the other functional units of the processor), the
mask storage and mask generator are located on the same
level as the register file. This depiction should emphasize,
that changes to the mask storage and the mask generator
should only occur when there is an according change in the
register file. In particular, whenever a masked result of an
instruction is committed to the register file, the according
new mask must be written to the mask storage.

In some cases, the result of an instruction is calculated in
the execute stage, but it is never committed to the register
file and thus has no effect on the processor state. This can

215

Am 0 0 mAi0
2 mB

... ...

Register file Masked Register Table Mask storage

LRA RC LRA MRA MRA Mask

LRA: Logical Register Address

RC: Register Contents

MRA: Masked Register Address

i0
i1 Cm 3i1

3 mC

5 mD

9 mF

Em

i2
i3

Fmo7
o6

i2
7i3

o6
9o7

Figure 2: Example of association of masked values and masks.

! %o0-%o3: AES state
! %o4-%o7: AES round key
! %l4-%l7: Temporary AES state

! Set up MRT: Assign masked register
! addresses 0-7 to %o0-%o3 and %l4-%l7
szwwrmrtdir %o0, 0
szwwrmrtdir %o1, 1
szwwrmrtdir %o2, 2
szwwrmrtdir %o3, 3
szwwrmrtdir %l4, 4
szwwrmrtdir %l5, 5
szwwrmrtdir %l6, 6
szwwrmrtdir %l7, 7

! Mask AES state
szmask %o0, %o0
szmask %o1, %o1
szmask %o2, %o2
szmask %o3, %o3

! AddRoundKey
xor %o0, %o4, %o0
xor %o1, %o5, %o1
xor %o2, %o6, %o2
xor %o3, %o7, %o3

! SubBytes & 1st part of ShiftRows
szsbox4s %o0, %o1, %l4
szsbox4s %o1, %o2, %l5
szsbox4s %o2, %o3, %l6
szsbox4s %o3, %o0, %l7

! 2nd part of ShiftRows & MixColumns
szmixcol4s %l4, %l6, %o0
szmixcol4s %l5, %l7, %o1
szmixcol4s %l6, %l4, %o2
szmixcol4s %l7, %l5, %o3

! Unmask result
szunmask %o0, %o0
szunmask %o1, %o1
szunmask %o2, %o2
szunmask %o3, %o3

Figure 3: A single round of AES implemented on
the secure zone.

happen for various reasons, e.g. for instructions after a taken
branch or when a previous instruction has caused a trap.
Certain control signals of the processor pipeline make sure
that such cases are handled correctly. The mask storage and
the mask generator can make use of the same control signals
in order to determine whether an instruction should change
their state or not.

Figure 4 also shows two pipeline register stages within
the secure zone which can be regarded as extensions to the
pipeline register stages at the end of the execute and mem-
ory stage of the processor pipeline. The secure zone must
implement feedback paths from these register stages in or-
der to cater for potential data dependencies of subsequent
instructions which use the secure zone in the same way as
the rest of the processor pipeline.

4.7 Automatic Handling of Exceptional Con-
ditions

Whenever an exceptional condition as described in Sec-
tion 3.3 occurs, the processor throws a hardware trap and
automatically directs execution to the according trap han-
dler. We have added a set of management instructions which
allows for an automatic handling of these exceptional condi-
tions4. More precisely, an operating system with appropri-
ate trap handlers can manage these conditions transparently
for the cryptographic application. Therefore, cryptographic
applications need not be aware of the actual size or con-
tents of the mask storage or of the size of the mask index.
The only thing it has to do is to indicate where it holds the
masked intermediate values during execution via the MRT.
These updates of the MRT could be inserted automatically
by the compiler, so that a cryptographic application using
the protection of the secure zone could be written in almost
the same way as an unprotected application.

5. USE IN AN AUTOMATED DESIGN FLOW
AND COMPILER INTEGRATION

The presented protection mechanism can be easily used
as basis for a fully automated design flow for secure embed-

4These instructions allow to read and write the mask gen-
erator state, regenerate masks, read and clear entries of the
mask storage, update the MRT, etc.

216

Unmask

FU

Mask

Mask
generator

Mask
storage

Register File

S
ec

ur
e

zo
ne

E
xe

cu
te

st
ag

e
M

em
o

ry
st

ag
e

E
xc

ep
tio

n
st

ag
e

Figure 4: Secure zone components in relation to the processor pipeline stages.

ded systems. Starting from a baseline protected processor,
an arbitrary number of protected instructions can be simply
added by extending the functional unit within the secure
zone with the appropriate capabilities. Moreover, the set of
instructions which is required to implement specific crypto-
graphic algorithms could be extracted automatically from a
high-level language description of the algorithm, e.g. [10, 11].
At the same time, the design flow can generate accompany-
ing tool-chains and simulators for the customized protected
processor which can then be used to develop protected cryp-
tographic software. In the best case, the system designer just
needs to decide on the cryptographic algorithms which need
to be supported and provide high-level language descriptions
of them.

As already mentioned, most of the administrative tasks
relating to the use of the secure zone could be offloaded
to the compiler. In the ideal case, the only task left to the
developer of a cryptographic implementation would be to in-
dicate the mark the key which needs to be protected. From
this, the compiler can deduce all intermediate values which
depend on the key and which need to be protected by the
secure zone. Given the interdependency of these values, the
compiler can order the operations in a way which uses the
limited number of entries in the mask storage in an optimal
way, minimizing the number of times that masks have to
be flushed to memory or restored from memory. If masks
and masked values are associated via storage location, the
compiler could make sure that a masked value is in the cor-

rect location when it is operated upon by the secure zone
(otherwise the corresponding mask cannot be found). If this
association is done via the MRT, the compiler can insert the
instructions for updating the MRT automatically.

The compiler can also manage the secure zone directly by
keeping track of the number of occupied entries in the mask
storage and the current mask index and by inserting calls
to flush masks to memory, restore masks from memory, and
handle mask index overflows when appropriate. This would
require the compiler to model the effects of the program on
parts of the secure zone. Managing of the secure zone can
also be done at runtime via traps as discussed in Section 4.7.

6. PRACTICAL RESULTS

6.1 Implementation Cost
In order to estimate the hardware overhead introduced

by the secure zone, we have performed standard-cell syn-
thesis of two versions targeting the UMC 0.18 µm standard-
cell library FSA0A C from Faraday [5]. The first version
of the secure zone (minimal version) includes only the min-
imal functionality sufficient to protect implementations of
AES encryption and decryption (masking only of fixed reg-
isters, 7-entry mask storage, mask generator based on 64-bit
LFSR, no task switching support, no exception handling).
The second version (full version) encompasses all features
described in the previous sections (masked register address-
ing scheme, 8-entry mask storage, mask generator based on

217

Table 1: Synthesis results for both versions of the
secure zone.

Requires Minimal Full

Component Secure Logic GEs GEs

Functional unit yes 2,984 3,303

Mask generator yes 779 1,994

Mask storage yes 2,833 7,122

SZ functionality yes 1,777 4,461

MRT no n/a 5,478

Total 8,373 22,358

127-bit LFSR, task switching support, exception handling).
The synthesis results for both variants are given in Ta-

ble 1. The area requirements for each sub-component are
stated separately. Note that the figures refer to implemen-
tation in standard CMOS. The column “Secure Logic” indi-
cates whether the given component requires realization in a
secure logic style. The component“SZ functionality”encom-
passes all functions which are not part of the other compo-
nents, i.e. control word decoding, unmasking and masking
logic, pipeline register stages, feedback logic, exception de-
tection, and registering of the output word.

The total size of the minimal variant of the secure zone is
about 8.4 kGates. Note that the size of the functional unit
could be further reduced by employing more light-weight
AES instructions [14]. The full variant requires a total of
about 22.4 kGates, but the part that needs to be imple-
mented in secure logic (which excluded the MRT) is only
twice the size of the minimal variant.

Note that the full implementation includes a number of
administrative functions, some of which could be stripped
in a practical implementation in order to save area. Fur-
thermore, the exception handling could also be optimized
further. Also, with the mechanism for flushing masks to
memory, the number of mask storage entries could also be
reduced, given a tradeoff between area and execution time.

In any case, the full implementation offers a framework for
supporting multiple cryptographic algorithms with little ex-
tra cost, as only the required instructions need to be added.
For example, the raw cost for AES is only 3 kGates (in
CMOS) and could be even reduced to less than 1 kGate [14].
All other components can be reused by the various crytpo-
graphic implementations. This is a fundamental difference
to cryptographic coprocessors implemented in secure logic,
where there is typically one coprocessor per cryptographic
algorithm and the overhead for registers and control logic
is incurred for each of them. Furthermore, coprocessors are
usually not suited to be used by multiple tasks in parallel.
Note also that protecting the whole processor system in a
secure logic style is currently no viable option to achieve
the same degree of functionality offered by our implemen-
tation, due to the lack of efficient solutions for adequately
protecting external memories.

The overhead incurred by implementation in a secure logic
style greatly depends on the characteristics of the chosen
logic style. For example, WDDL approximately triples the
area [16]. Furthermore, the clock frequency is at least halved
and the power consumption is increased by a factor of about
3.5. Note that the decrease in clock frequency could be
limited to those execution times where the secure zone is
active via frequency scaling.

Figure 5: Setup for the DEMA attack.

6.2 Preliminary SCA Evaluation
We have prototyped our implementation on a Xilinx ML410

FPGA board which features a Virtex 4 FX FPGA. Apart
from a functional verification in “real” hardware, this en-
abled us to perform a preliminary evaluation of the SCA
resistance of our approach. We compared two implementa-
tions of AES: One which uses unprotected AES extensions
and one which makes use of the instructions offered by the
secure zone. Due to the complexity of using a secure logic
style approach on an FPGA and due to time limitations, we
had to refrain from implementing the secure zone in a se-
cure logic style. We believe that it is reasonable to assume
that a proper implementation of the secure zone in a secure
logic style can only lead to a further increase in the practi-
cal security. Therefore, our evaluation results can be seen as
estimating the lower bound for security. Even though no se-
cure logic style is employed, the protected implementation
limits the occurrence of critical values to the secure zone,
whereas in the unprotected implementation, critical values
are moved through the complete processor pipeline. Hence,
the unprotected implementation was expected to be much
more susceptible to attacks.

To test this assumption, we performed a DEMA attack
with a total of 250,000 power traces on both implementa-
tions. The setup is depicted in Figure 5. Despite the rela-
tively high noise in the setup, we were able to successfully
attack the unprotected implementation. This attack yielded
ρ ≈ 0.02 which translates to a maximum of about 70,000 re-
quired power traces [8]. On the other hand, the attack on
the protected implementation did not succeed. The attack
has thus been made harder by a factor of at least more than
3.5, just by limiting the circulation of critical values. This
factor should multiply to the protection factor offered by
the secure logic style. The correlation traces for both at-
tacks are shown in Figure 6 and Figure 7. The correlation is
measured between predicted power consumption values un-
der the assumption of a specific value for a byte of the key
(key hypothesis) and the actual measured power consump-
tion. If the correlation is significantly higher for a specific
key hypothesis in relation to all hypotheses, this indicates
that the key value has been guessed correctly and that the
attack has been successful. Thus, these correlation traces

218

show the result of an attack on a particular key byte (the
second key byte of the AES cipher key in this case), where
the correlation trace for the hypothesis using the correct
key byte is in dark gray whereas the correlation traces for
the 255 incorrect key hypotheses are displayed in light gray.
Note that the attack on the protected implementation has
a ghost peak5 around point 400, but this peak occurs for all
key hypotheses.

Figure 6: Attack on the unprotected implementa-
tion.

6.3 A Note on Higher-Order Attacks
The use of an LFSR as mask generator introduces a lin-

ear connection between some of the masks in the sequence.
More precisely, a specific bit of a new mask is a linear com-
bination (XOR) of a number of bits of some previous masks
(for our choice of LFSR, this are four bits coming from three
or four previous masks). So there is a theoretical threat of a
higher-order attack using the power consumption connected
to these dependent mask bits. As there are at least three
masks contributing to any new mask bit, an attacker would
need to mount at least a fourth-order attack, which is usu-
ally considered impractical. If attacks of this high order
should become a threat, the required order can be arbitrar-
ily increased in software by regularly advancing the mask
generator and skipping some of the produced masks with-
out using them.

7. CONCLUSIONS
We have presented a detailed concept for protecting em-

bedded processors against SCA attacks. The main contri-
bution of our work is that it takes the roughly sketched
ideas from Tillich et al. and develops a protection mecha-
nism which builds on state-of-the-art SCA research and in-
corporates the requirements of modern embedded systems.
Our solution makes use of secure logic styles and acknowl-
edges the incurred implementation overhead by requiring
only a portion of the processor to be implemented in such a
logic style. Requirements of modern embedded systems like
multi-tasking and separation into secure operating system

5The ghost peak probably relates to the masking operation
of the plaintext.

Figure 7: Attack on the protected implementation.

and potentially insecure user applications are catered for.
The task of dealing with the hardware countermeasures can
be largely offloaded to the operating system and the com-
piler, so that developers can write protected cryptographic
applications in almost the same way as unprotected ones.
Our countermeasures are modular, so that certain features
can be omitted if they are not needed or if an increased
processor workload is acceptable. We have implemented the
protection mechanism in two versions for protecting AES on
a typical embedded processor, where the minimal version
required about 8.4 kGates while the full version could be re-
alized with about 22.4 kGates. Our concepts are applicable
to a large range of cryptographic algorithms and are ide-
ally suited for an automated development flow of protected
embedded processors.

8. ACKNOWLEDGMENTS
The research described in this paper has been supported

by the Austrian ministry BM:VIT in the FIT-IT program
line “Trust in IT Systems” under grant 816151 (project PO-
WER-TRUST), and, in part, through the ICT Programme
under contract ICT-2007-216676 ECRYPT II. The informa-
tion in this document reflects only the authors’ views, is
provided as is, and no guarantee or warranty is given that
the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

9. REFERENCES
[1] ARM Ltd. TrustZone Technology Overview. http:

//www.arm.com/products/security/trustzone/.

[2] D. J. Bernstein. Cache-timing attacks on AES.
Available online at http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf, April 2005.

[3] C. D. Canniére and B. Preneel. TRIVIUM
Specifications. eSTREAM, ECRYPT Stream Cipher
Project (http://www.ecrypt.eu.org/stream), Report
2005/030, April 2005.

[4] M. Dichtl and J. D. Golić. High-Speed True Random
Number Generation with Logic Gates Only. In
E. Oswald and P. Rohatgi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2008, 10th

219

International Workshop, Washington DC, USA,
August 10-13, 2008, Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 45–62.
Springer, August 2008.

[5] Faraday Technology Corporation. Faraday FSA0A C
0.18µm ASIC Standard Cell Library, 2004. Details
available online at http://www.faraday-tech.com.

[6] P. Grabher, J. Großschädl, and D. Page.
Non-Deterministic Processors: FPGA-Based Analysis
of Area, Performance and Security. In Proceedings of
the 4th Workshop on Embedded Systems Security
(WESS 2009), pages 1–10. ACM Press, 2009.

[7] M. Hell, T. Johansson, and W. Meier. Grain - A
Stream Cipher for Constrained Environments.
eSTREAM, ECRYPT Stream Cipher Project
(http://www.ecrypt.eu.org/stream), Report
2005/010, 2006. Revised version.

[8] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks – Revealing the Secrets of Smart Cards.
Springer, 2007. ISBN 978-0-387-30857-9.

[9] D. May, H. L. Muller, and N. P. Smart.
Non-deterministic Processors. In V. Varadharajan and
Y. Mu, editors, Information Security and Privacy, 6th
Australasian Conference, ACISP 2001, Sydney,
Australia, July 11-13, 2001, Proceedings, volume 2119
of Lecture Notes in Computer Science, pages 115–129.
Springer, 2001.

[10] L. Pozzi, M. Vuletić, and P. Ienne. Automatic
Topology-Based Identification of Instruction-Set
Extensions for Embedded Processors. In Proceedings
of the conference on Design, automation and test in
Europe (DATE 2002), page 1138. IEEE Computer
Society, 2002.

[11] S. Ravi, A. Raghunathan, N. Potlapally, and
M. Sankaradass. System design methodologies for a
wireless security processing platform. In 39th Design
Automation Conference, DAC 2002, New Orleans,
Louisiana, USA, June 10-14, 2002, Proceedings, pages
777–782, New York, NY, USA, 2002. ACM Press.

[12] F. Regazzoni, A. Cevrero, F.-X. Standaert, S. Badel,
T. Kluter, P. Brisk, Y. Leblebici, and P. Ienne. A

Design Flow and Evaluation Framework for
DPA-Resistant Instruction Set Extensions. In
C. Clavier and K. Gaj, editors, Cryptographic
Hardware and Embedded Systems – CHES 2009, 11th
International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of
Lecture Notes in Computer Science, pages 205–219.
Springer, 2009. ISBN 978-3-642-04137-2.

[13] G. E. Suh, C. W. O’Donnell, and S. Devadas. Aegis:
A Single-Chip Secure Processor. IEEE Design and
Test of Computers, 24(6):570–580, December 2007.

[14] S. Tillich and J. Großschädl. Instruction Set
Extensions for Efficient AES Implementation on 32-bit
Processors. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems –
CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249
of Lecture Notes in Computer Science, pages 270–284.
Springer, 2006.

[15] S. Tillich and J. Großschädl. Power-Analysis Resistant
AES Implementation with Instruction Set Extensions.
In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems –
CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, volume
4727 of Lecture Notes in Computer Science, pages
303–319. Springer, September 2007.

[16] K. Tiri, D. D. Hwang, A. Hodjat, B.-C. Lai, S. Yang,
P. Schaumont, and I. Verbauwhede. Prototype IC with
WDDL and Differential Routing - DPA Resistance
Assessment. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems –
CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings,
volume 3659 of Lecture Notes in Computer Science,
pages 354–365. Springer, 2005.

[17] Y. Tsunoo, E. Tsujihara, K. Minematsu, and
H. Miyauchi. Cryptanalysis of Block Ciphers
Implemented on Computers with Cache. In
International Symposium on Information Theory and
Its Applications (ISITA 2002), October 2002.

220

Porscha: Policy Oriented Secure Content Handling in
Android

Machigar Ongtang
Faculty of Information

Technology
Dhurakijpundit University
Bangkok 10210, Thailand

machigar.ong@dpu.ac.th

Kevin Butler
Department of Computer and

Information Science
University of Oregon

Eugene, OR 97403 USA
butler@cs.uoregon.edu

Patrick McDaniel
Department of Computer
Science and Engineering

Pennsylvania State University
University Park, PA 16802

mcdaniel@cse.psu.edu

ABSTRACT
The penetration of cellular networks worldwide and emer-
gence of smart phones has led to a revolution in mobile
content. Users consume diverse content when, for example,
exchanging photos, playing games, browsing websites, and
viewing multimedia. Current phone platforms provide pro-
tections for user privacy, the cellular radio, and the integrity
of the OS itself. However, few offer protections to protect the
content once it enters the phone. For example, MP3-based
MMS or photo content placed on Android smart phones can
be extracted and shared with impunity. In this paper, we
explore the requirements and enforcement of digital rights
management (DRM) policy on smart phones. An analysis of
the Android market shows that DRM services should ensure:
a) protected content is accessible only by authorized phones
b) content is only accessible by provider-endorsed applica-
tions, and c) access is regulated by contextual constraints,
e.g., used for a limited time, a maximum number of view-
ings, etc. The Porscha system developed in this work places
content proxies and reference monitors within the Android
middleware to enforce DRM policies embedded in received
content. A pilot study controlling content obtained over
SMS, MMS, and email illustrates the expressibility and en-
forcement of Porscha policies. Our experiments demonstrate
that Porscha is expressive enough to articulate needed DRM
policies and that their enforcement has limited impact on
performance.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General

; D.4.6 [Operating Systems]: Security and Protection—
Access controls, Authentication

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Keywords
DRM, Mobile Phone Security, Android, Security Policy

1. INTRODUCTION
Mobile phones are used extensively by nearly 5 billion peo-

ple worldwide [28] and form a vital information conduit for
business and personal information access. The use of mo-
bile phones has long transcended strictly voice calling, e.g.,
SMS exceeded 5 trillion messages worldwide in 2009 [43].
As users perform ever more data-centric activities on their
phones, they are increasingly purchasing smartphones with
the ability to run wide varieties of applications. Over 170
million smartphones were purchased globally in 2009 [18].
The data and applications used on these phones are equally
diverse. For example, the Apple App Store, which contains
over 130,000 applications, recorded 280 million application
downloads in December 2009 [21].

Open platforms such as Android provide few direct pro-
tections for the content placed on the phone. Access con-
trols restrict access to application interfaces (e.g., by placing
permissions on application components in Android), rather
than placing explicit access controls on data they handle.
Therefore, what limited content protections exist are largely
a by-product of the way interfaces are designed and permis-
sions (often capriciously) assigned. Thus, a malicious appli-
cation with the appropriate permissions can exfiltrate even
the most sensitive of data from the phone. Malware has re-
cently begun to exploit such limitations [3, 4, 5]. Moreover–
even in the absence of malicious applications–commercial
interests such as media providers wish to provide content
without exposing themselves to content piracy.

To combat these issues, a consortium of mobile phone
manufacturers including Nokia, LG, Motorola, Samsung,
and Ericsson have recently developed standards for content
protection on mobile devices. Codified within the Open Mo-
bile Alliance and focusing primarily on pay-per-use content
such as ringtones and multi-media, the OMA DRM v1.0 [37]
and v2.0 [38] standards define an API and infrastructure for
authorizing devices to process content. To simplify, OMA
DRM devices obtain rights objects (use licenses and cryp-
tographic keys) from providers that allow them to access
downloaded content. The licenses can regulate how the con-
tent may be used in simple ways such as by discrete lifetime
and maximum number of uses. The granularity of the OMA
DRM specifications, however, is coarse. The licensing unit is
the phone; as a result, the specifications say nothing about
content management when it is on the phone. Specifically,

221

there are no considerations of which applications may access
content. This was reasonable when the specification was
written in 2004, as there were no application markets at the
time and phone manufacturers provided their own software
for the phone. Since that time, though, the smartphone rev-
olution has mandated a need for protections at the applica-
tion layer, now that many applications can be purchased or
downloaded to access on-phone content. Otherwise, content
is subject to improper use by untrusted applications such as
rogue media players.

In this paper, we introduce the Policy ORiented Secure
Content Handling for Android (Porscha) system. Porscha
enforces fine-grained content policies1 over content delivered
to the phone. A study of application markets (see next sec-
tion) illuminates the needs of providers: from financial trans-
actions and airline tickets, to personal applications such as
diaries and journals, the diversity and sensitivity of content
processed by smartphones is immense. This study prompts
three classes of fine-grained content policies studied through-
out: a) content should only be accessible by explicitly autho-
rized phones, b) content should only be accessed by provider
endorsed applications, and c) content should be subject to
contextual constraints, e.g., used for a limited time, a maxi-
mum number of viewings, etc. In supporting these policies,
we extend the OMA DRM policy schema [37] to embrace
finer-grained controls.

Porscha policies are enforced in two phases: the protec-
tion of content as it is delivered to the phone (in transit, see
Section 4.2), and the regulation of content use on the phone
(on platform, see Section 4.3). For the former, Porscha binds
policy and ensures content confidentiality “on the wire” us-
ing constructions and infrastructure built on Identity-Based
Encryption [11]. For the latter, Porscha enforces policies
by proxying content channels (e.g., POP3, IMAP, Active
Sync) and placing reference monitor hooks within Android’s
Binder IPC framework. We implement and test Porscha on
a T-Mobile G1 smartphone and perform experiments using
the three most popular content types: SMS messages, MMS
messages, and email. Our experiments with Porscha show
that delivery delay for MMS is slightly over 1 second, while
latency from processing emails is only about 1 second or
less. A security analysis is given and we conclude with a
discussion of alternate designs and policy and infrastructure
extensions. We begin in the next section by considering
whether content policy is necessary for smartphones.

2. DO SMART PHONES NEED DRM?
In looking at DRM in smartphones, we must ask the ob-

vious question of what must the service actually do. To an-
swer this question, we surveyed applications and usage seen
in current cell phones to attempt to ascertain what kinds
of documents are commonly exchanged and what the rea-
sonable requirements are that the providers may place on
them. We evaluated the top 50 free Android applications in
each of the 16 application categories present Android Mar-
ket in April 2010. For the purposes of this initial study,
we focused on applications that delivered content via SMS,
MMS, or email. Table 1 shows the number of applications

1Throughout we use the terms DRM and content policies
interchangeably. While the latter term is arguably more
general, any distinctions are outside the scope of the defini-
tion and enforcement of policy studied here.

requesting permissions to receive SMS and MMS and to read
from or write to SMS, MMS, and email attachments. We
briefly summarize our findings on content use below:

Personal and Business Documents:.
Applications in the Communication category (e.g. third-

party email/SMS/MMS clients), Tools category (e.g. anti-
virus, backup tools, and Office Viewer), and Travel category
(e.g. language translator) in Table 1 frequently manage per-
sonal or business SMS, MMS, and emails.

Documents in this category include sensitive emails be-
tween business partners and others encompass security ca-
pabilities, e.g., SMS is used for authorization in access con-
trol systems such as Grey [9]. In these cases, unintended
exposure can leak business secrets or compromise the ac-
cess control system. Thus, providers need to ensure that
(a.) only targeted phones (i.e. authorized users) receive the
documents, (b.) only trusted client applications can handle
them, and that (c.) these documents can never be modified.

Service-specific data:.
A number of applications use SMS to send commands to

on-phone clients. Note that in almost all cases, there should
only be one legitimate client consumer for the content type–
the one provided by the service itself. For instance, one
spy camera application used SMS to command the phone
capture pictures and record videos. Similarly, Mydroid2 is
a tool for finding the phone by turning off the silent mode
and turning up the volume when it receives a command via
SMS, and Mobile Defense3 allows remote connection to the
phones after receiving an authenticated SMS message.

Commands in these applications are sent or received via
provided websites or other interfaces. Unauthorized expo-
sure of the “command” documents could reveal the applica-
tion behavior, and indirectly the user’s intent. The applica-
tions may misbehave if the commands are tampered with.
In response, the senders must let (a.) only the phones under
control receive the commands, (b.) only the applications to
execute the commands to process them, and (c.) the com-
mands read only and may be read only once, and (d.) ensure
only legitimate content is consumed by the client.

Financial Information.
Emails and SMS have become key media for financial in-

stitutions to communicate with their clients. For instance,
banks and credit card companies offer SMS banking, SMS
account alerts, and e-statements. Payment service providers
such as PayPal and Amazon Payments mainly contact their
customers via email and also offer SMS-based payment ser-
vice. Similar to personal and business documents, the send-
ing institutions aim to inform the users. As a result, the
documents must be (a.) sent only to the phones of such
particular customers. They must be (b.) accessed only by
trusted messaging clients. Moreover, some documents such
as payment requests may be designed to work with a group
of payment applications trusted by the institutions which
can also be identified by their hashes or signatures. In most
cases, the senders should also ensure that (c.) these docu-
ments are read-only. They should be deleted only through
trusted client applications.

2http://code.google.com/p/mydroid/
3https://www.mobiledefense.com/

222

Application Category Receive
SMS

Receive
MMS

Read SMSWrite SMS Read At-
tachment

Communication 7 2 10 6 1
Tools 5 2 6 3 0
Finance 1 0 1 0 0
Travel 1 0 1 0 0
Others 3 1 2 3 1

Table 1: Number of sample applications that access SMS, MMS, and email.

2.1 DRM Policy Requirements
The surprising result of the application analysis was the

incredible consistency of the content policy requirements.
With few exceptions, the requirements fell into three cate-
gories:

• Binding content to the phone – most of the ap-
plications required that the content be targeted to a
single identified user or phone. Failure to implement
this policy could have catastrophic consequences (in
financial applications), or undermine the entire service
(in media access applications).

• Binding content to endorsed applications – of-
ten observed in desktop environments but largely ig-
nored in the mobile device industry, it is important
to control which particular applications can process
protected content. The consequences of the failure to
enforce this policy are similar to those above—a ma-
licious application on an otherwise legitimate phone
could corrupt, exfiltrate, or otherwise misuse delivered
content.

• Constraining continuing use of the content – it
is essential that the provider be able to control not
just access, but how that access evolves or expires
over time. Frequency, count, or temporal constraints
were common. Failure to provide these polices would
marginalize the license structures upon which many
services are now built.

To illustrate, Table 2 gives example policies falling into
these categories (using a self-explanatory policy schema).
Policy 1 states that a particular document (for example, an
authorization SMS in our access control system example)
can be read only if the application is signed with a particular
key and the phone is within 50 meters from the place under
control (e.g., as used in the Grey system). Policy 2 explicitly
identifies a legitimate application by its fingerprint (i.e., a
hash of the application image .apk file). We revisit these
policies in subsequent sections.

3. BACKGROUND AND ASSUMPTIONS
Having considered DRM policy requirements, we now ex-

amine how content is currently delivered to mobile phones.
We begin this section by briefly describing Android, then
discuss content delivery through the network and its han-
dling on the phone itself.

3.1 Android Background
Android is a middleware platform for mobile phones, built

on a Linux kernel that isolates applications by having them
run in their own process spaces with their own virtual ma-
chine instances. Operating system details are hidden from

application developers, who access and provide functional-
ity through components. These components are assembled
to provide applications, which perform all inter-process com-
munication (IPC) through Android’s Binder mechanism. Com-
ponents interact primarily through the use of Intent mes-
sages, which can either explicitly address components by
name or through implicit action strings, resolved to the
appropriate receivers by the Android middleware. Compo-
nents set up Intent filters and specify action strings in order
to subscribe to these specific Intents.

There are four types of components in Android. Ac-
tivity components normally provide user interfaces via the
touch screen and keypad. Service components perform back-
ground processing. Broadcast Receiver components act as
listeners which enable asynchronous event notifications. They
usually receive Intents addressed by action strings. Standard
action strings include “boot completed” and “SMS received”.
Lastly, Content Provider components act as a persistent
data store that implement an SQL interface. If implemented
by the providing application, other applications can query,
update, and delete the data in the Content Providers. Fig-
ure 1 describes how these components interact with each
other. In addition, applications have the ability to directly
call APIs from other applications.

Applications in Android can be classified into two groups.
System applications, including the phone, dialer, and mes-
saging applications, are bundled with the phone when it is
provisioned to a subscriber and are stored in a read-only sys-
tem partition. User applications are obtained from a variety
of sources, including the Android Market, and are installed
by users: these programs can compete with or complement
system applications, or extend the platform’s functionality
in very different ways.

Android’s security framework is based on permission la-
bels, which are unique text strings defined either by appli-
cations or the middleware. Application developers spec-
ify a list of permission labels in an application’s manifest
file, which presents information about resources an applica-
tion is allowed to access. For example, receiving and read-
ing an SMS message requires an application to hold the
RECEIVE_SMS and READ_SMS permissions, respectively. In
Android, all content is treated equally, meaning that any
application with permissions to access a particular document
type can access all documents of that type. Importantly, el-
evated protection levels such as allowing “dangerous” func-
tionality for certain permissions rely on the user to confirm
all permissions associated with an application at install time;
however, users who may not fully understand what they are
allowing and consequently may make bad security decisions.

3.2 Documents in Transit
Figure 2(i.) provides an overview of how content is deliv-

ered to a phone from outside sources. For clarity, we refer to
these external providers of content as content sources. Doc-

223

(1) allow-read{(sig=934db3d4 . . .) and (location=40.304107,-75.585938,50)}
Only the access control application signed by developer key 934db3d4 can read the document, and only when the phone
is within a 50-meter radius of location (40.304107,-75.585938).

(2) allow-read{(hash=6ab843a)} allow-modify{none} allow-delete{(hash=6ab843a)}
Only the application identified by its binary hash 6ab843a can read and delete the document.

Table 2: Examples of security policies for content protection.

Starting an Activity for a Result

ActivityActivity

start

return

Querying a Content Provider

Activity

Read/Write
Query

return

Content
Provider

Receiving an Intent Broadcast

System

Activity

Service

Broadcast
Receiver

Send
Intent

Communicating with a Service

Activity

callback

Service
call

start/stop/bind

Figure 1: Typical methods of component interaction in Android.

uments sent through the cellular (SS7) network, including
SMS and MMS messages, are received at the phone’s Radio
Interface Layer (RIL), processed by the baseband processor,
and made accessible to the phone application. Applications
whose content source originates from the Internet, however,
connect directly to them in order to receive these documents,
such as email. There are no intermediaries on the phone to
process this content prior to its handling by the application.

Lack of end-to-end security is a major problem in SMS,
MMS, and email transport. SSL/TLS for email delivery
only secures connection between the phones and the mail
servers. SMS and MMS documents delivered through SS7
make use of security mechanisms found within the cellular
network. The heart of the SMS system is the Short Message
Service Center (SMSC) which receives short messages from
mobile devices inside the cellular network or from external
short message entities (e.g. web-based SMS portals). The
messages are processed, stored in the SMSC queue, and de-
livered to the destination devices through a control channel.
Messages in transit are encrypted by the network providers.

The MMS system centers on the Multimedia Message Ser-
vice Center (MMSC). However, phones do not communicate
with the MMSC directly but through a WAP gateway push
proxy. Upon the arrival of MMS messages, the MMSC no-
tifies the receiving clients with WAP push notifications over
SMS. In response, the clients create a TCP/IP connection
to retrieve the messages from the MMSC through the WAP
gateway push proxy. Clearly, the security of the WAP push
notification delivery is based on SMS security. The accom-
panying MMS message retrieval can be secured using SS-
L/TLS. More information about the structure of the cellular
network and its security is available from Traynor et al. [50].

While SMS and MMS notifications are encrypted, there
are still several security issues. GSM encryption is provided
only over the radio interface since it is assumed that the
SS7 network is inaccessible to external entities. The net-
work providers do not always encrypt SMS messages [20].
Even if they did, though, the employed A5-family encryp-
tion algorithms have been compromised: a full rainbow table
for the A5/1 cipher has been published [6], while an attack
against the KASUMI cipher that is the basis for the new
A5/3 cryptosystem can be performed in less than two hours
on a PC [14]. Most importantly, GSM encryption does not
give end-to-end security because the encryption key is shared
between the mobile devices and the network providers, not

directly between the content source and receiving device.

3.3 On-Platform Document Access
Access to documents that arrive on the phone is contin-

gent on their method of delivery. Figure 2(ii.) demonstrates
how various document types are handled as they arrive at
the platform. There are three cases that we consider:

1. Initial Document Recipients: These applications
either receive documents directly from the platform
or from system applications. Their access will be de-
pendent on permission labels set within their manifest
files.

2. Documents at Rest: Some documents such as SMS,
MMS, and the attachments of the emails received will
be stored by the phone platform. In Android, these
documents will be stored in Content Provider compo-
nents, which act as databases for this content. Access
to these Content Providers to either read or write data
is also contingent on permissions in the application’s
manifest file.

3. Document Sharing: Indirect receivers are applica-
tions receiving documents from other applications. In
Android, the APIs allowing interaction and data shar-
ing between applications are mediated by the Binder
IPC mechanism. Permissions are placed on applica-
tion components to limit the data that can be sent
and received between applications. This acts as a weak
method of enforcing information flow enforcement, but
is not secure as there is no concept of partial ordering
with permission labels such that a lattice may be de-
rived [13].

3.4 Threat and Trust Model
We assume that the network is untrusted: an adversary

is capable of subverting any communications received from
the network interface, regardless of whether the cellular net-
work or the Internet were transited. In addition, any user
applications on the phones are assumed to be untrustworthy
unless otherwise identified by a sender. Our trusted comput-
ing base (TCB) comprises the underlying Linux operating
system and the Android middleware itself, as well as system
applications.

224

Content
Source

Phone App AApp B

Content
Source

Messaging... ...

Content
Source Email

SMS/
MMS

(i.) Documents in transit (ii.) Documents on phone

SS7 Network

SMSC

MMSC

WAP
proxy

Email
server

Android Middleware

Linux Kernel

MMS
retrieval

User AppsSystem Apps

Internet

Figure 2: External content providers deliver their documents to the application(s) on the phone. The shaded
area represents our TCB.

4. ARCHITECTURE
Porscha enforces security policy in two phases: initially as

the content is transmitted over telephony networks and the
Internet (as content in transit), and thereafter as it is pro-
cessed and stored on the phone (on platform). This section
describes how Porscha defines and enforces policy in each of
these phases.

4.1 Supported Policy
Porscha extends the XML OMA policy [37, 39] to em-

brace the new DRM requirements identified in our applica-
tion study, discussed in Section 2.1. All policies are manda-
tory. That is, any OMA client receiving a Porscha policy
must implement the extensions or deny access. Detailed be-
low, policy is encoded in XML as either a section in the text
part of MMS or email attachment (see Section 4.3). Porscha
supports4:

Constraints on Devices – OMA DRM 1.0 binds the con-
tent to devices that have acquired the proper license (i.e.,
right object). OMA DRM 2.0 also supports binding to spe-
cific devices identified by the users’ International Mobile
Subscriber Identity (IMSI) or WAP Identify Module (WIM).
Described below, we extend identity to the phone number
of the device itself (as regulated by the cellular provider).

Constraints on Applications – Porscha extends OMA
DRM to constrain applications consuming content. Here
the senders can specify access be restricted to applications
with a given code fingerprint (hash of the application im-
age), that are signed with a given developer key, or require
that the application be configured with a given set of per-
missions (this last policy is similar to those found in the
Saint system [36]).

Constraints on Use – Common policies codified in OMA
DRM, such as validity period and number of uses, are sup-
ported. We extend these to support not only the regulation
of simple accesses, but also differentiation of simple access
from read, modify and delete rights.

4.2 Content-in-Transit
Porscha must secure content delivery over the untrusted

networks–namely the confidentiality, integrity, and authen-

4For brevity, we omit our XML structure and example po-
lices beyond that identified in Table 1. Note that we are able
to encode all policies uncovered in the application study us-
ing OMA and the Porscha extensions.

ticity of SMS, MMS, and email must be preserved. Porscha
uses identity-based encryption (IBE) [11] to ensure these
properties. IBE enables the senders to construct the public
keys of the recipients from known identities (phone numbers
or email addresses), thus eliminating the need for a priori
key distribution.

We briefly review the structure and use of IBE. Identity-
based Encryption systems form a subclass [11] of public key
cryptosystems. As with all public key systems, participants
(users or other entities) are assigned a public key (which
is widely distributed) and a private key (which is kept se-
cret by the participant). What differentiates IBE from other
kids of public key systems is the public key itself. An IBE
public key is an arbitrary string such as an email address,
name, social security number or any other value that is de-
sirable for the target environments. Serving a similar role to
a CA in traditional PKI systems, each IBE system contains
a trusted private key generator (PKG). The PKG generates
private keys using system wide secrets and provides them to
the participants through a registration process. The PKG
advertises public cryptosystem parameters for the IBE in-
stance.5 Encryption using the public key is performed by
inputting the message (data), public key string, and cryp-
tosystem parameters into the IBE encryption algorithm. De-
cryption is performed by inputting the ciphertext and pri-
vate key to the decryption algorithm. Again, as in normal
public key systems, it is also possible to encrypt using the
private key and decrypt using public key (e.g., as used in
creating digital signatures).

We use the following notation below. We denote the pri-
vate key generator PKG, sender (content source) S, and
receiver (phone) R. The identity for participant a is de-
noted Ia, the public/private key pair for a is K+

a and K−
a

respectively, content is m, and a policy for m is pm. En-
cryption and signature operations are denoted E(d, k) and
Sign(d, k), where d is the input data and k is the key. We
denote the one-time time ephemeral key used in the delivery
of email as ke.

SMS/MMS – In SMS/MMS delivery, the recipient’s tele-
phone number (MSISDN) is used as their public key identity.
Each cellular provider runs a Private Key Generator (PKG)
that publishes the IBE public parameters via publicly ver-

5The participant registration process, the secure acquisition
process, and other key management services (e.g., revoca-
tion) have been discussed at length in other works [19, 31,
8]. Such issues are outside the scope of this work.

225

ifiable medium, e.g., in a Verisign certificate. The phone’s
private key and IBE parameters are loaded at subscription
time in the phone SIM (see Section 6).

To send SMS/MMS, the sender encrypts its ID, the con-
tent, and policy using the receiver’s public key. The sender
then signs the resulting ciphertext his/her own private key
K−

sender. More precisely:

S → R : E({IS ||m||pm},K+
R)||

Sign(E({IS ||m||pm},K+
R),K−

S)

If the sender uses different PKG than the receiver (e.g., sub-
scribes to a different provider), it contacts the receiver’s
PKG directly using Internet connection or through multi-
domain key management service supported by mobile sys-
tems [48, 22, 51]. Note that the addition of the policy,
padding, and signature can increase the size of an SMS
message beyond that supported by current networks (160
characters). Thus, as described in the following section, we
convert SMS messages into MMS messages.

Email – We use a recipient’s email address as the tar-
get identity. PKGs run in support of email domains pub-
lish the public key parameters through extended attributes
on DNSsec [27] MX records. Emails can be vary in size
and be arbitrarily large. As performing IBE encryption on
large content potentially incurs high overhead, the sender
encrypts the body of the email using the one-time 128-bit
AES symmetric key ke, which is obtained through Diffie-
Hellman key exchange protocol. The symmetric key ke is
in turn encrypted with the receiver’s IBE public key. The
ciphertext is then signed, and the entirety is sent to the
receiver as a MIME encoded email, as follows:

S → R : E({IS ||m||pm}, ke)||E({ke},K+
R)||

Sign({E({IS ||m||pm}, ke)||E({ke},K+
R)},K−

S)

The following section details how these documents are pro-
cess once they are received by the phone.

4.3 On-platform Policy Enforcement
When a document arrives at the designated phone, Porscha

enforces the content security policy specified by the content
source. Detailed in this section, the Porscha mediator en-
forces policy through a set of protocol proxies and autho-
rization hooks within the Android middleware.

4.3.1 Policy Enforcement on Initial Recipients
SMS/MMS – Depicted in Figure 3(a), SMS and MMS
PDUs (the base structure for data messaging services in cel-
lular networks) initially arrive at the Phone application (M1
in Figure 3(a)). Under normal (non-Porscha) circumstances,
the Android SMS Dispatcher delivers these messages to all
applications that have registered for WAP_PUSH_RECEIVED In-
tents (which requires the RECEIVE_MMS permission). The
Intent identifies the URI to the MMS content. Messaging
application then downloads the MMS content and stores
it in the MMS Provider inside of the middleware. The
MMS Provider broadcasts another Intent when the content
is stored.

To enforce policy, Porscha delays the initial WAP_PUSH_

RECIEVED broadcast, but automatically triggers the Messag-
ing application to download the content (M2). Once the
content download completes, a second mediator hook parses

Linux Kernel

User Apps System Apps

Android
Middle-
ware

App B App C
...

Porscha
Proxy Phone

Activity Manager
Service

Porscha
Mediator

Messaging

M4

SMS/
MMSM1

M2

M3 MMS
content

M5
M6

(a) Mediating SMS/MMS Delivery

Linux Kernel

User Apps System Apps

Android
Middle-
ware

App A Email
App...

Phone...

Activity Manager
Service

Porscha
Mediator

Email
E1

E2
E3

(b) Mediating Email Delivery

Figure 3: The Porscha mediator implemented in-
side Android intercepts the document delivery and
enforces the policy on initial recipients.

the PDU (M3), extracts the policy from the content, and de-
termines, in conjunction with the Activity Manager Service
(M4), which applications are allowed to receive the docu-
ment. Applications compliant with the policy receive the
subsequent notifications, while those not in compliance will
not.

Note that the Intent notifying the arrival of SMS/MMS
cannot be issued from within the Android middleware: the
broadcasting entity must be an application that possesses
BROADCAST_SMS permission for SMS and BROADCAST_WAP_

PUSH for MMS. Additionally, applications must be signed
by the platform key for these permissions to be granted. To
address this problem, we implement the Porscha Proxy as a
system application signed and built with the platform. It re-
ceives from the Porscha mediator the list of the applications
allowed to receive the document, the document content, the
document metadata, and whether the document should be
dispatched as SMS or MMS (M5). If the document should
be dispatched as SMS, the Porscha Proxy constructs an SMS
PDU and broadcasts an SMS_RECEIVED Intent to authorized
applications (M6). If the document is dispatched as MMS,
the proxy broadcasts a WAP_PUSH_RECEIVED Intent, contain-
ing the URI to the MMS content which is accessible through
the MMS Content Provider, to authorized applications.

Email – Email traffic is opaque to Android: email client ap-
plications use application level protocols such as POP [25],
IMAP [26], or Active Sync [33] to communicate with remote
mail servers. For this reason, Porscha must “shim” email
traffic by creating transparent proxies. The email enforce-
ment intercepts email traffic at the network level through an
SSL socket (E1). This mechanism operates at the middle-
ware level inside of our TCB which is inaccessible to the ap-
plications. Messages are intercepted and interpreted within
each proxy and policy enforced. We use the Apache Mime4j
library [7] to parse the e-mail message streams in plain RFC-
882 and MIME formats. For each email, the XML attach-
ments are examined. If the attachment is recognized as con-
tent policy, the Porscha mediator coordinates with Activity
Manager Service to enforce the policy (E2). The content
may only be retrieved by an email client if it satisfies the

226

policy (E3).
For usability, rather that filter email from applications

that fail policy, we chose to mask its content. In such cases,
Porscha removes all information from the email’s header and
body, and replaces these fields with the string Hidden. We
will extend policy schema in the future to allow the sender to
provide “alternate text” that would instruct the user where
to go to obtain an appropriate application or license for the
received content in the event the accessing phone/applica-
tion does not satisfy the policy.

Note that while controlling access to DRM-protected doc-
uments, Porscha allows unprotected documents to be re-
ceived without restriction. These documents are not IBE
encrypted by Porscha. Thus, they can be accessed by the
receiving applications.

4.3.2 Policy Enforcement on Documents at Rest
By default, Android stores the SMS, MMS, and email at-

tachments with the system applications using Content Provider
components. Applications with permissions to access (read
or write) these Content Providers can access this content
even if they are not the initial recipients. To allow exter-
nal senders to control access to the documents delivered
from them, we add an extra policy field to the structure
of each Content Provider record. The Porscha mediator in-
serts the policy (if available) into this field, and when the
Content Provider record is accessed the corresponding pol-
icy is checked, and access allowed or denied based on the
compliance of the caller application with the policy.

4.3.3 Enforcement on Indirect Receivers
Porscha mediates passing of data between applications as

shown in Figure 4.3.3 and as follows:

Intent – The Porscha mediator acts as a reference monitor
for Intents that pass protected content. The sending appli-
cation binds the policy with the Intent that encompasses the
content. The mediator prevents applications not satisfying
the policy from receiving the Intent.

Content Sharing – Inclusion of a policy field into Content
Provider records, as described above, allows the Porscha me-
diator to ensure that every access to stored content satisfies
the attached policy. Access is mediated through the Content
Resolver mediation hook.

Inter-application API calls – When an application API
is called by another application (e.g. Service call), we bind
a policy to the input parameter or return value containing
content delivered in an Android’s parcel object. The me-
diator interprets the parcel, and enforces the policy. If the
policy fails (on either the call or return), a security exception
is thrown.

5. EVALUATION
This section briefly evaluates the costs of policy enforce-

ment in Porscha. All experiments were executed on a HTC
G1 Dream smartphone over T-Mobile 3G services. Porscha
was built on the Cyanogen [1] Android 2.1 firmware build
and installed on the phone, as was the Stanford IBE library
V.0.7.2 (a C implementation of Boneh-Franklin IBE [11]).
The IBE module was crossed compiled for the ARM proces-
sor as a native executable. Each experiment was repeated
10 times and the average reported (with negligible observed

sample variance).
Highlighted in Table 3, an initial set of experiments sought

to measure the overheads associated with SMS processing.
Here we measured the time between the arrival of the PDU
and the time it is dispatched to consuming applications. The
experiments showed that SMS processing time is less than
0.1 seconds in unmodified Android. SMS documents are de-
livered as MMS introducing an additional 4 or greater second
overhead. Microbenchmarking of SMS processing revealed
three central underlying costs: MMS push notification han-
dling (≈ 1.03 s), MMS content retrieval (≈ 1.44 s), and
other connection management processing (≈ 1.04 s). The
lower costs associated with SMS-over-MMS vs. MMS with
media content were associated with the reduced size of the
objects being downloaded (SMS policy objects were on the
order of 100s of bytes versus 18kb .jpg objects in MMS ex-
periments). The maximum observed overhead for IBE was
about 480 msec.

For MMS, we measure the latency from the arrival of
the PDU to the time to MMS content is completely down-
loaded and applications notified. Without IBE, Porscha in-
curs about a 4% overhead (≈ 20 msec). IBE adds about
1 s. to the overhead–significantly more than in SMS. Here
again the cause is the size of the encrypted media: the .jpg

object. Note that recent advances in IBE offer run-time
improvements that can reduce these overheads by as much
as 20-35% [23], and techniques such as the use of one time
symmetric keys (as detailed in section 4.2) may substantially
reduce these costs.

The overhead of processing email ranges from 0.7 seconds
to just over 1 second, depending on the email access proto-
cols. These costs are largely due to the proxying of the ac-
cess protocols, SSL, buffering, email message reconstruction,
and policy extraction and evaluation (if policy is available).
Note that we have not yet implemented IBE for email, but
the experiments above suggest that overheads will be man-
ageable.

6. DISCUSSION
This section examines the security guarantees provided by

Porscha and potential threats to these guarantees.

6.1 Protecting the Private Key
Porscha’s model for key distribution involves the client

phone receiving a private key from the phone provider. Re-
call from Section 4.2 that a private key generator (PKG) is
trusted to create IBE keys and that a phone’s MSISDN can
be used as a public key identity. The cellular provider will
operate the PKG and provide the private key at subscription
time on the client’s SIM card. However, the SIM is merely
a memory card, and is susceptible to being stolen or lost.
Therefore, we use a shared secret between the provider and
client phone to encrypt the stored private key, with knowl-
edge of the secret required to unlock the key package. One
way of communicating this to the user would be with on
a slip of paper or a similar out-of-band method when the
SIM is purchased or reprogrammed. This method is already
used for the SIM authentication key, stored by the provider
in their authentication center (AUC).

6.2 Recipients Without Porscha
External senders do not have prior knowledge about whether

Porscha is available on client phones. In the absence of

227

Android Middleware Platform

Porscha
Mediator

Intent

Data Policy

App A App B

(a) Mediate Intent Passing

Android Middleware Platform

Porscha
Mediator

App A App B
Record Policy

Content
Resolver

Content Provider

(b) Mediate Content Provider Ac-
cess

Android Middleware Platform

Porscha
Mediator

App A App B

Return Value +
Policy

Service

(c) Mediate Service Call

Figure 4: Porscha Mediator intercepts cross-application content passing

Original Overhead from Porscha without IBE Overhead from Porscha with IBE
Latency policy passed policy failed policy passed policy failed

SMS 0.083 4.07 4.12 4.57 4.56
MMS 5.16 0.22 0.21 1.52 1.53

POP3 6.34 0.68 0.91 2.51 2.61
IMAP 3.79 1.02 1.02 2.94 2.85
Active Sync 3.38 0.8 0.85 2.18 2.19

Table 3: Overheads in processing SMS, MMS, and Email (in seconds).

Porscha, the clients would not be able to access protected
documents. This is reasonable, as any content delivered to
and intended for the phone should remain opaque to the
user. As a result, whether it be phones that do not have a
Porscha framework installed or another means of accessing
content, e.g., retrieving emails on a computer, content pro-
tected by Porscha should and will be inaccessible by these
entities.

Note that emails accessed by the IMAP protocol are ul-
timately managed by an IMAP server; thus, any modifi-
cations made to an email by Porscha may be reflected on
other clients. To resolve this issue, we store all modifica-
tions, such as decrypted emails and those with information
removed, locally on the phone, and only reflect back to the
IMAP server the original email that was sent to the phone
- thus, an original copy of the email is always maintained.

6.3 Application and Platform Trust
With Porscha, we are making assumptions of trust in

the Android middleware and associated system applications.
There are a number of reasons why this level of trust can
be considered appropriate. First, Android applications are
signed with a certificate whose private key is held by the sys-
tem developer; this provides a means of ensuring that the
application’s integrity is intact and that the origin of the
code is as expected. Tools such as Kirin [16] allow install-
time certification of applications against potentially danger-
ous functionality.

Android is middleware that runs on a Linux kernel. Sev-
eral methods of ensuring kernel integrity have been consid-
ered, and this is an area of ongoing research. These include
run-time monitors such as the Linux kernel integrity moni-
tor (LKIM) [32]. Ensuring that the phone platform itself is
booted into a trustworthy state has also been an area of con-
siderable focus. One promising solution is to include trusted
platform modules (TPMs) [49] inside mobile phones; specif-
ically, the Mobile Trusted Module (MTM) initiative [15] has
considered a TPM-like device that adds functionality for se-
cure boot, which enforces integrity protection of the under-
lying firmware and system state, and allows for continual

assurance of boot-time guarantees through use of the Linux
Integrity Measurement Architecture (IMA) [45].

6.4 Alternative Application Enforcement In-
frastructures

The extent to which Porscha protects a document largely
depends on the attached policies. The senders can indicate
the target applications by different degrees of specification
from unique application package hashes to loosely defined
application properties.

An even stronger security model can be implemented as
a performance trade-off. For example, Porscha can be used
along with Saint [36] which regulates application interac-
tions (but does not examine the content being passed). As
a result, we would gain a more comprehensive view of ap-
plication behavior and could ensure that all applications are
monitored for sharing violations.

Adoption of more heavyweight mechanisms offering con-
tinual content monitoring, such as dynamic taint analysis [12,
52], is also possible. However, these systems are not designed
for information with semantically rich policy attached. The
policies for incoming documents are mostly unique. Manag-
ing large and highly dynamic set of taint markings (e.g. in
taint analysis) can thus be burdensome. Porscha’s content
enforcement mechanism is comparatively quite lightweight.

6.5 Digital Rights Management
DRM has been contentiously discussed for nearly 15 years.

Such controversy stems from the primary application of DRM:
to restrict the use of digital content and prevent piracy, os-
tensibly to preserve artistic integrity and protect revenue
streams for content creators. For example, three competing
DRM technologies for mobile or portable devices are Apple’s
FairPlay [29], Microsoft PlayReady [34]. Along with OMA
DRM, all aim to limit media usage for commercial purposes.
In Android, OMA DRM 1.0 is supported to manage ring-
tones, MMS, and pictures, preventing users for forwarding
these documents. An external generic framework for DRM
implementation is also available but is not used by the offi-
cial platform. An external framework containing the Open-

228

Core Content Policy Manager (CPM) [40] is also available.
CPM does not implement any DRM algorithms or protocols,
but acts as an aggregator with interfaces for authentication,
authorization, and access control. Plugins are available for
multiple DRM agents, such as WMDRM [42] and DivX [41].

There has been significant opposition to DRM [17, 2] with
detractors viewing it as a means for limiting consumer rights
and eliminating “fair use” provisions. However, DRM is by
definition a generic term for access control technology that
secures content and limits its distribution [10, 24]. We con-
sider DRM’s role in Porscha strictly as a means to providing
content-based access control without comment on business,
legal, or philosophical issues. We differentiate from existing
DRM schemes, however, and provide a superset of func-
tionality by preserving confidentiality, integrity, and avail-
ability, not merely employing encryption and licensing as
with typical DRM implementations. In addition, Porscha is
lightweight and designed with mobile solutions in mind; by
contrast, many advanced DRM protocols are heavyweight
and not transparent to applications.

7. RELATED WORK
Mobile phone security often involves regulating the behav-

ior of individual applications installed on the phone to pro-
tect the platform. As permissions requested by Android ap-
plications reflect their capabilities, Kirin [16] prevents instal-
lation of malware by identifying potentially dangerous appli-
cations based on these permissions. By contrast, Saint [36]
modifies the Android middleware to enforce application poli-
cies which regulate how application permissions are granted
and how applications interact with each other. While Saint
concentrates on securing communication endpoints, Porscha
concentrates on the actual content passed.

Enhancing mobile phone security through mandatory ac-
cess control (MAC) and trusted hardware, specifically Security-
Enhanced Linux (SELinux) [47] and TPMs, is a means of
protecting application and platform integrity. SELinux se-
curity policy has been applied to ensure the integrity of the
Openmoko phone platform and trusted applications [35].
Additionally, Rao and Jaeger [44] developed an SELinux-
based MAC system that considers input from multiple stake-
holders to develop policies for controlling application permis-
sions. Recently, Shabtai et al. [46] have ported SELinux to
Android and enabled security policy for enhancing the pro-
tection of system processes. Unlike Porscha, which enforces
MAC policies to secure documents arriving at the phones,
these approaches focus strictly on platform security; while
they are orthogonal to our concerns, platform trustworthi-
ness will increase the security of all overlying layers above,
including Porscha.

Several IBE solutions have been proposed for use with
mobile phones. Mobile phone numbers are commonly used
as client identities because they can be effortlessly authenti-
cated by the network. Communication among different net-
work providers running their own PKGs is a major challenge
for IBE implementation; proposed solutions have included
the use of hierarchical IBE [22, 51] and cross-domain key
extensions [48] .

8. CONCLUSION
This paper has proposed Porscha, a content protection

framework for Android that enables content sources to ex-

press security policies to ensure that documents are sent to
targeted phones, processed by endorsed applications, and
handled in intended ways. Through a study of real-world
applications, we formed an initial scope of appropriate con-
tent policies, and we demonstrated how these may be used
in Porscha to protect SMS, MMS, and email documents.
Porscha secures content delivery using identity-based en-
cryption and mediates on-platform content handling to en-
sure conformance with content policy. Future work will ex-
amine additional types of content that may be protected by
Porscha and the policy implications of managing this con-
tent.

9. REFERENCES
[1] Android Community ROM.

http://www.cyanogenmod.com/, March 2010.

[2] I hate DRM: A site dedicated to reclaiming consumer
digital rights. http://ihatedrm.com, June 2010.

[3] Mobile Watchdog.
http://www.mymobilewatchdog.com/, January 2010.

[4] SMS Trap. http://www.smstrap.com/, January 2010.

[5] Stealth SMS.
http://stealthsms.trusters.com/s_features.htm,
January 2010.

[6] A5/1 Security Project. Creating A5/1 Rainbow
Tables. http://reflextor.com/trac/a51, 2009.

[7] Apache Software Foundation. Apache James Mime4j.
http://james.apache.org/mime4j/, March 2010.

[8] G. Appenzeller, L. Martin, and M. Schertler.
Identity-Based Encryption Architecture and
Supporting Data Structures, Jan. 2009. IETF RFC
5408.

[9] L. Bauer, S. Garriss, J. M. Mccune, M. K. Reiter,
J. Rouse, and P. Rutenbar. Device-enabled
authorization in the grey system. In Proceedings of the
8th Information Security Conference (ISC’05), pages
431–445, 2005.

[10] E. Becker, W. Buhse, D. Günnewig, and N. Rump,
editors. Digital Rights Management Technological,
Economic, Legal and Political Aspects. Springer, 1
edition, 2003.

[11] D. Boneh and M. Franklin. Identity-Based Encryption
from the Weil Pairing. In Proceedings of CRYPTO,
2001.

[12] J. Clause, W. Li, and A. Orso. Dytan: A Generic
Dynamic Taint Analysis Framework. In Proceedings of
the 2007 International Symposium on Software
Testing and Analysis (ISSTA), pages 196–206, 2007.

[13] D. E. Denning. A Lattice Model of Secure Information
Flow. Commun. ACM, 19(5):236–243, May 1976.

[14] O. Dunkelman, N. Keller, and A. Shamir. A
Practical-Time Attack on the A5/3 Cryptosystem
Used in Third Generation GSM Telephony. In
Proceedings of the 30th Annual Cryptology Conference
(CRYPTO 2010), 2010.

[15] J.-E. Ekberg and M. Kyläanpää. Mobile Trusted
Module (MTM) - An Introduction. Technical Report
NRC-TR-2007-015, Nokia Research Center, Helsinki,
Finland, Nov. 2007.

[16] W. Enck, M. Ongtang, and P. McDaniel. On
Lightweight Mobile Phone Application Certification.
In Proceedings of ACM CCS, November 2009.

229

[17] Free Software Foundation, Inc. The Campaign to
Eliminate DRM.
http://www.defectivebydesign.org/, June 2010.

[18] Gartner. Gartner Says Worldwide Mobile Phone Sales
to End Users Grew 8 Per Cent in Fourth Quarter
2009; Market Remained Flat in 2009.
http://www.gartner.com/it/page.jsp?id=1306513,
Feb. 2010.

[19] C. Gentry. Certificate-Based Encryption and the
Certificate-Revocation Problem. Advances in
Cryptology, 2656, January 2003.

[20] M. Gholami, S. M. Hashemi, and M. Teshnelab. A
Framework for Secure Message Transmission Using
SMS-Based VPN. Research and Practical Issues of
Enterprise Information Systems II, 1:503–511, 2008.

[21] GigaOm. The Apple App Store Economy.
http://gigaom.com/2010/01/12/

the-apple-app-store-economy, Jan. 2010.

[22] J. Horwitz and B. Lynn. Toward Hierarchical
Identity-Based Encryption. In Proceedings of
EUROCRYPT ’02, pages 466–481, London, UK, 2002.
Springer-Verlag.

[23] J.-S. Hwu, R.-J. Chen, and Y.-B. Lin. An Efficient
Identity-Based Cryptosystem for End-to-End Mobile
Security. IEEE Trans. Wireless Comm.,
5(9):2586–2593, September 2006.

[24] R. Iannella. Digital Rights Management (DRM)
Architectures. D-Lib Magazine, 7(6), 2001.

[25] IETF Network Working Group. Post Office Protocol -
Version 3. http://www.ietf.org/rfc/rfc1939.txt,
May 1996.

[26] IETF Network Working Group. Internet Message
Access Protocol - Version 4, rev1.
http://www.ietf.org/rfc/rfc1939.txt, March 2003.

[27] IETF Network Working Group. DNS Security
Introduction and Requirements.
http://www.ietf.org/rfc/rfc4033.txt, March 2005.

[28] ITU. Measuring the Information Society.
http://www.itu.int/ITU-D/ict/publications/idi/

2010/index.html, 2010.

[29] S. Jobs. Thoughts on Music.
http://www.apple.com/hotnews/thoughtsonmusic/,
February 2007.

[30] M. Kirkpatrick and E. Bertino. Enforcing Spatial
Constraints for Mobile RBAC Systems. In Proceedings
of the 15th ACM symposium on Access control models
and technologies, 2010.

[31] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and
S. Yoo. Secure Key Issuing in ID-based Cryptography.
In Proceedings of the ACSW Frontiers Workshop,
2004.

[32] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and
C. D. McDonell. Linux Kernel Integrity Measurement
Using Contextual Inspection. In Proceedings of ACM
STC, 2007.

[33] Microsoft Corporation. ActiveSync HTTP Protocol
Specification, version 6.0. http://msdn.microsoft.
com/en-us/library/dd299446(EXCHG.80).aspx, May
2010.

[34] Microsoft Corporation. Microsoft PlayReady. http:
//www.microsoft.com/playready/default.mspx,

June 2010.

[35] D. Muthukumaran, A. Sawani, J. Schiffman, B. M.
Jung, and T. Jaeger. Measuring Integrity on Mobile
Phone Systems. In Proceedings of ACM SACMAT,
June 2008.

[36] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically Rich Application-Centric
Security in Android. In Proceedings of Annual
Computer Security Applications Conference (ACSAC),
December 2009.

[37] Open Mobile Alliance Ltd. Rights Expression
Language Version 1.0. Technical Report
OMA-Download-DRMREL-V1 0-20040615-A, Open
Mobile Alliance, June 2004.

[38] Open Mobile Alliance Ltd. DRM Architecture 2.0.1.
Technical Report OMA-AD-DRM-V2 0 1-20080226-A,
Open Mobile Alliance, February 2008.

[39] Open Mobile Alliance Ltd. DRM Rights Expression
Language Version 2.0.2. Technical Report
OMA-TS-DRM REL-V2 0 2-20080723-A, Open
Mobile Alliance, July 2008.

[40] PacketVideo Corporation. Content Policy Manager
Developer’s Guide OHA 1.0 r.1. November 2008.

[41] PacketVideo Corporation. PV Android DivX
Premium Package. July 2009.

[42] PacketVideo Corporation. PV Android Windows
Media Package. November 2009.

[43] Portio Research. Mobile Messaging Futures 2010-2014:
Analysis and Growth Forecsts for Mobile Messaging
Markets Worldwide, 2010.

[44] V. Rao and T. Jaeger. Dynamic Mandatory Access
Control for Multiple Stakeholders. In Proceedings of
ACM SACMAT, June 2009.

[45] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and Implementation of a TCG-based Integrity
Measurement Architecture. In Proceedings of the 13th
USENIX Security Symposium, Aug. 2004.

[46] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-Powered Mobile Devices Using SELinux.
IEEE Security and Privacy, 8:36–44, 2010.

[47] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux Security Module. Technical
Report 01-043, NAI Labs, 2001.

[48] M. Smith, C. Schridde, B. Agel, and B. Freisleben.
Securing Mobile Phone Calls with Identity-Based
Cryptography. LNCS: Advances in Information
Security and Assurance, 5576:210–222, June 2009.

[49] TCG. TPM Main: Part 1 - Design Principles.
Specification Version 1.2, Level 2 Revision 103. 2007.

[50] P. Traynor, P. McDaniel, and T. La Porta. Security
for Telecommunications Networks. Advances in
Information Security. Springer, July 2008.

[51] Z. Wan, K. Ren, and B. Preneel. A Secure
Privacy-Preserving Roaming Protocol Based on
Hierarchical Identity-Based Encryption for Mobile
Networks. In Proceedings of ACM WiSec, 2008.

[52] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-Wide Information Flow
for Malware Detection and Analysis. In Proceedings of
ACM CCS, 2007.

230

Kells: A Protection Framework for Portable Data ∗

Kevin R.B. Butler
Department of Computer & Information Science

University of Oregon, Eugene, OR
butler@cs.uoregon.edu

Stephen E. McLaughlin and
Patrick D. McDaniel

Systems and Internet Infrastructure Security
Laboratory (SIIS)

Penn State University, University Park, PA
{smclaugh,mcdaniel}@cse.psu.edu

ABSTRACT
Portable storage devices, such as key-chain USB devices, are ubiq-
uitous. These devices are often used with impunity, with users re-
peatedly using the same storage device in open computer labora-
tories, Internet cafes, and on office and home computers. Conse-
quently, they are the target of malware that exploit the data present
or use them as a means to propagate malicious software.This paper
presents the Kells mobile storage system. Kells limits untrusted
or unknown systems from accessing sensitive data by continuously
validating the accessing host’s integrity state. We explore the de-
sign and operation of Kells, and implement a proof-of-concept USB
2.0 storage device on experimental hardware. Our analysis of Kells is
twofold. We first prove the security of device operation (within a
freshness security parameter ∆t) using theLS2 logic of secure sys-
tems. Second, we empirically evaluate the performance of Kells.
These experiments indicate nominal overheads associated with host
validation , showing a worst case throughput overhead of 1.22% for
read operations and 2.78% for writes.

1. INTRODUCTION
Recent advances in materials and memory systems have irre-

versibly changed the storage landscape. Small form factor portable
storage devices housing previously unimaginable capacities are now
commonplace today–supporting sizes up to a quarter of a terabyte [15].
Such devices change how we store our data; single keychain de-
vices can simultaneously hold decades of personal email, millions
of documents, thousands of songs, and many virtual machine im-
ages. These devices are convenient, as we can carry the artifacts of
our digital lives wherever we go.

The casual use of mobile storage has a darker implication. Users
plugging their storage devices into untrusted hosts are subject to
data loss [16] or corruption. Compromised hosts have unfettered
access to the storage plugged into their interfaces, and therefore
have free rein to extract or modify its contents. Users face this risk
when accessing a friend’s computer, using a hotel’s business office,
in university computer laboratories, or in Internet cafes. The risks

∗This work was supported by Symantec Research Labs and by
grant NSF CCF-HECURA 0937344.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

here are real. Much like the floppy disk-borne viruses in the 1980’s
and 90’s, malware like Conficker [22] and Agent.bz [32] exploit
mobile storage to propagate malicious code. The compromise of
hosts throughout military networks, due to malware propagated by
rogue portable storage devices, has already led to a ban of their
use by the US Department of Defense [28]. The underlying se-
curity problem is age-old: users cannot ascertain how secure the
computer they are using to access their data is. As a result, all of
their information is potentially at risk if the system is compromised.
This paper attempts to address this conundrum by responding to the
following challenge: How can we verify that the computer we are
attaching our portable storage to is safe to use?

Storage security has recently become an active area of investi-
gation. Solutions such as full-disk encryption [25] and Microsoft’s
BitLocker to Go [18] require that the user supply a secret to access
stored data. This addresses the problem of device loss or theft, but
does not aid the user when the host to which it is to be attached is
itself untrustworthy. Conversely, BitLocker (for fixed disks) uses a
trusted platform module (TPM) [36] to seal a disk partition to the
integrity state of the host, thereby ensuring that the data is safe-
guarded from compromised hosts. This is not viable for mobile
storage, as data is bound to the single physical host. In another ef-
fort, the Trusted Computing Group (TCG) has considered methods
of authenticating storage to the host through the Opal protocol [37]
such as pre-boot authentication and range encryption and locking
for access control. These services may act in a complementary
manner to our solution for protecting mobile storage from poten-
tially compromised hosts.

In this paper, we introduce Kells1, an intelligent USB storage de-
vice that validates host integrity prior to allowing read/write access
to its contents, and thereafter only if the host can provide ongoing
evidence of its integrity state. When initially plugged into an un-
trusted device, Kells performs a series of attestations with trusted
hardware on the host, repeated periodically to ensure that the host’s
integrity state remains good. Kells uses integrity measurement to
ascertain the state of the system and the software running on it at
boot time in order to determine whether it presents a safe platform
for exposing data. If the platform is deemed to be trustworthy then
a trusted storage partition will be exposed to the user; otherwise,
depending on a configurable policy, the device will either mount
only a “public” partition with untrusted files exposed or will not
mount at all. If at any time the device cannot determine the host’s
integrity state or the state becomes undesirable, the protected par-
tition becomes inaccessible. Kells can thus ensure the integrity of
data on a trusted storage partition by ensuring that data can only
be written to it from high-integrity, uncompromised systems. Our

1The Book of Kells is traceable to the 12th century Abbey of Kells,
Ireland due to information on land charters written into it.

231

USB drive plugged in
Host request for

trusted partition?

Host verification

process

Mount public partition

Mount trusted

partition (if needed)

Yes

No

Pass

Fail

Revalidation Timeout

Figure 1: Overview of the Kells system operation. Attestations of system state are required to be received successfully by the device in order
for the integrity of the host to be proved, a necessary precondition for allowing data to be available to the host.

design uses the commodity Trusted Platform Module (TPM) found
in the majority of modern computers as our source for trusted hard-
ware, and our implementation and analysis use it as a component.
We note, however, that it is not integral to the design: any host
integrity measurement solution (e.g., Pioneer [26]) can be used.

Kells diverges substantially from past attempts at securing fixed
and mobile storage. In using the mobile storage device as an au-
tonomous trusted computing base (TCB), we extend the notion of
self-protecting storage [3, 11, 21] to encompass a system that ac-
tively vets the devices that make use of it. A Kells device is active
in order to be able to make these policy decisions. While this is
a change from the passive USB devices often currently employed,
we note that an increasing class of storage devices include process-
ing elements such as cryptographic ASICs. We thus provide a path
to enjoying the convenience of now-ubiquitous portable storage in
a safe manner. Our contributions are as follows:

• We identify system designs and protocols that support portable
storage device validation of an untrusted host’s initial and on-
going integrity state. To the best of our knowledge, this is the
first use of such a system by a dedicated portable storage de-
vice.

• We reason about the security properties of Kells using the
LS2 logic [6], and prove that the storage can only be ac-
cessed by hosts whose integrity state is valid (within a secu-
rity parameter ∆t).

• We describe and benchmark our proof of concept Kells sys-
tem built on a DevKit 8000 board running embedded Linux
and connected to a modified Linux host. We empirically
evaluate the performance of the Kells device. These experi-
ments indicate that the overheads associated with host valida-
tion are minimal, showing a worst case throughput overhead
of 1.22% for read operations and 2.78% for writes.

We begin the description of Kells by providing a broad overview of
its goals, security model, and operation.

2. OVERVIEW
Figure 1 illustrates the operation of Kells. Once a device is

inserted, the host may request a public or trusted partition. If a
trusted partition is requested, the host and Kells device perform
an attestation-based exchange that validates host integrity. If this
fails, the host will be permitted to mount the public partition, if any
exists. If the validation process is successful, the host is allowed
access to the trusted partition. The process is executed periodically
to ensure the system remains in a valid state. The frequency of the
re-validation process is determined by the Kells policy.

2.1 Operational Modes
There are two modes of operation for Kells, depending on how

much control over device administration should be available to the
user and how much interaction he should have with the device. We
review these below:

Transparent Mode.
In this mode of operation, the device requires no input from the

user. The host verification process executes immediately after the
device is inserted into the USB interface. If the process succeeds,
the device may be used in a trusted manner as described above,
i.e., the device will mount with the trusted partition available to the
user. If the attestation process is unsuccessful, then depending on
the reason for the failure (e.g., because the host does not contain
a TPM or contains one that is unknown to the device), the public
partition on the device can be made available. Alternately, the de-
vice can be rendered unmountable altogether. A visual indicator on
the device such as an LED can allow the user to know whether the
host is trusted or not: a green light may indicate a good state while
a flashing red light indicates an unknown or untrusted host.

User-Defined Mode.
The second mode of operation provides the user with a more

active role in making storage available. When the Kells device is
inserted into the system, prior to the attestation taking place, a par-
tition containing user-executable programs is made available. One
is a program prompting the user to choose whether to run the de-
vice in trusted or public mode. If the user chooses to operate in
trusted mode, then the attestation protocol is performed, while if
public mode is chosen, no attestations occur. In this manner, the
user can make the decision to access either partition, with further
policy that may be applied on trusted hosts opening untrusted par-
titions, to prevent potential malware infection. These hosts may
quarantine the public partition, requiring a partition scan prior to
allowing access. Such a scan can also be performed by the device.
Such a scenario could be useful if there is a need or desire to access
specific media (e.g., photographs, songs) from the public partition
of the disk while using a trusted host, without having to mark the
information as trusted. Trusted partitions on a Kells device are un-
likely to be infected to begin with, on account of any host using
this partition having to attest its integrity state. This is essential,
since a user would not be hesitant to load or execute content from
a partition that is considered trusted.

Note that the policies described above are but two examples of
the methods of operation available with this infrastructure. For sim-
plicity, we have described the coarse-grained granularity of trusted
and public partitions. Within the trusted parition, however, fur-
ther fine-grained policy can be enforced depending on the identi-
fied host; for example, blocks within the partition may be labeled

232

policy
store

trusted
storage

public
 storage

USB Interface

TPM

driver

attestation
daemon

IMA

attestations

remote updates

Host

Device

Figure 2: Overview of the Kells architecture.

depending on the host writing to them, with a data structure keep-
ing track of the labels and access controls to data (e.g., encrypting
labeled data and only decrypting based on the host having access
to this label, as specified by device policy).

2.2 Threat Model
We assume the adversary is capable of subverting a host oper-

ating system at any time. While we do not specifically address
physical attacks against the Kells device, such as opening the drive
enclosure to manipulate the physical storage media or modifying
the device tick-counter clock, we note that defenses against these
attacks have been implemented by device manufacturers. Notably,
portable storage devices from IronKey [1] contain significant phys-
ical tamper resistance with epoxy encasing the chips on the de-
vice, electromagnetic shielding of the cryptographic processor, and
a waterproof enclosure. SanDisk’s Cruzer Enterprise [24] contains
a secure area for encryption keys that is sealed with epoxy glue.
Tamper-resistance has also been considered for solutions such as
the IBM Zurich Trusted Information Channel [38]. Such solutions
would be an appropriate method of defense for Kells. In addition,
we assume that any reset of the hardware is detectable by the de-
vice (for example, by detecting voltages changes on the USB bus
and receiving cleared PCR values from the TPM).

Kells does not in itself provide protection for the host’s internal
storage, though an adaptation of our design can be used to pro-
vide a similar protection mechanism, as with the Firma storage-
rooted secure boot system [2]). Integrity-based solutions exist that
protect the host’s internal storage (hard disks), including storage-
based intrusion detection [21] and rootkit-resistant disks [3]. As
is common in these systems, we declare physical attacks against
the host’s TPM outside the scope of this work. As previously dis-
cussed, the TPM is used as an implementation point within our
architecture and other solutions for providing host-based integrity
measurement may be used. As a result, we do not make any at-
tempt to solve the many limitations of TPM usage in our solution.
Additionally, we do not consider the issue of devices attesting their
state to the host. The TCG’s Opal protocol [37] includes provisions
for trusted peripherals, addressing the issue by requiring devices
to contain TPMs. Software-based attestation mechanisms such as
SWATT [27], which does not require additional trusted hardware,
may also be used. Finally, we rely on system administrators to
provide accurate measurements of their systems, which must be
updated if there are changes (e.g., due to configuration or updates).
Without updates, Kells will not be able to provide access to the
trusted partitions of these systems.

3. DESIGN AND IMPLEMENTATION
We now turn to our design of the Kells architecture, shown in

Figure 2, and describe details of its implementation. There are
three major components of the system where modifications are nec-

USB

SCSI

ep0
ep1
ep2

USB

CTRL

BULK (IN)

SCSI

ep0

ep1
ep2

READ,
WRITE

Filesystem
FAT32

OS
Linux

Host Device

BULK (OUT)

Figure 3: Overview of USB operation with an embedded Linux
mass storage device, or gadget.

Host Device

Reset

HS Detection Handshake

Set Address (n)

ACK

Descriptors (Vendor ID, Product ID)

GetDescriptor (Interface)

Descriptors (mass storage, BBB)

Check received IDs,
set flags if trusted

ADSC (Begin Protocol)

Challenge (nonce)

GetDescriptor (Device)

Figure 4: Sample USB setup between a host and the Kells device.

essary: the interface between the host and the device, the storage
device itself, and the host’s operating system.

3.1 USB Interface
We begin by describing the basics of USB operation in order to

aid in understanding the design of Kells. This is a brief overview;
more details may be found in the appendix.

The basic USB mass storage device stack is shown in Figure 3.
At the USB layer are endpoints, the means by which USB com-
mands are send and received. USB mass storage devices primarily
use bulk transfers, a best-effort service, to transmit information, but
every device also supports the flow of control transfers over end-
point 0. Above the USB layer is a SCSI emulation layer supporting
a limited subset of SCSI commands, such as reads and writes.

Within operating systems that support USB, such as Linux, the
number and functionality of supported devices is large and diverse.
To support devices (or gadgets) that do not conform to the USB
specificaton, Linux contains a repository for these devices and sets
flags when they to modify the host behavior, in order to correctly
operate with these devices.

USB is a master-slave protocol, meaning that all commands must
be initiated by the host. This model is conceptually at odds with a
device such as Kells, which independently enforces security policy.
Therefore, we reconsider how the device interacts with the host.

Figure 4 gives an abridged overview of the device setup process
at the USB layer. As with any USB device, high-speed detection

233

and bus addressing is performed before information is requested by
the host. The host requests the device descriptor, which includes
information such as the device’s vendor and product ID, as well as
a unique serial number. When the host requests the interface de-
scriptor, the Kells device identifies itself as a mass storage device
that operates in the typical fashion of only performing bulk trans-
fers. The host will set flags accordingly in order to send the correct
commands to the device.

Almost every USB mass storage device performs its operations
using only bulk transfers. However, we use control transfers for
sending trusted commands to Kells. Control transfers reserve a por-
tion of USB bus bandwidth, ensuring that information is tranferred
as quickly as possible. If a Kells device is plugged into a host
that does not support attestation operations, the host will access the
public partition as a standard mass storage device, oblivious to the
trusted protocols and storage. If the host recognizes the device as
trusted, it will send an Accept Device-Specific Command (ADSC).
The setup phase of the command allows the host to initiate the at-
testation protocol, while the attestation information is sent through
the data stage, and the gadget sets a response code that includes
a challenge. Further stages of the attestation protocol continue as
control transfers between the host and device, and all other read and
write operations are suspended until the protocol completes. The
attestation protocol is described in detail in Section 4.1.

3.2 Designing the Storage Device
Kells requires the ability to perform policy decisions indepen-

dent of the host. As a result, logic must execute on these devices,
which require a means of receiving command transfers from the
host and to use these for making the correct access decisions.

The basic architecture for the storage device is an extension to
the Linux USB gadget stack, along with a user-space daemon that
is in charge of policy decisions and accessing other important infor-
mation. Within the kernel, we added new functionality that allows
the device to receive special control transfers from the host. These
are exported to user space through the sysfs interface, where they
are read as strings by the daemon tasked with marshaling this data.

When plugged in, the daemon on the device sets a timer (as USB
devices contain a crystal oscillator for driving clock signals), and
waits to determine whether the host presents the proper creden-
tials. The device presents itself to the host as a typical mass storage
device operating in bulk-only mode, differentiating itself with the
vendor ID. We use the vendor ID b000 which has not been cur-
rently allocated by the USB Forum as of June 2010.2

If an ADSC command containing authenticating information from
the host is not received within this time period, operation on the de-
vice defaults to public operation. If the device is configured such
that the policy does not allow any partitions to be mounted, the
device will not present any further information to the host. If the
protocol fails, the failure is logged in the storage device’s audit log,
which is unexposed to the host. Depending on the defined policy,
either the public partition will be exposed or no partitions on the
device will be mounted at all. If the protocol is successful and the
host attests its state to the device, the daemon presents the trusted
partition to be mounted, by performing an insmod() command
to link the correct backing store with the gadget driver.

Within the Kells device is a policy store, which contains infor-
mation on every known host, its measurement database to compare
attestations against, and policy details, such as whether the host
is authenticated as an administrative console and whether the host

2Because this is a proof of concept design and implementation, we
have not registered a vendor ID with the USB Forum yet; however,
based on our results, we may consider doing so.

should expose a public partition if the attestation check fails. Op-
tionally, the device can also store information on users credentials
supplied directly to the device through methods such as biometrics.
Configured policy can allow or disallow the device to be plugged
into specific machines.

3.3 Modifications to Host
A host must be capable of recognizing that the Kells device is

trusted and sending information to it differs from a standard USB
mass storage transaction. Our goal was to require minimal changes
to the host for operation, but because we are working at the USB
layer, some changes are necessary to the USB driver. We define a
flag IS_TRUSTED in the Linux unusual_devs.h device repository,
letting the host know that the device accepts control transfers.

Because the host must interact with its trusted hardware and per-
form some logic, we designed an attestation daemon that runs in
the host’s user space. The attestation daemon both retrieves boot-
time attestations using the Linux Integrity Measurement Architec-
ture (IMA) [23] and can act as an interface to any runtime moni-
toring systems on the host (see Section 4.2). It can also provide an
interface for receiving third-party updates (see Section 4.3).

4. ATTESTATIONS AND ADMINISTRATION
A key consideration with Kells is managing metadata and cre-

dential information in a manner that maintains usability and sim-
plicity of the device. We describe in this section details of how this
management occurs.

4.1 Attesting Host Integrity
In order for a host connecting to the Kells device to be trustwor-

thy, it must be installed and maintained in a manner that protects
its integrity. A way of ensuring this is through the provisioning of
a secure kernel and supporting operating system, from which mea-
surements of system integrity can be made and transferred to the
Kells device. The maintainer of the host system is thus required
to re-measure the system when it is installed or when measurable
components are updated. Solutions for ensuring a trusted base in-
stallation include the use of a root of trust installer (ROTI) [33],
which establishes a system whose integrity can be traced back to
the installation media.

The system performing the installation must contain trusted hard-
ware such as a TPM. Every TPM contains an endorsement key
(EK), a 2048-bit RSA public/private key pair created when the chip
is manufactured. This provides us with a basis for establishing the
TPM’s unique identity, essential to verifying the installation. The
stages of this initial installation are as follows:

1. The installation media is loaded into the installer system,
which contains a TPM. This system needs to be trusted, i.e.,
the hardware and system BIOS cannot be subverted at this
time.3 As described below, the system’s core root of trust for
measurement (CRTM), containing the boot block code for
the BIOS, provides a self-measurement attesting this state.

2. A measurement of each stage of the boot process is taken.
Files critical to the boot process are hashed, and the list of
hashes kept in a file that is sealed (i.e., encrypted) by the
TPM of the installing system. This process links the in-
stalling TPM with the installed code and the filesystem. A
Kells device in measurement mode can record the measure-
ments from the system, or this can be performed in another

3This restriction is not necessary after installation, as malicious
changes to the system state will be measured by the CRTM.

234

manner and transferred to the device at a later time, through
placement of the list of hashes in a secure repository.

We first identify the host’s TPM. While the EK is unique to the
TPM, there are privacy concerns with exposing it. Instead, an at-
testation identity key (AIK) public/private key pair is generated as
an alias for the EK, and strictly used for signatures. However, the
AIK is stored in volatile memory. Therefore, both the public and
private AIKs must be stored. The TPM provides the storage root
key (SRK) pair for encrypting keys stored outside the TPM. Thus,
the SRK encrypts the private AIK before it is sent to the device.
Formally, the set of operations occurs as follows. Given a host’s
TPM H and a device D, the following protocol flow describes the
initial pairing of the host to the device and the initial boot:

Pairing

(1) H : generate AIK = (AIK+, AIK−)

(2) H → D : AIK+, {AIK−}SRK−

Measurement

(3) D → H : {AIK−}SRK−

(4) D : n = Generate nonce
(5) D → H : Challenge(n)

(6) H → D : Attestation = Quote+ML

(7) D : V alidate(Quote,ML)AIK+

Steps 1 and 2 occur when the host has been initially configured or
directly after an upgrade operation, to either the hardware or to files
that are measured by the IMA process. Subsequent attestations use
this list of measurements, which may also be disseminated back
to the administrator and stored with the AIK information so as to
allow for remote updates, discussed further in Section 4.3.

The following states are measured in order: (a) the core root of
trust for measurement (CRTM), (b) the system BIOS, (c) the boot-
loader (e.g., GRUB) and its configuration, and (d) the OS. Mea-
surements are made by with the TPM’s extend operation, which
hashes code and/or data, concatenates the result with the previous
operation, and stores the result in the TPM’s Platform Configura-
tion Registers (PCRs). The quote operation takes the challenger’s
nonce n and returns a signature of the form Sign(PCR,N)AIK− ,
when the PCRs and n are signed by the private AIK. The measure-
ment list (ML), which contains a log of all measurements sent to
the TPM, is also included.

The above protocol describes a static root of trust for measure-
ment, or SRTM. There are some disadvantages to this approach,
since the BIOS must be measured and any changes in hardware
require a new measurement; additionally, it may be susceptible to
the TPM reset attack proposed by Kauer [13]. Another approach is
to use a dynamic root of trust for measurement (DRTM), which al-
lows for a late launch, or initialization from a secure loader after the
BIOS has loaded, so that it does not become part of the measure-
ment. SRTM may be vulnerable to code modification if DRTM is
supported on the same device [6]. DRTM may also be potentially
vulnerable to attack; the Intel TXT extensions supporting DRTM
may be susceptible to System Management Mode on the processor
being compromised before late launch is executed, such that it be-
comes part of the trusted boot and is not again measured [39]. For
this reason, it is an administrative decision as to which measure-
ment mode the system administrator should use for their system,
but we can support either approach with Kells.

Note that we are directly connecting with the host through the
physical USB interface. The cuckoo attack described by Parno [20]
may be mitigated by turning off network connectivity during the

boot-time attestation process, such that no remote TPMs can an-
swer in place of the host. However, if the host can access an oracle
that presents TPM-like answers, a means to uniquely identify the
host is necessary. We are actively investigating these methods.

4.2 Managing Runtime Integrity Attestations

1: (att, t)← read.RAM.att
2: if |req.time− t| < ∆t ∧ GoodAtt(att) then
3: Perform the write req as usual.
4: else
5: if WriteBuffer.notFull() then
6: Buffer the request for later write back once a fresh attestation

is received.
7: else
8: Stall until there is space in the write buffer.
9: end if

10: end if

Figure 5: Write(req) algorithm.

1: (att, t)← read.RAM.att
2: if GoodAtt(att) then
3: for Requests buffered before t do
4: Perform the write req as usual.
5: end for
6: end if

Figure 6: Commit() algorithm.

1: (att, t)← read.RAM.att
2: if |req.time− t| < ∆t ∧ GoodAtt(att) then
3: Perform the read req as usual.
4: else
5: Stall until a fresh attestation is received.
6: end if

Figure 7: Read(req) algorithm.

To perform authentication of the host, the Kells device must
compare received attestations with a known set of good values. A
portion of non-volatile memory is used for recording this informa-
tion, which includes a unique identity for the host (e.g., the public
AIK) the host’s measurement list, and policy-specific information,
(e.g., should the host allow administrative access).

We provide a framework for supporting runtime integrity mon-
itoring, but we do not impose constraints on what system is to be
used. The runtime monitor can provide information to the storage
device as to the state of the system, with responses that represent
good and bad system states listed as part of the host policy. Our
design considers attestations from a runtime monitor to be deliv-
ered in a consistent, periodic manner; one may think of them as
representing a security heartbeat. The period of the heartbeat is
fixed by the device and transmitted to the host as part of the device
enumeration process, when other parameters are configured.

Because the device cannot initiate queries to the host, it is incum-
bent on the host to issue a new attestation before the validity period
expires for the existing one. The Kells device can issue a warning
to the host a short time period λ before the attestation period ∆t

expires, in case the host neglects to send the new attestation.
Algorithms 5 and 6 describe the write behavior on the device.

We have implemented a buffer for writes that we term a quarantine
buffer, to preserve the integrity of data on the Kells device. Writes
are not directly written to the device’s storage but are stored in the

235

buffer until an attestation arrives from the host to demonstrate that
the host is in a good state. Once a successful attestation arrives,
the buffer is cleared, but if a failed attestation arrives and access to
the trusted partition is revoked, any information in the write buffer
at that time will be discarded. In a similar manner, Algorithm 7
describes the semantics of the read operation. Reads occur as nor-
mal unless an attestation has not been received within time ∆t. If
this occurs, then further read requests will be prevented until a new
successful attestation has been received.

To prevent replay, the host must first explicitly notify Kells that
the attestation process is beginning in order to receive a nonce,
which is used to attest to the freshness of the resulting runtime at-
testation (i.e., as a MAC tied to the received message).

4.3 Remote Administration
An additional program running on the host (and measured by

the Kells device) allows for the device to remotely update its list
of measured hosts. This program starts an SSL session between
the running host and a remote server in order to receive new policy
information, such as updated measurements and potential host re-
vocations. The content is encrypted by the device’s public key, the
keypair of which is generated when the device is initialized by the
administrator, and signed by the remote server’s private key.

Recent solutions have shown that in addition to securing the
transport, the integrity state of the remote server delivering the con-
tent can be attested [19]. It is thus possible for the device to request
the attestation proof from the remote administrator prior to apply-
ing the received policy updates.

In order for the device to receive these updates, the device ex-
poses a special administrative partition if an update is available,
signaled to do so by the attestation daemon. The user can then
move the downloaded update file into the partition, and the device
will read and parse the file, appending or replacing records within
the policy store as appropriate. Such operations include the addi-
tion of new hosts or revocation of existing ones, and updates of
metadata such as measurement lists that have changed on account
of host upgrades. This partition contains only one other file: the au-
dit failure log is encrypted with the remote server’s public key and
signed by the device, and the user can then use the updater program
to send this file to the remote server. The server processes these re-
sults, which can be used to determine whether deployed hosts have
been compromised.

5. REASONING ABOUT ATTESTATIONS
We now prove that the Kells design achieves its goal of protect-

ing data from untrusted hosts. This is done using the logic of secure
systems (LS2) as described by Datta et al. in [6]. Using LS2, we
describe two properties, (SEC) and (INT), and prove that they are
maintained by Kells. These two properties assert that the confi-
dentiality and integrity of data on the Kells device are protected in
the face of an untrusted host. To prove that Kells enforces the two
properties, we first encode the Kells read and write operations from
section 4.2 into the special programming language used by LS2.
These encodings are then mapped into LS2 and shown to maintain
both properties. Both properties are stated informally as follows.

1. (SEC) Any read request completed by Kells was made while
the host was in a known good state. This means that an at-
testation was received within a time window of ∆t from the
request or after the request without a host reboot.

2. (INT) Any write request completed by Kells was made while
the host was in a known good state with the same respect to
∆t as read.

5.1 Logic of Secure Systems
The logic of secure systems (LS2) provides a means for rea-

soning about the security properties of programs. This reasoning
allows the current state of a system to be used to assert properties
regarding how it got to that state. In the original work, this was
used to show that given an integrity measurement from a remote
host, the history of programs loaded and executed can be verified.
In the case of Kells, we use such a measurement to make assertions
about the reads and writes between the host system and Kells stor-
age device, namely, that (SEC) and (INT) hold for all reads and
writes. LS2 consists of two parts: a programming language used
to model real systems, and the logic used to prove properties about
the behavior of programs written in the language. This section be-
gins with a description of the language used by LS2, followed by
a description of the logic and proof system.
LS2 uses a simple programming language, hereafter referred to

as “the language,” to encode real programs. Any property provable
using LS2 holds for all execution traces of all programs written in
the language. Our aim is to encode Kells operation in the language
and formally state and prove its security properties using LS2. The
main limitation of the language (and what makes it feasible to use
for the verification of security properties) is the lack of support for
control logic such as if-then-else statements and loops. Expressions
in the language resolve to one of a number of data types including
numbers, variables, and cryptographic keys and signatures. For
Kells operation, we use numeric values as timestamps (t) and data
(n), and pairs of these to represent data structures for attestations
and block requests. The expressions used for encoding values in
Kells is shown in Table 1.

The language encapsulates operations into actions, single in-
structions for modeling system-call level behavior. Program traces
are sequences of actions. There are actions for communication be-
tween threads using both shared memory and message passing. In
the case of shared memory, read l and write l, e signify the
reading and writing of an expression e to a memory location l. As
Kells adds security checks into these two operations, we introduce
language extensions sread req, att and swrite req, att, which
are covered in the following section. Finally, the actions send req
and receive are used to model communication with the host (H)
by the Kells device (D).

Moving from the language to the logic proper, LS2 uses a set
of logical predicates as a basis for reasoning about programs in
the language. There are two kinds of predicates in LS2, action
predicates and general predicates. Action predicates are true if the
specified action is found in a program trace. Furthermore, they
may be defined at a specific time in a program’s execution, e.g.
Send(D, req) @ t holds if the thread D send the results of the re-
quest req to the host at time t. See the predicates in Table 1. Gen-
eral predicates are defined for different system states either at an
instant of time or over a period. One example of such a predicate
is GoodState(H, (t, treq, (l, n)), (tatt, sig)), which we defined to
show that the host system is in a good state with respect to a partic-
ular block request. The exact definition of GoodState is given in
the following section.

5.2 Verification of Kells Security Properties
We verify that Kells operations maintain the (SEC) and (INT) prop-

erties in several steps. First, we rewrite the algorithms described in
section 4.2 using the above described language. This includes a
description about assumptions concerning the characteristics of the
underlying hardware and an extension of the language to support
the write queueing mechanism, along with the operational seman-
tics of these expressions as shown in Figure 8. We then formally

236

Table 1: The subset of LS2 and extensions used to evaluate the Kells security properties.

Expressions
Expression Use in Validation
att = (tatt, sig) An attestation consisting of wall clock arrival time tatt, and a signature, sig.
req = (t, treq, (l, n)) A block request consisting of a stored program counter t, a wall clock time treq, a disk location l and a value n.

Language Features (∗ indicates an extension)
Feature Use in Validation
send req Send the result of request req from Kells to the host.
receive Receive a value from the host.
proj1 e Project the first expression in the pair resulting from e. proj2 e projects the second expression.
∗enqueue req Enqueue the request req in the Kells request queue.
∗peek Peek at the item at the head of the Kells device’s write request queue. If the queue is empty, halt the current thread

immediately.
∗dequeue Dequeue a block request from the Kells request buffer.
∗sread req, att Perform a secure (attested) read.
∗swrite req, att Perform a secure (attested) write.

Predicates (∗ indicates an extension)
Predicate Use in Validation
Send(D, req) @ t The Kells disk controller (D) sent the result of request req to the host at time t.
Recv(D, req) @ t The Kells disk controller (D) received the request req from the host at time t.
Reset(H) @ t Some thread on the host machine (H) restarted the system at time t.
∗Peek(D) @ t The Kells disk controller (D) peeked at the tail of the request queue at time t.
∗SRead(req, att) sread was executed in the program trace.
∗SWrite(req, att) swrite was executed in the program trace.
∗Fresh(t, treq, tatt) The attestation received at time tatt was received recently enough to be considered fresh w.r.t. a request that

arrived at treq.
∗GoodState(H, req, att) The host (H) attested a good state w.r.t. the request req. Meaning that the host was in a good state when the

request was received.

Configuration (∗ indicates an extension)
Configuration Use in Validation
σ The store map of [location 7→ expression]. This is used in the semantics of read and write as well as the

write request queue.
∗(h, t) The Kells requests queue, implemented as a pair of pointers to the memory store σ.
∗ρ The program counter. This counter is initialized to t0 at reboot time and increments once for each executed action

in the trace.

(enqueue) ρ, (h, t), σ[t 7→ _], [x:= enqueue e;P]I −→ ρ+ 1, (h, t+ 1), σ[t 7→ (e, ρ)], [P (0/x)]I

(dequeue) ρ, (h, t), σ[h 7→ e], [x:= dequeue;P]I −→ ρ+ 1, (h+ 1, t), σ[h 7→ e], [P (0/x)]I

(peek) ρ, (h, t), σ[t 7→ e], [x:= peek;P]I −→ ρ+ 1, (h, t), σ, [P (e/x)]I

(sread) ρ, σ[l 7→ e], [x:= sread (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1, σ[l 7→ e], [P (e/x)]I

if GoodState(H, (t, treq, (l, n)), (tatt, sig))

(swrite) ρ, σ[l 7→ _], [x:= swrite (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1, σ[l 7→ e], [P (0/x)]I

if GoodState(H, (t, treq, (l, n)), (tatt, sig))

(sreadD) ρ, σ[l 7→ e], [x:= sread (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1, σ[l 7→ e], [P (0/x)]I

otherwise

(swriteD) ρ, σ[l 7→ _], [x:= swrite (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1, σ[l 7→ _], [P (0/x)]I

otherwise

Figure 8: The operational semantics of the language extensions used to encode Kells operations. The program counter ρ applies to all actions
in the language.

state the two properties and show that they hold for the encoded
versions of Kells operations.

5.2.1 Encoding Kells Operation
The encoding of the read operation is shown in Figure 9 and the

write operation in Figure 10. The primary challenge in encoding
Kells operations using the language was the lack of support for
conditional statements and loops. Note that their addition would
also require an extension of the logic to handle these structures. To

alleviate the need for loops, we assume that the Kells device has a
hardware timer that can repeatedly call the program that performs
commits from the write request queue (KCommit in Figure 10).

We extend the language with three instructions for working with
the Kells write request queue: enqueue, dequeue and peek.
The first two operations are straightforward and are assumed to be
synchronized with any other executing threads. The peek opera-
tion prevents a dequeued request from being lost by KCommit if a

237

KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 9: The encoding of the Kells read operation.

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 10: The encoding of the Kells write operation.

fresh attestation has not arrived after the request has been dequeued.
If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation
freshness and verification into the semantics of the read and write
actions by introducing the sread and swrite actions. The se-
mantics of these two actions are shown in Figure 8. Both of these
operations take a block I/O request and an attestation as arguments.
A block request (t, treq, (l, n)) from the host consists of the pro-
gram counter at arrival time t, an absolute arrival time treq and a
sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown
in Figure 9. We assume the existence of a running thread that is re-
sponsible for requesting new attestations from the host at a rate of
∆t and placing the most recent attestation at D.RAM.att-loc.
Lines 1. and 2. receive the attestation and request from the host
respectively. Line 3. invokes the secure read operation which runs
to completion returning either the desired disk blocks (sread) or an
error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is
shown in Figure 10. KWrite simply receives the request from the
host in line 1. and places it in the request queue at line 2. t contains
the value of ρ at the time the request was received. The majority
of the write operation is encoded in KCommit, which retrieves an
enqueued request, arrival time and the most recent attestation, and
performs an swrite. Recall that KCommit runs once in a thread
invoked by a timer since a timed loop is not possible in LS2.

5.2.2 Proof of Security Properties
The (SEC) and (INT) properties may be stated formally as shown

in Figures 11 and 12. Both properties ultimately make an assertion
about the state of a host at the time it is performing I/O using the
Kells device. GoodState, defined in Figure 13, requires that an at-
testation (1) is fresh with respect to a given block I/O request and
(2) represents a trusted state of the host system. In the following
two definitions, ∆t represents the length of time during which an
attestation is considered fresh past its reception. Thus, GoodState
can be seen as verifying the state of the host w.r.t. a given I/O
request, independent of the state at any previous requests.

We use the predicate Fresh(t, treq, tatt) to state that an attesta-
tion is fresh w.r.t. a given request. The attestation is received at
wall clock time tatt and the request at time treq. Attestations are
received at the tth clock tick, as obtained using the program counter
ρ. As described above, Kells will check if a previous attestation is
still within the freshness parameter ∆t before stalling the read or
queueing the write. This is the first case in the definition of Fresh
in Figure 14. If a request is stalled, the next attestation received is
verified before satisfying the request. In this case, a Reset must not

(SEC) ` ∀ (treq, (l, n)), (tatt, sig), t s.t.

(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)

∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))

⊃ GoodState (H, (t, treq, (l, n)), (tatt, sig))

Figure 11: Definition of Kells secrecy property.

(INT) ` ∀ (t, treq, (l, n)), (tatt, sig) s.t.

(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)

∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))

⊃ GoodState (H, (t, treq, (l, n)), (tatt, sig))

Figure 12: Definition of Kells integrity property.

occur between the receipt of the request and the check of the next
attestation.
Theorem 1. KRead maintains the (SEC) security property.
Proof.
Assume that the following holds for an arbitrary program trace.

∃ (treq, (l, n)), (tatt, sig), t, e s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)

∧ e = SRead((t, treq, (l, n)), (tatt, sig))

We know that t is the value of ρ at the time the request was received
because we assumed Recv occurred in the trace at time t. By def-
inition of SRead, we have Fresh(t, treq, tatt), Verify((tatt, sig),
AIK(H)), and Match(v, criteria) all hold. Thus, GoodState
holds, and (SEC) is provable using LS2 with extensions. Because
KRead is implemented in the language with extensions, (SEC) holds
over KRead by the soundness property of LS2.

Theorem 2. KCommit maintains the (INT) security property.
Proof.
Assume that the following holds for an arbitrary program trace.

∃ (t, treq, (l, n)), (tatt, sig) s.t
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)

∧ SWrite((t, treq, (l, n)), (tatt, sig))

We know that t is the value of ρ at the time the request was received,
by (enqueue). By definition of SWrite, we have that Fresh(t, treq, tatt),
Verify((tatt, sig), AIK(H)), and Match(v, criteria) all hold. Thus,
GoodState, holds, giving that (INT) is provable using LS2 with
extensions. Because KCommit is implemented in the language
with extensions, (INT) holds over KCommit by the soundness
property of LS2.

6. EVALUATION
We performed a series of experiments aimed at characterizing

the performance of Kells in realistic environments. All experiments
were performed on a Dell Latitude E6400 laptop running Ubuntu
8.04 with the Linux 2.6.28.15 kernel. The laptop TPM performs
a single quote in 880 msec. The Kells device was implemented
using a DevKit 8000 development board that is largely a clone of
the popular BeagleBoard.4 The board contains a Texas Instruments

4Due to extreme supply shortages, we were unable to procure a
BeagleBoard or our preferred platform, a small form-factor Gum-

238

Read Write
Configuration (∆t) Run Throughput Run Throughput

(secs) (MB/sec) Overhead (secs) (MB/sec) Overhead
No verification 36.1376 14.196 N/A 35.4375 5.6437 N/A

1 second verification 36.5768 14.025 1.22% 36.4218 5.4912 2.78%
2 second verification 36.6149 14.011 1.32% 35.9895 5.5572 1.56%
5 second verification 36.3143 14.127 0.49% 35.7969 5.5871 1.01%

10 second verification 36.2113 14.167 0.20% 35.7353 5.5967 0.84%

Table 2: Kells performance characteristics – average throughput over bulk read and write operations

GoodState(H, (t, treq, (l, n)), (tatt, sig)) =

Fresh(t, treq, tatt)

∧ v = Verify((tatt, sig), AIK(H))

∧ Match(v, criteria)

Figure 13: Definition of Goodstate property.

Fresh (t, treq, tatt) =

(tatt < treq ∧ treq − tatt < ∆t)

∨ (treq < tatt ∧ ¬Reset(H) on [t, ρ])

Figure 14: Definition of Fresh property.

OMAP3530 processor, which contains a 600 MHz ARM Cortex-
A8 core, along with 128 MB of RAM and 128 MB of NAND flash
memory. An SD card interface provides storage and, most impor-
tantly for us, the board supports a USB 2.0 On-the-Go interface
attached to a controller allowing device-mode operation. The de-
vice runs an embedded Linux Angstrom distribution with a modi-
fied 2.6.28 kernel. Note that an optimized board could be capable
of receiving its power from the bus alone. The TI OMAP-3 pro-
cessor’s maximum power draw is approximately 750 mW, while a
USB 2.0 interface is capable of supplying up to 500 mA at 5 V, or
2.5 W. The recently introduced USB 3.0 protocol will be even more
capable, as it is able to supply up to 900 mA of current at 5 V.

Depicted in Table 2, our first set of experiments sought to deter-
mine the overhead of read operations. Each test read a single 517
MB file, the size of a large video, from the Kells device. We varied
the security parameter ∆t (the periodicity of the host integrity re-
validation) over subsequent experiments, and created a baseline by
performing the read test with a unmodified DevKit 8000 USB de-
vice and Linux kernel. All statistics are calculated from an average
of 5 runs of each test.

As illustrated in the table, the read operation performance is
largely unaffected by the validation process. This is because the
host preemptively creates validation quotes and delivers them to
the device at or about the time a new one is needed (just prior to a
previous attestation becoming stale). Thus, the validation process
is mostly hidden by normal read operations. Performance, how-
ever, does degrade slightly as the validation process occurs more
frequently. At about the smallest security parameter supportable
by the TPM hardware (∆t = 1 second), throughput is reduced by
only 1.2%, and as little as 0.2% at 10 seconds. This overhead is
due largely to overheads associated with receiving and validating
the integrity proofs (which can be as large as 100KB).

Also depicted in Table 2, the second set of tests sought to charac-
terize write operations. We performed the same tests as in the read
experiments, with the exception that we wrote a 200MB file. Write
operations are substantially slower on flash devices because of the
underlying memory materials and structure. Here again, the write

stix Overo device. Future work will consider how these devices
may change our performance characteristics.

operations were largely unaffected by the presence of host valida-
tion, leading to a little less than 3% overhead at ∆t = 1 second
and just under 1% at 10 seconds.

Note that the throughputs observed in these experiments are sub-
stantially lower than USB 2.0 devices commonly provide. USB
2.0 advertises maximal throughput of 480Mbps, with recent flash
drives advertising as much as 30MB/sec. All tests are performed on
our proof of concept implementation on the experimental apparatus
described above, and are primarily meant to show that delays are
acceptable. Where needed, a production version of the device and
a further optimized driver may greatly reduce the observed over-
heads. Given the limited throughput reduction observed in the test
environment, we reasonably expect that the overheads would be
negligible in production systems.

7. RELATED WORK
The need to access storage from portable devices and the secu-

rity problems that consequently arise is a topic that has been well
noted. SoulPad [4] demonstrated that the increasing capacity of
portable storage devices allows them to carry full computing stacks
that required only a platform to execute on. DeviceSniffer [35]
further considered a portable USB device that allowed a kiosk to
boot, where the software on the drive provides a root of trust for
the system. As additional programs are loaded on the host, they
are dynamically verified by the device through comparison with an
on-board measurement list. This architecture did not make use of
trusted hardware and is thus susceptible to attacks at the BIOS and
hardware levels. The iTurtle [17] was a proposal to use a portable
device to attest the state of a system through a USB interface. The
proposal made the case that load-time attestations of the platform
was the best approach for verification. This work was exploratory
and postulated questions rather than providing concrete solutions.

Garriss et al. further explored these concepts to use a mobile
device to ensure the security of the underlying platform, using it
as a kiosk on which to run virtual machines [10] and providing a
framework for trusted boot. This work makes different assumptions
about how portable devices provide a computing environment; in
the proposed model, a mobile phone is used as authenticator, rely-
ing on a barcode attached to the platform transmitted wirelessly to
the device. Because the verifier is not a storage device, the virtual
machine to be run is encrypted in the cloud.

Others have considered trusted intermediaries that establish a
root of trust external to the system, starting with Honeywell’s Project
Guardian and the Scomp system, which provided a secure front-end
processor for Multics [8]. SIDEARM was a hardware processor
that ran on the LOCK kernel, establishing a separate security en-
forcement point from the rest of the system [31]. The first attempt
to directly interpose a security processor within a system was the
Security Pipeline Interface [12], while other initiatives such as the
Dyad processor [40] and the IBM 4758 coprocessor [7] provided
a secure boot. Secure boot was also considered by Arbaugh et al.,
whose AEGIS system allows for system startup in the face of in-

239

tegrity failure. Numerous proposals have considered how to attest
system state. SWATT [27] attests an embedded device by verifying
its memory through pseudorandom traversal and checksum com-
putation. This requiers verifier to fully know the memory contents.
Recent work has shown that SWATT may be susceptible to return-
oriented rootkits [5] but this work itself is subject to assumptions
about SWATT that may not be valid. Similarly, Pioneer [26] en-
ables software-based attestation through verifiable code execution
by a verification function, reliant on knowledge of the verified plat-
form’s exact hardware configuration. A study of Pioneer showed
that because it is based on noticing increases in computation time
in the event of code modification, a very long execution time is
required in order to find malicious computation as CPU speeds in-
crease [9]. Software genuinity [14] proposed relying on the self-
checksumming of code to determine whether it was running on a
physical platform or inside a simulator; however, Shankar et al.
showed problems with the approach [29].

Augmenting storage systems to provide security has been a topic
of sustained interest over the past decade. Initially, this involved
network-attached secure disks (NASD) [11], an infrastructure where
metadata servers issue capabilities to disks augmented with proces-
sors. These capabilities are the basis for access control, requiring
trust in servers external to the disk. Further research in this vein
included self-securing storage [34], which, along with the NASD
work, considered object-based storage rather than the block-based
approach that we use. Pennington et al. [21] considered the disk-
based intrusion detection, requiring semantically-aware disks [30]
for deployment at the disk level.

8. CONCLUSION
In this paper, we presented Kells, a portable storage device that

validates host integrity prior to allowing read or write access to its
contents. Access to trusted partitions is predicated on the host pro-
viding ongoing attestations as to its good integrity state. Our proto-
type demonstrates that overhead of operation is minimal, with a re-
duction in throughput of 1.2% for reads and 2.8% for writes given a
one-second periodic runtime attestation. Future work will include a
detailed treatment of how policy may be enforced in an automated
way between trusted and untrusted storage partitions, and further
interactions with the OS in order to support and preserve properties
such as data provenance and control of information flow.

9. REFERENCES
[1] IronKey. http://www.ironkey.com, 2009.
[2] K. Butler, S. McLaughlin, T. Moyer, J. Schiffman, P. McDaniel, and

T. Jaeger. Firma: Disk-Based Foundations for Trusted Operating
Systems. Technical Report NAS-TR-0114-2009, Penn State Univ.,
Apr. 2009.

[3] K. R. B. Butler, S. McLaughlin, and P. D. McDaniel.
Rootkit-Resistant Disks. In ACM CCS, Oct. 2008.

[4] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath.
Reincarnating PCs with portable SoulPads. In ACM MobiSys, 2005.

[5] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the
difficulty of software-based attestation of embedded devices. In ACM
CCS, Nov. 2008.

[6] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A Logic of Secure
Systems and its Application to Trusted Computing. In IEEE Symp.
Sec. & Priv., May 2009.

[7] J. G. Dyer, M. Lindermann, R. Perez, et al. Building the IBM 4758
Secure Coprocessor. IEEE Computer, 39(10):57–66, Oct. 2001.

[8] L. J. Fraim. Scomp: A solution to the multilevel security problem.
IEEE Computer, 16(7):26–34, July 1983.

[9] R. Gardner, S. Garera, and A. D. Rubin. On the difficulty of
validating voting machine software with software. In USENIX EVT,
Aug. 2007.

[10] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Trustworthy and personalized computing on public kiosks.
In ACM MobiSys, June 2008.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, et al. A Cost-Effective,
High-Bandwidth Storage Architecture. In ASPLOS, 1998.

[12] L. J. Hoffman and R. J. Davis. Security Pipeline Interface (SPI). In
ACSAC, Dec. 1990.

[13] B. Kauer. OSLO: Improving the Security of Trusted Computing. In
Proc. USENIX Security Symp., Aug. 2007.

[14] R. Kennell and L. H. Jamieson. Establishing the Genuinity of Remote
Computer Systems. In Proc. USENIX Security Symp., Aug. 2003.

[15] Kingston Technology. DataTraveler 300: World’s first 256 GB Flash
drive. http://www.kingston.com/ukroot/flash/dt300.asp, July 2009.

[16] C. Lomax. Security tightened as secretary blamed for patient data
loss. Telegraph & Argus, 4 June 2009.

[17] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn. Turtles all
the way down: Research challenges in user-based attestation. In
USENIX HotSec, Aug. 2007.

[18] Microsoft. BitLocker and BitLocker to Go.
http://technet.microsoft.com/en-us/windows/dd408739.aspx, Jan. 2009.

[19] T. Moyer, K. Butler, J. Schiffman, et al. Scalable Web Content
Attestation. In ACSAC, 2009.

[20] B. Parno. Bootstrapping trust in a "trusted" platform. In USENIX
HotSec, Aug. 2008.

[21] A. G. Pennington, J. D. Strunk, J. L. Griffin, et al. Storage-based
Intrusion Detection: Watching storage activity for suspicious
behavior. In Proc. USENIX Security, 2003.

[22] P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s
Logic and Rendezvous Points. Technical report, SRI Computer
Science Lab, Mar. 2009.

[23] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement
Architecture. In Proc. USENIX Security, Aug. 2004.

[24] SanDisk. SanDisk Cruzer Enterprise. http://www.sandisk.
com/business-solutions/enterprise, 2009.

[25] Seagate. Self-Encrypting Hard Disk Drives in the Data Center.
Technology Paper TP583.1-0711US, Nov. 2007.

[26] A. Seshadri, M. Luk, E. Shi, et al. Pioneer: verifying code integrity
and enforcing untampered code execution on legacy systems. In
ACM SOSP, 2005.

[27] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
SoftWare-based ATTestation for Embedded Devices. In IEEE Symp.
Sec.& Priv., May 2004.

[28] N. Shachtman. Under Worm Assault, Military Bans Disks, USB
Drives. Wired, Nov. 2008.

[29] U. Shankar, M. Chew, and J. D. Tygar. Side Effects are Not Sufficient
to Authenticate Software. In Proc. USENIX Security, 2004.

[30] M. Sivathanu, V. Prabhakarn, F. I. Popovici, et al.
Semantically-Smart Disk Systems. In USENIX FAST, 2003.

[31] R. E. Smith. Cost profile of a highly assured, secure operating
system. ACM Trans. Inf. Syst. Secur., 4(1):72–101, 2001.

[32] SRN Microsystems. Trojan.adware.win32.agent.bz. http:
//www.srnmicro.com/virusinfo/trj10368.htm, 2009.

[33] L. St. Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishing
and Sustaining System Integrity via Root of Trust Installation. In
ACSAC, 2007.

[34] J. Strunk, G. Goodson, M. Scheinholtz, et al. Self-Securing Storage:
Protecting Data in Compromised Systems. In USENIX OSDI, 2000.

[35] A. Surie, A. Perrig, M. Satyanarayanan, and D. J. Farber. Rapid trust
establishment for pervasive personal computing. IEEE Pervasive
Computing, 6(4):24–30, Oct.-Dec. 2007.

[36] TCG. TPM Main: Part 1 - Design Principles. Specification Version
1.2, Level 2 Revision 103. TCG, July 2007.

[37] TCG. TCG Storage Security Subsystem Class: Opal. Specification
Version 1.0, Revision 1.0. Trusted Computing Group, Jan. 2009.

[38] T. Weigold, T. Kramp, R. Hermann, et al. The Zurich Trusted
Information Channel – An Efficient Defence against
Man-in-the-Middle and Malicious Software Attacks. In Proc.
TRUST, Villach, Austria, Mar. 2008.

[39] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted Execution
Technology. In Proc. BlackHat Technical Security Conf., Feb. 2009.

[40] B. Yee and J. D. Tygar. Secure Coprocessors in Electronic Commerce
Applications. In Proc. USENIX Wrkshp. Electronic Commerce, 1995.

240

Keeping Data Secret under Full Compromise
using Porter Devices

Christina Pöpper
System Security Group

Computer Science
ETH Zurich

poepperc@inf.ethz.ch

David Basin
Information Security Group

Computer Science
ETH Zurich

basin@inf.ethz.ch

Srdjan Čapkun
System Security Group

Computer Science
ETH Zurich

capkuns@inf.ethz.ch

Cas Cremers
Information Security Group

Computer Science
ETH Zurich

cremers@inf.ethz.ch

ABSTRACT
We address the problem of confidentiality in scenarios where the
attacker is not only able to observe the communication between
principals, but can also fully compromise the communicating par-
ties (their devices, not only their long term secrets) after the con-
fidential data has been exchanged. We formalize this problem and
explore solutions that provide confidentiality after the full compro-
mise of devices and user passwords. We propose two new solutions
that use explicit key deletion and forward-secret protocols com-
bined with key storage on porter devices. Our solutions provide the
users with control over their privacy. We analyze the proposed so-
lutions using an automatic verification tool. We also implement a
prototype using a mobile phone as a porter device to illustrate how
the solution can be realized on modern platforms.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks; K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized access

General Terms
Design, Security

Keywords
Security Protocol, System Security, Full Compromise

1. INTRODUCTION
Confidential communication is a basic security requirement for

modern communication systems. Solutions to this problem pre-
vent an attacker that observes the communication between two par-
ties from accessing the exchanged data. We address a related, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

harder, problem in a scenario where the attacker is not only able to
observe the communication between the parties, but can also fully
compromise these parties at some time after the confidential data
has been exchanged. If a protocol preserves confidentiality under
such attacks, we say that it provides forward secrecy under full
compromise. This is a stronger notion than forward secrecy [18],
which guarantees confidentiality when participants’ long-term se-
crets (but not their devices or passwords) are compromised. For
example, a subpoena is issued and the communication parties must
relinquish their devices and secrets after (e. g., e-mail) communica-
tion took place. In this scenario, the parties would like to guarantee
that the authorities cannot access the exchanged information, even
when given full access to devices, backups, user passwords, and
keys, including all session keys stored on the devices.

Assuming public communication channels, any solution to the
above problem must ensure that the communication is encrypted to
prevent eavesdropping. The challenge in solving this problem is the
appropriate management and deletion of the keys used to encrypt
the data. Several solutions to this problem have been proposed.
First, the Ephemerizer system [28] stores the encryption keys on a
physically separate, trusted server accessible by all communicating
parties. A drawback of this approach is that trust is placed in one
entity, whose compromise would be disastrous for all parties using
its services (e. g., companies and individuals). To address this con-
cern, [21] proposes using Distributed Hash Table (DHT) networks
for key storage and deletion, thereby removing trust from a cen-
tral entity. This system, however, only provides probabilistic key
deletion without guarantees on the deletion times of stored keys.
Furthermore, researchers have shown how to attack this prototype
implementation using Sybil attacks on DHTs, which enabled the at-
tackers to reconstruct keys [36]. This attack highlights the problem
of delegating key deletion to arbitrarily selected, untrusted nodes.

In this work, we formalize the problem of forward secrecy under
full compromise and explore new solutions that provide confiden-
tially after the compromise of devices and user passwords. Our so-
lutions rely on the existence of trusted, reliable porter devices that
manage encryption keys. We do not require that the principals trust
one central server but enable the receivers to select their own key
storage devices (based on their trust). We thus enable users to con-
trol their own privacy. Although it might seem that – given trusted
porter devices – solutions to this problem would be simple, they
turn out to be surprisingly complex. This complexity stems from
(i) the need to ensure that the protocols do not allow key reconstruc-

241

data access period data access impos-

t

data lifetime

sible for all parties

Threat model: Full compromise attackerDolev-Yao (network) attacker

receiver R

sender S

tR: receiver gets data te + ∆max

tS : sender sends data te: expiration time

for authorized parties

Figure 1: Timeline for time-limited data. Data can be accessed until its expiration time te + ∆max, where te relates to the sender’s clock
and∆max is the maximal clock difference of the receiver with respect to the sender. After time te +∆max, data must be inaccessible to all
parties, even under full system compromise.

tion under full compromise and (ii) the need to provide guarantees
on the key deletion. Abstractly, our solutions use forward-secret
subprotocols, session keys with different lifetimes, and timed, ex-
plicit key deletion as building blocks to achieve forward secrecy
under full compromise. This prevents data access by all parties,
including attackers, after a well-defined time. The requirement of
guaranteed deletion motivates our use of porter devices: they en-
able timely key deletion even if the communication devices (e. g.,
PCs, laptops) cannot be guaranteed to be active.

Our main contributions are as follows. First, we formalize the
concept of forward secrecy under full compromise. Second, we
present two practical solutions to achieve it. Third, we formally
analyze the presented solutions using an automatic verification tool
[15]. Finally, we analyze their practical feasibility with a prototype
implementation, using a mobile phone as porter device. We thus
illustrate how the solution can be realized on modern platforms and
how practical considerations can be handled.

The remainder of this paper is organized as follows. In Section 2,
we specify the system requirements and our system and attacker
models. In Section 3, we motivate our solution. We present our
solution and formally analyze its properties in Section 4. In Sec-
tion 5, we examine possible realizations and describe our prototype
implementation. We discuss related work in Section 6 and draw
conclusions in Section 7.

2. SYSTEM SPECIFICATION

2.1 Requirement Specification
Our goal is to design a system that provides data access only

during a defined time period and afterward prevents access for all
parties. We first introduce some key notions, which are illustrated
in Figure 1.

Definition 1. The sender specifies data as time-limited by as-
signing a time after which the data must be inaccessible to the
sender, the receiver, and any other party. We denote this time by
te, also called the expiration time.

We note that te is relative to the sender’s local clock.

Definition 2. During the lifetime of time-limited data, autho-
rized access is granted only to parties that the sender selects as
authorized to access the data.

Our system shall meet the following security requirement:
R1 Time-dependent access control: The time-limited data is

inaccessible outside of the lifetime period specified by the
sender.

(a) During the data lifetime, only authorized access shall
be granted.

(b) After the data lifetime, no data access is possible for
any party. This includes the sender, the receiver, and
any compromised party.

We also define a functional requirement:
R2 Data availability: Given the successful communication be-

tween the sender and an authorized receiver (i. e., messages
reach the intended recipient), the receiver can access the data
during its lifetime.

2.2 System model
We consider the setting where a sender wants to transfer time-

limited data to one or more receivers (the authorized recipients).
The transfer may use any communication medium and include dif-
ferent applications, e. g., email exchange or server upload and down-
load. A special case is the local storage of time-limited data as a
form of self-communication involving only the sender. We make
the following four assumptions:

Trusted communication partners. Communication partners,
also called principals, follow the protocol. In particular, their de-
vices timely and safely delete1 data and they do not reveal time-
limited data or keys in ways not specified by the protocol. Princi-
pals may shut down their communication devices and resume com-
munication later, i. e., their devices need not be online at all times.

Authenticated communication. The sender and the receiver
can communicate authentically. This may be achieved using pre-
shared secret keys or authentic, pre-distributed (long-term) public
keys. Pre-shared secrets are used to generate and verify message
authentication codes (MACs) whereas long-term public keys are
used for signature verification.

Trusted storage device. There exists a reliable device with an
independent clock used for data (key) storage. Typical instances of
such devices are built-in Trusted Platform Modules (TPMs), Hard-
ware Security Modules (HSMs), or any external device, such as
mobile phones, PDAs, or (e-banking) smartcards with readers (see
also Section 5). Throughout this paper, we call this device a porter
and denote it P . In our solution, the porter must be trusted in three
ways: (i) P supports authentic communication, e. g., using authen-
tic public keys or a physically secure channel, (ii) P supports the
confidential storage and retrieval of data (in our protocols by the re-
ceiver), and (iii) P is regularly active and can provide autonomous,
permanent erasure of stored data at specified times (or its inacces-
sibility after specified times). In general, the simpler the porter

1We assume that the principals use secure deletion [24,33] prevent-
ing data restoration.

242

device, the less complex its key deletion operation will be. At the
same time, simple porter devices are, in general, more controllable
and less error-prone than complex, general-purpose devices. We
thus envision TPMs or dedicated smartcards as porters for corpo-
rate use and mobile phones or PDAs for (less critical) private use.

Loose time synchronization. The sender S, the receiver R, and
the porter P are loosely time-synchronized. The local clock dif-
ferences between the sender and the other principals at the data
expiration time do not exceed ∆max: when S’s clock hits te, R’s
and P ’s clocks are between te−∆max and te +∆max. The princi-
pals’ devices are not required to remain synchronized within∆max

throughout the lifetime of the data but just at the expiration time.
Time-limited data should be accessible at least until te−∆max and
be inaccessible after te +∆max.

2.3 Attacker model
We consider a two-phased attacker model. Our main aim is to

model attackers capable of full compromise (introduced below),
which models for example court orders or subpoenas. If such an
attacker is present during the data access period, all protocols that
require the data to be in the (accessible) device’s memory are triv-
ially insecure. We therefore design our protocols to provide secu-
rity guarantees with respect to a two-phase attacker model (Fig-
ure 1): (i) before and during the data access period (defined by the
sender), we consider a strong network (Dolev-Yao [19] type) at-
tacker, and (ii) after the data access period, we consider an even
stronger attacker capable of full compromise. Let U be the set of
users authorized to access the transmitted data before its expiration
time te.

Attacker model for t ≤ te +∆max: Active external attacker.
The attacker controls the network and may eavesdrop, intercept,
inject, and block messages, but she has no control over the de-
vices of users from the set U . Users not in U may collude with
the attacker and deviate from the protocol description. This at-
tacker model corresponds to the standard Dolev-Yao model and is
applicable to communication systems comprising ISPs, web mail
providers, proxies, relay nodes, etc.

Attacker model for t > te +∆max: Full Compromise. In ad-
dition to controlling the network, the attacker completely controls
the users’ devices, including porter devices, and can compromise
users’ passwords and passphrases. The attacker can access and
change all data stored on the devices and backups, possibly sup-
ported by court orders or subpoenas that oblige users to disclose
data. In particular, she may compromise the principals’ keys, in-
cluding long-term and ephemeral secret keys, and she can coerce
users to reveal the passwords used to secure decryption keys. We
refer to this model as full compromise. This model is stronger than
the Dolev-Yao model in that it allows the compromise of all data
on the devices, including the data protected by user-selected pass-
words.

This two-phase attacker model is very strong. In many practical
settings, the first-phase attacker will be weaker than a Dolev-Yao
attacker. For example, it may be reasonable to assume that even
in case of a subpoena after te + ∆max, only communication logs
were recorded in the phase before te +∆max (e. g., by web mail or
internet service providers), but no active attack was mounted. In-
deed, such attacks often make evidence inadmissible. The concept
of a phased attacker model also allows us to define other attackers
that are stronger than the Dolev-Yao attacker in the first phase. In
some scenarios the attacker might use a cryptographic attack to ac-
cess principals’ long-term secrets before getting full access to the
devices at te +∆max. Although this is not part of our core attacker
model, our solution even resists some attacks of this nature.

3. SOLUTION SPACE
In this section, we explore the space of possible systems that

meet the requirements given in Section 2. We also introduce and
categorize related work and motivate our solution.

Data transmitted over an open network cannot, in general, be ex-
plicitly deleted since the sender does not have access to (and may
not even be aware of) all existing copies. Hence the sender must
encrypt data before transmission to protect its confidentiality. Since
an attacker (as defined in Section 2.3) may have full access to all de-
vices after the data expiration time, data must also never be stored
in plaintext on any device where it could possibly still reside after
the time te +∆max. As principals can communicate authentically,
they can use public-key cryptography to establish secret (session)
keys over open networks and use the resulting keys to secure sub-
sequent communication. The solution space therefore amounts to
different ways of creating, managing, and deleting decryption keys.

Intuitive Approaches. We first look at two approaches for key
management and deletion that appear intuitive but are inappropriate
as solutions.

(1) The sender and receiver delete the established key imme-
diately after the encryption and decryption phases, respec-
tively.

This approach does not fulfill requirement R1.b (Section 2) if the
encrypted data sent by the sender S arrives at receiver R after te +
∆max or if it never arrives at R (e. g., due to message blocking or
delay attacks, transmission failures, or R being offline / inactive).
In this case, the pre-agreed key K remains stored on R because the
receiver never starts the decryption phase. This reveals the time-
limited data under full compromise after te +∆max.

(2) The sender and receiver delete the key at its lifetime expira-
tion te, e. g., using a job or task scheduler such as Cron.

This does not guarantee requirement R1.b because these automated
tasks are not guaranteed to succeed. For example, users’ personal
computers usually have periods of inactivity during which they
are turned off or they may have to be handed in for repair. In
such cases, R may be turned off at the expiration time and sys-
tem processes cannot erase expired keys from the device memory
and disks.

From the above considerations, we conclude that the key K used
to encrypt the time-limited data cannot be stored on either S or R.
Hence it must be stored externally.

Related Work. We briefly review selected related work to il-
lustrate relevant parts of the solution space. In the Ephemerizer
system [28] and its application to file deletion [29], a physically
separate, trusted machine, the Ephemerizer, generates and stores
the keys used to encrypt and decrypt the data. Users interact with
the Ephemerizer in order to retrieve the encryption or decryption
keys. A potentially large number of users, for example a company’s
employees, use the same (logical) key generator and storage.

The authors of Vanish [21] propose using a de-centralized key
storage based on peer-to-peer networks and DHTs. In their system,
the sender picks a random encryption key, splits it using secret shar-
ing, and stores the key shares in a DHT network from where the
receiver can retrieve them as long as they exist. Due to the natural
churn in such networks, the keys are eventually deleted.

Solution Dimensions. We identify four properties of key storage
devices: (i) storage type, (ii) access options, (iii) level of guaran-
tees for key management, and (iv) scalability. In the remainder of
this section we explain these properties and show in Table 1 how
they apply to the approaches above and to our solution.

(i) Storage type. The storage may be centralized (e. g., a re-
mote server [28]), or distributed [21]; distributed storage requires
key sharing. While deletion on a centralized storage is a well-

243

Ephemerizer [28] Vanish [21] Our solution (Section 4)
Storage type centralized/shared distributed/shared personal
Key generation by the storage server by S by S and R or by R
Key deletion deterministic probabilistic deterministic
Access to K both S and R both S and R R (or S)

over an open network over an open network over open/trusted networks
Scalability scales (special-purpose) limited (secondary scales (special-purpose or secon-

with many users) dary with few users per storage)

Table 1: Dimensions of the key storage and their instantiation by different solutions. Our solution allows access to the encryption key K by
R but can easily be extended to enable access also by S on a separate storage (belonging to S).

defined operation, providing guarantees on the deletion of (suffi-
ciently many) key shares on distributed storage is challenging.

(ii) Access. The storage may be personal or shared. Personal
storage allows exclusive access by either S or R. The access to
personal storage may be based on public or secure channels; an
example for the latter are independent storage units within a user’s
device. Shared storage (e.g., a network server) permits multiple
parties to store and retrieve data. We do not consider storage that
only S and R can access because it is a special case that could
be used to directly transfer time-limited data. The communication
channels to access shared storage are typically public. Since the
key must be stored in plaintext on shared storage2, it may allow
attackers to collect data before the expiration time and use it later
to access the data. The attack [36] on Vanish is an example of this.

(iii) Guarantees on key management. Any key storage must
store and manage keys and delete them in a timely way. We dis-
tinguish between deterministic and probabilistic key deletion. In
contrast to probabilistic key deletion, deterministic key deletion
provides guarantees on the times when keys will be deleted; it is
typically harder to achieve on complex or distributed systems (e. g.,
network servers) than on simple, monolithic devices.

(iv) Scalability. The storage should provide functionality for a
large number of users without substantially degraded performance.
We distinguish special-purpose storage that can be designed to scale
well with the number of users (e. g., [28]) and secondary storage
that fulfills different primary purposes and, additionally, provides
key management. In the latter case, the primary functions may
degrade with the additional key management functionality of the
storage; in this case, the scalability is limited.

4. OUR SOLUTION

4.1 Solution Overview
As motivated in Section 3, the sender encrypts the time-limited

data prior to transmission. The encryption key is established on a
per-message basis between S and R using an authenticated Diffie-
Hellman (DH) key establishment protocol. In our solution, we re-
locate the encryption keys to an autonomous porter device under
the receiver’s control (we do not use a central server because it re-
quires the users’ trust and creates a single point of failure). The
porter device will independently delete keys once the expiration
time of the messages encrypted using those keys is reached. Given
that the porter possesses the sole copy of this encryption key at the
expiration time and the porter will delete keys when they expire,
this approach prevents data access by any party after te +∆max.

2If the decryption key K was encrypted, this would bring us back to
the original problem: how and where to store the key. Asymmetric
encryption with R’s long-term public key would not resist a full-
compromise attack after te +∆max.

A porter-based approach requires elaboration to provide authen-
ticity and forward-secrecy for the connections from the sender to
the receiver and between the receiver and the porter. This requires
carefully managing multiple short-term keys. In security applica-
tions, e. g., off-the-record messaging [3, 11], short-term keys are
created on demand and deleted immediately after the data encryp-
tion and decryption. Deleting the decryption key after the data
transmission is, however, not a solution in our scenario: we must
ensure data inaccessibility after the expiration time te +∆max even
if the sender’s message is not received before te +∆max (see Sec-
tion 3).

4.2 Forward Secrecy under Full Compromise
We introduce the notion of forward forward secrecy under full

compromise and explain why we need it. Forward secrecy means
that the compromise of the principals’ long-term private keys does
not compromise past session keys [18, 27]. Our system requires
forward secrecy not only under the compromise of long-term keys
but also under full compromise (as defined in Section 2.3) after the
expiration time. Given this extended notion of compromise, we
similarly extend the definition of forward secrecy.

Definition 3. A protocol is forward-secret under full compro-
mise with respect to time-limited data m if the full compromise
of the involved principals and their devices after the data expiration
time does not compromise the secrecy of m.

Forward secrecy under full compromise is a stronger property than
(standard) forward secrecy because it also accounts for the prin-
cipals’ internal states after the expiration time. As a consequence,
time-critical data and the respective encryption keys must be erased
from the principal’s devices such that they are nonexistent at the ex-
piration time. Key and data deletion must be part of any protocol
that provides forward secrecy under full compromise. A second
essential component concerns those parts of the protocol that in-
volve session keys, which we call subprotocols, e. g., for key es-
tablishment. Forward secrecy under full compromise requires that
all subprotocols used to establish session keys for data encryption
provide forward secrecy.

4.3 Protocol
We now present the main idea of our protocols. We focus on

the case where the receiver uses the key storage (rather than the
sender). Figure 2 provides a protocol sketch that we will later in-
stantiate with concrete solutions. All delete commands are secure
deletions. We consider the following four protocol phases:

1. Key establishment: The sender S defines the data lifetime
te and agrees with the receiver R on the mid-term key K (or
a key pair where K is the decryption key). R initiates the
safe storage of K along with te on the porter P and deletes

244

S (sender) channel 1 R (receiver) channel 2 P (porter)

!

Phase 1

!

Phase 1
Key establishment
& assignment of K, te Key storage

expiration time te(delete K) delete K K, te

Phase 2
...

Transmission of encryp-
ted time-limited data mdelete m Phase 3

Key retrievaldecrypt m Phase 4 (ongoing):
t delete K, m At te: delete K, te t

Figure 2: Protocol sketch. The basic building blocks are commands for explicit, secure deletion and forward-secret subprotocols during the
communication phases (Phases 1–3).

its own copy of K.3 If the key establishment involves key
contributions from the principals, the ephemeral private keys
are deleted right after the key establishment.

2. Communication/storage: S transmits the data m, encrypted
using key K, and then deletes both the plaintext and K.

3. Data access: Upon receiving the encrypted data, R attempts
to retrieve K from P in order to decrypt m. After successful
data access, R deletes both the plaintext m and K. This
phase may occur multiple times.

4. Key management/deletion: In parallel with phases 1–3, P
permanently deletes keys from its storage once they expire.

Our solution involves three kinds of keys for different time inter-
vals:

1. a mid-term encryption key K (or key pair) for encrypting and
decrypting time-limited data,

2. long-term authentication keys used to authenticate the mes-
sages, and

3. short-term (ephemeral) session keys to provide secrecy of the
communication between the principals and to the porter.

The notion of a mid-term key is non-standard but is appropriate
for our key K, which must exist during the data’s lifetime and is
permanently erased thereafter.

Encryption using mid-term keys can be based on symmetric or
public-key cryptography. We will provide examples of both in
Section 4.4. The examples also differ in the assumptions on the
communication channels underlying the protocols. We require two
channels: one between the sender and the receiver for data trans-
mission and key-establishment and a second channel between the
receiver and the porter for key storage and retrieval. We introduce
two common channel types in the following; based on the available
channels, different subprotocols will provide forward-secrecy.
Physically secure channel: A physically secure (PS) channel pro-

vides confidentiality and authenticity without cryptographic
measures. An example of such a channel is a shielded wire
that connects the receiver’s motherboard to a trusted hard-
ware module. Due to the physical security of the communi-
cation, forward secrecy is trivially achieved because no long-
term or short-term keys are involved in the communication.

Dolev-Yao channel: A Dolev-Yao (DY) channel is subject to at-
tacks under the Dolev-Yao attacker model, involving eaves-
dropping, message corruption, insertion, and blocking (eras-
ing). An example of a DY channel is a wireless (e. g., Blue-
tooth) connection between two devices.

3In our protocols, R stores and retrieves the key. In a different
protocol, S may also store the key on a porter of its own.

The standard way to achieve forward secrecy on a Dolev-Yao chan-
nel is to establish ephemeral encryption keys, typically by using an
authenticated DH protocol [12], and to discard them after their use.
In this case, the ephemeral DH public keys grS and grR are ex-
changed and stored only during the key establishment. They are
destroyed thereafter along with the private keys rS and rR. The
established key K = grSrR = grRrS is the encryption key.

4.4 Protocol Instances
We now present two instances of the protocol sketch of Figure 2,

shown in Figures 3 and 4. The two protocols differ in how they
achieve forward secrecy on the communication channels between
S, R, and P .

We use the following notation: [M]K and [M]−1
K denote the

symmetric encryption and decryption of a message M with key K.
AS(M) denotes that message M is authenticated by principal S

(described below). Communication is expressed as S
M !! R,

meaning that S transmits message M to receiver R. The tupling of
multiple data items in a message is denoted by “,”. For DH key es-
tablishment, g denotes the public generator of the group used, rS is
the ephemeral private key of principal S, and grS is S’s ephemeral
public key; the use of the modulus (mod n) is implicit.

4.4.1 Protocol 1
Protocol 1 (Figure 3) is designed to be used when S, R, and P

communicate over DY channels. In this scenario, P may, e. g., be a
mobile phone that belongs to R. Protocol 1 uses symmetric encryp-
tion to transmit the time-limited data m. The protocol is initiated by
S, who starts a DH key establishment with R. R then establishes
another ephemeral DH key L with the porter device P and uses
it to send K encrypted to P . Later, after receiving the encrypted
time-limited data from S, R establishes a new ephemeral key L′

with P and uses L′ to retrieve K. For each subsequent retrieval of
the encryption key K, a new ephemeral key is established.

The DH key exchanges of Protocol 1 follow the standard two-
way ISO-9798-3 protocol [23].4 We do not require a third message
for key confirmation in which the sender returns both ephemeral
public keys to the receiver to confirm that it possesses the same key.
Under our attacker model, the receiver is not compromised before
it sends its DH key contribution (when te expires, both parties abort
the protocol).

The following components are essential to Protocol 1:
4The standard also specifies a random index i into a universal hash
function family H in message 2, so that the shared key computed
is K = Hi(g

rSrR). We do not use this.

245

S (sender) DY channel 1 R (receiver) DY channel 2 P (porter)

pick rS

compute grS
AS(1,grS ,te) !! pick r′R; compute gr′

R
AR(2,gr′R) !! pick rP , compute grP

pick rR; compute grR
AP (3,gr′R ,grP)"" L = gr′

RrP , delete rP

K = grSrR , L = grP r′
R

AR(4,S,te,[K,4.1]L)!! K = [K]−1
L , delete L

K = grRrS
AR(5,grS ,grR ,te)"" delete K, L, rR, r′R

delete rS

...

m, [m]K
AS(6,[m,6.1]K ,te)!! pick r∗R, compute gr∗

R
AR(7,gr∗R ,S,te)!! pick r∗P , compute gr∗

P

delete m, K L′ = gr∗
P r∗

R , delete r∗R
AP (8,gr∗R ,gr∗P ,[K]L′)"" L′ = gr∗

Rr∗
P

K = [K]−1
L′ , delete L′ delete r∗P , delete L′

m = [m]−1
K , delete K

After usage: delete m At time te (ongoing):
delete (S, te, K)

Figure 3: Protocol 1. The protocol can be run over two Dolev-Yao (DY) channels, between S and R and between R and P . The established
symmetric mid-term key K is used by S to encrypt the time-limited data m. All messages are authenticated, denoted by the authentication
function AX(·), which represents the function input concatenated with a digital signature of principal X .

1. All messages are authenticated by the transmitter, as indi-
cated by the authentication function AX(·) where X ∈ {S,
R, P} is the authenticating principal. This can be achieved
using message authentication codes (MACs) with pre-shared
symmetric keys or by digital signatures using X’s long-term
secret key. In the latter case, the first message would be
1, grS , te, SigS(1, grS , te), where SigS(M) denotes the dig-
ital signature of M using S’s long-term key.

2. The principals verify the authenticity of received messages
(by verifying signatures or MACs) and check the validity of
te. The principals abort the protocol if te has expired or if
message authenticity cannot be verified.

3. If the protocol aborts due to failed time or authenticity checks,
abortive measures must be taken. In particular, critical data
(such as encryption keys and DH key contributions), which
may be present on a device, must be securely deleted.

Encrypted vs. plain storage of K. In Protocol 1, the mid-term
encryption (decryption) key is stored in plaintext on P and revealed
only to R (encrypted over the DY-channel). While the unencrypted
storage of K may seem like a weakness, under our attacker model,
full device compromise only occurs after the expiration time when
K is already deleted. We still consider it realistic that the porter
device (e. g., a mobile phone) may be lost or stolen before the expi-
ration time; in either case, we can assume that the owner is aware
of the loss. To preserve data privacy in this case, we propose to
store K encrypted on P : In Protocol 1, the receiver would send
the encrypted key K to the porter (i. e., [[K]X]L instead of [K]L)
and store the symmetric encryption key X along with the expira-
tion time te of K on R. Whenever the owner notices the loss of his
porter device, he can delete X from R’s disk.

4.4.2 Protocol 2
Protocol 2 (Figure 4) assumes a physically secure (PS) channel

between R and P ; e.g., P could be a TPM directly connected to
R’s computer. Thus no key agreement is required on this chan-
nel. Furthermore, Protocol 2 uses asymmetric encryption to secure
time-limited data (independent of the PS channel).

In Figure 4 we use the notation from the beginning of this sec-

tion. Additionally {M}PK+
R

(and {M}PK−
R

) denote the public-
key encryption (and decryption) of message M with the public
(private) key PK+

R (PK−
R) of principal R, respectively. Proto-

col 2 is based on R’s authenticated broadcast, indicated by *, of the
mid-term public keys PK+

R . These public keys form part of freshly
generated key pairs and are broadcasted along with their expiration
times te. An example broadcast is the authenticated publication
of PK+

R along with te on the receiver’s website, or the receiver’s
reply to a request by the sender (not shown in Figure 4). The cor-
responding secret keys PK−

R are not stored on R but on a porter
directly connected to R over a PS channel. At any point in time, the
sender may pick the public key that corresponds to the desired data
lifetime, use it to encrypt the time-limited data, and transmit the
message to the receiver, along with the respective expiration time
(thereby enabling the receiver to identify the right secret key). The
messages transmitted over the DY channel are authenticated.

4.4.3 Comparison
Protocols 1 and 2 differ in (i) how they create the mid-term en-

cryption key and (ii) how they achieve forward-secrecy on the com-
munication channel between R and P .

Protocol 1 uses key contributions by both the sender and the
receiver to establish the symmetric encryption key and assumes
a DY channel between R and P . This requires DH session key
establishments on both communication channels. A typical appli-
cation for Protocol 1 is the forward-secure email-communication
of a company (under our full-compromise attacker model) using a
trusted remote device for key management, e. g., a key card or other
special-purpose devices.

In contrast to this, Protocol 2 uses asymmetric encryption with
key pairs created by the receiver. The public keys may, e. g., be an-
nounced on a private user’s webpage. Protocol 2 does not require
DH key establishment on the communication channel between S
and R. Due to the PS channel, it also does not require DH key
establishment between R and P . The communication devices us-
ing Protocol 2 must be able to perform public-key operations; for
example, the porter can be a TPM attached to R. In a slightly dif-

246

S (sender) DY channel R (receiver) PS channel P (TPM)
generate key pairs (PK+

R , PK−
R)

assign expiration times:
*

AR(1,te,PK+
R)

"" (PK+
R , PK−

R , te)
2,te,PK−

R !!

delete PK−
R

...
select te

AS(3,{m}
P K+

R
,te)

!! 4,te !!

delete m m = {{m}PK+
R
}PK−

R

5,te,PK−
R""

After usage: delete m, PK−
R At te (ongoing):

delete (te, PK−
R)

Figure 4: Protocol 2. The protocol assumes a physically secure (PS) channel between R and P (e. g., P is an HSM physically wired to R’s
hard disk). Hence, messages between S and R need not to be further protected by encryption or authentication measures. The mid-term key
pair used for data encryption and decryption is (PK+

R , PK−
R). There are no ephemeral keys used.

ferent setting, this protocol can also be applied if S and R are porter
devices that can directly communicate. In this case, the operations
on the PS channel are simple storage and data retrieval operations
to and from the memory of the porter.

In summary, if the communication devices can perform key man-
agement, they can also be used for key storage; if not, the key man-
agement should be outsourced to a suitable porter. We also note
that the building blocks of Protocols 1 and 2 can be mixed, e. g.,
one can build an implementation that uses symmetric encryption
while relying on a TPM connected by a PS channel.

4.5 Formal Protocol Analysis
We now construct formal models of our protocols and analyze

the secrecy of the message m with respect to our attacker model
(Section 2.3) using the Scyther tool [15]. We chose Scyther since it
provides support for revealing the principals’ states and enables us
to analyze forward secrecy under full compromise [6, 7]. We first
provide background information on Scyther.

4.5.1 Background on Scyther
Scyther is a tool for the symbolic automatic analysis of the se-

curity properties of cryptographic protocols (typically confiden-
tiality or variants of authenticity). It assumes perfect cryptogra-
phy, meaning that an attacker gains no information from an en-
crypted message unless she knows the decryption key (this is a
standard assumption in symbolic methods). Scyther takes as in-
put a role-based description of a protocol in which the intended
security properties are specified using claims. Claims are of the
form claim(Principal,Claim,Parameter), where Principal is the user’s
name, Claim is a security property (such as ’secret’), and Parameter
is the term for which the security property is checked.

Recent versions of Scyther can analyze protocols with respect
to a family of attacker models, ranging from a standard Dolev-Yao
style network attacker to stronger attackers capable of various types
of compromise. The attacker model is specified by selecting a set of
attacker capabilities, such as revealing the short-term or long-term
secrets of users. To analyze our protocols, we enable the follow-
ing attacker capabilities: (i) Long-term key reveal for all princi-
pals and for other parties after the protocol execution, (ii) Session
(short-term) key reveal for all parties not part of the current pro-
tocol execution, and (iii) Session-state reveal, which reveals the
entire contents of the session-state of the parties. Together, these
capabilities model the attacker from Section 2.3.

For most protocols and properties, the tool either finds an attack

or establishes the unbounded verification of the protocol’s proper-
ties with respect to the specified attacker model. In the remaining
cases, bounded verification is performed where the bound defines
the number of considered runs, i. e., the maximum number of paral-
lel threads (or executions of role descriptions) executed by honest
principals. This bounded result is similar to model-checking ap-
proaches for formal protocol verification. Attacks such as replay or
man-in-the-middle attacks are typically found within the bound of
two or three runs for many protocols (e. g., [5])5. The verification of
over 100 protocols in [16] showed that no attacks were found that
involved more runs than the number of principals in the protocol
(except for protocols specifically constructed as counterexamples).

4.5.2 Analysis of Protocol 1
We model Protocol 1 (Figure 3) using eight send and receive

events for the three principals S, R, and P . The complete proto-
col models and the tool itself are available at [2]. To give some
intuition, we display the part that models the sender S:

role S {
const rS: Nonce; // S’s DH key contribution
const te: Nonce; // expiration time
const M: Nonce; // time-limited data
var beta: Ticket; // R’s DH key contribution

claim_sidS(S, SID, te); // mark T_e as session id
// Phase 1
send_1(S,R,g1(rS),te,{l1,g1(rS),te}sk(S));
recv_5(R,S,g1(rS),beta,te,{l5,g1(rS),beta,te}sk(R));
// Phase 2
send_!6(S,R,{l6a,M}g2(beta,rS),te,
{l6b,{l6a,M}g2(beta,rS),te}sk({S});

claim_s(S, Secret, M);
}

When using Scyther, security properties are modeled as local prop-
erties: If an agent executes a particular role, what can be concluded
about the state of other agents or the attacker’s knowledge? Here
we analyze whether the protocol ensures the secrecy of m after the
execution of an instance of S or R, and the secrecy of K after the
execution of an instance of P , both under full compromise. In par-
ticular, we verified the following claims: S: claim(S,Secret,m), R:
claim(R,Secret,m), and R: claim(P ,Secret,K). As Scyther currently
does not support explicit key expiration times, we model the expi-
ration as happening immediately after the protocol execution, i. e.,

5The security analysis in [5] indicates that the Ephemerizer proto-
col is secure in terms of secrecy but insecure regarding integrity.
The analysis is based on two (or three) runs.

247

Figure 5: Scyther result for Protocol 1.

after the key is retrieved from P . This is a worst case model be-
cause early key expiration only gives the attacker more knowledge
at earlier times and thus more possibilities for attacks.

Figure 5 shows the results of the Scyther analysis. Scyther vali-
dates that no attacks exist on the model of Protocol 1 that involve
less than four honest agent runs. For bounds of four or more parallel
runs, the verification process did not terminate (within a day) due to
the complexity of the analysis. Similar to bounded model-checking
this neither falsifies the protocol nor proves its correctness, but es-
tablishes that no attacks exist within the given bounds.

4.5.3 Analysis of Protocol 2
We model Protocol 2 (Figure 4) in Scyther by two send events

over the DY channel. Messages over the physically secure channel
are not modeled as events because they are not subject to compro-
mise (as opposed to the DY channel). Consequently, we verified the
following two claims: S: claim(S,Secret,m) and R: claim(R,Secret,
m). The input file provided to the Scyther tool can be found at [2].
The automatic analysis validates that no attacks exist on the model
of Protocol 2 that involve less than ten honest agent runs. For
bounds of ten or more parallel runs, the verification process did
not terminate (within a day).

5. IMPLEMENTATION AND EVALUATION
We now examine possible realizations of key storage devices

(Section 5.1), describe results from our mobile phone prototype
implementation (5.2), and evaluate our solution (5.3).

5.1 Possible Realizations of Porter Devices
Dedicated Platforms. One possible realization of the porter de-

vice uses a platform that is embedded in the receiver device or
is (occasionally) attached to the receiver. Example platforms on
which porter functionality (i. e., key storage and delayed deletion)
can be implemented are dedicated hardware security modules ([1]
is an example of a platform that offer porter functionality). Note
that our solution does not assume that the porter is tamper-resistant.
Existing TPM modules could be used as porters but their function-
ality would have to be extended with delayed key deletion. TPMs
used for this purpose must have an internal battery and clock; these
are typically available in more advanced platforms (e. g., the IBM
4758 Cryptographic Coprocessor [14]). Typically, the communica-
tion with such a dedicated platform is a physically secure channel
(a wired link); thus no additional measures are needed to guarantee
the forward secrecy of the communication to and from the porter.

Mobile Phones. Private users might not have access to dedi-
cated platforms. However access to mobile phones is widespread,
so they are natural candidates for porter devices. For most users,
their primary mobile phone is always operational and users pay
close attention to their correct functioning and charging. The us-
ability of mobile phones and personal computers has improved over
the years and there are many convenient (wireless and wired) chan-
nels through which these devices can communicate and synchro-

nize (e.g., Bluetooth [10]). The storage requirements of our so-
lution are easily met with today’s smartphone platforms (see Sec-
tion 5.2). The communication between a mobile phone porter and
the user’s device must be forward-secret. Message secrecy is pre-
served, even given mobile phone loss prior to key deletion, as dis-
cussed in Section 4.3.

5.2 Prototype Implementation
To demonstrate the practical feasibility of our solution, we de-

veloped a prototype implementation of Protocol 1 for the commu-
nication between the receiver and the porter device. Our porter is
a NexusOne [35] mobile phone (firmware 2.1, kernel 2.6.29, An-
droid OS, 512 MB memory), depicted in Figure 6a. The receiver is
implemented on a laptop running MacOSX 10.6.2.

The communication between the receiver and the porter is based
on Bluetooth, using the Bluecove library [9], which we recompiled
for a 64-bit Mac. Cryptographic operations are implemented using
the Bouncycastle [4] library. To secure the key K on the wire-
less channel, we use symmetric AES/CBC/PKCS5 encryption with
a 256-bit key that is derived from the established ephemeral DH
key L (or L′) by a SHA-256 hash. All messages are authenticated
by a 32-byte HMAC-SHA with a 224-bit key that is pre-shared
between the laptop and the mobile phone. Furthermore, we use 2-
byte packet IDs, 8-byte timestamps, a 16-byte initialization vector
for AES, and 1024-bit DH-key pairs. We use base64 encoding to
transmit the packets over an RFComm Bluetooth connection and
the tool srm to perform secure deletions on the laptop.

Figure 6b displays the execution times and the standard deviation
for 100 runs as measured on the laptop. We see that key storage and
retrieval are below one second, once the Bluetooth connection has
been established. The times for key storage have a larger variance
than for key retrieval since files are created and written rather than
just read.

The key storage and delayed deletion functionality on the porter
is implemented as follows. We store the keys along with their ex-
piration times in files. To ensure the timely deletion of a file (i. e.,
key), we set an alarm service to automatically trigger the deletion of
the respective file upon the timestamp’s expiration. If the phone is
shut down and rebooted before the expiration time, a background
process (triggered by the boot-complete system broadcast) parses
the key files, deletes files with expired timestamps, and resets the
alarms. Figure 6c displays the time for setting the system alarm
for different numbers of keys (files). We see the linear dependency
of the number of keys on the alarm reset time. This background
process does not significantly degrade the usability of the device.

Given the execution times in Figure 6 and a consumption of
1.5 kB for program storage and 0.18 kB per key, our prototype im-
plementation confirms the usability of our approach in practice.

Note on Secure Deletion
When exploring implementation options, we observed that many
embedded devices have limited functionality for secure deletion
due to OS characteristics (like versioning) or hardware specifics
(e.g., NAND storage often uses log-structured sequential writes).
Enabling secure deletion on these devices is subject to recent re-
search, examples include [26] for the Android YAFFS file sys-
tem, [30] for versioning file systems, and [34] regarding data re-
manence in flash memory devices. Secure deletion may not be re-
alized on certain off-the-shelf devices and care should thus be taken
in the selection of the porter device.

5.3 Integration with Applications
Given a functional porter device, our solution can be integrated

248

(a)

 880

 900

 920

 940

 960

Operation

Generation time for the receiver ()

Key storage
Key retrieval

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000
Number of stored keys

Time to reset the alarm ()

Alarm reset time

(c)

Figure 6: (a) Prototype implementation of the key storage (porter) functionality on a NexusOne mobile phone. (b) Protocol execution times
for the receiver. The plot shows the average times and the standard deviation for 100 runs of Protocol 1. (c) Time for resetting the system
alarm (used to delete keys at their expiration time) after a phone reboot for different numbers of keys.

in many applications, such as file storage, web services, and e-mail.
File Storage. The simplest application of our solutions is to lo-

cal file storage, where a device locally stores confidential data that
should be inaccessible after the expiration time. To enable this, the
device encrypts the data locally with a key stored on a porter de-
vice. Here, our protocols can be substantially simplified: the only
communication that needs to be forward-secret is that between the
device and the porter (this can be further simplified if this chan-
nel is physically secure). Remote file storage is similar to local file
storage in that the only device that has access to the data decryption
keys is the device that created them. However, the communication
between the user’s device and the remote file server where the data
is stored must be forward-secret.

Web Services. Another application is where users share their
data (e. g., pictures, movies, files) using remote storage in the form
of a web service. The data is to be kept secret even in the case of full
device (sender and receiver) and service compromise. In contrast
to standard remote file storage, here the communication key must
be agreed upon between the sender (who uploads the data) and the
receiver(s) (who download the data). The receiver stores the key
on a porter device and obtains it when it downloads the data. The
communication used for key agreement must be forward secret.

E-mail. Finally, we consider the scenario where the sender and
the receiver wish to preserve the secrecy of their e-mail correspon-
dence. In this scenario, the parties first agree on the keys that
they will use for their communication and on their expiration times.
They then store the keys on their respective porter devices and ex-
change e-mail. Although we could directly use Protocol 1, it can
be optimized by making a mobile phone porter establish the keys
directly with the sender. This can be alternatively done via e-mail
exchange, without the participation of the receiver. The receiver
could be notified that the keys are established when it synchronizes
(e. g., over an IMAP server) with the e-mail communication.

6. RELATED WORK
Shoup [32] defined three notions for the compromise of prin-

cipals: static corruptions (in which principals are either compro-
mised or not), adaptive corruptions (in which long-term keys may
be compromised), and strong adaptive corruptions (in which the
compromise of principals reveals both long-term and short-term
stored secrets). In our attacker model, we build on the third notion
by considering full device and user password compromise after a
specific time.

Methods for protecting data confidentiality under device com-
promise include secret sharing [31], threshold cryptography [17],
and forward secrecy [22]; we focus on the last method. Canetti
et al. [13] proposed a forward-secure public-key encryption scheme
in which a receiver evolves its private key such that it can only de-
crypt messages with a later timestamp. A similar idea was adopted
by Bellare et al. [8] for forward-secure digital signature schemes.
We cannot use such approaches because private keys cannot evolve
when devices are inactive.

The confidentiality of data exchanged between individuals or or-
ganizations is attracting increasing attention. Centralized systems
such as [20] for server-based sharing and storage of personal data
offer access control and data deletion at user-defined or automati-
cally derived times. However, they require full trust in the service
provider to treat passwords and data confidentially and to delete
both when specified. Ephemerizer-based solutions [25,28,29] sim-
ilarly require trust in a central server. As discussed in [21], this
does not ensure the data confidentiality in the presence of service-
provider mismanagement and legal action to reveal data.

7. CONCLUSION
We addressed the problem of data confidentiality in scenarios

where attackers can observe the communication between princi-
pals and can also fully compromise the principals after the data
has been exchanged, thereby revealing the entire state of the prin-
cipals’ devices. We explored the design space of solutions to this
problem and proposed two protocols that use key storage on porter
devices along with explicit deletion and forward secret subproto-
cols to achieve secrecy under full device, user and communication
compromise. The solutions provide users with full control over
their data privacy. We formalized our proposed solutions and an-
alyzed them using an automatic verification tool. Our prototype
implementation shows their practicality and feasibility.

Acknowledgment
The authors thank Claudio Marforio for his work on the implemen-
tation of the prototype.

8. REFERENCES
[1] Privat Server HSM (Hardware Security Module).

http://www.arx.com/products/hsm.php.

249

[2] Scyther protocol models for keeping data secret under full
compromise using porter devices. http://people.inf.
ethz.ch/cremersc/scyther/DataDeletion, Oct
2010.

[3] Chris Alexander and Ian Goldberg. Improved user
authentication in off-the-record messaging. In Proceedings
of the ACM Workshop on Privacy in the Electronic Society
(WPES), pages 41–47, New York, 2007. ACM.

[4] Bouncy Castle Crypto APIs.
http://www.bouncycastle.org.

[5] Charu Arora and Mathieu Turuani. Validating integrity for
the Ephemerizer’s protocol with CL-Atse. In Formal to
Practical Security: Papers Issued from the 2005-2008
French-Japanese Collaboration, pages 21–32. Berlin, 2009.

[6] David Basin and Cas Cremers. Degrees of security: Protocol
guarantees in the face of compromising adversaries. In
Proceedings of the 24th International Workshop on
Computer Science Logic (CSL), pages 1–18. Springer, 2010.

[7] David Basin and Cas Cremers. Modeling and analyzing
security in the presence of compromising adversaries. In
Proceedings of the European Symposium on Research in
Computer Security (ESORICS), pages 340–356. Springer,
2010.

[8] Mihir Bellare and Sara K. Miner. A forward-secure digital
signature scheme. In Proceedings of the 19th Annual
International Cryptology Conference on Advances in
Cryptology (CRYPTO), pages 431–448, London, 1999.

[9] Bluecove. Java library for Bluetooth (JSR-82
implementation). http://bluecove.org.

[10] Bluetooth SIG, Inc. Bluetooth specification version 3.0 +
HS, 2009.

[11] Nikita Borisov, Ian Goldberg, and Eric Brewer.
Off-the-record communication, or, why not to use PGP. In
Proceedings of the ACM Workshop on Privacy in the
Electronic Society (WPES), pages 77–84, New York, 2004.
ACM.

[12] Colin Boyd and Anish Mathuria. Protocols for
Authentication and Key Establishment. Springer, 2003.

[13] Ran Canetti, Shai Halevi, and Jonathan Katz. A
forward-secure public-key encryption scheme. In
Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 255–271. Springer, 2003.

[14] IBM Corporation. IBM PCI Cryptographic Coprocessor.
General Information Manual. http:
//www-03.ibm.com/security/cryptocards.

[15] Cas Cremers. Scyther. A tool for the automatic verification
of security protocols. http:
//people.inf.ethz.ch/cremersc/scyther.

[16] Cas Cremers. Scyther—Semantics and Verification of
Security Protocols. PhD thesis, Eindhoven University of
Technology, 2006.

[17] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In
Proceedings on Advances in Cryptology (CRYPTO), pages
307–315, New York, 1989. Springer.

[18] Whitfield Diffie, Paul C. van Oorschot, and Michael J.
Wiener. Authentication and authenticated key exchanges.
Designs, Codes and Cryptography, 2(2):107–125, 1992.

[19] Danny Dolev and Andrew C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[20] Drop. Simple real-time sharing, collaboration, presentation.
http://drop.io.

[21] Roxana Geambasu, Tadayoshi Kohno, Amit Levy, and
Henry M. Levy. Vanish: Increasing data privacy with
self-destructing data. In Proceedings of the 18th USENIX
Security Symposium, pages 299–315. USENIX Association,
2009.

[22] Christoph G. Günther. An identity-based key-exchange
protocol. In Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques on Advances in
Cryptology (EUROCRYPT), pages 29–37, New York, 1990.
Springer.

[23] Prateek Gupta and Vitaly Shmatikov. Key confirmation and
adaptive corruptions in the protocol security logic. In
Proceedings of the Joint Workshop on Foundations of
Computer Security and Automated Reasoning for Security
Protocol Analysis (FCS-ARSPA), 2006.

[24] Peter Gutmann. Secure deletion of data from magnetic and
solid-state memory. In Proceedings of the 6th USENIX
Security Symposium (SSYM), Focusing on Applications of
Cryptography, pages 77–90, Berkeley, California, 1996.
USENIX Association.

[25] Disappearing Inc.
http://www.disappearing-inc.com.

[26] Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman Hong,
and Sung Y. Shin. Secure deletion for NAND flash file
system. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 1710–1714, 2008.

[27] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

[28] Radia Perlman. The Ephemerizer: Making data disappear.
Journal of Information System Security, 1:51–68, 2005.

[29] Radia Perlman. File system design with assured delete. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS). ISOC, 2007.

[30] Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam
Stubblefield, and Aviel D. Rubin. Secure deletion for a
versioning file system. In Proceedings of the 4th USENIX
Conference on File and Storage Technologies (FAST), pages
143–154, Berkeley, California, 2005. USENIX Association.

[31] Adi Shamir. How to share a secret. Commununications of the
ACM, 22(11):612–613, 1979.

[32] Victor Shoup. On formal models for secure key exchange.
Research Report RZ 3120, IBM Research, 1999.

[33] Muthian Sivathanu, Lakshmi N. Bairavasundaram,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Life or death at block-level. In Proceedings of the 6th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 379–394, Berkeley,
California, 2004. USENIX Association.

[34] Sergei Skorobogatov. Data remanence in flash memory
devices. In Proceedings of the Cryptographic Hardware and
Embedded Systems Workshop (CHES), pages 339–353, 2005.

[35] NexusOne Smartphone. http://www.htc.com.
[36] Scott Wolchok, Owen S. Hofmann, Nadia Heninger,

Edward W. Felten, J. Alex Halderman, Christopher J.
Rossbach, Brent Waters, and Emmett Witchel. Defeating
Vanish with low-cost Sybil attacks against large DHTs. In
Proceedings of the 17th Network and Distributed System
Security Symposium (NDSS). ISOC, 2010.

250

Familiarity Breeds Contempt

The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities

Sandy Clark
University of Pennsylvania

saender@cis.upenn.edu

Stefan Frei
Secunia

sfrei@secunia.com

Matt Blaze
University of Pennsylvania
blaze@cis.upenn.edu

Jonathan Smith
University of Pennsylvania
jms@cis.upenn.edu

ABSTRACT

Work on security vulnerabilities in software has primarily
focused on three points in the software life-cycle: (1) finding
and removing software defects, (2) patching or hardening
software after vulnerabilities have been discovered, and (3)
measuring the rate of vulnerability exploitation. This paper
examines an earlier period in the software vulnerability life-
cycle, starting from the release date of a version through to
the disclosure of the fourth vulnerability, with a particular
focus on the time from release until the very first disclosed
vulnerability.

Analysis of software vulnerability data, including up to
a decade of data for several versions of the most popular
operating systems, server applications and user applications
(both open and closed source), shows that properties ex-
trinsic to the software play a much greater role in the rate
of vulnerability discovery than do intrinsic properties such
as software quality. This leads us to the observation that
(at least in the first phase of a product’s existence), soft-
ware vulnerabilities have different properties from software
defects.

We show that the length of the period after the release of
a software product (or version) and before the discovery of
the first vulnerability (the ’Honeymoon’ period) is primarily
a function of familiarity with the system. In addition, we
demonstrate that legacy code resulting from code re-use is
a major contributor to both the rate of vulnerability dis-
covery and the numbers of vulnerabilities found; this has
significant implications for software engineering principles
and practice.

1. INTRODUCTION
Software vulnerabilities are the root cause of many secu-

rity breaches, so understanding software systems is essential
to developing models for how and when to invest effort in
securing software. The most important software systems to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

understand are those of large scale and those in wide use.
Since almost all software systems today are large and com-
plex, we can focus our attention on those in wide use. Rang-
ing from document preparation programs to web browsers
and operating systems, such systems can each comprise mil-
lions of lines of source code, a very rough measure of software
complexity. Given the importance of such systems, models
for their creation, use, maintenance and upgrades - their
“life-cycle” - are clearly necessary.

Figure 1: Bugs per month, Left:Figure 11.2 from
“The Mythical Man Month”, Right: Security vul-
nerabilities per month

Models are useful in estimating project costs and timing.
For example, if a model predicts that the bug discovery rate
drops rapidly after an initial flurry of discoveries, this fact
can be used to determine when software is ready for release:
once the rate has reached an acceptable level, the software
can be shipped. Such estimation can have significant eco-
nomic effects upon an enterprise: ship too early and pay
a price in service calls; ship too late and potentially lose
customers who might look elsewhere. A powerful predictive
model can therefore be worth significant amounts of revenue,
as it allows trading development costs and time against a
combination of sales revenue and maintenance costs.

Software Reliability Models (SRMs) are primarily con-
cerned with increasing the quality of the code by predicting
and locating software defects. A major assumption made

251

by SRMs is that software is released with some number of
defects that can be categorized based on how easy each is
to find. A further assumption is made that the easy-to-find
defects are discovered and fixed early in the software life-
cycle, quickly leading to a state where only difficult-to-find
vulnerabilities are left and the software can be considered
reliable. Figure 11.2 from Brooks [5] is reproduced on the
left of Figure 1 to illustrate this point.

Software Vulnerability Discovery Models (VDMs) resem-
ble SRMs, but VDMs focus predominantly on predicting
attacks against mature software systems. VDMs rely on the
intrinsic qualities of the software for a measure of its initial
security. For a VDM the expectation is that the low-hanging
fruit vulnerabilities are found quickly and patched. The re-
maining vulnerabilities (which are increasingly difficult to
find) are presumed to take much longer to discover, and the
software is considered “secure”. A VDM with those expec-
tations would predict that vulnerabilities are found fastest
shortly after the release of a product, and the rate of dis-
covery decreases thereafter.

The implications of such a VDM are significant for soft-
ware security. It would suggest, for example, that once the
rate of vulnerability discovery was sufficiently small, that the
software is “safe” and needs little attention. It also suggests
that software modules or components that have stood this
“test of time” are appropriate candidates for reuse in other
software systems. If this VDM model is wrong, these impli-
cations will be false and may have undesirable consequences
for software security.

Unlike much of the previous work [25, 2, 28] which focused
on understanding time to exploit after a vulnerability has
been discovered, this paper focuses on measuring time to
vulnerability discovery.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our unique dataset of vulnerabilities, cover-
ing several versions of the most popular software products,
operating systems, server applications and user applications.

In Section 3 we analyze this data, which show that the
period between the release date of a product and its very
first 0-day vulnerability is considerably longer than the mean
time between the first vulnerability and second or between
the second and the third. We call this unexpected grace
period the honeymoon effect and believe it to be important,
because these numbers challenge our expectations and intu-
ition about the effect of software quality on security. The
interval between software release and the discovery of it’s
first 0-day vulnerability also appears to be a strong predic-
tor of the arrival rate of subsequent vulnerability discoveries.

The honeymoon effect also illustrates another incompat-
ibility between current software engineering practices and
security: the effect of code reuse. “Good programmers write
code, Great programmers reuse ” is a well-known aphorism,
and the assumption made is that reusing code is not only
more efficient, but since the code has already been deployed
successfully, it is more reliable and therefore, by implication,
also more secure. In Section 4 our data again show this is
not the case.

We set our results in the context of prior work in Section
5 and conclude the paper by summarizing our claims and
discussing the implications for engineering secure software
systems in Section 6.

2. OUR DATASET

In this paper, we are concerned specifically with the early
post-release vulnerability life-cycle for modern, mass mar-
ket software, including operating systems, web clients and
servers, text and graphics processors, server software, and
so on.

Our analysis focuses on publicly distributed software re-
leased between 1999 and 2007. (2007 is the latest date for
which complete vulnerability information was reliably avail-
able from various published data sources). We included both
open and closed source software.

To encompass the most comprehensive possible range of
relevant software releases, we collected data about all re-
leased versions of the major operating systems (Windows,
OS X, Redhat Linux, Solaris, FreeBSD), all released ver-
sions of the major web browsers (Internet Explorer, Firefox,
Safari), and all released versions of various server and end
user applications, both open and closed source. The server
and user applications were based on the top 25 downloaded /
purchased / favorite application identified in lists published
by ZDNet, CNet, and Amazon, excluding only those appli-
cations for which accurate release date information was un-
available or that were not included in the vulnerability data
sources described below. In total, we were able to compile
data about 38 of the most popular and important software
packages.

For each software package and version during the period
of our study, we examined public databases, product an-
nouncements, and published press releases to assign each
version a release date. For the period of versions (1990-
2007) and for the period of vulnerabilities (1999-2008), we
identified 700 distinct released versions (’major’ and ’minor’)
of the 38 different software packages.

We then compiled a dataset of more than 30,000 exploitable
vulnerabilities that were disclosed during the period under
analysis (January 1999 through January 2008). Our baseline
sources were publicly available databases from the National
Vulnerability Database (NVD) [23] and from the Common
Vulnerabilities and Exposures (CVE) [9] initiative that feeds
NVD. (For each vulnerability, NVD provides a publication
date, a short description, a risk rating, references to original
sources, and information on the vendor, version and name of
the product affected.) We also downloaded, parsed, and cor-
related the information from over 200,000 individual secu-
rity bulletins from several “Security Information Providers”
(SIPs), choosing the set of SIPs based on criteria such as in-
dependence, accessibility, and available history of informa-
tion. Ultimately, we processed all security advisories from
the following seven SIPs: Secunia, US-CERT, SecurityFo-
cus, IBM ISS X-Force, SecurityTracker, iDefense’s (VPC),
and TippingPoint(ZDI) [29, 33, 30, 14, 34, 31, 15, 32].

For this study, we selected from these bulletins and database
entries bugs identified as exploitable vulnerabilities that ren-
der the software vulnerable to actual attack and for which a
practical exploit has been demonstrated. We then calculated
the initial disclosure date for each exploitable vulnerability
to be the earliest calendar day on which information on a
specific vulnerability is made freely available to the public
in a consistent format by some recognized published source
[11]. To help ensure accuracy, we manually checked and cor-
rected over 3,000 instances of software version information
for the specific product versions under analysis in this paper
to normalize for inconsistencies in NVD’s vulnerability to
product mapping.

252

3. THE HONEYMOON EFFECT
Virtually all mass-market software systems undergo a lengthy

period, after their release, during which end-users discover
and report bugs and other deficiencies. Most software sup-
pliers (whether closed-source or open-source) build into their
life-cycle planning a mechanism for reacting to bug reports,
repairing defects, and releasing patched versions at regular
intervals. The number of latent bugs in a particular version
of a given version of a given piece of software thus tends to
decrease over time, with the initial, unpatched, release suf-
fering from the largest number of defects. (This excludes, of
course, defects introduced by patches, which are a minority
in practice). In systems where bugs are fixed in response
to user reports, the most serious and easily triggered bugs
would be expected to be reported early, with increasingly es-
oteric defects accounting for a greater fraction of bug reports
as time goes on.

Empirical studies in both the classic [5] and the current
[16] software engineering literature have shown that, indeed,
this intuition reflects the software life-cycle well (see Fig-
ure 2). Invariably, these and other software engineering
studies have shown that the rate of bug discovery is at
its highest immediately after software release, with the rate
(measured either as inter-arrival time of bug reports or as
number of bugs per interval) slowing over time.

Note that some (but not all) of the bugs discovered and
repaired in this process represent security vulnerabilities; in
security parlance a vulnerability that allows an attacker to
exploit a newly discovered, previously unknown bug is called
a 0-day vulnerability. Virtually all software vendors give
high priority to repairing defects once a 0-day exploit is dis-
covered.

It seems reasonable, then, to presume that users of soft-
ware are at their most vulnerable, with software suffering
from the most serious latent vulnerabilities, immediately af-
ter a new release. That is, we would expect attackers (and
legitimate security researchers) who are looking for bugs to
exploit to have the easiest time of it early in the life cy-
cle. This, after all, is when the software is most intrinsically
weak, with the highest density of ”low hanging fruit” bugs
still unpatched and vulnerable to attack. As time goes on,
after all, the number of undiscovered bugs will only go down,
and those that remain will presumably require increasing ef-
fort to find and exploit.

In other words, to the extent that security vulnerabilities
are a consequence of software bugs, conventional software
engineering wisdom tells us to expect the discovery of 0-day
exploits to follow the same pattern as other reported bugs.
The pace of exploit discovery should be at its most rapid
early on, and slowing down as the software quality improves
and the ”easiest” vulnerabilities are repaired.

But our analysis of the rate of the discovery of exploitable
bugs in widely-used commercial and open-source software,
tells a very different story than what the conventional soft-
ware engineering wisdom leads us to expect. In fact, new
software overwhelmingly enjoys a honeymoon from attack
for a period after it is released. The time between release
and the first 0-day vulnerability in a given software release
tends to be markedly longer than the interval between the
first and the second vulnerability discovered, which in turn
tends to be longer than the time between the second and the
third. That is, when the software it at its weakest, with the
”easiest” exploitable vulnerabilities still unpatched, there is

Figure 3: The Honeymoon Period, both Positive and
Negative time-lines

a lower risk that this will be discovered by an actual attacker
on a given day than there will be after the vulnerability is
fixed!

3.1 The Honeymoon Effect and Mass-Market
Software

For the purposes of this paper, we define the first (publicly
reported) exploitable vulnerability as the primal vulnerabil-
ity, we define a software release as experiencing a positive
honeymoon if the interval p0 between the (public) release of
the software and the primal vulnerability in the software is
greater than the interval p0+1 between the primal vulner-
ability and the second(publicly reported) vulnerability.(see
Figure 3) We will refer here to the interval p0 as the honey-
moon period and the ratio p0/p0+1 as the honeymoon ratio.
In other words, a software release has experienced a positive
honeymoon when its honeymoon ratio > 1.

We examined 700 software releases of the most popular re-
cent mass-market software packages for which release dates
and vulnerability reports were available (see Section 2). In
431 of 700 (62%) of releases, the honeymoon effect was pos-
itive. Most notably, the median overall honeymoon ratio
(including both positive and negative honeymoons) p0/p0+1

was 1.54. That is, the median time from initial release and
the primal vulnerability is 1 1/2 times greater than the time
from primal to the discovery of the second. The honeymoon
effect is not only present, it is quite pronounced, and the ef-
fect is even more pronounced when we exclude minor version
updates and focus on major releases. For major releases, the
honeymoon ratio(including both positive and negative hon-
eymoons) rises to 1.8.

Remarkably, positive honeymoons occur across our entire
dataset for all classes of software and across the entire pe-
riod under analysis. The honeymoon effect is strong whether
the software is open- or closed- source, whether it is an OS,
web client, server, text processor, or something else, and re-
gardless of the year in which the release occurred.(see Table
1)

Although the honeymoon effect is pervasive across the en-
tire dataset, one factor appears to influence its length more
than any other: the re-use of code from previous releases,
which, counter-intuitively, shortens the honeymoon. Soft-

253

Figure 2: Current Software Engineering literature supports the Brooks life-cycle model - image taken from
“Post-release reliability growth in software products”, ACM Trans. Softw. Eng Methodol. 2008 see references

Table 1: Percentages of Honeymoons by Year

Year Honeymoons

1999 56%

2000 62%

2001 50%

2002 71%

2003 53%

2004 49%

2005 66%

2007 58%

ware releases based on ”new” code have longer honeymoons
than those that re-use old code. We discuss this in detail in
the following sections.

3.2 Honeymoons in Different Software Envi-
ronments

The number of days in the honeymoon period varies widely
from software release to software release, and ranged from
a single day to over three years in our dataset. The length
of the honeymoon presumably varies due to many factors,
including the intrinsic quality of the software and extrinsic
factors such as attacker interest, familiarity with the system,
and so on.

To ”normalize” the length of the honeymoon for these
factors to enable meaningful comparisons between different
software packages, the honeymoon ratio – the ratio of the
time between release and the discovery of the first exploit
and the time between the discovery of the first and the sec-
ond – may be more revealing, since time to the second vul-
nerability discovery occurs in exactly the same software.

The median number of days in the honeymoon period
across all 700 releases in our dataset was 110. The median
honeymoon ratio across all releases is 1.54.

The honeymoon ratio remained positive in virtually all
software packages and types. The effect is weaker, but also
occurred, between the primal and second and second and
third reported vulnerabilities, depending on the particular
software package.

Figure 4 shows the median honeymoon ratio (and the
median ratios for the intervals between the second, third
and fourth vulnerabilities) for each operating system in the
dataset. Figure 5 shows the median honeymoon ratio of
servers, and Figure 6 shows end-user applications.

3.3 Open vs. Closed Source
The honeymoon effect is strong in both open- and closed-

source software, but it manifests itself somewhat differently.
Of the 38 software systems we analyzed, 13 are open-

source and 25 are closed-source. But of the 700 software
releases in our dataset 171 were for closed-source systems
and 508 were for open source. Open-source packages in our
dataset issued new release versions at a much more rapid
rate than their closed source counterparts.

Table 2: Median Honeymoon Ratio for Open and
Closed Source Code

Type Honeymoon Days Ratios

Open Source 115 1.23

Closed Source 98 1.48

Yet in spite of its more rapid pace of new releases, open
source software releases enjoyed a significantly longer me-
dian honeymoon before the first publicly exploitable vulner-
ability was discovered: 115 days, vs. 98 days for closed-
source releases.(see Table 2)

The median honeymoon ratio, however, is shorter in open-
source than in closed. The median ratio for all open-source
releases was 1.23, but for closed source it was 1.48. Figure 7
shows the median honeymoon ratios for various open-source
systems, and Figure 8 shows the median ratios for closed-
source systems.

254

 0.01

 0.1

 1

 10

 100

FreeBSD

OSX
redhat

solaris

win98

NT W
in2000Pro

W
in2000Serve

XP W
indows2003

Medians of Ratios of Primal to Subsequent for Operating Systems

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 4: Honeymoon ratios of p0/p0+1, p0+1/p0+2 and
p0+2/p0+3 for major operating systems. (Log scale.
Note that a figure over 1.0 indicates a positive hon-
eymoon).

 0.01

 0.1

 1

 10

 100

Apachehttpserver

Apachetom
cat

Asterisk

Bind
Firefox

Rsync

Openldap

Php
Postgresql

W
inW

ebServer200

Medians of Ratios of Primal to Subsequent for Server Applications

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 5: Honeymoon ratio of p0/p0+1, p0+1/p0+2 and
p0+2/p0+3 for common server applications

0.01

 0.1

 1

 10

 100

Firefox

Rsync

Sam
ba

ie im
agem

agick

reader

vm
wareworkstation

safari

quicktim
e

Medians of Ratios of Primal to Subsequent for User Applications

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 6: Honeymoon ratios of p0/p0+1, p0+1/p0+2 and
p0+2/p0+3 for common user applications

The longer honeymoon period with a shorter honeymoon
ratio for open-source software suggests that it not only takes
longer for attackers to find the initial bugs in open-source
software, but that the rate at which they ”climb the learn-
ing curve” does not accelerate as much over time as it does
in closed-source systems. This may be a surprising result,
given that attackers do not have the opportunity to study
the source code in closed-source systems, and suggests that
familiarity with the system is related to properties extrinsic
to the system and not simply access to source code.

4. THE HONEYMOON EFFECT AND PRI-

MAL VULNERABILITIES
To more fully understand the factors responsible for the

honeymoon effect, we examined the attributes of a particular
set of primal vulnerabilities. In this section we compare
the honeymoon periods of this set and show that primal
vulnerabilities are not a result of “low-hanging fruit”, and
that other extrinsic properties must apply.

It is well known that as complex software evolves from one
version to the next, new features are added, old ones dep-
recated and changes are made, but throughout its evolution
much of the standard code base of a piece of software remains
the same. One reason for this is to maintain backward com-
patibility, but an even more prevalent reason is that code
re-use is a primary principle of software engineering [18, 5].

In Milk or Wine [25] Ozment et al measured the portion
of legacy code in several versions of OpenBSD and found
that 61% of legacy (their term is ’foundational’) code was
still present 15 releases (and 7.5 years) later. This legacy
code accounted for 62% of the total vulnerabilities found.
While it is not possible to measure the amounts of legacy
code from version to version in closed source products as
it is for open source, it is well known that the major ven-

255

 0.01

 0.1

 1

 10

 100

FreeBSD

Redhat

Apachehttpserver

Apachetom
cat

Asterisk

Bind
Firefox

Rsync

Openldap

Php
Postgresql

Sam
ba

Medians of Ratios of Primal to Subsequent for Open Source Code

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 7: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3

for open source applications

 0.01

 0.1

 1

 10

 100

OSX
solaris

win98

NT W
in2000Pro

XP ie im
agem

agick

reader

vm
wareworkstation

safari

quicktim
e

Medians of Ratios of Primal to Subsequent for Closed Source Code

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 8: Ratios of p0/p0+1 to p0+1/p0+2 and p0+2/p0+3

for closed source applications

dors strongly encourage code re-use among their collaborat-
ing developers [19], and more importantly, it is possible to
measure the numbers of legacy vulnerabilities. By compar-
ing the disclosure date of a vulnerability with the release
dates and product version affected, it is possible to deter-
mine which vulnerabilities discovered in the current release
result from earlier versions. For example, if a vulnerability
V affects versions (k,...N) (0<k<N) of a product, but not
versions (1,...,k-1) and was disclosed after the release date
of version N, we know that the vulnerability was introduced
into the product with version k, and that it stayed hidden
until its discovery after the release of version N. We call
these regressive vulnerabilities as they are those vulnerabil-
ities which are not found through normal regression testing
and may lie dormant through more than one version re-
lease(sometimes for years).1 For the purposes of this paper,
we define a regressive vulnerability as a primal vulnerability
that was discovered to affect not only version N in which
it was found, but also affect one or more earlier versions (
versions N-1, N-2,...,1.0)

Figure 9: Regressive Vulnerability timeline

On the other hand, a progressive vulnerability is primal
vulnerability which is discovered in version N and does not
affect version N-1 or any earlier versions. A progressive vul-
nerability indicates that the vulnerability was introduced
with the new version N. (see Figure 9)

Figure 10 shows that legacy vulnerabilities2 make up a
significant percentage of vulnerabilities across all products,
e.g. 61% of the Windows Vista vulnerabilities originate in
earlier versions of the OS, 40% of which originate in Win-
dows 2000 released seven years earlier. This analysis shows
that vulnerabilities are typically long-lived and can survive
over many years and many product versions until discovered.

In order to ascertain whether regressive vulnerabilities
could be the result of code reuse rather than configuration
or implementation errors, we manually checked the NVD
database description and the original disclosure sources for
information regarding the type of vulnerability. We found
that 92% of the regressive vulnerabilities were the result of
code errors (buffer overflows, input validation errors, excep-
tion handling errors) which strongly indicates that a vulner-
ability that affects more than one version of a product is
most likely a result of legacy code shared between versions.
We removed the vulnerabilities which are the result of im-
plementation or configuration errors from our dataset and
focused exclusively on code errors.

4.1 Regressive Vulnerabilities
1In OpenBSD, Ozment et al states ”It took more than two
and a half years for the first half of these ... vulnerabilities
to be reported.” [25].
2including both regressives and progressives

256

nt 95 98 2000 xp 2003 vista 2008

0
1
0
0

2
0
0

3
0
0

4
0
0

WinOS
Origin of legacy vulnerabilities in major versions

v
u
ln

e
ra

b
ili

ti
e
s

major version

nt

●

●

95
●

●

98
●

●

2000

●

●

xp

●

●

2003

●

●

vista

●

●

new
vista
2003
xp
2000
98
95
nt

Figure 10: Proportion of legacy vulnerabilities in
Windows OS

If code reuse and an attacker’s familiarity with the sys-
tem has an effect on the rate of vulnerability discovery, then
when one examines the primal vulnerabilities, one should
expect to see that regressive vulnerabilities make up a sig-
nificant percentage of them. And indeed, after examining all
the primal vulnerabilities in our data set, we find that 77%
of them are regressive. (ie, 77% of the primals were found
to also affect earlier versions). Table 3 lists the percentages
of regressives for all, open source, closed source primals. Ta-
ble 3 also shows that the percentage of regressives is even
higher for open source primals (rising up to 83%), and lower
for closed source (59%). The high percentage of regressive
vulnerabilities is surprising, because it shows that the ma-
jority of primal vulnerabilities, (the first vulnerability found
after a product is released), are not the easy to find “low-
hanging fruit” one would expect from conventional software
engineering defects, instead these regressives lay dormant
throughout the life-time of their originating release (and pos-
sibly several subsequent releases). If these regressives had
been easy to find, then presumably, they would have been
found in the version in which they originated.

Table 3: Percentages of Regressives and Regressive
Honeymoons for all Primal Vulnerabilities
Type Total Regressives Total Regr. Honeymoons

ALL 77% 62%

Open Source 83% 62%

Closed Source 59% 66%

4.2 The Honeymoon Effect and Regressive Vul-
nerabilities

Another unexpected finding is that regressive vulnerabil-
ities also experience the honeymoon effect. Because regres-
sive vulnerabilities have been lying dormant in the code for

0.1

 1

 10

All
Open-Source

Closed-Source

All
Open-Source

Closed-Source

Honeymoon Ratios for Regressives(l) and Progressives(r)

Days to Zero:Days to Second
Days to Second:Days to Third
Days to Third:Days to Fourth

Figure 11: Honeymoon ratios of p0/p0+1, p0+1/p0+2

and p0+2/p0+3 for common user applications

more than one release, and because the attackers have had
more time to familiarize themselves with the product, it
seems reasonable to presume that the first of these vulner-
abilities would be found in a shorter amount of time than
time to find the second vulnerability (whether regressive or
progressive). But, our analysis shows this isn’t the case. The
second column of Table 3 lists the percentages of regressives
that were also honeymoons. In each case whether we looked
at all regressives combined, only open source or only closed
source, the percentages of honeymoons is in the low to mid
60th percentile - almost the same as the total honeymoon
effect for all regressives and progressives combined. Closed
source does exhibit a slightly longer honeymoon effect, but
not significantly so. The existence of regressive honeymoons,
especially in such high proportions indicates that proper-
ties extrinsic to the quality of the code, in particular an
attacker’s familiarity with the system play a much greater
role early on in the life-cycle of a release than previously
expected.

4.3 Regressives vs. Progressives
The strong presence of the honeymoon effect even among

regressive vulnerabilities leads us to wonder what if any ef-
fect regressives might have on the length of the honeymoon
period. Yes, regressive vulnerabilities experience a honey-
moon, but is it longer or shorter than the honeymoon for
progressive vulnerabilities? The honeymoon ratio provides
insight into the length of the honeymoon period. Figure 11
shows the median honeymoon ratios for regressives (all, open
and closed), progressives (all, open and closed), for the vul-
nerabilities p0/p0+1, through p0+2/p0+3. The median hon-
eymoon ratio for regressive vulnerabilities is lower than that
for progressives. In fact, the honeymoon ratio for progres-
sive vulnerabilities is almost twice as long. This strongly
suggests that familiarity with the system is a major con-

257

tributor to the time to first vulnerability discovery. Inter-
estingly, it doesn’t seem to have a significant effect on open
source code, but closed source does seem to have a longer
honeymoon period, even for regressives. In other words, fa-
miliarity shortens the honeymoon.

4.4 Less than Zero Days

Table 4: Percentages of Primals that are Less-than-
Zero (released vulnerable to an already existing ex-
ploit) and the new expected median time to first
exploit, for all products, Open source and Closed
Source
Type Percentages Median Honeymoon Period

ALL 21% 83

Open Source 18% 89

Closed Source 34% 60

Dormant vulnerabilities are not the only cause of 0-days.
Legacy vulnerabilities result in a second category of regres-
sive 0-days for which there can be no honeymoon period.
These Less-than-Zero days occur when a new version of a
product is released vulnerable to a previously disclosed vul-
nerability. For example, the day Windows 7 was officially
released, it was discovered that it was vulnerable to several
current prominent viruses which had originally been crafted
for Windows XP [35] Our research shows that less-than-zero
days account for approximately 21% of the total legacy vul-
nerabilities found, with closed source code containing the
most (34%)(see Table 4). In all cases the median number
of days to first exploit is reduced by approximately 1/3 and
the median honeymoon ratio drops from 1.54 to 1.0. From
this we conclude that not patching vulnerabilities has a sig-
nificant negative effect on the honeymoon period. Of course
there is no way to measure exactly when an attacker is likely
to test an existing exploit against a newly released prod-
uct however, the Sophoslabs [35] tests are indicative of how
quickly a vendor might expect attackers to act.

5. RELATED WORK
As noted in the Introduction, both the scale of modern

software systems and the scale of their deployment have
made software design and engineering the focus of signifi-
cant attention from scientists and engineers.

Brook’s ”The Mythical Man-Month” [5] is a bedrock ref-
erence for both the problems that the software engineering
discipline is intended to address and its collected data (al-
beit from the 1960s) in support of its cogent observations.
As Brooks addresses the issues in successfully engineering
large software systems his focus is software defects (”bugs”)
rather than software security vulnerabilities. His analyses
of the management issues in software engineering, particu-
larly factors to account for in scheduling, still hold true. For
example, the discussion of ”Regenerative Schedule Disaster”
(particularly Fig. 2.8, illustrating the added cost for train-
ing time) lends support to our observations about the time
required to gain familiarity with a software system. Brook’s
Figure 11.2, ”Bug occurrence as a function of release age”,
reproduced here on the left of Figure 1, shows an interval
of decrease in bugs found, slowing to some minimum rate,
followed by a slow rise in the rate of bugs found. This shows

the effects of increased familiarity with a software system.
As do many software engineering scholars, Brooks empha-
sizes the positive aspects of reusable software components
without discussion of the potential risks from malicious ac-
tors.

Software reliability analysis is crucial to commercial firms
which must deliver reliable software in a timely manner. A
number of software reliability [21, 12, 27, 22] models have
been developed, with a focus on bug rates and their impli-
cations for software maturity and releasability. The models,
testing [26] and data collections do not address malicious
actors.

Arbaugh, et al. [2] initiated the study of the more spe-
cialized software vulnerability life-cycle, with a particular
focus on the intervals of time between when a vulnerability
is known and when a software system is updated to remove
the vulnerability. It is important to note, that these works
focused on rate of exploitation, while this paper focuses on
rate of vulnerability discovery.

Work by Jonsson, et al. [17] provides observations on a
user population of students with quantitative evaluation of
behavioral hypotheses, of which the most interesting to us
is the ability to find bugs rapidly once the price is paid (in
time) of learning the software system.

Alhamzi, et al [1] studied Windows 98 and Windows NT
4.0 and proposed a 3-phase S-shaped model (AIM) to de-
scribe the rate of change of cumulative vulnerabilities over
time where the first phase includes time spent learning, but
Ozment’s analysis [24] of this and other vulnerability discov-
ery models showed that its predictive accuracy assumed a
static code-base and therefore was never tested against soft-
ware spanning multiple versions. Our analysis supports an
S-shaped curve model, but shows that the three phases in
the AIM model do not accurately describe the data we have
collected. Additionally, we are not concerned with the to-
tal number of vulnerabilities found over a product’s lifetime,
but with the first vulnerability found per version, as well as
with a comparison of the cumulative number of days between
vulnerabilities, particularly those closest to the product’s re-
lease date.

Recent studies of bugs or vulnerabilities in large open
source software systems [6, 25] did analyze vulnerability den-
sity across several versions and provide some data and obser-
vations that we believe support our hypothesis. First, since
the software systems under study are open source software
(e.g., Linux and OpenBSD) and readily available, they are
learn-able by an attacker with an appropriate expenditure
of time. Second, an analysis of bugs that persisted from
version to version showed that such bugs were often a con-
sequence of ”cut and paste” software engineering, a crude yet
effective form of software reuse. The majority of the exist-
ing vulnerability life-cycle and VDM research which makes
use of the NVD dataset focused primarily on a small num-
ber of operating systems or a few server applications and in
all but a few cases [25] only looked at one particular ver-
sion of each (e.g. Windows NT, Solaris 2.5.1, FreeBSD 4.0
and Redhat 6.2, or IIS and Apache). In particular, Ozment
and Schecter [25] found that 62% of the vulnerabilities in
OpenBSD v.2.3-3.7 came from legacy code, and concluded
that the original version of the source code may constitute
the bulk of the later version’s code base.

One large scale attempt to positively alter the rate of vul-
nerability discovery early on is Microsoft’s Security Devel-

258

opment Lifecycle (SDL) which claims to have reduced the
numbers of vulnerabilities found in Windows Vista’s first
year compared with those found in Windows XP, which does
not use the SDL, (66 vs. 119) a 45% improvement. How-
ever, while Vista was in its first year, XP had been out
for 6 years. We believe this also supports our hypothesis,
especially since, in its first year, XP had only 28 vulnerabil-
ities [20], a difference of 58%. [23]

Code reuse continues to be considered an important part
of secure, efficient software development in both open and
closed products [13, 10, 4]. However, Coverity’s analysis
of the lessons learned after years of using their static code
analysis tool provides some possible explanations of the role
legacy code plays in the honeymoon effect. For example,
the authors list the most common response from software
developers after the discovery of 1000+ bugs: ”...The base-
line is to record the current bugs, don’t fix them, but do fix
any new bugs... A reasonable conservative heuristic is if you
haven’t touched the code in years, don’t modify it (even for
a bug fix) to avoid causing any breakage.” [3] This suggests
that an attacker familiar with the legacy code that has been
carried over into a newly released version would have an edge
in finding new vulnerabilities in it (the legacy code), and this
might have a negative effect on the honeymoon period.

In a recently published paper [28] the author analyzed the
risk of first exploitation attempt using a Cox proportional
model and concludes “that the exploitation process is accel-
erated for open source products”. The focus of the paper is
on measuring the rate of exploitation attempts, not on the
rate of vulnerability discovery and is therefore not relevant
to our paper.

6. DISCUSSION AND CONCLUSIONS
The software lifecycle has been repeatedly examined, with

the intent of understanding the dynamics of software pro-
duction processes, most particularly the arrival rate of soft-
ware faults and failures. These rates decrease with time as
updates gradually repair the errors as they are found, until
an acceptable error rate is achieved.

The software vulnerability lifecycle has been less exten-
sively studied, with most attention paid to the period af-
ter an exploit has been discovered. In attempting to un-
derstand the properties of vulnerability discovery, there are
two approaches we might have taken. One approach would
have been to study a single software system in depth, over
an extended period, draw detailed conclusions, and perhaps
generalize from them. Indeed, several of the related works
mentioned above try to do just that for the middle and end
phases of the lifecycle. But, another approach is to examine
a large set of software systems and try to find properties that
are true over the entire set and over an extended period.

We chose the latter approach for an number of reasons,
which include the following: This approach allowed us to in-
corporate both open and closed source systems in our analy-
sis, this approach also allowed us to analyze several different
classes of software (Operating Systems, Web Browsers User
applications, Server applications, etc), and this approach al-
lowed us to discover general vulnerability properties, e.g.
the honeymoon period, independent of the type of software,
and without requiring a detailed analysis of the properties
of each specific, individual vulnerability.

It might appear that given so many changes in tools, util-
ities, methodologies and goals used by both attackers and

defenders over the last decade, a long term analysis would
be inconsistent. To mitigate this we broke down each anal-
ysis by year and from version-to-version which are much
shorter time intervals, and we demonstrated the consistency
of this approach over time.

We also analyzed the role of legacy code in vulnerability
discovery and found surprisingly, based on a detailed study
of a large database of software vulnerabilities, that software
reuse may be a significant source of new vulnerabilities. We
determined that the standard practice of reusing code of-
fers unexpected security challenges. The very fact that this
software is mature means that there has been ample oppor-
tunity to study it in sufficient detail to turn vulnerabilities
into exploits.

There are multiple potential causal mechanisms that might
explain the existence of the honeymoon effect and the role
played by familiarity. One possibility is that a second vul-
nerability might be of similar type to the first, so that find-
ing it is fascilitated by knowledge derived from finding the
first one. A second possibility is that the methodology or
tools developed to find the first vulnerability lowers the ef-
fort required to find a subsequent ones. A third possible
cause might be that a discovered vulnerability would signal
weakness to other attackers (ie, blood in the water), causing
them to focus more attention on that area. [7]

The first two possible causes require familiarity with the
system, while the third is an example of properties extrinsic
to the quality of the source code that might affect the length
of the honeymoon period. An examination of these possible
causes will appear in future work.

The period between when the error rate is low enough for
release and attacker familiarity becomes high enough for an
initial 0-day vulnerability we have called the honeymoon and
its dynamics have been demonstrated in this paper to apply
to the majority of popular software systems for which we
had data.

The dynamics of the honeymoon effect suggest an inter-
esting tradeoff between decreasing error rate and increasing
familiarity with the software by attackers. This basic re-
sult has important implications for the arms race between
defenders and attackers.

First, it suggests that a new release of a software system
can enjoy a substantial honeymoon period without discov-
ered vulnerabilities once it is stable, independent of security
practices. Second, this honeymoon period appears to be a
strong predictor of the approximate upper bound of the vul-
nerability arrival rate. Third, it suggests (as hinted at by the
paper title) that attacker familiarity is a key element of the
software process dynamics, and this is a contraindication for
software reuse, as the greater the fraction of software reuse,
the smaller the amount of study required by an attacker.
Fourth, it suggests the need for more alternative approaches
to security software systems than simply trying to create
bug-free code.

In particular, research into alternative architectures or
execution models which focuses on properties extrinsic to
software, such as automated diversity, redundant execution,
software design diversity [8] might be used to extend the
honeymoon period of newly released software, or even give
old software a second honeymoon.

6.1 Acknowledgments
Professors Blaze and Smith’s work was supported by the

259

Office of Naval Research under N00014-07-1-907, Founda-
tional and Systems Support for Quantitative Trust Manage-
ment; Professor Smith received additional support from the
Office of Naval Research under the Networks Opposing Bot-
nets effort N00014-09-1-0770, and from the National Science
Foundation under CCD-0810947, Blue Chip: Security De-
fenses for Misbehaving Hardware. Professor Blaze received
additional support from the National Science Foundation
under CNS-0905434 TC: Medium: Collaborative: Security
Services in Open Telecommunications

References
[1] O.H. Alhamzi and Y.K. Malaiya. Modeling the vulnera-

bility discovery process. In Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineer-
ing(ISSRE’05), Washington, DC, USA, 2005.

[2] William A. Arbaugh, William L. Fithen, and John McHugh.
Windows of vulnerability: A case study analysis. Computer,
33(12):52–59, 2000.

[3] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Ful-
ton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott
McPeak, and Dawson Engler. A few billion lines of code
later: using static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[4] BlackDuck. Koders.com. http://corp.koders.com/about/,
April 2010.

[5] Frederick P. Brooks. The Mythical Man-Month: Essays on
Software Engineering, 20th Anniversary Edition. Addison-
Wesley Professional, August 1995.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In Proceed-
ings, 18th ACM Symposium on Operating Systems Princi-
ples, pages 73–82, October 2001.

[7] Sandy Clark, Matt Blaze, and Jonathan Smith. Blood in the
water: Are there honeymoon effects outside software? In In
Proceedings of the 18th Cambridge International Security
Protocols Workshop -pending publication. Springer, 2010.

[8] Benjamin Cox, David Evans, Adrian Filipi, Jonathan
Rowanhill, Wei Hu, Jack Davidson, John Knight, Anh
Nguyen-tuong, and Jason Hiser. N-variant systems: A se-
cretless framework for security through diversity. In In Pro-
ceedings of the 15th USENIX Security Symposium, pages
105–120, 2006.

[9] CVE. Common vulnerabilities and exposures, 2008.

[10] Dr Dobbs Journal. Open Source Study Reveals High Level
of Code Reuse. http://www.drdobbs.com/open-source/
216401796, March 2009.

[11] Stefan Frei. Security Econometrics - The Dynamics of
(In)Security. Eth zurich, dissertation 18197, ETH Zurich,
2009. ISBN 1-4392-5409-5, ISBN-13: 9781439254097.

[12] A.L. Goel and K. Okumoto. A time dependent error de-
tection model for software reliability and other performance
measures. IEEE Transactions on Reliability, R-28:206–211,
August 1979.

[13] Michael Howard and Steve Lipner. The Security Develop-
ment Lifecycle. Microsoft Press, May 2006.

[14] IBM Internet Security Systems - X-Force. X-Force Advisory.
http://www.iss.net.

[15] iDefense. Vulnerability Contributor Program.
http://labs.idefense.com/vcp.

[16] Pankaj Jalote, Brendan Murphy, and Vibhu Saujanya
Sharma. Post-release reliability growth in software products.
ACM Trans. Softw. Eng. Methodol., 17(4):1–20, 2008.

[17] Erland Jonsson and Tomas Olovsson. A quantitative model
of the security intrusion process based on attacker behavior.
IEEE Trans. Softw. Eng., 23(4):235–245, 1997.

[18] M.C. McIlroy. Mass producted software components. Report
to Scientific Affairs Division, NATO, October 1968.

[19] Microsoft. Internet explorer architecture. http://msdn.
microsoft.com/en-us/library/aa741312(VS.85).aspx,
2010.

[20] Microsoft Corporation. Microsoft security develop-
ment lifecycle. http://www.microsoft.com/security/sdl/
benefits/measurable.aspx, September 2008.

[21] John D. Musa. A theory of software reliability and its ap-
plication. IEEE Transactions on Security Engineering, SE-
1:312–327, September 1975.

[22] John D. Musa, Anthony Iannino, and Kasuhira Okumoto.
Software Reliability: Measurement, Prediction, Application.
McGraw-Hill, 1987.

[23] NIST. National Vulnerability Database, 2008.

[24] Andy Ozment. Improving vulnerability discovery models. In
QoP ’07: Proceedings of the 2007 ACM workshop on Quality
of protection, pages 6–11, New York, NY, USA, 2007. ACM.

[25] Andy Ozment and Stuart E. Schechter. Milk or wine: does
software security improve with age? In USENIX-SS’06:
Proceedings of the 15th conference on USENIX Security
Symposium, Berkeley, CA, USA, 2006. USENIX Association.

[26] R.E. Prather. Theory of program testing - an overview.
Bell System Technical Journal, 72(10):3073–3105, December
1983.

[27] C.V. Ramamoorthy and F.B. Bastani. Software reliability
- status and perspectives. IEEE Transactions on Software
Engineering, SE-8(4):354–371, July 1982.

[28] Sam Ransbotham. An Empirical Analysis of Exploitation
Attempts based on Vulnerabilities in Open Source Software.
In Workshop on the Economics of Information Security
(WEIS), June 2010.

[29] Secunia. http://www.secunia.com. Vulnerability Intelligence
Provider.

[30] Security Focus. Vulnerabilities Database, 2008.

[31] SecurityTracker. http://www.SecurityTracker.com. Securi-
tyTracker.

[32] TippingPoint. Zero day initiative (zdi). http://www.
zerodayinitiative.com/.

[33] US-CERT. Vulnerability statistics. http://www.cert.org/
stats/vulnerability_remediation.html.

[34] Vupen. Vupen security. http://www.vupen.com.

[35] Chester Wisniewski. Windows 7 vulnerable to 8 out of
10 viruses, 2009. http://www.sophos.com/blogs/chetw/g/
2009/11/03/windows-7-vulnerable-8-10-viruses/.

260

Quantifying Information Leaks in Software

Jonathan Heusser
School of Electronic Engineering and Computer

Science
Queen Mary University of London

jonathan.heusser@dcs.qmul.ac.uk

Pasquale Malacaria
School of Electronic Engineering and Computer

Science
Queen Mary University of London

pm@dcs.qmul.ac.uk

ABSTRACT
Leakage of confidential information represents a serious se-
curity risk. Despite a number of novel, theoretical advances,
it has been unclear if and how quantitative approaches to
measuring leakage of confidential information could be ap-
plied to substantial, real-world programs. This is mostly due
to the high complexity of computing precise leakage quan-
tities. In this paper, we introduce a technique which makes
it possible to decide if a program conforms to a quantita-
tive policy which scales to large state-spaces with the help
of bounded model checking.

Our technique is applied to a number of officially reported
information leak vulnerabilities in the Linux Kernel. Addi-
tionally, we also analysed authentication routines in the Se-
cure Remote Password suite and of a Internet Message Sup-
port Protocol implementation. Our technique shows when
there is unacceptable leakage; the same technique is also
used to verify, for the first time, that the applied software
patches indeed plug the information leaks.

This is the first demonstration of quantitative informa-
tion flow addressing security concerns of real-world indus-
trial programs.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow con-
trols; D.2.4 [Software/Program Verification]: Model check-
ing, Correctness proofs; H1.1 [Systems and Information
Theory]: Information theory

General Terms
Security, Theory

Keywords
Information leakage, Linux kernel, Quantitative information
flow

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Quantitative Information Flow (QIF) [3, 11] aims to pro-
vide techniques and tools able to quantify leakage of con-
fidential information. As a motivating example consider a
prototypical password checking program

if (password==guess) access=1 else access=0

Notice how there is an unavoidable leakage of confidential
information in this program: an attacker observing the value
of access will be able to infer if he guessed the right pass-
word (complete leakage if he did guess it right) and if the
guess was wrong he will have eliminated one possibility from
the search space. Notice also how essential the amount of
information leaked is: if the amount leaked is very small
then the program could as well be considered secure.

If, as the above example illustrates, leakage is somehow
unavoidable then the real question is not whether or not
programs leak, but how much. This point is what makes
Quantitative Information Flow an appealing theory. In a
nutshell, QIF aims to measure the amount of information
from confidential data (in the above example the variable
password) that an attacker who can read/write the public
input data (guess) will be able to infer from some observable
variable (access).

However, implementing a precise QIF analysis for secret
sizes of more than a few bits is computationally infeasi-
ble; roughly speaking this is because classical QIF computes
the entropy of a random variable whose complexity is the
same as computing all possible runs of the program. Even
when abstraction techniques and statistical sampling are in-
tegrated with QIF [9] to help the scalability issues a useful
analysis for real code still seems problematic.

In this paper, we introduce a useful quantitative analysis
for C code: we will demonstrate the analysis on reported
information leakage vulnerabilities in the Linux Kernel and
in common authentication routines. All of the covered vul-
nerabilities are referenced by the standardised vulnerability
repository CVE from Mitre1.

To address the computational feasibility of the quantita-
tive analysis we shift the focus from the question“How much
does it leak?” to the simpler quantitative question “Does it
leak more than k?”. We will show how the questions are re-
lated and more importantly we will show that off-the-shelf
symbolic model checkers like CBMC [5] are able to efficiently
answer the second kind of question. CBMC is a good choice
for several reasons: (i) it makes it easy to parse and analyse

1http://cve.mitre.org, CVE is industry-endorsed with over
70 companies actively involved.

261

large ANSI-C based projects (ii) it models bit-vector seman-
tics of C accurately which makes it able to detect arithmetic
overflows amongst others, which turns out to be important
(iii) nondeterministic choice functions can be used to easily
model user input, which also enjoys efficient solving due to
the symbolic nature of the model checker (iv) despite being
a bounded model checker, CBMC can check whether enough
unwinding of the transition system was performed to prove
that there are no deeper counterexamples.

Our experiments show that the analysis not only quanti-
fies the leakage but also helps in understanding the nature
of the leak. In particular, the counterexample produced by
the model checker, when a leakage property is violated, can
provide insights into the cause of the leak. For example,
we can extract a public user input from the counterexample
needed to trigger a violation.

Another surprising result of our experiment is that in cer-
tain circumstances we were able to use our technique to
prove whether the official patch provided for the vulnera-
bility does actually eliminate the information leak. This is
achieved by point (iv) from above, when the model checking
process is actually complete.

In summary the main technical contributions of this paper
are the following:

1. We present the first quantitative leakage analysis of
systems software.

2. We show how to express Quantitative Information Flow
properties that can be efficiently checked using bounded
symbolic model checking.

3. We show that the technique not only quantifies leak-
age in real code but also provides valuable information
about the nature of the leak.

4. In some cases we are able to prove that official patches
for reported vulnerability do indeed eliminate leakage;
these constitute the first positive proofs of absence of
QIF vulnerabilities for real-world systems programs.

2. MODEL OF PROGRAMS AND DISTINC-
TIONS

We aim to model the input/output behaviour of a C func-
tion where inputs are formal arguments to the function and
outputs are either return values or pointer arguments.

In the following we will consider P to be a C function
taking high and low inputs noted h, l; we call observables low
variables whose values are “publicly available” after running
P . As an example consider the following “modulo” program

o = (h % 4) + l

and suppose h is a 4 bits variable with values 0..15 and l

a 1 bit variable with values 0,1; then the low input for P
is the variable l and the observable is the variable o whose
possible values are 0 . . . 4.

Formally, a program P is modelled as transition system
TS = (S, T, I, F) with S being the program states, T ⊆
S × S are the program transitions and I the initial states
and F the final states. Let us define a successor function for
a state s ∈ S

Post(s) = {s′ ∈ S | (s, s′) ∈ T}

A state s is in F if Post(s) = ∅. A path is a finite sequence
of states π = s0s1s2 . . . sn such that s0 ∈ I and sn ∈ F .

A state is a tuple S = SH × SL of the pair of confiden-
tial input H and low input L. We consider initial/final or
input/output pairs of states of a path, 〈(h, l), o〉 where the
second component is the output o produced by the final state
drawn from some output alphabet O. In the above example
an input/output pair would be 〈(5, 1), 2〉 representing the
computation (5%4) + 1 = 2.

Confidential inputs are denoted as h ∈ H, low inputs l ∈
L, and low observations o ∈ O, where the output behaviour
of the function is always a low observation and the input is
an initial state (h, l). A distinction on the confidential input
through observations O is one where there exists at least two
paths through P , modelled as TS, which leads to different
observations for different confidential input but constant low
input.

We define an equivalence relation 'P,l on the values of the
high variables as follows: h 'P,l h′ iff if 〈(h, l), o〉, 〈(h′, l), o′〉
are input/output pairs in P then o = o′.

Hence, two high values are equivalent (w.r.t. a low value
l) if they cannot be distinguished by any observable. In
the running example an equivalence class in 'P,1 would for
example be {1, 5, 9, 13}. The equivalence relation associated
to P, l is an element of the set of all possible equivalence
relation on the values of high.

Let I(X) be the set of all possible equivalence relations
on a set X. Define on I(X) the order:

≈ v ∼ ↔ ∀s1, s2 (s1 ∼ s2 ⇒ s1 ≈ s2) (1)

where ≈,∼ ∈ I(X) and s1, s2 ∈ X. v defines a complete
lattice over X. It is a refinement order with bottom element
being the relation relating every state and top element being
the identity relation. This is described as the Lattice of
Information [10].

Non leaking programs (i.e. satisfying non-interference [7])
are characterised as follows:

Proposition 1. P is non-interfering iff for all l, 'P,l is
the least element in I(SH) .

An attacker controlling the low inputs can be modelled
by an equivalence relation 'P corresponding to a particular
'P,l.

Formally, we define a quantitative policy as a non-negative
natural number N . A relation 'P,l breaches a policy if | 'P,l

| > N (where | 'P,l | is the number of equivalence classes
of 'P,l). In our model, an attacker will always choose a
relation breaching the policy, provided that given a policy
and a program such a relation exists. We use 'P with the
program P being initialised with the attacker’s choice of l2.

In the above example, a choice could be 'P = 'P,0 cor-
responding to the program l=0; o = (h % 4) + l.

Quantitative Information Flow uses information theoret-
ical measures like Shannon entropy to measure leakage of
confidential information. The measure of a program can be
broken down into two main steps [11, 8]:

1. interpret the program as a random variable RP

2. compute the entropy of RP (noted H(RP))

2In the paper such attacker choices will be modelled by the
nondeterministic choice function input().

262

It has been shown that RP and 'P coincide [11, 13]. For ex-
ample for the modulo program above under the assumption
of uniform distribution on the input there are 4 equivalence
classes each having probability 1

4
. The Shannon entropy of

that program is then

4 ∗ −1

4
log2(

1

4
) = 2

This number 2 represents the fact that the observations re-
veal which of the 4 possible classes (i.e. 2 bits of information)
the high input belongs to.

RP and 'P are also order related as the following propo-
sition shows [8]:

Proposition 2. 'P v 'P ′ iff for all probability distri-
butions H(RP) ≤ H(RP ′)

To further understand the importance of 'P in Quantita-
tive Information Flow we need to introduce the information
theoretical concept of channel capacity: consider the pass-
word check example from the introduction. Suppose the
password is a 64 bits randomly chosen string; we have two
equivalence classes, one with 1 element so having probability
1

264 , the other class with 264−1 elements having thus proba-

bility 1− 1
264 . The entropy is then 3.46944695×10−18: as ex-

pected a password check of a big password should leak very
little. Suppose however that the probabilities of the high in-
puts are such that both equivalence classes have probability
1
2
. Then the entropy dramatically raises to 1 which is the

channel capacity, i.e. the maximum leakage achievable given
two classes: log2(2) = log2(| 'P |). In the modulo example
the channel capacity is 2 which happens to be given by the
uniform distribution on the high input. Other distributions
on the high input cannot give higher entropy: for example
if we consider the distribution where all even numbers have
equal probability 1

8
, and all odd numbers have 0 probability

then the resulting entropy will be 1.
The following result establishes basic relationships between

leakage, channel capacity, and number of distinctions:

Proposition 3.

1. P is non-interfering iff log2(| 'P |) = 0

2. The channel capacity3 of P is log2(| 'P |) .

3. If for all probability distributions H(RP) ≤ H(RP ′)
then | 'P | ≤ | 'P ′ |

Point (1) is proved in [4], (2) in [12] and (3) is a consequence
of proposition 2 whose proof is in [8]. Hence a lower bound
on | 'P | provides a lower bound on the channel capacity of
the program P .

Hence, because of proposition 3 the inequality | 'P | > N ,
which is at the heart of our analysis, can be rephrased to the
following statement: in a setting where the distribution of
the secret is the most favourable for the attacker then the
leakage is at least log2(N) bits.

3. ENCODING DISTINCTION-BASED POLI-
CIES

3The channel capacity is the maximum possible leakage
where we consider all possible probability distributions on
the inputs [12]

Recall that for a program P a quantitative policy is a
natural number N which limits the cardinality of 'P to N .

In other words, a program violates a quantitative policy if
it makes more distinctions than what is allowed in the policy.
A leaking program is one breaching the policy N = 1 in the
above definition.

We take ideas from assume-guarantee reasoning [17] to en-
code such a policy in a driver function, which tries to trigger
a violation, i.e. producing a counterexample, of the policy.
If the policy states that the function func is not allowed
to make more than 2 distinctions then this is modelled as
shown in Program 1. This driver only has a high component
as a state, which is passed to the function func where the
policy is tested on.

int h1,h2,h3;
int o1,o2,o3;

h1 = input(); h2 = input(); h3 = input();

o1 = func(h1);
o2 = func(h2);
assume(o1 != o2); // (A)

o3 = func(h3);
assert(o3 == o1 || o3 == o2); // (B)

Program 1: Example driver checking for 2 distinctions

Drivers always have a similar structure: we model the
secret by a nondeterministic choice function input() as a
placeholder for all possible values of that type; then for a
policy of checking for N distinctions, the function under
inspection is called N times. The crucial step (A) is the use
of the assume statement after the calls: the driver assumes
that, in this case, there are two different return values found
already. The function is called an N + 1th time and at (B)
the driver asserts that the next output is either one of the
previously found outputs.

The assume statement only considers execution paths which
satisfy the given boolean formula, all other paths are re-
jected. Further, the bounded model checker used will try to
find a counterexample to the negated assertion claim, which
is only satisfiable if and only if a counterexample exists. An
unsatisfiable formula means that the original claim holds,
i.e. the program conforms to the policy. The verification
condition generated by the bounded model checker for the
policy in Program 1 is:

o1 != o2 =⇒ (o3 == o1 || o3 == o2)

Where the bounded model checker tries to find a counterex-
ample (execution path) using the negated claim such that
the following holds

o1 != o2 ∧ o3 != o1 ∧ o3 != o2

i.e. that there are three distinctions possible.
Another possibility is that the function func does not even

make two distinctions, such that the assume statement at
point (A) is always false, which leads to proving the policy
(or any policy) vacuously true, because for any assertion Q

the verification condition is true, i.e. false =⇒ Q.

3.1 Bounded Model Checking
We use the bounded model checker CBMC to verify or

falsify a policy. CBMC encodes an ANSI-C program into a

263

Input: Function func, types t,t’,t”, comparison eq_t,
bound k, threshold N

Output: Driver.c
t o_1, . . ., o_n, o_n+1;
t’ h_1, . . ., h_n, h_n+1;
t’’ l;

h_1 = input(); . . . h_n = input();
l = input();
o_1 = func(h_1, l);
.
.
.
o_n = func(h_n, l);
assume(!eq_t(o_1, o_2) && !eq_t(o_1, o_3) && . . .);

o_n+1 = func(h_n+1, l);
assert(eq_t(o_n+1, o_1) || eq_t(o_n+1, o_2) || . . .);

Algorithm 1: Template to syntactically generate a
driver for an N distinction policy

propositional formula by unwinding the transition relation
and user defined specifications up to some bound. This for-
mula is only satisfiable if there exists an error trace violating
the specification.

The tool can also check if the unwinding bound is suf-
ficient by introducing unwinding assertions, which are as-
sertions on the negated loop guards. This ensures that no
longer counterexample can exist than the used bound. To
prove any properties the analysis has to pass unwinding as-
sertions, otherwise it can only be used as a way to find coun-
terexamples up to the unwinding bound.

The C program gets encoded into constraints C and the
property – user defined assertions – are encoded in P . Then
the model checker tries to find a satisfiable assignment to
the formula

C ∧ ¬P

where P is an accumulation of the assumptions and asser-
tions made in the program text. Thus if there are two assume

statements in the driver with expressions E1 and E2 and one
assert statement with expression Q then P is

P ≡ E1 ∧ E2 =⇒ Q

3.2 Driver
A general template for a driver is described in Algorithm

1. The inputs to the algorithm are the function func to
be analysed, possibly up to three different types for the in-
put/output pair 〈(h, l), o〉, and a comparison function eq_t

which returns true if the arguments of type t are equal,
where t is the type of the observation of function func. This
comparison function could be as simple as == of C, or a more
complex function, such as memcmp, if t is an array or string.
Also note, that the observations o_i do not need to be only
return values, but can also be pointer arguments to func.

Proposition 4 (Correctness of driver template).
If the driver template in Algorithm 1 is successfully verified
up to a bound k (i.e. the negated claim is unsatisfiable) then
the function func does not make more than N distinctions
on the output within the bound k. Formally, we state that
the validity of the driver implies the validity of the following

implication

o1 6= o2 ∧ o1 6= o3 ∧ · · · ∧ on−1 6= on

=⇒ on+1 = o1 ∨ · · · ∨ on+1 = on

Thus, we can make the following claims on the result of
the model checking process: For a given bound k and a
policy,

• if the model checker finds a counterexample then the
policy is violated, i.e. the program makes more dis-
tinctions than specified

• if the process ends with a successful verification of the
policy without unwinding assertions then the policy
holds up to an unwinding of k.

• if the process ends with a successful verification of the
policy with unwinding assertions then the policy holds
for any number of iterations.

4. CHECKING QUANTITATIVE POLICIES
The steps in checking a program or function for the com-

pliance with a quantitative policy are as follows: (1) Define
the input state (h, l) and output state o in the code, i.e. the
confidential input h, the low input l and the observation o
(2) Define the maximum number of distinctions in the pol-
icy and an unwinding factor k (3) Generate a driver function
using the template in Algorithm 1 (4) Run CBMC on the
driver. If the driver is successfully verified, potentially in-
crease the unwinding factor.

4.1 Modelling Low Input
A crucial aspect of our analysis is to model low user input,

which is most of the time responsible for triggering a bug
which causes the information leak. These bugs only happen
on a very restricted number of execution paths and could be
exploited by a malicious user choosing a special user input.
This scenario generally applies when studying many CVE
reported information leakage vulnerabilities.

Let us look at the following simplified code in Program 2,
which contains an integer underflow, taken from the vulner-
ability CVE-2007-2875 in the linux kernel.

typedef long long loff_t;
typedef unsigned int size_t;
int underflow(int h, loff_t ppos) {
int bufsz;
size_t nbytes;
bufsz=1024;
nbytes=20;

if (ppos + nbytes > bufsz) // (A)
nbytes = bufsz - ppos; // (B)

if(ppos + nbytes > bufsz) {
return h; // (C)

} else {
return 0;

}
}

Program 2: Integer underflow causing a leak

At first, it seems not possible that the point (C) where the
secret h gets returned is ever executed, because exactly that
check is done in (A) which reduces the variable nbytes to

264

be within the bound bufsz. However, due to wrong choice
and combination of types, the subtraction in (B) causes an
underflow in nbytes for a very large ppos value. And unfor-
tunately, ppos is a user controlled input variable, such that
when its value is chosen correctly, point (C) is reached.

In this case, a state in the system is the tuple (h, l) which
represents the arguments to the function underflow, i.e. the
formal parameters h and ppos; observations are the return
values of this function. The generated driver can automati-
cally find the low part of a state which triggers such subse-
quent information leaks, because the analysis instructs the
model checker to find any possible execution path satisfying
the assumptions and assertions on the outputs, given nonde-
terministic high values and fixed low inputs. As SAT-based
model checking is precise down to the individual bit, it will
find a low input which triggers the underflow and uncovers
the leak.

CBMC generates a counterexample falsifying a policy of
e.g. no leakage and thereby having triggered the integer
underflow. The following excerpt of the counterexample

State 14 file underflow.c line 40 function main
--

underflow::main::1::l=1706688912 (00000000...
....
State 35 file underflow.c line 13 function underflow
--

underflow::underflow::1::nbytes=4027596816 (11110000...

shows that a low input of l=1706688912 lead to an nbytes

which underflowed from the previous value 20.
Clearly, for such leaks to be detected it needs bit-level pre-

cise reasoning, just like SAT-based bounded model checkers
support.

4.2 Environment
In model checking, the environment, like library function

calls or generally functions and data structures which have
no implementation, need to be modelled in a way which al-
lows for the property to be verified. Out of the box, CBMC
replaces function calls with no implementation with nonde-
terministic values.

As our analysis needs to check for equality on inputs and
outputs of functions a certain number of common library
functions have to be modelled in a way which preserves their
original semantics. For example, the usual library C func-
tions memcmp, and strcmp are implemented in a way which
return 0 if their arguments are equal and a value not equal
to 0 if they are not equal. The functions memset and memcpy

actually set an array of integers or characters to a certain
value or to the content of another array. The same ap-
plies to linux kernel utility functions such as copy_to_user

and copy_from_user which copy memory blocks to or from
userspace.

For example, a memcmp implementation is shown in Pro-
gram 3.

int memcmp(char *s1, char *s2, unsigned int n) {
int i;
for(i=0;i<n;i++) {

if(s1[i] != s2[i]) return -1;
}
return 0;

}

Program 3: Simplified memcmp model

5. EXPERIMENTAL RESULTS
We applied our technique to CVE reported information

leakage vulnerabilities in the Linux Kernel. In the experi-
ments we checked for policy violations and proved whether
official patches resolve the information leakage. We also
analysed authentication routines of the Secure Remote Pass-
word protocol (SRP) and of a Internet Message Support Pro-
tocol implementation. A summary of the results is shown in
Table 1. The leakage is reported in the second last column
where > log2(N) means that more than log2(N) bits leaked,
i.e. the policy N has been violated; equally, ≤ log2(N)
means the policy N has been verified. These two cases cor-
respond to lower and upper bounds on the leakage.

5.1 Linux Kernel
We define information leakage in the kernel always as parts

of the kernel memory which gets mistakenly copied to user
space, i.e. the virtual memory allocated to conventional ap-
plications. Clearly, this should not happen as anything al-
located in the kernel space is not meant to be seen by users
(except within the bounds of normal user/kernel interac-
tions), especially in multi-user systems like Linux. Thus, in
all examples the kernel memory is modelled as nondetermin-
istic values.

The interface between user and kernel space are system
calls or syscalls in short. Syscalls, like normal functions,
have a number of arguments and a return value where the
kernel can transfer data structures or single values back and
forth. This is the crucial point in the system where infor-
mation leakage is most common.

AppleTalk. The specific vulnerability CVE-2009-3002
in the appletalk network code shows a quite common cause
of information leakage: a user requests, by a syscall, that a
structure gets filled with values and returned to user land.
The developer however forgot to assign values to all fields
in the struct, thus these missing fields get “filled” with un-
specified kernel memory, as it is allocated on the stack. This
CVE security bulletin actually comprises six different vul-
nerable network protocol implementations, all following the
same leakage pattern. We will only present the affected code
of the AppleTalk implementation – the same kind of analysis
applies to all six vulnerabilities.

In this case the structure returned to the user is shown
in Program 4. The leaking function is atalk_getname in

struct sockaddr_at {
u_char sat_len, sat_family, sat_port;
struct at_addr sat_addr;
union {

struct netrange r_netrange;
char r_zero[8];

} sat_range;
};
#define sat_zero sat_range.r_zero

Program 4: Complex observation struct leads to leak from
sat_zero.

net/appletalk/ddp.c is shown in Program 5.
In the function, the structure sat gets filled with values

provided by the kernel, at the end the whole structure is
copied via memcpy to the address of the uaddr pointer, which
is indirectly, via the syscall getsockname copied back to user

265

Description CVE Bulletin LOC k? Patch Proof log2(N) Time

AppleTalk CVE-2009-3002 237 64 X >6 bit 1h39m
tcf fill node CVE-2009-3612 146 64 X >6 bit 3m34s
sigaltstack CVE-2009-2847 199 128 X >7 bit 49m50s
cpuset† CVE-2007-2875 63 64 × >6 bit 1m32s

SRP getpass – 93 8 X ≤1 bit 0.128s
login unix – 128 8 – ≤2 bit 8.364s

Table 1: Experimental Results. ? Number of unwindings † From Section 4.1

int atalk_getname(struct socket *sock,
struct sockaddr *uaddr, int *uaddr_len, int peer) {
struct sockaddr_at sat;

// Official Patch. Comment out to trigger leak
//memset(&sat.sat_zero, 0, sizeof(sat.sat_zero));
.
.
. // sat structure gets filled
memcpy(uaddr, &sat, sizeof(sat));
return 0;

}

Program 5: Function introducing the leak for CVE-2009-
3002.

land. However, the field sat.sat_zero has not been ini-
tialised, thus a number of bytes of kernel memory get copied
back to the user.

The secret is implicitly modelled by allocating the sat

structure with nondeterministic values; observations are also
of type sockaddr_at. The driver uses as parameter eq_t the
library function memcmp to compare memories.

The model checker found a counterexample for a 6 bit
policy within 1 hour and 39 minutes. Once the official patch
was applied of setting the sat structure to 0 with memset, our
driver successfully verified the policy in about the same time
with unwinding assertions, thus it proved that the patch
stops the leak.

tcf fill node. This information leak happens in the
netlink subsystem of the kernel. The function tcf_fill_node

prepares a struct tcmsg to be sent back to the user. How-
ever, the programmer made a typing mistake and filled a
field tcm__pad1 twice instead of the second time for tcm__pad2.

struct tcmsg *tcm;
...
nlh=NLMSG_NEW(skb, pid, seq, event, sizeof(*tcm), flags);
tcm=NLMSG_DATA(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad1 = 0; // typo, should be tcm__pad2 instead.

Program 6: Function excerpt introducing the leak for
CVE-2009-3612.

This leaks kernel memory from tcm__pad2 back to userspace.
Here, we again modelled kernel memory implicitly by the
memory allocated for tcm through the function NLMSG_DATA,
which initialised the fields of the struct with nondetermin-
istic values. The observation is the filled out variable tcm,
the low user input is a simple integer variable not mentioned
here for brevity.

The official patch which was applied to fix the leak is

simply changing the last line above to tcm->tcm__pad2=0.
We were again able to prove that this patch successfully
fixes the security hole and otherwise the program violates a
leakage policy of 6 bits.

Without the patch, a counterexample is found within 3
minutes and 34 seconds; with the patch, the program is
verified within about the same time.

sigaltstack. The leakage for this vulnerability is intri-
cate and only manifests itself on 64-bit processors. On such
a system, the struct stack_t, as shown in Program 7, will
be padded to a multiple of 8 bytes because on 64-bit sys-
tems void* and size_t are both 8 bytes (instead of 4 bytes
for 32-bit systems), while an integer type remains 4 bytes.
Thus, the size of stack_t is padded to 24 bytes, while on a
32-bit system it remains unpadded at 12 bytes.

typedef struct sigaltstack {
void __user *ss_sp;
int ss_flags; // 4 bytes padding on 64-bit
size_t ss_size;

} stack_t;

Program 7: Structure with padding depending on archi-
tecture.

The syscall do_sigaltstack in kernel/signal.c copies
such a structure back to userland via the copy function
copy_to_user, however it does not clear the padding bytes,
thus those are leaked to the user on a 64-bit system. In the
function visible in Program 8, the high input is the structure
oss and the low output is the argument uoss.

int do_sigaltstack (const stack_t __user *uss,
stack_t __user *uoss, unsigned long sp) {

stack_t oss;
... // oss fields get filled
if (copy_to_user(uoss, &oss, sizeof(oss)))

goto out;

Program 8: Leakage through copying whole structures in-
cluding padding.

CBMC supports modelling of 64-bit widths however that
is not enough to automatically measure the padding bytes.
This is because the sizeof operator in CBMC returns only
the sum of all sizes without eventual bit alignments. This is
solved in our approach by providing a model of the copy_to_-
user function, just like e.g. an implementation of memcpy

is provided, which checks if the length parameter is aligned
according to the architecture (4 bytes for 32 and 8 bytes for
64). If there are padding alignments then these will be cho-
sen to be filled with nondeterministic integer values modulo
the number of padding bytes.

266

In Program 8, this would translate to the following: size-
of(oss) counts 20 bytes as the size of the structure. How-
ever, this does not account for the padding bytes, and our
copy_to_user model does the following calculation:

pad = ALIGN - (sizeof(oss) % ALIGN);
if(pad == ALIGN)

padding = 0;
else

padding = ((unsigned int) nondet_int()) %
(1 << (pad*8))

where ALIGN is chosen to be 4 or 8 depending on the architec-
ture used. In a 64-bit system, this translates to 8−(20%8) =
4 bytes for pad which are represented by the padding vari-
able.

With this setup, we were able to verify that on a 32-bit
system the Program 8 does not leak anything, while on a
64-bit system this violates a policy of e.g. 7 bits. A coun-
terexample was found within 49 minutes and 50 seconds.
We were also able to prove that the patch applied removes
the padding leak. The patch in this case was to not copy
the whole struct but copying the three struct members sepa-
rately through the function __put_user, where the padding
does not come into play.

cpuset. The crucial part of this vulnerability has al-
ready been discussed in Section 4.1. Our analysis finds the
right low input which triggers the integer underflow. The ac-
tual code however does not simply return the secret as shown
in the section mentioned above, but it copies nbytes number
of bytes from a buffer ctr->buf at offset *ppos. Because of

if (*ppos + nbytes > ctr->bufsz)
nbytes = ctr->bufsz - *ppos;

if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT;

the underflow, nbytes and *ppos access memory way out of
the actual buffer and thus disclose kernel memory. However
our analysis of this vulnerability requires at the moment too
much manual intervention to model memory access outside
of the allowed bound (i.e. ctr->buf + *ppos).

One elegant way of addressing this problem would be by
modifying CBMC itself; CBMC could for example return
nondeterministic values for such out-of-bound memory ac-
cesses which would implicitly model the access to confiden-
tial data.

5.2 Authentication Checks
We analysed parts of the authentication routines of the

secure remote password suite (SRP) and the Unix passwd-
authentication of Cyrus’ Internet Message Support Protocol
daemon (IMSPD).

SRP. To demonstrate that confidential variables and ob-
servations can be used flexibly, we checked that there is no
leakage in the password request function in libsrp/t_get-

pass.c.
The confidential input is the password entered by the user

when being prompted at the login; the observations are the
echos of the terminal of typed characters. Whether the ter-
minal echos the typed characters or not depends on which
mode the console is in. The environment modelling the con-
sole and its modes had to be provided to check this program.

_TYPE(int) t_getpass (char* buf, unsigned maxlen,
const char* prompt) {

DWORD mode;

GetConsoleMode(handle, &mode);
SetConsoleMode(handle, mode & ~ENABLE_ECHO_INPUT);
if(fputs(prompt, stdout) == EOF ||

fgets(buf, maxlen, stdin) == NULL) {
SetConsoleMode(handle,mode);
return -1;

}

Program 9: Side-effect of mode decides on echo output of
fgets

In Program 9, the function t_getpass first gets the cur-
rent mode of the console by the function GetConsoleMode;
then it sets a new console mode by inverting the bit
ENABLE_ECHO_INPUT in the mode through the function
SetConsoleMode which clearly disables the echo of input
read from standard input. The function GetConsoleMode is
modelled by nondeterministically setting the mode to any in-
teger value, the function SetConsoleMode sets a global mode
variable to its second argument. The function fgets, which
reads a number of bytes from stdin, is modelled to return
its first argument buf completely if the mode is set to echo
the input and return a constant value otherwise.

With this setup CBMC proves through our driver that
starting from any initial mode, the program will always end
up with log2(| 'P |) = 0, i.e. that there is no leakage. We
can also successfully check that if the line which disables the
echo is removed then the policy is violated.

IMSPD. The function checked in this test is login_plain-
text in imsp/login_unix.c as shown in Program 10.

int login_plaintext(char *user, char* pass,
char** reply) {

...
struct passwd* pwd = getpwnam(user);
if (!pwd) return 1;
if (strcmp(pwd->pw_passwd,

crypt(pass, pwd->pw_passwd)) != 0) {
*reply = "wrong password";
return 1;

}
return 0;

Program 10: Login function of IMSPD.

The program first tries to receive the stored password con-
text of a user using the function getpwnam. If successful,
it will compare the stored with the entered password using
strcmp. If this fails it will set the string reply to “wrong
password”. If authentication is successful it returns 0.

Clearly, this function has three distinguishable observa-
tions: (1) it returns 1 (2) it returns 1 and sets *reply (3) it
returns 0. We modelled the three parameters to the function
as low user input and the stored password as confidential
variable. With this setup, we are able to verify that this
program conforms to a policy which only leaks 3 observa-
tions, within 9 seconds.

6. RELATED WORK
There have been several attempts in recent years to build

a quantitative analysis of leakage, starting with the static

267

analysis in [4].
The most relevant works for this paper are [1] by M.

Backes, B. Köpf and A. Rybalchenko and [8] by J. Heusser
and P. Malacaria where verification techniques are used to
compute leakage of programs. Those works are both in-
spired by the important previous theoretical work on self
composition by G. Barthe, P. D’Argenio, and T. Rezk [2]
and T. Terauchi and A. Aiken [18]. However as already
noted, those approaches attempt primarily to answer ques-
tions about how much a program leak and seem unable to
scale to real code in terms of line of code, state space and
language constructs. In particular, they have not, as far as
we are aware, been used to analyse independently existing
vulnerabilities in independently existing programs.

On the theoretical side, the complexity of QIF analysis
has recently been thoroughly investigated by H. Yasuoka
and T. Terauchi [19] who, amongst other aspects, explored
the relation to verification and k-safety properties.

Approaches that do scale to large programs are by S. Mc-
Camant, M. D. Ernst [14] and J. Newsome, S. McCamant,
D. Song [15]. They released an impressive tool, FlowCheck,
which is able to analyse very large programs. There are how-
ever significant differences between the approaches in that
FlowCheck is a security testing tool based on the Valgrind
dynamic instrumentation framework whereas our approach
is based on verification and static analysis techniques. Thus,
our work comes with stronger theoretical guarantees (for ex-
ample verification of the official patches) and does not re-
quire to “run” the code.

D. Kroening’s CBMC [5] has been used for many practical
applications. A good overview over the applied fields can be
found under the following link [6].

7. CONCLUSION
In this paper we combined state of the art model checking

with theoretical work on Quantitative Information Flow, to
provide a powerful tool for the analysis of leakage of infor-
mation. We demonstrated not only that CVE reported vul-
nerabilities such as for the Linux kernel can be analysed with
a level of scalability and precision able to find real security
vulnerabilities, but that it is also possible to prove whether
the official patches fix the problem. We argued that leaks
are not synonymous of a security breach and hence a quan-
titative framework is better equipped than a qualitative one
to determine when an information leak represents a security
threat.

We see this work as a significant step in the application of
academic research on information flow analysis to real-world
problems in systems software.

Acknowledgment We thank Peter O’Hearn for helpful
comments on the paper. This research was funded by EP-
SRC, grant EP/F023766/1, with title “Model Checking and
Program Analysis for Quantifying Interference”.

8. REFERENCES
[1] Michael Backes and Boris Köpf and Andrey

Rybalchenko: Automatic Discovery and
Quantification of Information Leaks. Proc. 30th
IEEE Symposium on Security and Privacy (S&P ’09)

[2] Barthe, Gilles and D’Argenio, Pedro R. and Rezk,
Tamara: Secure Information Flow by
Self-Composition. CSFW ’04: Proceedings of the

17th IEEE workshop on Computer Security
Foundations.

[3] David Clark, Sebastian Hunt, Pasquale Malacaria: A
static analysis for quantifying information flow in a
simple imperative language. Journal of Computer
Security, Volume 15, Number 3 / 2007.

[4] David Clark, Sebastian Hunt, and Pasquale
Malacaria: Quantitative information flow, relations
and polymorphic types. Journal of Logic and
Computation, Special Issue on Lambda-calculus, type
theory and natural language, 18(2):181-199, 2005.

[5] Clarke, Edmund, and Kroening, Daniel, and Lerda,
Flavio: A Tool for Checking ANSI-C Programs.
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004). Springer,
168–176, Volume 2988

[6] http://www.cprover.org/cbmc/applications.shtml –
Checked 17 June 2010.

[7] Joseph A. Goguen, Jose Meseguer: Security Policies
and Security Models. IEEE Symposium on Security
and Privacy 1982: 11-20

[8] Jonathan Heusser and Pasquale Malacaria: Applied
Quantitative Information Flow and Statistical
Databases. Formal Aspects in Security and Trust
2009: 96-110

[9] Boris Köpf and Andrey Rybalchenko: Approximation
and randomization for quantitative information-flow
analysis. In Proceedings CST 2010

[10] Landauer, J., and Redmond, T.: A Lattice of
Information. In Proc. of the IEEE Computer Security
Foundations Workshop. IEEE Computer Society
Press, 1993.

[11] Pasquale Malacaria: Assessing security threats of
looping constructs. Proc. ACM Symposium on
Principles of Programming Language, 2007.

[12] Pasquale Malacaria, Han Chen: Lagrange multipliers
and maximum information leakage in different
observational models. PLAS 2008: 135-146

[13] Pasquale Malacaria and Jonathan Heusser:
Information Theory and Security: Quantitative
Information Flow. In Formal Methods for
Quantitative Aspects of Programming Languages,
LNCS, Springer Verlag, 2010

[14] Stephen McCamant, Michael D. Ernst: Quantitative
information flow as network flow capacity. PLDI
2008: 193-205 MIT Department of Electrical
Engineering and Computer Science, Ph.D.,
Cambridge, MA, 2008.

[15] James Newsome, Stephen McCamant, Dawn Song:
Measuring channel capacity to distinguish undue
influence. PLAS 2009: 73-85

[16] Benjamin Schwarz, Hao Chen, David Wagner,
Jeremy Lin, Wei Tu, Geoff Morrison, Jacob West:
Model Checking An Entire Linux Distribution for
Security Violations. ACSAC 2005: 13-22

[17] Pasareanu, Corina S. and Dwyer, Matthew B. and
Huth, Michael: Assume-Guarantee Model Checking
of Software: A Comparative Case Study. Proceedings
of the 5th and 6th International SPIN Workshops on
Theoretical and Practical Aspects of SPIN Model
Checking,1999

268

[18] T. Terauchi and A. Aiken. Secure information flow as
a safety problem: In SAS, volume 3672 of LNCS,
pages 352–367, 2005.

[19] Hirotoshi Yasuoka and Tachio Terauchi Quantitative
information flow - verification hardness and
possibilities. In Proceedings CSF 2010.

269

Analyzing and Improving Linux Kernel Memory Protection:
A Model Checking Approach

Siarhei Liakh Michael Grace Xuxian Jiang
North Carolina State University North Carolina State University North Carolina State University

sliakh@ncsu.edu mcgrace@ncsu.edu jiang@cs.ncsu.edu

ABSTRACT
Code injection continues to pose a serious threat to com-
puter systems. Among existing solutions, W⊕X is a notable
approach to prevent the execution of injected code. In this
paper, we focus on the Linux kernel memory protection and
systematically check for possible W ⊕ X violations in the
Linux kernel design and implementation. In particular, we
have developed a Murphi-based abstract model and used it
to discover several serious shortcomings in the current Linux
kernel that violate the W ⊕X property. We have confirmed
with the Linux community the presence of these problems
and accordingly developed five Linux kernel patches. (Four
of them are in the process of being integrated into the main-
line Linux kernel.) Our evaluation with these patches indi-
cate that they involve only minimal changes to the existing
code base and incur negligible performance overhead.

1. INTRODUCTION

Despite years of research, code injection attacks continue
to be one of the major ways of computer break-ins and mal-
ware propagation [21]. Specifically, a code injection attack
is a method whereby an attacker inserts malicious code into
a running process and transfers execution to the malicious
code (e.g., by hijacking its control flow). After that, the at-
tacker can gain control of a running process and carry out
other malicious activities, including the installation of bot
programs for remote control and the modification of system
files to allow for unauthorized access, etc.

There exist a variety of solutions [15, 25, 28, 30, 33] to
deal with code injection attacks. Among the most notable,
W⊕X 1 is a scheme that has been proposed to counter code
injection attacks. In essence, W ⊕X enforces the following
property, “a given memory page will never be both writable
and executable at the same time.” The basic premise be-

1Strictly speaking, the property is ¬(W ∧X), but we chose
to use the traditional W ⊕X notation to emphasize mutual
exclusivity of write and execute access.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

hind it is that if a page cannot be written to and later ex-
ecuted from, code injection becomes hard, if not impossi-
ble, to launch. Due to its effectiveness in defending against
code injection attacks, since its proposition, W ⊕ X has
been widely adopted in commodity OSs (e.g., Windows and
Linux). Hardware vendors such as Intel and AMD also fol-
low up this scheme by providing necessary hardware support
(in the form of NX support [9]) to facilitate the W ⊕X en-
forcement.

From the OS kernel perspective, establishing and main-
taining the W ⊕X property requires a sound design. In this
paper, we look into the Linux kernel and analyze the way it
takes to protect its own kernel memory. This is important
as the Linux kernel is typically a part of trusted computing
base (TCB) in existing solutions to defend against code in-
jection attacks. In our analysis, we took a model checking
approach so that we can take advantage of its power to rigor-
ously examine the soundness and completeness of W⊕X en-
forcement in Linux kernel. More specifically, we first build a
model of Linux kernel memory management subsystem and
then apply model checking to verify the W ⊕X property. In
case of violation, model checking has the unique advantage
in accurately pinpointing potential problems in the current
Linux kernel design and implementation.

We have successfully developed a Murphi [10]-based ab-
stract model to analyze linux kernel memory management.
Based on our modeling, we were surprised to discover sev-
eral issues related to Linux kernel memory management:
(1) First, the current Linux kernel does not strictly sepa-
rate the kernel code and kernel data, immediately leading to
W ⊕X violation. (2) Second, as part of its implementation,
Linux kernel promotes creation of multiple virtual aliases,
potentially with conflicting permissions, for the same physi-
cal memory page, leading to exploitable scenarios for kernel
data execution or kernel code modification.

We have confirmed with the Linux kernel community the
presence of these issues. We have also accordingly developed
kernel patches to fix these problems and these patches [17,
18, 19, 20] are in the process of being integrated into main-
stream Linux kernel.2 Our evaluation indicates that these
patches are compatible with existing Linux kernel code base
and contain minimum modifications to the existing inter-
faces that manage kernel memory. We also observe that

2For the convenience of kernel patch debugging and adop-
tion, we have developed five smaller patches in total (Section
4). Four of them are being tested for final integration into
mainstream Linux kernel and the remaining one is still being
internally assessed for suitability in mainline Linux kernel.

271

Figure 1: Typical Linux Memory Mapping

these patches impose virtually no performance overhead de-
spite a moderate increase in memory consumption.

The rest of the paper is structured as follows. We start
with Linux kernel modeling in Section 2 and present the
model checking results in Section 3. Then we present and
evaluate our solution in Section 4 and Section 5, respec-
tively. After that, we examine limitations of our solution
and suggest possible improvements in Section 6. Finally, we
discuss related work in Section 7 and conclude our paper in
Section 8.

2. MODELING AND DESIGN

2.1 Murphi Background
Our abstract modeling of Linux kernel memory protection

is based on Murphi [10], which is both a language and a tool
for model verification with explicit state enumeration. To
use Murphi, we need to write a Finite State Machine (FSM)
description, which will be taken as an input by Murphi to
produce an executable. The executable, once started, will
perform the model verification task and produce the output
detailing the verification results.

In Murphi, a finite state machine description consists of
three parts: a set of states, a set of transition rules and an
initial state.

• The set of states is implicitly defined through the decla-
ration of global variables. Each combination of values
of each variable naturally produces a unique state of
the system. Note that not all of these potential com-
binations are reachable in the FSM.

• The transitions between the states of FSM are defined
through a set of transition rules, each consisting of two
parts, a guard and an action. A guard is a logic ex-
pression that determines the conditions under which
an action can be taken. An action is a set of instruc-
tions to manipulate the global variables, thus transi-
tioning the FSM from one state to another. An action

is performed if, and only if the corresponding guard is
evaluated to be TRUE.

• An initial state is defined by a special rule with an
action which is executed only once, right before the
FSM state exploration begins. This allows to explicitly
define an initial state of the FSM.

For model verification purposes, Murphi also adds to the
FSM a fourth component: invariants. The invariants are a
set of logic expressions which define a set of safe states of
FSM. A state is only considered safe iff all invariants evalu-
ate to TRUE in this state. With that, model verification is
performed by exploring all reachable states, starting with a
given initial state. The state space exploration is performed
by applying all possible rules to all states that have already
been reached with standard algorithms such as depth- or
breadth-first search. For each newly discovered reachable
state Murphi evaluates the invariants. Should any invariant
evaluate FALSE, the system reports an error and prints out
a set of states and transitions that led to the unsafe state.
The state exploration continues forward only when all in-
variants evaluate to TRUE for the newly discovered state.
In this work we apply model checking twice: one in detect-
ing the W ⊕X violation in the current Linux kernel (Section
3) and another in validating our suggested solution (Section
4).

2.2 Linux Kernel Memory Model
For proper modeling, it is important to understand how

physical memory is being organized and mapped in Linux.
On a typical 32-bit Linux system with the paging-based
virtual memory enabled, the 4GB virtual memory space
is split (Figure 1) between user space (bottom 3GB) and
kernel space (top 1GB). In other words, the kernel space
starts at address PAGE OFFSET= 0xc0000000 (3GB) and
stretches up to the end of virtual address space 0xffffffff
(4GB−1). We also notice that on an i386 architecture, phys-
ical memory is typically split onto two regions: low memory

272

and high memory. The low memory region starts at ad-
dress 0x00000000 and ends at around 800MB.3 In Linux,
this region is mapped directly into the kernel space, starting
at PAGE OFFSET and called linear mapping. Such linear
mapping allows for simple translation between the physi-
cal and virtual addresses for all pages within this region.
Specifically, the virtual address of any location within low
memory can be obtained by adding PAGE OFFSET value
to the physical address. The reverse translation is performed
by simply subtracting PAGE OFFSET from the virtual ad-
dress, without the need for page table lookup.

We point out that the linear mapping is established at
kernel startup and persists all the way through system shut-
down [5, 13, 23]. The virtual address space within this region
is used to contain the following parts of the Linux kernel:
BIOS32 services, kernel text, kernel read-only data, ker-
nel read-write data and dynamic memory allocations that
require contiguous physical pages (e.g., through kmalloc()
call). Kernel initialization routines are also loaded here and
later released as free memory.

Assuming the total amount of physical memory installed
in the system is greater than the maximum size of low mem-
ory for the current kernel configuration, the high memory
lays in the physical address space immediately following the
low memory. However, unlike low memory, high memory is
only mapped into kernel space when needed. There are two
basic mechanisms through which this memory is mapped:
vmalloc() and kmap(). The major difference between the
two is that the former is used for long-term allocation of non-
contiguous physical memory into contiguous virtual address
space (e.g., for loadable kernel module allocation), while the
latter is used strictly for short-term access to physical pages
located in the high memory. Another difference is that vmal-
loc() may allocate pages from either high or low memory,
while kmap() is strictly used for high memory only. Also,
when vmalloc() allocates a page from low memory, it cre-
ates an alias: the same physical page will be mapped into
the kernel virtual address space twice, one time in linear
area and another one in vmalloc() area. The problem with
such aliasing is that memory management subsystem has
to ensure consistency of page attributes between all of the
aliases. In the context of this work, both vmalloc() and
kmap() areas play the same role: mapping non-contiguous
physical pages into the kernel address space. Therefore, we
treat them as the same in our model.

There is another memory area in Linux kernel called fixmap,
which is located at the very end of the address space and
mainly used by kernel to establish reserved, pre-defined fixed
mappings such as PCI control registers and other memory-
mapped services. Similar to the linear mapping, the fixmap
region is established at kernel startup and persists all the
way until system shutdown. Since this area does not rep-
resent an unique type of mapping that is distinct from the
ones described above, we do not explicitly include it in the
model.

Note that all modern multi-tasking operating systems rely
on hardware support to provide virtual memory (and the
W⊕X is enforced only when the virtual memory is enabled).
In order to accurately model hardware support, we therefore
include an abstraction of hardware memory subsystem in
our model. Specifically, our model covers the mapping from

3The exact value depends on the physical memory size and
other compile-time and run-time kernel configuration.

physical memory to virtual memory as well as the related
page tables and access flags. Our model is based on a single-
level abstraction of the i386 family paging mechanism [2].
In other words, the mapping of virtual addresses to physi-
cal pages is modeled by a flat page table array (pg table t).4

Each entry (pte t) of that array corresponds to a virtual
page (if mapped) and holds related attributes such as physi-
cal address (addr) it is currently mapped to and access per-
missions (prot). In our model we use pgprot t type for page
attribute tracking. This type defines two page access at-
tributes: “write” and “execute”. Since kernel pages are not
swappable and all mapped pages are always readable, we do
not model the “read” and “present” flags. Also, since this
model is only concerned with kernel space, we do not model
the user/supervisor flag. For the physical memory, due to
the aliasing, we model them as an array (frame table t) of
physical memory frames, with each physical page (frame t)
holding a reference count (reference count or the number of
mapped virtual pages) and a most permissive set (prot) of
the attributes derived from all the virtual aliases pointing to
it. As a result, the global definition of the page table array
and the physical memory array define the possible states in
our model.

−− page p ro t e c t i on a t t r i b u t e s
pgprot t : r ecord

w: boolean ;
x : boolean ;

end ;

−− page tab l e entry
−− (mem index i s the memory frame number : [1 . .

mem size])
p t e t : r ecord

mapped : boolean ;
prot : pgprot t ;
addr : mem index ;

end ;

−− s i ng l e−l e v e l page tab l e
−− (page index i s the page tab l e index : [1 . .

p t s i z e])
p g t ab l e t : array [page index] o f p t e t ;

−− phys i c a l memory frames
f rame t : r ecord

r e f e r en c e c oun t : 0 . . p t s i z e ;
prot : pgprot t ;

end ;
f r ame t ab l e t : array [mem index] o f f rame t ;

Based on the above abstraction, our model then captures
the specifics of the initial state of Linux kernel. As men-
tioned earlier and shown in Figure 1, the initialization of
Linux kernel memory involves three main parts: kernel lin-
ear mapping, static kernel image mapping, and mapping of
BIOS32 services. Accordingly, our model represents them
by establishing three basic properties as part of the model’s
initial state: S1 - linear mapping, S2 - static kernel map-
ping, and S3 - BIOS32. The details about them can be
found in Appendix A.

After that, we further obtain the transition rules in our
model. In particular, based on the Linux kernel source code
and our domain knowledge, we identify and extract a num-
ber of kernel function routines or application program in-

4Multiple levels of page tables are not necessary as they only
allow to map large numbers of pages more efficiently and do
not introduce any additional qualities related to this work.
The same also stands true for the “large pages” introduced
by Page Size Extension (PSE) technology [2].

273

terfaces (APIs) that are used to affect the kernel memory
mapping. Some of them are:

• map vm area() maps a physical page to a virtual ad-
dress.

• static protections() ensures that pre-defined areas of
kernel’s virtual address space always have correct at-
tributes (kernel code should stay executable, kernel
data readable and so on.)

• cpa process alias() checks all mapped aliases for a given
physical page frame and updates them as necessary.

• change page attr set clr() receives a block request for
memory attribute change and translates it into a se-
ries of attribute and alias check calls for each individual
page.

• change page attr() executes attribute change for the
individual pages.

To represent them, we derive a set of basic rules to capture
their behavior especially when they perform memory map-
ping, re-mapping or change memory page attributes. By
doing so, we avoid the need of understanding specific mem-
ory use-cases such as kernel module loading or unloading (as
it is already captured with these APIs). In our model, we
have three key transition rules and use them in our Murphi-
based FSM description.

• T1 - Set: This transition rule sets W and/or X flags
for a given page table entry.

• T2 - Clear: This transition rule clears W and/or X
flags for a given page table entry.

• T3 - Map: This transition rule changes the mapping
between a physical frame and a virtual page.

r u l e s e t i : page index do
r u l e s e t x : boolean do

r u l e s e t w: boolean do

−− set W and/or X for v i r t u a l page i
r u l e ”T1 : Set ”

t rue ==> begin
set mem perm (i , 1 , w, x) ;

end ;

−− clear W and/or X for v i r t u a l page i
r u l e ”T2 : Clear ”

t rue ==> begin
clr mem perm (i , 1 , w, x) ;

end ;

−− map page i to phy s i c a l address pa with
prot a t t r i b u t e s

r u l e s e t pa : mem index do
ru l e ”T3 : Map”

true ==> begin
map vm area (i , pa , prot) ;

end ;
end ;

end ;
end ;

end ;

3. ANALYSIS
After obtaining the abstract model of Linux kernel, we fur-

ther define the invariants to analyze possible Linux kernel
states. Since our focus in this work is on the W ⊕ X en-
forcement, we established the following properties through
invariants in the model:

• P1 : Kernel code should always be executable and
read-only.

• P2 : Kernel data should always be non-executable, the
read-only kernel data should remain read-only, and
read-write kernel data should always be writable.

• P3 : No page will be writable and executable at the
same time in order to not violate W ⊕X.

• P4 : All virtual aliases of each physical page should
have consistent access permissions.

i nva r i an t ”P1 : Kernel ROX Code”
true −> ke rn e l c od e r ox () = true ;

i nva r i an t ”P2 : Kernel RO data ”
true −> ke rne l r oda ta ronx () = true ;

i nva r i an t ”P2 : Kernel RW data ”
true −> kerne l rwdata rwnx () = true ;

i nva r i an t ”P3 : W xor X”
true −> w and x () = f a l s e ;

i nva r i an t ”P4 : A l i a s con s i s t en cy ”
true −> page a l i a s match ing () = true ;

More specifically, the P1 invariant is necessary to keep
kernel code executable because non-executable kernel code
will lead to an immediate system crash. The P2 invariant en-
sures that read-only kernel data that holds constants cannot
be modified and that read-write data is always accessible. It
also ensures that static kernel data cannot be executed. The
P3 invariant states that any given page cannot be writable
and executable at the same time. This property is necessary
to prevent code injection and is focal point of this work. The
P4 invariant is necessary to prevent code injection by access-
ing an alias which is mapped into a different virtual address
with different access permissions.

With invariants in place, the model checker is able to pro-
vide us with examples of possible transitions if they lead to
an unsafe state that violates W ⊕ X policy. Our experi-
ence with the model checker indicates that there is no P1
violation in the current Linux design and implementation.
However, it reports violations for all other three invariants
(Figure 2).

P2 violation The violation of P2 arises when kernel
read-write data region is set as read-only. The problem
stems from the fact that static protections() does not check
for the correctness of new access flags set for the kernel read-
write data region. While this issue does not directly allow
for code injection, setting read-write data (Figure 2(a)) as
read-only provides a vector for a denial of service attack.
The reason is that the kernel assumes that its read-write
data is always writable and is not equipped to handle this
situation. This issue has been confirmed by a kernel crash,
which immediately follows the call of set pages ro() for the
read-write data region. During the investigation of this is-
sue, we have also identified and confirmed a kernel bug that

274

(a) P2 Violation: Kernel Read/Write Data (b) P3 Violation: W and X (c) P4 Violation: inconsistent aliases

Figure 2: Property Violations

can be used to apply improper page attributes to a memory
region when large (2MB) pages are used in the kernel space
(Section 4).

P3 violation The violation of P3 happens in two sce-
narios. The first one occurs in the initial state. More specif-
ically, the way the BIOS32 is mapped into the kernel space
during the initialization directly contradicts the P3 invari-
ant. Note that the BIOS32 services contain executable code
and, therefore, should be set as read-only. However, the
Linux kernel simply indiscriminately maps the whole BIOS
region into the kernel address space as writable and exe-
cutable. While the actual BIOS code is typically stored in
ROM and cannot be overwritten, such mapping still provides
an opportunity for data execution or code modification. In
a typical page table dump of the latest Linux kernel (version
2.6.33) shown in Figure 3(a), this violation manifests itself
as a set of RW + X pages within the range 0xc0000000 -
0xc2000000.

The second scenario is related to the original memory
management interface that allows for pages to be mapped as
writable and executable at the same time, thus violating P3
(Figure 2(b)). The source of the problem is the absence of
any access permission verification system for memory pages
outside the static kernel image in the default memory man-
agement interface, such as when a kernel module is being
loaded. To confirm this violation, we loaded several mod-
ules and inspected the vmalloc() area of the page tables
for W ⊕ X violations. We found that Linux kernel indeed
does not enforce W ⊕X for mappings in the non-contiguous
memory region (Figure 3(a)).

P4 violation This violation of P4 happens when a page
from low memory region is being mapped into vmalloc()
area as executable. This would typically happen during the
memory allocation for a loadable kernel module on a sys-
tem that does not have any high memory available for al-
location. A module loader would use vmalloc() to load all
module sections, including code with execute permissions.
However, the physical page is already mapped once in the
linear mapping space with RW + NX permissions, creating
an opportunity for code injection. We were able to re-create
this behavior consistently by loading Linux kernel in a vir-
tual machine with only 128MB of RAM, forcing Linux to
allocate all pages from low memory and thus creating aliases
for each of vmalloc() allocations.

4. IMPROVEMENTS AND PROTOTYPE
Based on the findings described in the previous section, we

propose a few improvements to the Linux kernel. Our im-

provement involves the changes to the initial states (S1, S2,
and S3) as well as the transition rules (T1, T2, and T3) such
that no unsafe states will be reached from the revised FSM
description. For debugging and verification purposes, we
have developed five self-contained and independent patches
(in total 703 source code of lines) to the Linux kernel, four
of which have been submitted to LKML [17, 18, 19, 20]
and are currently in the process of being integrated into the
mainline kernel. The remaining one is still being assessed
for suitability in the mainline kernel.

In the development of these patches, based on the counter-
examples reported from Murphi, we revised the memory
management subsystem in Linux. Interestingly, we found
that there are two distinct levels of abstraction interfaces
to manage Linux kernel memory. The low-level interface
is primarily tasked with direct manipulation of page table
entries, and the high-level interface is used to abstract page
table layout and provide functions like set memory nx(). At
first glance, the low-level interface seems a better target to
address previous violations. However, the following signif-
icant shortcomings in its design complicate such approach.
Therefore, we chose the high-level interface as a target for
our solution.

• First, the low-level functions (e.g., pte mkexec()) are
intended as simple data manipulation primitives which
cannot fail. Our experience indicates that any devia-
tion from this assumption would yield unpredictable
results, as the current kernel is not yet designed to
handle such failures gracefully.

• Second, these functions operate on instances of pte t
type, which by itself does not guarantee that the in-
stance is in fact part of active or future page tables.
This, in turn, means that we would either need to check
the address of each pte t in question, or enforce W ⊕X
on all instances of pte t. Neither of these options is
desirable: the former creates a significant performance
overhead while the latter one introduces unwanted side
effects into all intermediate transformations of pte t in-
stances.

4.1 Fixing P2 Violation: Preserving the write

access on kernel read-write data
Our first patch fixes the violation of P2 invariant. More

specifically, as discussed earlier, this problem is caused by
the inability of static protections() to preserve the write ac-
cess to kernel read-write data (including the BSS section).
The fix is a straightforward one. However, in the process

275

---[Kernel Mapping]---
0xc0000000-0xc0200000 2M RW GLB x pte
0xc0200000-0xc0600000 4M ro PSE GLB x pmd
0xc0600000-0xc0843000 2316K ro GLB x pte
0xc0843000-0xc0a00000 1780K RW GLB x pte
0xc0a00000-0xf7800000 878M RW PSE GLB NX pmd
0xf7800000-0xf79fe000 2040K RW GLB NX pte
0xf79fe000-0xf7a00000 8K pte
0xf7a00000-0xf8000000 6M pmd
0xf8000000-0xf81fe000 2040K pte
---[vmalloc() Area]---
0xf81fe000-0xf81ff000 4K RW PCD GLB NX pte
0xf81ff000-0xf8200000 4K pte
 [. . .]
0xf8247000-0xf824a000 12K RW GLB x pte
0xf824a000-0xf824c000 8K pte
0xf824c000-0xf824d000 4K RW GLB x pte
0xf824d000-0xf824f000 8K pte
0xf824f000-0xf8274000 148K RW GLB NX pte
0xf8274000-0xf8276000 8K pte
0xf8276000-0xf8278000 8K RW GLB x pte
0xf8278000-0xf827a000 8K pte
0xf827a000-0xf827b000 4K RW GLB x pte
0xf827b000-0xf827d000 8K pte
0xf827d000-0xf8296000 100K RW GLB NX pte
0xf8296000-0xf8298000 8K pte
 [. . .]

(a) Vanilla Kernel

---[Kernel Mapping]---
0xc0000000-0xc00fb000 1004K RW GLB NX pte
0xc00fb000-0xc00fd000 8K ro GLB x pte
0xc00fd000-0xc0200000 1036K RW GLB NX pte
0xc0200000-0xc0600000 4M ro PSE GLB x pmd
0xc0600000-0xc068e000 568K ro GLB x pte
0xc068e000-0xc0844000 1752K ro GLB NX pte
0xc0844000-0xc0a00000 1776K RW GLB NX pte
0xc0a00000-0xf7800000 878M RW PSE GLB NX pmd
0xf7800000-0xf79fe000 2040K RW GLB NX pte
0xf79fe000-0xf7a00000 8K pte
0xf7a00000-0xf8000000 6M pmd
0xf8000000-0xf81fe000 2040K pte
---[vmalloc() Area]---
0xf81fe000-0xf81ff000 4K RW PCD GLB NX pte
0xf81ff000-0xf8200000 4K pte
 [. . .]
0xf821a000-0xf821d000 12K ro GLB x pte
0xf821d000-0xf821e000 4K ro GLB NX pte
0xf821e000-0xf8220000 8K RW GLB NX pte
0xf8220000-0xf8222000 8K pte
0xf8222000-0xf8223000 4K RW PCD GLB NX pte
0xf8223000-0xf8227000 16K pte
0xf8227000-0xf8228000 4K ro GLB x pte
0xf8228000-0xf8229000 4K ro GLB NX pte
0xf8229000-0xf822b000 8K RW GLB NX pte
 [. . .]

(b) Patched Kernel

Figure 3: Dumping Kernel Page Tables (kernel version 2.6.33)

of re-mapping our model back to the original Linux ker-
nel source code, we discovered another implementation bug
in the function routine try preserve large pages(). Specif-
ically, this function incorrectly processes access permission
change requests for areas that start on a boundary of a large
page (i.e., 2M), but are smaller than the page itself. This
leads to a possibility of setting improper access flags to the
memory area located within the same large page, but im-
mediately after the requested one. Specifically, this prob-
lem manifested itself by kernel read-write data becoming
read-only simply because it was initially mapped within the
same large page as kernel’s read-only data. Accordingly,
we propose two changes in the patch (that affects the file
arch/x86/mm/pageattr.c): one is to allow static protections()
to preserve the write access for kernel’s read-write data area
and another one is to verify each small page within the large
page for access flag compatibility [17].

4.2 Fixing P3 Violation: Removing mixed pages
in kernel space

Our next three patches address P3 violation, namely the
presence of mixed code and data pages in kernel space.
Based on our model checking results, our investigation maps
the related transition rules that lead to an unsafe state back
to the involved kernel routines. By doing so, we are able
to identify three distinct sources: BIOS32, loadable kernel
modules (LKMs), and static kernel image management.

BIOS32 As discussed in Section 3, the current Linux
kernel improperly maps the entire BIOS area into the kernel
space as RW + X. (Note the BIOS code itself is typically
located in read-only memory or ROM.) To resolve this issue,
we implemented a patch that dynamically maps BIOS32 ser-
vices into the kernel space. Based on related BIOS32 doc-
uments [4] and [26], it requires at most two pages to be
executable per BIOS32 service, and none of them are ex-
pected to be writable. As such, a dynamic service mapping
of BIOS32 services can be established at the time of ser-
vice discovery, and with appropriate (and W⊕X-compliant)
access permissions. As part of our patch, we added the
BIOS32 service mapper to pci/pcbios.c and removed unnec-
essary protection for the area of physical memory under

2MB from arch/x86/mm/pageattr.c. Also, we revised the
file mm/init 32.c to properly report kernel text addresses
[18] because of the BIOS32 changes.

LKMs The second source of violating W ⊕X is located
in the support of LKMs. In particular, since all vmalloc()
allocations default to “data” access mode (RW + NX), the
only source of mixed pages in this area is LKMs as their
code is explicitly marked as “executable”. More specifically,
dynamic kernel linker allocates each loadable module in two
parts: module init and module core. The init part of the
module will be discarded after initialization, while core will
stay resident in the kernel. In order to minimize a module’s
footprint, the linker chooses the minimum amount of spac-
ing necessary between each of the module’s sections - just
enough to accommodate necessary section alignment, which
introduces mixed kernel pages. Accordingly, our patch allo-
cates module sections in three groups: text, read-only data,
read-write data and further adjusts the linker to align each
of the groups on a page boundary, ensuring that each page
contains only sections from the same group. Next, our patch
assigns a set of appropriate access permissions to all pages
of each group as follows: read-only for text and read-only
data, non-executable for read-only data and read-write data.
As this patch will inevitably introduce additional memory
consumption (Section 5), we create a compile-time option
(i.e., CONFIG DEBUG SET MODULE RONX) to turn on
or off the functionality of this patch as needed [20].

Static kernel image Similar to the support of LKMs,
our next patch includes the code to split all sections of the
static kernel image into three groups: text, read-only data,
and read-write data. Specifically, our patch addresses neces-
sary group alignment by modifying the related linker script
(kernel/vmlinux.lds.S) and assigns proper access permissions
to the pages of each group at the end of kernel initialization
(mm/init.c [19]). The functionality of this patch is always
enabled.

4.3 Fixing P4 Violation: Disallowing memory
aliasing with permission conflicts

The remaining patch addresses the P4 violation. In partic-
ular, as we have mentioned in Section 2.2, memory alias han-

276

dling is being implemented in the kernel in cpa process alias()
function. However, the way it handles page aliases specifi-
cally excludes the case of an NX update.

/� No a l i a s checking for NX b i t mod i f i c a t i on s �/
ch e cka l i a s = (pgprot va l (mask set) | pgprot va l (

mask c l r)) != PAGE NX;

To enforce W ⊕ X, our patch needs to modify the alias
handling routine such that it will propagate changes of all
access flags to all aliases. This can be achieved by setting
checkalias = 1 for all page attribute modifications.

s t a t i c i n l i n e pgprot t
proces s WxorX vio lat ion (pgprot t prot ,

unsigned long address , unsigned long pfn)
{

/�
� We can Oops or Panic here i f needed . But for

now we j u s t print out an e r r o r message .
�/

pr intk (KERN ERR ”(W xor X) v i o l a t i o n : ” ”VA=0x%
lx , PFN=0x%lx ” , address , pfn) ;

/� Set NX, j u s t in case �/
pgpro t va l (prot) |= PAGE NX;
return prot ;

}

In addition, our patch implemented a helper routine pro-
cess WxorX violation() (a part of mm/pageattr.c) for the
strict enforcement of W ⊕ X property. Particularly, this
function will be called for each page that is about to violate
W⊕X property, before the new protection attributes can be
applied. Because of the presence of aliasing, this routine is
called for any inconsistency of memory protection attributes
in aliases as well. If there are conflicting attributes, this
function will by default set NX flag for all related pages
and logs an error message detailing the associated virtual
and physical addresses.

5. EVALUATION
Our improvements aim to make the Linux kernel conform

to the W ⊕X property by guaranteeing exclusivity of write
and execute page access. This means that all of the kernel
code that follows the interfaces in place will automatically
be compliant with W ⊕X without additional modifications.
To rigorously verify the W ⊕ X compliance, we revise the
previous FSM description to reflect our patches (Section 4).
Also, in order to avoid unnecessary state explosion, we chose
a minimal configuration where we only modeled a system
that contains one virtual page of each type: kernel text, ker-
nel read-only data, kernel read-write data, linear mapping.
To allow for variability, we use two pages in non-contiguous
mappings, and model the physical memory with one more
page frame than the total size of the virtual address space.
In addition, the model contained a proposed memory in-
terface, a full set of rules, and invariants to establish and
monitor the W ⊕ X property. The model checker exam-
ined 27942 states and 7823760 rules without detecting any
violations.

In order to further confirm the validity of our approach
in a real system, we used a minimal Ubuntu Server 8.04.4
LTS [32] system that runs the latest vanilla Linux 2.6.33
kernel [16]. Note the vanilla Linux kernel has been com-
piled with Generic Ubuntu configuration, and then booted
and inspected. In Figure 3(a), we show the virtual memory
layout in the vanilla Linux kernel. It shows that while all
necessary elements of code and data separation are indeed

present, they are not applied in a consistent manner. Specif-
ically, RO and NX flags are used sparsely. As shown from
the detailed kernel page table dump (Figure 3(a)), it fails to
establish W ⊕X property.

In comparison, we applied our patch set to the same ker-
nel and repeated the inspection. A clear difference can be
observed on Figure 3(b): we have successfully eliminated all
pages with mixed access. Specifically, the following changes
are noteworthy:

• a 2Mb area between 0xc0000000 and 0xc0200000 is
now marked as RW + NX, except for two RO + X
pages 0xc00fb000 - 0xc00fd000 reserved for BIOS32
services.

• Static Kernel image (0xc02000000 - 0xc08a3000) is
clearly partitioned in three sections: RO + X code
(0xc02000000 - 0xc068e000), RO+NX read-only data
(0xc08a3000 - 0xc0844000), and RW +NX read-write
data (0xc0844000 - 0xc08a3000).

• Loadable Kernel Modules (see addresses 0xf821a000
- 0xf8220000 and 0xf8227000 - 0xf822b000) are now
clearly split into three parts: RO +X code, RO +NX
read-only data, and RW + NX read-write data.

Performance and Memory Overhead To evaluate
the performance overhead introduced, we measured its run-
time overhead with three tasks: UnixBench 5.1.2 [31] (index
test group, SMP and Uniprocessor configurations), Linux
kernel compilation, and compression time of 10GB random
data stream. All tests have been performed on Ubuntu
Server 8.04.4 LTS with Linux 2.6.33 compiled for i386 ar-
chitecture in standard Ubuntu Server configuration except
for PAE enabled, and XEN disabled. Our test platform
is a Gigabyte MA78G-DS3HP system (AMD RS780/SB700
chipset) with dual-core AMD Athlon 4850e processor (fam-
ily 15, model 107, stepping 2) and 8GB of PC2-6400 RAM
in dual-channel configuration (4x2GB, CL5). The results
are shown in Table 1.

Our results indicate that our patch set does not affect
overall system performance in a measurable way. In partic-
ular, the first four patches (related to static kernel image,
LKM, and BIOS32) do not introduce any additional perfor-
mance overhead as all additional work are mainly performed
at compile-time. Though there is a slight overhead incurred
during the kernel/module initialization, it does not affect
the runtime performance after initialization. Among the five
patches, the only patch that involves run-time penalty is the
compliance checking of W⊕X for each kernel page table up-
date (i.e., in the helper routine process WxorX violation()).

Next, we evaluate the memory overhead introduced into
the kernel by our patches. We first investigate the difference
in the size of the static kernel image and memory allocated
to individual modules. As can be seen on Figure 4, the
size of the static kernel image has increased from 6793KB
(4660KB text + 2133KB data) to 6796KB (4664KB text
+ 2132KB data). This increase constitutes a mere 0.04%,
and is thus not significant.

We also used the same system to load 44 kernel modules of
varying sizes. Due to the fact that our patch set affects the
layout of different module sections, the total size of these
44 modules (reported by running the lsmod command) is
increased from 1, 265, 502B to 1, 493, 138B (an increase of
22.01%). Note that the module sizes reported by lsmod

277

fixmap : 0xfff1e000 - 0xfffff000 (900 kB)
pkmap : 0xffa00000 - 0xffc00000 (2048 kB)
vmalloc : 0xf81fe000 - 0xff9fe000 (120 MB)
lowmem : 0xc0000000 - 0xf79fe000 (889 MB)
 .init : 0xc08a3000 - 0xc0916000 (460 kB)
 .data : 0xc068d32c - 0xc08a29e8 (2133 kB)
 .text : 0xc0200000 - 0xc068d32c (4660 kB)

(a) Vanilla Kernel

fixmap : 0xfff1e000 - 0xfffff000 (900 kB)
pkmap : 0xffa00000 - 0xffc00000 (2048 kB)
vmalloc : 0xf81fe000 - 0xff9fe000 (120 MB)
lowmem : 0xc0000000 - 0xf79fe000 (889 MB)
 .init : 0xc08a3000 - 0xc0916000 (460 kB)
 .data : 0xc068e000 - 0xc08a3000 (2132 kB)
 .text : 0xc0200000 - 0xc068e000 (4664 kB)

(b) Patched Kernel

Figure 4: Kernel Virtual Memory Layout

Benchmark Vanilla Patched Overhead%

UnixBench UP (index) 737.88 741.8 0.53%
UnixBench SMP (index) 1317.13 1310.88 -0.47%
Kernel Compilation (seconds) 1712 1725 0.76%
Gzip test (seconds) 2890 2873 -0.59%

Table 1: Run-time W ⊕X enforcement overhead

could be misleading, as they do not reflect the fact that
kernel allocates memory for modules at the page granular-
ity. This means that the true measure of module memory
consumption should be the memory (in terms of pages) allo-
cated to the module, not the module size. With that, if we
can take the whole-page allocation into account, the mem-
ory overhead is increased from 322 pages (size of 4K) to
382 pages (an increase of 22.17%). We believe such mem-
ory overhead is moderate and within an acceptable range for
modern server and desktop systems, especially considering
the current price drop of physical memory. In the meantime,
we also recognize that such increase in memory consumption
might be unwanted in certain memory-constrained applica-
tions, such as embedded systems. Because of that, our patch
is provided as a compile-time option that may be enabled or
disabled as needed.

6. DISCUSSION
As with many other real-world protection systems, our

approach comes with a few limitations. First of all, for the
purpose of verifying Linux kernel W ⊕X enforcement, our
approach assumes that the static kernel image and LKMs
are trusted. More specifically, the kernel (including LKMs)
is assumed to follow the transition rules (Section 2.2) to
manage the kernel memory. If this assumption is violated,
the invariants derived in this work may not be valid. Note
that such trust can be potentially established by means of
kernel/driver signing [12, 27, 28, 30], which falls outside the
scope of this work. Second, it is important to note that
while providing W ⊕X is helpful to block code injection at-
tacks, W ⊕X itself does not prevent other types of attacks,
such as “return-into-libc” [14]. Third, since our modeling is
based on the correctness of the internal kernel APIs, any
code inside the function that modifies page tables directly
will not be prevented from doing so. Finally, although we
establish a W ⊕X property in the Linux kernel, there are a
few exceptions that we had to consider for the implementa-
tion of our patches. For example, a special accommodation
had to be made for kernel’s built-in function tracing facility
- ftrace [1]. The function tracing facility essentially requires
dynamically modifying kernel code, which is in conflict with
our W ⊕ X enforcement. As a result, we have to allow a
short window of W ⊕ X violation while ftrace is in use to

place its trace points (that requires modifying kernel’s code
at run time).

7. RELATED WORK
Model checking for improved security The first cat-
egory of related work includes recent efforts that leverage
model checking to improve systems security. For example,
Mitchell et al. [22] applied model checking to successfully
verify the correctness of (and find bugs in) security proto-
col specifications. Chen et al. [8] utilized model checking to
analyze or demystify the confusing setuid system calls. Oth-
ers [6, 7, 11, 29, 34] have used software model checking and
static analysis to find a general class of bugs in source code.
In contrast, our focus is on the analysis and verification of
W ⊕X enforcement for Linux kernel memory protection.

W ⊕X enforcement The second category of related work
aims at enforcing W ⊕X as an effective defense against code
injection attacks. For example, SecVisor [30] and NICKLE
[28] use custom hypervisors to enforce code protection and
data non-execution. Such protection is achieved through
effectively separating code and data address spaces. Both
methods make it impossible to modify code and to exe-
cute data without going through the special authentication
mechanisms controlled by a hypervisor. Note that even with
hardware-based full virtualization support, they inevitably
lead to significant performance degradation, as policy en-
forcement requires additional management activities that
consume extra clock cycles and cause cache pollution. Oth-
ers take advantage of standard hardware protection features
in the most straight-forward manner and introduce minimal
impact. For examples, both PaX [25] and ExecShield [33]
make use of standard memory protection features found in
most architectures to achieve W ⊕X property. Shared with
our approach, these patches separate memory pages into two
categories: code and data. Code pages are set as RO + X,
while data as RW +NX. However, our approach is different
from them in that we use a model checking approach to sys-
tematically analyze the W⊕X protection in the Linux kernel
memory space while others mainly concentrate on userspace
application protection. Also, our solution is based on the
model-checking approach, which is appropriate for formal
verification.

278

Other code injection defense mechanisms The third
category of related work contains other approaches to de-
fend against code injection attacks. For example, two other
notable ways in this category include Address Space Layout
Randomization (ASLR) [24, 25] and Instruction Set Ran-
domization [15, 3]. ASLR is based on the idea of randomiza-
tion of all major components within the application address
space. This typically involves introducing random offsets
in the layout of all major sections of the primary executable
and the libraries it requires at link-time. This type of protec-
tion is already included in the mainline kernel and used ex-
clusively for userspace. Instruction set randomization takes
a somewhat different approach by randomizing the actual
machine instruction set. This is achieved by creating a vir-
tual machine with unique instruction encoding for each run.
Compatibility with pre-compiled binaries is established by
load-time binary translator, which converts the code from
well-known “generic” instruction encoding to the encoding
used in the specific virtual machine. Such approaches are
not widely deployable since dynamic instruction sets are not
supported by any modern hardware and software-based em-
ulation likely introduces prohibitive performance overhead.

8. CONCLUSION
In this paper, we have presented a model checking-based

approach to analyze the W ⊕X protection in the Linux ker-
nel space. Our modeling has led to the discovery of several
real problems in the current Linux kernel design and imple-
mentation. Based on the model checking results, we have
accordingly developed five kernel patches to fix them and
four of them are in the process of being integrated into the
mainline Linux kernel. Our evaluation with these patches
indicate that they involve minimal changes and incur negli-
gible performance overhead to the Linux kernel.

Acknowledgments The authors would like to thank the
anonymous reviewers for their numerous, insightful com-
ments that greatly helped improve the presentation of this
paper. This work was supported in part by the US Army Re-
search Office (ARO) under grant W911NF-08-1-0105 man-
aged by NCSU Secure Open Systems Initiative (SOSI), the
US Air Force Research Laboratory (AFRL) under contract
FA8750-09-1-0224, and the US National Science Foundation
(NSF) under Grants 0852131, 0855297, 0855036, 0910767,
and 0952640. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the ARO,
the AFRL, and the NSF.

9. REFERENCES
[1] A Look at ftrace. http://lwn.net/Articles/322666/.

[2] Advanced Micro Devices. AMD64 Architecture
Programmer ↪aŕs Manual Volume 2: System
Programming, 3.14 edition, September 2007.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovic, and D. D. Zovi. Randomized
Instruction Set Emulation to Disrupt Binary Code
Injection Attacks. In CCS ’03: Proceedings of the 10th
ACM Computer and Communications Security
Conference, 2003.

[4] T. C. Block. Standard BIOS 32-bit Service Directory
Proposal. Phoenix Technologies Ltd., 0.4 edition, June
1993.

[5] D. Bovet and M. Cesati. Understanding The Linux
Kernel. Oreilly & Associates Inc, third edition, 2005.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.
In OSDI’08: Proceedings of the 8th USENIX
Symposium on Operating Systems Design and
Implementation, Dec. 2008.

[7] H. Chen and D. Wagner. MOPS: An Infrastructure for
Examining Security Properties of Software. In
CCS’02: Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002.

[8] H. Chen, D. Wagner, and D. Dean. Setuid
Demystified. In Security ’02: Proceedings of the 11th
Conference on USENIX Security Symposium, 2002.

[9] I. Corporation. IA-32 Intel Architecture Software
Developer’s Manual Volume 3A: System Programming
Guide, Part 1. Intel Corp., 2006. Publication number
253668.

[10] D. L. Dill. The Murphi Verification System.
http://eprints.kfupm.edu.sa/70602/1/70602.pdf,
1996.

[11] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and
A. Datta. Attacking, Repairing, and Verifying
SecVisor: A Retrospective on the Security of a
Hypervisor Research Area. Technical report, June
2008.

[12] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual Machine-Based Platform
for Trusted Computing. In SOSP ’03: Proceedings of
the 19th Symposium on Operating System Principles,
October 2003.

[13] M. Gorman. Understanding The Linux Virtual
Memory Manager. Prentice Hall, May 2004.

[14] R. Hund, T. Holz, and F. Freiling. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In Security ’09: Proceedings of the 18th
Conference on USENIX Security Symposium.
USENIX Association, 2009.

[15] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering Code-Injection Attacks With
Instruction-Set Randomization. In CCS ’03:
Proceedings of the 10th ACM Computer and
Communications Security Conference, 2003.

[16] The Linux Kernel Archives. http://www.kernel.org.

[17] S. Liakh and X. Jiang. [1/4,tip:x86/mm] correcting
improper large page preservation.
https://patchwork.kernel.org/patch/90045/, 2010.

[18] S. Liakh and X. Jiang. [2/4,tip:x86/mm] set first mb
as rw+nx.
https://patchwork.kernel.org/patch/90048/, 2010.

[19] S. Liakh and X. Jiang. [3/4,tip:x86/mm] nx protection
for kernel data.
https://patchwork.kernel.org/patch/90046/, 2010.

[20] S. Liakh and X. Jiang. [4/4,tip:x86/mm] ro/nx
protection for loadable kernel modules.
https://patchwork.kernel.org/patch/90047/, 2010.

[21] E. P. M. Michalis Polychronakis, Kostas
G. Anagnostakis. An Empirical Study of Real-world
Polymorphic Code Injection Attacks. In LEET ’09:
Proceedings of the 2nd USENIX Workshop on

279

Large-Scale Exploits and Emergent Threats. Usenix
Association, April 2009.

[22] J. Mitchell, V. Shmatikov, and U. Stern. Finite-State
Analysis of SSL 3.0. In Security ’98: Proceedings of
the 7th Conference on USENIX Security Symposium,
1998.

[23] A. Nayani, M. Gorman, and R. S. de Castro. Memory
Management in Linux - Desktop Companion to the
Linux Source Code. http://www.ecsl.cs.sunysb.
edu/elibrary/linux/mm/mm.pdf, May 2002.

[24] PaX ASLR.
http://pax.grsecurity.net/docs/aslr.txt.

[25] PaX NOEXEC.
http://pax.grsecurity.net/docs/noexec.txt.

[26] PCI Special Interest Group. PCI BIOS Specification,
2.1 edition, August 1994.

[27] S. Pearson. Trusted Computing Platforms, the Next
Security Solution. Technical report, HP Laboratories,
November 2002.

[28] R. Riley, X. Jiang, and D. Xu. Guest-Transparent
Prevention of Kernel Rootkits with VMM-Based
Memory Shadowing. In RAID ’08: Proceedings of the
11th international symposium on Recent Advances in
Intrusion Detection. Springer-Verlag, 2008.

[29] B. Schwarz, H. Chen, D. Wagner, G. Morrison,
J. West, J. Lin, and W. Tu. Model Checking An
Entire Linux Distribution for Security Violations. In
ACSAC’05: Proceedings of the 21st Annual Computer
Security Applications Conference, 2005.

[30] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In SOSP ’07:
Proceedings of the 21st ACM SIGOPS symposium on
Operating systems principles. ACM, 2007.

[31] J. Tombs, B. Smith, R. Grehan, T. Yager, D. C.
Niemi, and I. Smith. Unixbench-5.1.2.
http://code.google.com/p/byte-unixbench/.

[32] Ubuntu. http://www.ubuntu.com/.

[33] A. van de Ven. Limiting Buffer Overflows with
ExecShield. Red Hat Magazine, July 2005.

[34] J. Yang, P. Twohey, D. Engler, and M. Musuvathi.
Using Model Checking to Find Serious File System
Errors. In OSDI’04: Proceedings of the 6th USENIX
Symposium on Operating Systems Design and
Implementation, 2004.

Appendix A: Defining the Initial State in the
Model

procedure map l inear () ;
begin
−− page count s t a r t s from 1 , t h e r e f o r e +1
for va : (p a g e o f f s e t +1) . .

(p a g e o f f s e t+k e r n e l d i r e c t s i z e) do
−− I1 : l i n e a r ke rne l mapping
pt [va] . addr := va − pa g e o f f s e t ;
pt [va] . p re sent := true ;

end ;
end ;

procedure map s t a t i c k e rn e l () ;
begin
−− page count s t a r t s from 1 , t h e r e f o r e +1
for va : (p a g e o f f s e t +1) . .

(p a g e o f f s e t+k e r n e l d i r e c t s i z e) do

−− I2 : are we mapping code and ro−data ?
i f (va <= (pa g e o f f s e t+k e r n e l t e x t s i z e

+ k e r n e l r o s i z e))
then
−− yes , set page as R/O
pt [va] . prot .w := f a l s e ;

else

−− no , set i t as wr i t ab l e
pt [va] . prot .w := true ;

end ;

−− I2 : are we mapping ke rne l data ?
i f (va>(p a g e o f f s e t+k e r n e l t e x t s i z e))
then

−− yes , set i t non−executab l e
pt [va] . prot . x := f a l s e ;

else

−− no , set code as executab l e
pt [va] . prot . x := true ;

end ;
end ;

end ;

procedure map bios () ;
begin
−− page count s t a r t s from 1 , t h e r e f o r e +1
for va : b i o s s t a r t . . b i o s end do
−− I3 : BIOS mapping
pt [va] . addr := va − pa g e o f f s e t ;
pt [va] . p re sent := true ;
pt [va] . prot .w := true ;
pt [va] . prot . x := true ;

end ;
end ;

s t a r t s t a t e
begin

clear pt ;
map l inear () ;
map s t a t i c k e rn e l () ;
map bios () ;

end ;

280

Back to Berferd

William Cheswick
AT&T Labs - Research

ches@research.att.com

ABSTRACT
It has been nearly twenty years since I published the Berferd
paper. Much of it is quite outdated, reflecting the state of
technology at the time. But it did touch a number of issues
that have become quite important. I discuss some of the
existing conditions around the time of the paper, and some
of these issues.

Categories and Subject Descriptors
X [Security]: Internet history

1. INTRODUCTION
In 1500 AD, if you had a ship with enough food and a

stout-hearted crew and you sailed west long enough, you
were likely to discover some place unknown to the Euro-
peans. In the late 1980s, if you had an Arpanet connection,
some spare time, and a concern about security, you were
likely to be working on something new and eventually, quite
important.

There were some notable ships in the metaphorical west-
bound fleet. Digital Equipment had a substantial fleet. No-
table sailors included Brian Reid, Jeff Mogul, Fred Avolio,
and Marcus Ranum. I crewed for Dave Presotto at Bell
Labs, and joined Steve Bellovin in a number of efforts. There
was a dark, unmarked ship, probably sailing for the NSA,
ahead of us in the distance. We didn’t hear much from them
in those days.

Some of these sailors, including me, have been dubbed“the
father of the firewall” by the media. Most of these people,
and a number of others, could plausibly have some claim to
the title. But the world was ready for firewalls.

This paper looks back at my second Internet paper, An
Evening With Berferd, in Which a Hacker is Lured, En-
dured, and Studied [7]. Much of the paper is hopelessly out-
dated—in Internet time, it dates from the pre-Cambrian era.
I won’t include the paper here nor discuss it in much detail.
It is available on the Internet and in several places.[8, 9, 12,
7] (I particularly like the title Une Soirée de Berferd in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

French translation of our Firewalls book.[4] But a number
of themes I mentioned or assumed in the paper have be-
come quite important. It is a snapshot of the early stages of
ongoing arms races, which I will discuss below.

2. THE BERFERD MILIEU
The previous twenty years had seen an extensive amount

of work in computer security. Multics[21] had been a plat-
form for security ideas for years. Most of the security ideas
taught today come from seminal works like Saltzer and Sch-
roeder[26]. This is the deep magic of computer and network
security.

The Orange Book[13] laid out security rules for isolating
users at different security levels on a machine. Comput-
ing resources were expensive, and this document suggested
techniques for sharing these resources while minimizing data
leakage. This was a fading goal given the decreasing price
of computing. Even in 1977 I saw expensive computers re-
booted with different disk packs to run jobs at different se-
curity levels. The security was simply easier to implement
and audit, which is always a good sign.

One main security concern addressed by the Orange Book
was the prevention of leakage from high classification levels
to low levels. It did not deal directly with the threat of im-
porting viruses into high-level systems, flow in the opposite
direction. Still, the Orange Book had a lot of useful security
advice that is applicable today.

A lot of security lessons had been taught, if not learned,
by the late 1980s. Much of this early work is overlooked by
students today. Students wishing to catch up can find some
good lists, c.f. references [23, 22].

Hardware design in the previous twenty years had experi-
enced a Cambrian explosion[19] of its own, exploring a num-
ber of interesting solutions. IBM had virtual machines on its
mainframes in the 1960s. Burroughs had computers whose
security relied on the compilers—users were not allowed to
write machine code themselves. The hardware checked ar-
ray bounds and other limits. Code and data were separated,
and data could not be executed. Seymore Cray built RISC
machines from the start, though the name came later.

In the late 1980s the Internet was a zero billion dollar
business. We were marveling that the technology worked,
never mind the obvious security problems. Useful crypto was
suppressed and essentially unavailable, though only export
from the U.S. was controlled.

These were the last days of the distributed file system
(“doofus”) wars: there were a number of ways to share file
systems. Alas, NFS won. Similar to the QWERTY key-

281

Mon Tue Wed Thu Fri Sat Sun

Time
of

Day

Day of Week (shifted slightly by week)

0

4

8

12

16

20

24

•

••••••
••

••

•••••
•
••••
••

••••••

••
•

••••

••
•••
••
••

••••••
•••••

••
••
••

••

•••••
•
•••
•••••

••

•••
••••••

•••••

••••••••••
••••
••••

••••••••

•••••••••
••

••••••••
••

••

••••
••••••••
••
••

••••••••••

••••
••••••••
••••
••
•
••••••
••

•••••

••••••
••

••••••••••••
••••••
•••

••••••••

••••••
••••

•••••••
••••

••••
••••
••••••••••
••••••••••••••

••••••••

•••••••••
••••

••••

••••
•••••••••
•••••••

•••••

•••••

•••••••••••
•••••••

••••
••••

•••••••••••••••

••••••••••
•••••

•••••

•••••••••••••••

••••••••••
•••••••

••••••

•••••••
••••••••••••
•••••••••••••

•••••••

•••••••
•••••••
•••••••

••••

•••••

••••••••••••••

•••••••

•••••••••••

••••

•••••••

•••••••
••••
•••••••

••••••••••••••
•••••••
•••••••

••••••••••
•••

•••

•••••••
••••

••••

•••••••••••••••
••••••
•••••

•••••••
•••
•••
••••••
••••
••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••

••••••••••••••••••••
••••••••••

•••••••••••••••••••••
••••••
••••••

•••••••

•••••••••••••
••••••••••••••••••••
••••

••••

••••••
•••••••

••••

•••••••••

••••••••

•••••••••••••••••

•••••••

•••••••
••••••••••••••••
•••••
••••••••••••••••••••••
••••••••••
•••••••••••
••••••••••••••••

••••••••••••••••••
••
••••••••••••••••••••••••••••••••
•••••••••••••
•••••••••••••••••••

••

•••••••••••••

•••••••••••••
••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••
•••••••••••••

••••••

••••••••••••••••

••
••••••••
••••••••••••••••

•••••••••••••••••••••••
••
••

•••••••••••••••••••••••••

•••••••••••••••

••••••••••••••••••••••••••••••
•••••••••••••••••••••
••••••••••
••••••••••••••••
••••••••••••••••••••••

••••••••••••••••••••••••
•

•••••••

•••••••••••••••

••••••••••••••••••••••
•••••••••••••••

•••••••••••••••
•••••••

•••••••••••••••
••••••••

•••••••••••••••
•••••••••••••••
•••••••••••••••••

••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••

••••••••••••••••••••••••••••••
•••••••••••••••

••••••••••••••••••••••••••••••
••••••••

••••••••

••
•••••••••••••••

•••••••••••••••
•••••••••••••••••••••••••••••
•••••••••••••••
•••••••••••••••
••••••••••••••••••••••••••••••
••••••••
•••••••••••••••••
•••••••••••••••••
•••••••••••••••••

••••••••••••••••••••••••••••

•••••••••••••••••

•••••••••••••••••
••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••

•••••••••

••••••••••••••••••••••••••
••••••••

•••••••••••••••••••••••••
•••••••••••••••••••••••
•••••••••••••••••••••••••••••

••••••••••••••••••
••••••••

•••••••••

•••••••••••••••••

•••••••••••••••••
•••••••••

•••••••••••••••••

•••••••••••••••••

••••••••••••••••••••••

2

66
162

41
123

2

11
56

147
178

221
310

156
118

186
268

157
224

71

Figure 1: Here are the access times of the latter-day berferd who stole my iPhone. It is pretty clear he goes
to sleep around 4AM (later on the weekends) and has a part-time job starting late in the evening. In the
case of Berferd, we hoped we might divine his approximate time zone.

board as an early victor, it had important security flaws
and did not correctly implement some Unix file system se-
mantics. These problems have only been recently addressed
in NFS version 4.

X11 was new and spreading. Telnet , FTP , and the Unix
“r” commands (rsh and rlogin) were popular and useful.
Unix was common (it was nearly 600,000,000 seconds old
when the Morris Worm hit). DEC VMS and a number of
other operating systems were common. Microsoft was not a
factor, except perhaps in virus research—Windows 95 was
years in the future. In fact, for many systems one had to pur-
chase TCP/IP separately from the operating system; Woo-
longong was probably the most important supplier. Cisco
was just emerging from the crowd as the leading router man-
ufacturer.

There were a number of networks and related protocols,
like Bitnet, CSnet, ACSnet, Usenet, uucp, MILnet, and
Arpanet with TCP/IP. The latter was beginning to pull into
the lead by the mid- to late-1980s. In Europe the carefully-
engineered OSI stack (the “ISO tower”) made inroads with
X.25, but we only seem to need about five explicit layers in
our network stack, not seven.

Many of these networks had their own email address for-
mats, and I spent a fair amount of time in my early career
at Bell Labs keeping the address translations straight. For
example, the address rdk%templevm.bitnet@cunyvm.cuny.
edu was correct, but we allowed bitnet!templevm!rdk.

I don’t think that many of us realized at the time that
short hallway conversations and quick technical suggestions
would often each foreshadow billion-dollar businesses. Many
ideas were discussed at the time, if not implemented or even
patented. I declined to make a few patent applications be-

cause I misunderstood the legal meaning of “obvious.” Most
of us westward-bound sailors knew this stuff.

Of course, new names have emerged for some of these
old ideas. We were doing plenty of deep packet inspection
back then. Similarly, programmers had been dealing with
code refactoring and technical debt since programs were first
written.

We were native Internetians before the Great Domain
Name Land Rush. I still have a little twinge when I see a new
domain name on a commercial. ”furniturewarehouses.com”!
Darn! I could have had that! And I have friends who
have made small fortunes because they picked good domain
names. I’ve been offered money for cheswick.com: it’s too
bad I wasn’t named MacDonalds.

Computer viruses were in the news. These spread in Mi-
crosoft hosts, usually via floppy disk. Most of them damaged
the infected machine or displayed political messages. Fred
Cohen had studied viruses a few years before.[10] At Bell
Labs, Doug McIlroy had studied them, and Tom Duff was
making management nervous with a virus spread in shell
scripts.[14] The probe.com worm inadvertently took down
Digital Equipment’s corporate network for a couple of days.

Attacks were personal, with only the scans automated.
Many scans were done by hand. The earliest vulnerability
scanner I can remember was a set of shell scripts by Mike
Muuse called sweep. This detected five different weaknesses
in remotely network servers.

3. THE BELL LABS FIREWALL
The Morris Worm hit in November, 1988. I had been

running Presotto’s application gateway for almost a year.
When I heard of the Worm’s attack, I had a sinking feeling

282

that perhaps the Worm might have discovered a weakness
in the firewall. I went into work.

At the Labs, all seemed safe. I remember Peter Wein-
berger calling one site and bragging that we hadn’t been
hit. The gateway had held up, but we had an unprotected
connection to Bellcore, who was totally infested. The Mor-
ris Worm chose targets by running through /etc/hosts (a
list of all computers known to the machine!) Our computers
were at the end of their list, but the exponential growth of
the worm was insufficiently controlled[15]. The Bellcore ma-
chines were so swamped, the worm never reached our entry
at the end of the file. The worm would have spread quickly
on the Bell Labs intranet: I found 1,300 hosts that were
susceptible to it.

The worm was the first Internet Denial of Service (DOS)
attack, though it wasn’t meant to be. Controlling poten-
tially exponential growth continues to be a problem for virus
and worm writers today, though only when stealth is desired.

I did not like the uncomfortable feeling about our gateway
and sought a simpler, more reliable design. This desire to
implement security in a much more reliable way has guided
my security choices ever since. Confidence in security should
come from auditable simplicity.

I redesigned the Bell Labs gateway and described it in
a paper.[6] This new gateway was festooned with logging:
anything that wasn’t explicitly understood was logged as
suspicious. Steve Bellovin and I wanted to see what the Bad
Guys were up to, motivated in part by Stoll’s article[29]. We
had a stronger defensive position than he had. Steve wrote
a couple papers about the attacks on the firewall[2] and the
odd packets we detected on the external network[3].

For a couple of years we chased down suspicious probes
and reported them to the folks who ran the offending sites.
The messages were of the sort: “We don’t care very much,
but we received the following network traffic that seems to
indicate that there are hackers on machine X.”About half of
these emails got responses. I stopped do this after a while.
It was like counting bugs on the windshield.

The sensitivity to network probes has mutated over the
years. While I was sending out these letters, Fred Cohen was
sending nasty messages to ISPs when unsolicited ping pack-
ets arrived on his network. By 2000, the Internet Mapping
Project[5] would receive a couple complaints a month about
our repeated traceroutes of networks. Five years later, the
complaints were gone. The Internet now has so much ‘back-
ground radiation” of packets that few note or care about
some casual traffic. I recently measured about six packets
per hour per IP address of unsolicited packets on unused IP
addresses.

In the late 1980s, Mark Horton asked for a class A net-
work for AT&T, and was given network 12.0.0.0/8. This
network sat unused for a year or two: our internal routers
couldn’t handle the multiple subnetting such an address re-
quired. I announced the unused network to the Internet,
directing any traffic to an unused MAC address, and using
tcpdump to record the traffic. Since there were no hosts on
the network, there should be no traffic. Of course, there
was—up to 25MB per day. Much of this was backscatter
from attacks on systems that used address-based authenti-
cation. This was the first packet telescope that I can recall,
and certainly one of the largest. Of course, AT&T later
found ample use for this network.

4. GLANCING THROUGHTHE BERFERD
PAPER

The paper is quite dated. Specific attacks and whole tech-
nologies have evolved and matured. The Internet gateway
was hand-built out of various parts, as all firewalls were at
the time. The design was solid, and never failed in unex-
pected ways throughout its lifetime.

The first half of the paper deals with attempted attacks
and simulated responses to those attacks. I think the pa-
per doesn’t make clear that Berferd was attacking the fire-
wall machine itself, drawing chalk figures on a case-hardened
steel wall. There were fake services and a lot of logging to
detect external interest. These were modified to make it look
like the attack was working, eventually. With a human in
the loop, the responses should have been very unconvincing.
Steve Bellovin was watching the network traffic from a mon-
itoring machine. We wanted that machine to be stealthy, so
Steve cut the transmit wire to the Ethernet connection.

The attack on our gateway was minor: Berferd was caus-
ing lost sleep in many places, especially the Netherlands
and at Stanford University. The timing of the attack on our
gateway seemed oddly coincidental with the start of the first
Gulf war. It raised the excitement at our end, but Berferd
had been a problem long before that. Saddam was not using
cyber warfare, though the thought crossed my mind at the
time.

The second half of the paper describes a jail we set up.
(To my knowledge this was the first use of the term in this
context.) This was a separate machine, not the firewall it-
self, configured as what we now call a high-interaction hon-
eypot. The implementation was highly idiosyncratic, using
Datakit[16] to splice incoming connections through a sepa-
rate logging machine. (Datakit was the predecessor to ATM
and MPLS, and was widely used in AT&T in those days.)
The host itself ran MIPS Unix, with some modifications,
and an attractive file system to attract interest, similar to
Cliff Stoll’s SDInet. Berferd actually logged into a chroot
environment within the target machine.

The traceback of the attacks was fairly successful, but it
helped that the attackers had been watched from the attack-
ing end.

The paper also includes an analysis of attack times. If the
attacks are not automated, we can look at the time-of-day
information and try to guess the attacker’s time zone, sleep,
and attack habits. We didn’t learn much in Berferd’s case.

(But this was useful recently when I tracked down my
stolen iPhone. When the iPhone was active, it would at-
tempt to log into my (disabled) mail server, leaving a trace
of IP addresses suitable for a subpoena. The times from
the mail logs are shown in Figure 1. You can draw some
conclusions about the thief’s daily schedule.)

Finally, Berferd came to our jail and used it to attack
the world for three days. We were collecting real-time in-
formation about a hacker and his techniques and targets.
This kind of information was hard to come by at the time.
(Now, law enforcement and honeypot owners can get this
information in bulk quantities easily.)

Management became upset, and made us shut down the
honeypot. Like many activities at the time, we were ahead
of the law, but there are plenty of liability statutes that
could be invoked against us if desired.

283

5. THEMES

5.1 Law Enforcement, and the Law
Law enforcement was not up to speed in the cyber world in

the late 1980s. There were a couple of notable prosecutors,
like Bill Cook, who were making news in the area, but it
was all new. There were some laws in the U.S., notably
the Electronic Communications Privacy Act, that provided
some guidance. But there was little in the way of treaties—
we could not touch Berferd in the Netherlands. In many
cases we were playing it by ear, trying to Do The Right
Thing, whatever that meant. Was it an act of war to ping
Finland? Leviticus does not discuss these issues.

A few days after Berferd’s attacks through the honeypot
ended, I had a visit from a couple of investigators from the
U.S. Army Intelligence. Berferd had attacked some 300 com-
puters while we watched, and I had been busy informing the
targets of the attacks and weaknesses found. A number of
the sites were U.S. military computers. (Of course, U.S.
military computers have been under attack since about five
minutes after they were connected to a network containing
.edu machines. the military has had a lot of practice over
the decades.)

I explained what had been going on, gave them lots of
printouts, and they went away, mollified. I had been read
my Miranda rights, and, in retrospect, really should have
had a lawyer present.

Since then, there have been a number of opportunities to
help train law enforcement and other government entities
on advances in Internet security and forensics. I have been
privileged to help train investigators, and even assisted in
several cases. Sometimes, fifteen minutes of technical pok-
ing can help an investigation along. I had a small role at
the start of the largest child pornography bust in history. I
earned enough trust to be one of those who were allowed to
assist the New York branch of the Secret Service in recon-
necting to the network after 9/11.

These industry/government collaborations can add a great
deal of flexibility to a national response when things go bad.

Law enforcement, at the state and especially the national
level have been up to speed for quite a while. Their forensic
labs are well-equipped and manned by sharp agents with
post-graduate training. And every day they see the stuff
that the Berferd project was designed to watch, but at a
much more advanced level.

(The recovery of my iPhone mentioned above required the
help of law enforcement. I got my phone back, and they
learned some new forensic techniques. I am hoping to help
make smart phones too dangerous to steal in the future.)

Of course, we have strong crypto now, easily available to
those who bother to use it. It is a concern, and sometimes a
problem, for law enforcement. But so far, they seem to have
managed to deal with this: you don’t go through security,
you go around it. I think widely-available strong cryptogra-
phy is a net win.

Cliff Stoll’s investigations were started with a $0.75 ac-
counting discrepancy, and a great deal of trouble emerged.
For a while, law enforcement would judge the importance of
attacks by the early estimates of losses from those attacks.
But, as in Stoll’s case, they often reveal a much larger pat-
tern of trouble, and law enforcement sometimes tackles small
cases now, having learned that they are often connected to
other, larger cases.

It is hard to trace back connections on the Internet[27],
but given enough time and motivation, it can be done. It
does help to have the coöperation of the home country, and
some previously unhelpful countries are finding that it is
useful to be more coöperative.

5.2 VM/honeypot arms race
In the Berferd paper we implemented about the dumb-

est honeypot imaginable. It was human-powered, reacting
at human speeds to syslog entries and notification emails.
Berferd did not seem to notice, perhaps because we were
leaving plausible explanations lying around. It certainly
wouldn’t work now.

Most attacks are automated now, at least at the start.
This is especially true for targets of opportunity. They don’t
want to own your particular machine, they just want a col-
lection of owned hosts. They have nothing personal against
grandma, they just want to coöpt her computer a bit.

But targeted attacks are another thing entirely. Attackers
are much more suspicious of traps and counter-espionage
now. It is not that they are particularly likely to get caught:
they are not, unless attacks persist for months. But they
don’t want to alert the target if possible. And they don’t
want to reveal their methods, either. Attack avenues are not
infinite; exploits have a limited shelf life and can be used up.

Fred Cohen’s Deception Toolkit [11] works to increase the
attacker’s uncertainty. Is the attacker making progress, or
going deeper into a rat hole? In the Berferd incident, I
wanted to waste the attacker’s time. He won—I’ve spent a
lot more time on this than he did—but delaying and confus-
ing the enemy is a useful goal.

This arms race continues today, both in honey pots and
virtual machines. The high- and low-interaction honeypots,
and virtual machines, can be suitable for trapping and de-
laying attacks, and analyzing attack technologies. I suspect
that in neither case will the defenders win this battle.

Simulations and honeypots can be detected, and virus
writers have waged a long battle against the anti-virus com-
munity. Some early viruses could detect when they were
being executed in a debugger, and behave differently. This
battle continues between the increasing quality of the vir-
tual machine engines, and detecting differences between a
VM and a real host. Viruses are getting harder to detect,
and ultimately the defenders are trying to solve the halting
problem, which dooms them to failure. I think that restrict-
ing execution to signed code is more promising, but has its
problems. And it is unlikely that timing and other idiosyn-
crasies will be completely eliminated from virtual machines.

5.3 IP packets are dangerous
At the Labs, and later in the Firewalls book, we main-

tained that IP packets were dangerous. They have numerous
options and varying implementation details and, if you are
interested in security, you should avoid letting them through
your firewall. Instead, we recommended application- and
circuit-level gateways.

Over the years, firewalls have switched to IP packet trans-
mission for convenience and efficiency. It has worked well
enough, but our warnings have been justified. Firewalk-
ing,[18] sending unusual packets through firewalls to probe
the networks they guard, has been a fairly effective surveil-
lance tool. It relies in part on weird IP packets. This is an
ongoing threat that allows attacks on endpoints that intru-

284

sion detection systems have difficulty analyzing.
In fact, packet normalizers[20] have been used to create

standard packet streams that resist idiosyncratic packet at-
tacks and hide host implementation details. A circuit-level
gateway seems safer.

The U.S. military networks have guards between networks
of differing security levels. It is my understanding that they
do not permit raw IP connectivity between these networks,
though I would bet next week’s salary that there are some.
In any case, this makes the guards application-level gate-
ways, (but we are not allowed to call them that, probably
for political reasons.) I believe that these guards predate
firewalls. (Come to think of it, the NSA and others in the
military had a few fathers of the firewall as well.)

We have been criticized for advocating this IP-free ap-
proach to connectivity. Having a“computer acting as a wire”
can add a point of failure, a performance bottleneck, and vi-
olates the end-to-end principle.[25] I agree with the value
of end-to-end connectivity for innovation, but the pragmat-
ics of weak host security still trump these concerns. Hosts
should have strong host security, and my personal computers
have been “skinny dipping” on the Internet since the mid-
1990s, reaping benefits of clean end-to-end connectivity.

5.4 Viruses, and state actors
Computer viruses and worms are far more important now.

They changed from instruments of destruction and carriers
of propaganda to commercial entities for the underground
economy. Rather than destroy hosts, these programs tend
to repair security problems in the hosts they inhabit to keep
other attacks out. This is another arms race, this time be-
tween malefactors.

Modern viruses co-opt computers for financial gain. A
random PC is a fine machine for hosting a phishing web
server, and grandma will never notice the difference. Profits
go to organized crime and terrorists. Zombie armies of co-
opted hosts are used in distributed denial of service attacks.

This technology is also useful for national actors: cyber
warfare has become extremely competent. The recent “Au-
rora” attacks on Google, and especially the Stuxnet worm
(c.f. Schneier[28] and Friedman[17]) show immense compe-
tence and patience typical of a well-organized, well-funded
effort.

And anyone can play in national attacks. In May 1999, I
used software from the Internet Mapping Project to watch
the Serbian networks. I quickly located a web server with
Serbian propaganda on it, included photos of dead babies.
I could have taken this machine down: Suddenly the Re-
public of Cheswick needed a foreign policy, perhaps to the
annoyance of those responsible for our actual national for-
eign policy.

The Internet brings world-changing technology and access
into the hands of anyone with a computer and some spare
time. Partisan amateurs attack the obvious targets all the
time, and especially at times of heightened tension.

I do not recall any speculations of these kinds of attacks in
the 1980s. But we were certainly thinking of the possibilities
by the mid-1990s. I have anecdotal evidence that the U.S.
had an offensive cyber capability in place by 2000.

6. CONCLUSION
Computer and network security is a big deal now. Our

economies depend on these technologies, and we don’t han-

dle the tradeoff between security and convenience very well.
Security and convenience don’t have to be mutually exclu-
sive (consider modern hotel key cards), but we have to get
the engineering right.

There is no better example than the current situation
with passwords. Sites require high-entropy passwords, but
limit the number of login attempts, which defeats the dic-
tionary attacks that strong passwords were designed to re-
sist. But the users are still stuck with baroque eye-of-newt
password rules. The strong passwords reduce security and
convenience.

The mad rush to new software capabilities and product
features prevents us from settling down and hardening tried-
and-true technologies. For example, back in the Berferd era,
the sendmail program was a continuing source of insecurity.
The program was large and over-privileged, and trusted to
transport most of the world’s email. In fact, Dave Presotto
wrote the upas mailer[24] to provide a much safer, simpler
alternative on that first firewall.

We don’t hear much about sendmail problems any more.
This is partly because there are better targets on Unix hosts
(i.e. PHP).[1] But the program has been annealing in the In-
ternet crucible for a long time, and it still transports a large
amount of mail with safety. We actually do make progress
when software is allowed to settle down.

A few years ago, I found a bug in the Unix cp command.
(You can imagine how hard this was to find!) This was
a command that probably should have been frozen some
time during the Carter administration. But someone had
added an “optimization” to read the source file using the
kernel’s memory-mapped file feature. This, and hence cp,
was broken for the source file system I was using.

Of course, security problems will continue, though I re-
tain hope that we may slowly get better at this. Perhaps
as Windows 7 supplants Windows XP, client systems will
actually be more robust to attacks and we will slowly starve
the market for zombie volunteers.

I am certain that exploitation of the human element will
continue to be fruitful, despite most of our efforts. Phishing
is just the beginning.

Some have suggested that we need to re-engineer the In-
ternet, or perhaps create a new one; and this time, using
crypto, we will insist that all endpoints be identifiable. I
don’t see that such a new network would be able to avoid
our current problems.

The problem of attribution is clear. In the Berferd case,
Weitse Venema was close to the source and able to verify
at least one of the attackers, but we were never completely
sure who Berferd was. That kind of information is harder
to get now.

If an attack comes from a country, are they responsible for
it, regardless of the actual source? The Treaty of Westphalia
says so. Under this, hot pursuit might be appropriate if the
local country does not coöperate. And what about false flag
operations? Human intelligence (HUMINT) will continue to
be an important source of this information.

7. ACKNOWLEDGMENTS
Steve Bellovin provided a number of ideas, and refreshed

my memory on a lot of this ancient history. Dave Kormann
had helpful suggestions for this paper. Peter Neumann pro-
vided some pointers to the Deep Magic of computer security.

285

8. REFERENCES
[1] the month of php security.

http://php-security.org/index.html, 2010.
[2] Steven M. Bellovin. There be dragons. In Proceedings

of the Third Usenix Unix Security Symposium, pages
1–16, September 1992.

[3] Steven M. Bellovin. Packets found on an internet.
Computer Communications Review, 23(3):26–31, July
1993.

[4] Bill Cheswick and Steve Bellovin. Firewalls et sécurité
Internet. Addison-Wesley France, 1996.

[5] Bill Cheswick, Hal Burch, and Steve Branigan.
Mapping and visualizing the internet. In Usenix, 2000.

[6] William R. Cheswick. The design of a secure internet
gateway. In Proc. Summer USENIX Conference,
Anaheim, CA, June 1990.

[7] William R. Cheswick. An evening with Berferd, in
which a cracker is lured, endured, and studied. In
Proc. Winter USENIX Conference, pages 163–174,
San Francisco, CA, January 1992.

[8] William R. Cheswick and Steven M. Bellovin.
Firewalls and Internet Security: Repelling the Wily
Hacker. Addison-Wesley, Reading, MA, first edition,
1994.

[9] William R. Cheswick, Steven M. Bellovin, and
Aviel D. Rubin. Firewalls and Internet Security;
Repelling the Wily Hacker. Addison-Wesley, Reading,
MA, second edition, 2003.

[10] F. Cohen. Computer viruses: theory and experiments.
Comput. Secur., 6(1):22–35, 1987.

[11] Fred Cohen. Depection toolkit. http://all.net/,
1998.

[12] Dorothy E. Denning and Peter J. Denning. Internet
Besieged. Addison Wesley Professional, 1997.

[13] DoD trusted computer system evaluation criteria. DoD
5200.28-STD, DoD Computer Security Center, 1985.

[14] Tom Duff. Experience with viruses on UNIX systems.
j-COMP-SYS, 2(2):155–171, Spring 1989.

[15] M. W. Eichin and J. A. Rochlis. With microscope and
tweezers: An analysis of the Internet virus of
november 1988. In Proc. IEEE Symposium on
Research in Security and Privacy, pages 326–345,
Oakland, CA, May 1989.

[16] A. G. Fraser. Proc. icc. pages 20.1.1–20.1.3, June 1979.
[17] George Friedman. The stuxnet computer worm and

the iranian nuclear program—stratfor. http:
//www.stratfor.com/analysis/20100924_stuxnet_
computer_worm_and_iranian_nuclear_program, 2010.

[18] David Goldsmith and Michael Schiffman. Firewalking:
A traceroute-like analysis of IP packet responses to
determine gateway access control lists, 1998.

[19] Stephen J. Gould. Wonderful Life: The Burgess Shale
and the Nature of History. W. W. Norton and
Company, 1990.

[20] M. Handley, C. Kreibich, and V. Paxson. Network
intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. Proceedings of the
USENIX Security Symposium, pages 115–131, 2001.

[21] Paul A. Karger and Roger R. Schell. Multics security
evaluation: Vulnerability analysis, Volume II.
Technical Report ESD-TR-74-193, HQ Electronic

Systems Division: Hanscom AFB, MA, June 1974.
[22] Douglas Maughan. The need for a national

cybersecurity research and development agenda.
Commun. ACM, 53(2):29–31, 2010.

[23] Peter G. Neumann, Matt Bishop, Sean Peisert, and
Marv Schaefer. Reflections on the 30th Anniversary of
the IEEE Symposium on Security and Privacy. In
Proceedings of the 31st IEEE Symposium on Security
and Privacy, Oakland/Berkeley, CA, May 16–19, 2010.

[24] David L. Presotto. Upas—a simpler approach to
network mail. In USENIX Conference Proceedings,
pages 533–538, Portland, OR, Summer 1985.

[25] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput.
Syst., 2(4):277–288, 1984.

[26] Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems, 1975.

[27] Stefan Savage, David Wetherall, Anna Karlin, and
Tom Anderson. Practical network support for ip
traceback. pages 295–306, 2000.

[28] Bruce Schneier. The stuxnet worm.
http://www.schneier.com/blog/archives/2010/09/
the_stuxnet_wor.html, 2010.

[29] Cliff Stoll. Stalking the wily hacker. Communications
of the ACM, 31(5):484, May 1988.

286

Comprehensive Shellcode Detection using Runtime
Heuristics

Michalis Polychronakis
Columbia University, USA

mikepo@cs.columbia.edu

Kostas G. Anagnostakis
Niometrics, Singapore

kostas@niometrics.com

Evangelos P. Markatos
FORTH-ICS, Greece

markatos@ics.forth.gr

ABSTRACT
A promising method for the detection of previously unknown code
injection attacks is the identification of the shellcode that is part of
the attack vector using payload execution. Existing systems based
on this approach rely on the self-decrypting behavior of polymor-
phic code and can identify only that particular class of shellcode.
Plain, and more importantly,metamorphicshellcode do not carry
a decryption routine nor exhibit any self-modifications and thus
both evade existing detection systems. In this paper, we present
a comprehensive shellcode detection technique that uses a set of
runtime heuristics to identify the presence of shellcode in arbitrary
data streams. We have identified fundamental machine-level oper-
ations that are inescapably performed by different shellcode types,
based on which we have designed heuristics that enable the detec-
tion of plain and metamorphic shellcode regardless of the use of
self-decryption. We have implemented our technique in Gene, a
code injection attack detection system based on passive network
monitoring. Our experimental evaluation and real-world deploy-
ment show that Gene can effectively detect a large and diverse set
of shellcode samples that are currently missed by existing detec-
tors, while so far it has not generated any false positives.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

General Terms
Security

Keywords
Shellcode Detection, Payload Execution, Code Emulation

1. INTRODUCTION
Code injection attacks have become one of the primary meth-

ods of malware spreading. In a typical code injection attack, the
attacker sends a malicious input that exploits a memory corrup-
tion vulnerability in a program running on the victim’s computer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

The injected code, known asshellcode, carries out the first stage of
the attack, which usually involves the download and execution of a
malware binary on the compromised host.

Once sophisticated tricks of the most skilled virus authors, ad-
vanced evasion techniques like code obfuscation and polymorphism
are now the norm in most instances of malicious code [19]. The
wide availability of ready-to-use shellcode construction and obfus-
cation toolkits and the discovery rate of new vulnerabilities have
rendered exploit or vulnerability specific detection techniques in-
effective [31]. A promising approach for the generic detection of
code injection attacks is to focus on the identification of the shell-
code that is indispensably part of the attack vector, a technique ini-
tially known as abstract payload execution [33]. Identifying the
presence of the shellcode itself allows for the detection of previ-
ously unknown attacks without caring about the particular exploita-
tion method used or the vulnerability being exploited.

Initial implementations of this approach attempt to identify the
presence of shellcode in network inputs using static code analy-
sis [33–35]. However, methods based on static analysis cannot ef-
fectively handle malicious code that employs advanced obfuscation
tricks such as indirect jumps and self-modifications. Dynamic code
analysis using emulation is not hindered by such obfuscations and
can detect even extensively obfuscated shellcode. This kind of “ac-
tual” payload execution has proved quite effective in practice [22]
and is being used in network-level and host-level systems for the
zero-day detection of both server-side and client-side code injec-
tion attacks [9,14,15,23,38].

A limitation of the above techniques is that they are confined to
the detection of a particular class of polymorphic shellcode that ex-
hibits self-decrypting behavior. Although shellcode “packing” and
encryption are commonly used for evading signature-based detec-
tors, attackers can achieve the same or even higher level of eva-
siveness without the use of self-decrypting code, rendering above
systems ineffective. Besides code encryption, polymorphism can
instead be achieved by mutating the actual instructions of the shell-
code before launching the attack—a technique known asmetamor-
phism[32]. Metamorphism has been widely used by virus authors
and thus can trivially be applied for shellcode mutation. Surpris-
ingly, evenplain shellcode, i.e., shellcode that does not change
across different instances, is also not detected by existing payload
execution methods. Technically, a plain shellcode is no different
than any instance of metamorphic shellcode, since both do not carry
a decryption routine nor exhibit any self-modifications or dynamic
code generation. Consequently, an attack that uses a previously
unknown static analysis-resistant plain shellcode will manage to
evade existing detection systems.

In this paper, we present a comprehensive shellcode detection
technique based on payload execution. In contrast to previous ap-

287

Figure 1: Overview of the proposed shellcode detection archi-
tecture.

proaches that use a single detection algorithm for a particular class
of shellcode, our method relies on several runtime heuristics tai-
lored to the identification of different shellcode types. We have
designed four heuristics for the detection of plain and metamorphic
shellcode targeting Windows systems. Polymorphic shellcode is in
essence a self-decrypting version of a plain shellcode, and thus it
is also effectively detected, since the concealed plain shellcode is
revealed during execution. In fact, we also enable the detection of
polymorphic shellcode that uses SEH-based GetPC code, which is
currently not handled by existing polymorphic shellcode detectors.
Furthermore, instead of solely using a CPU emulator, our approach
couples the heuristics with an appropriate image of the complete
address space of a real process, enabling the correct execution of
shellcode that depends on certain kinds of host-level context.

We have implemented the above technique in Gene, a network-
level detector that scans all client-initiated streams for code injec-
tion attacks against network services. Gene is based on passive
network monitoring, which offers the benefits of easy large-scale
deployment and protection of multiple hosts using a single sen-
sor, while it allows us to test the effectiveness of our technique
in real-world environments. Nevertheless, although Gene operates
at the network level, its core inspection engine can analyze arbi-
trary data coming from any source. This allows our approach to be
readily embedded in existing systems that employ emulation-based
detection in other domains, e.g., for the detection of malicious web-
sites [15] or in browser add-ons for the detection of drive-by down-
load attacks [14].

Our evaluation with publicly available shellcode samples and
shellcode construction toolkits, shows that Gene can effectively de-
tect many different shellcode instances without prior knowledge
about each particular implementation. At the same time, after ex-
tensive testing of the runtime heuristics using a large and diverse set
of generated and real data, in addition to a five-month deployment
in production networks, Gene has not generated any false positives.

2. ARCHITECTURE
The proposed shellcode detection system is built around a CPU

emulator that executes valid instruction sequences found in the in-
spected input. An overview of our approach is illustrated in Fig. 1.
Each input is mapped to an arbitrary location in the virtual address
space of a supposed process, and a new execution begins from each
and every byte of the input, since the position of the first instruc-
tion of the shellcode is unknown and can be easily obfuscated. The
detection engine is based on multiple heuristics that match runtime
patterns inherent in different types of shellcode. During execution,
the system checks several conditions that should all be satisfied
in order for a heuristic to match some shellcode. Moreover, new

Abbreviation Matching Shellcode Behavior

PEB kernel32.dll base address resolution

BACKWD kernel32.dll base address resolution

SEH Memory scanning / SEH-based GetPC code
SYSCALL Memory scanning

Table 1: Overview of the shellcode detection heuristics used in
Gene.

heuristics can easily be added due to the extensible nature of the
system.

Existing polymorphic shellcode detection methods focus on the
identification of self-decrypting behavior, which can be simulated
without any host-level information [23]. For example, accesses to
addresses other than the memory area of the shellcode itself are
ignored. However, shellcode is meant to be injected into a running
process and it usually accesses certain parts of the process’ address
space, e.g., for retrieving and calling API functions. In contrast to
previous approaches, the emulator used in our system is equipped
with a fully blown virtual memory subsystem that handles all user-
level memory accesses and enables the initialization of memory
pages with arbitrary content. This allows us to populate the virtual
address space of the supposed process with an image of the mapped
pages of a process taken from a real system.

The purpose of this functionality is twofold: First, it enables
the construction of heuristics that check for memory accesses to
process-specific data structures. Although the heuristics presented
in this paper target Windows shellcode, and thus the address space
image used in conjunction with these heuristics is taken from a
Windows process, some other heuristic can use a different mem-
ory image, e.g., taken from a Linux process. Second, this allows to
some extent the correct execution of non-self-contained shellcode
that may perform accesses to known memory locations for evasion
purposes [10]. We discuss this issue further in Sec. 6.

3. RUNTIME HEURISTICS
Each heuristic used in Gene is composed of a sequence of con-

ditions that shouldall be satisfiedin order during the execution of
malicious code. Table 1 gives an overview of the four heuristics
presented in this section. The heuristics focus on the identification
of the first actions of different shellcode types, according to their
functionality, regardless of any self-decrypting behavior.

3.1 Resolving kernel32.dll
The typical end goal of the shellcode is to give the attacker full

control of the victim system. This usually involves just a few sim-
ple operations, such as downloading and executing a malware bi-
nary on the compromised host. These operations require interac-
tion with the OS through the system call interface, or in case of
Microsoft Windows, through the user-level Windows API.

The Windows API is divided into several dynamic load libraries
(DLLs). In order to call an API function, the shellcode must first
find its absolute address in the address space of the process. This
can be achieved in a reliable way by searching for the Relative Vir-
tual Addresses (RVAs) of the function in the Export Directory Table
(EDT) of the DLL. The absolute Virtual Memory Address (VMA)
of the function can then be easily computed by adding the DLL’s
base address to the function’s RVA. In fact,kernel32.dll pro-
vides the quite convenient functionsLoadLibrary, which loads
the specified DLL into the address space of the calling process and
returns its base address, andGetProcAddress, which returns

288

1 xor eax, eax ; eax = 0
2 mov eax, fs:[eax+0x30] ; eax = PEB
3 mov eax, [eax+0x0C] ; eax = PEB.LoaderData
4 mov esi, [eax+0x1C] ; esi = InInitializationOrder

ModuleList.Flink
5 lodsd ; eax = 2nd list entry

(kernel32.dll)
6 mov eax, [eax+0x08] ; eax = LDR_MODULE.BaseAddress

Figure 2: A typical example of code that resolves the base ad-
dress of kernel32.dll through the PEB.

the address of an exported function from the specified DLL. Af-
ter resolving these two functions, any other function in any DLL
can be loaded and used directly. However, custom function search-
ing using hashes is usually preferable in modern shellcode, since
GetProcAddress takes as argument the actual name of the func-
tion to be resolved, which increases the shellcode size considerably.

No matter which method is used, a common fundamental oper-
ation in all above cases is that the shellcode has to first locate the
base address ofkernel32.dll. Since this is an inherent opera-
tion that must be performed by any Windows shellcode that needs
to call a Windows API function, it is a perfect candidate for the
development of a generic shellcode detection heuristic.

3.1.1 Process Environment Block
Probably the most reliable and widely used technique for deter-

mining the base address ofkernel32.dll takes advantage of
the Process Environment Block (PEB), a user-level structure that
holds extensive process-specific information. Figure 2 shows a typ-
ical example of PEB-based code for resolvingkernel32.dll.
The shellcode first gets a pointer to the PEB (line 2) through the
Thread Information Block (TIB), which is always accessible at a
zero offset from the segment specified by theFS register. A pointer
to the PEB exists 0x30 bytes into the TIB, as shown in Fig. 3. The
absolute memory address of the TIB and the PEB varies among
processes, and thus the only reliable way to get a handle to the PEB
is through theFS register, and specifically, by reading the pointer
located at addressFS:[0x30].

Condition P1. This fundamental constraint is the basis of our
first detection heuristic(PEB). If during the execution of some in-
put the following condition is true(P1): (i) the linear address of
FS:[0x30] is read, and (ii) the current or any previous instruc-
tion involved theFS register, then this input may correspond to a
shellcode that resolveskernel32.dll through the PEB.

The second predicate is necessary for two reasons. First, it is
useful for excluding random instructions in benign inputs that hap-
pen to read from the linear address ofFS:[0x30] without in-
volving theFS register. For example, ifFS:[0x30] corresponds
to address0x7FFDF030 (as shown in the example of Fig. 3), the
following code will correctly not match the above condition:

mov ebx, 0x7FFD0000
mov eax, [ebx+0xF030] ; eax = FS:[0x30]

On the other hand, the memory access toFS:[0x30] can be
made through an instruction that does not use theFS register di-
rectly. For example, an attacker could take advantage of other seg-
ment registers and replace the first two lines in Fig. 2 with:

mov ax, fs ; ax = fs
mov bx, es ; preserve es
mov es, ax ; es = fs
mov eax, es:[0x30] ; load FS:[0x30] to eax
mov es, bx ; restore es

The code loads the segment selector of theFS register toES (mov
between segment registers is not supported), reads the pointer to
the PEB, and then restores the original value of theES register.

The linear address of the TIB is also contained in the TIB itself
at the locationFS:[0x18], as shown in Fig. 3. Thus, another way
of reading the pointer to the PEB without using theFS register in
the same instruction is the following:

xor eax,eax ; eax = 0
xor eax,fs:[eax+0x18] ; eax = TIB address
mov eax,[eax+0x30] ; eax = PEB address

Note in the above example that other instructions besidesmov can
be used to indirectly read a memory address through theFS regis-
ter (xor in this case). No matter how obfuscated the code is, the
condition remains robust since it does not rely on the execution of
particular instructions.

Although condition P1 is quite restrictive, the possibility of en-
countering a random read fromFS:[0x30] during the execu-
tion of some benign input is not negligible. Thus, it is desirable
to strengthen the heuristic with more operations exhibited by any
PEB-basedkernel32.dll resolution code.

Condition P2. Having a pointer to the PEB, the next step of the
shellcode is to obtain a pointer to thePEB_LDR_DATA structure
that holds the list of loaded modules (line 3 in Fig. 2). Such a
pointer exists 0xC bytes into the PEB, in theLoaderData field.
Since this is the only available reference to that data structure, the
shellcode unavoidably has to read thePEB.LoaderData pointer.
We can use this constraint as a second condition for the PEB heuris-
tic (P2): the linear address ofPEB.LoaderData is read.

Condition P3. Moving on, the shellcode has to walk through the
loaded modules list and locate the second entry (kernel32.dll).
A pointer to the first entry of the list exists in theInInitializa-
tionOrderModuleList.Flink field located 0x1C bytes into
thePEB_LDR_DATA structure. The read operation from this mem-
ory location (line 4 in Fig. 2) allows for strengthening further the
detection heuristic with a third condition.

Although this is the most well known [5,26,27], and widely used
technique for all Windows versions up to Windows Vista, it does
not work “as-is” for Windows 7. In that version,kernel32.dll
is found in the third instead of the second position in the modules
list [7]. A more generic and robust technique is to walk through the
list and check the actual name of each module untilkernel32.dll
is found [7, 29]. In fact, thePEB_LDR_DATA structure contains
two more lists of the loaded modules that differ in the order of the
DLLs. All three lists are implemented as doubly linked lists, and
their correspondingLIST_ENTRY records contain two pointers to
the first (Flink) and last (Blink) entry in the list.

Based on the above, and given that (i)kernel32.dll can
be resolved through any of the three lists, and (ii) list traversing
can be made in both directions, the third condition of the heuristic
can be specified as follows(P3): the linear address of any of the
Flink or Blink pointers in theInLoadOrderModuleList,
InMemoryOrderModuleList, orInInitializationOr-
derModuleList records of thePEB_LDR_DATA structure is
read.

3.1.2 Backwards Searching
An alternative technique for locatingkernel32.dll is to find

a pointer that points somewhere into the memory area where the
kernel32.dll has been loaded, and then search backwards un-
til the beginning of the DLL is located [27]. A reliable way to
obtain a pointer into the address space ofkernel32.dll is to
take advantage of the Structured Exception Handling (SEH) mech-
anism of Windows [21], which provides a unified way of handling
hardware and software exceptions. When an exception occurs, the
exception dispatcher walks through a list of exception handlers for

289

Figure 3: A snapshot of the TIB and the stack memory areas
of a typical Windows process. The SEH chain consisting of two
nodes is highlighted.

the current thread and gives each handler the opportunity to handle
the exception or pass it on to the next handler. The list is stored
on the stack of each thread, and each node is a SEH frame that
consists of two pointers to the next frame and the actual handler
routine. Figure 3 shows a typical snapshot of the TIB and the stack
memory areas of a process with two SEH handlers. A pointer to the
current SEH frame exists in the first field of the Thread Information
Block and is always accessible throughFS:[0].

At the end of the SEH chain (bottom of the stack) there is a de-
fault exception handler that is registered by the system for every
thread. TheHandler pointer of this SEH record points to a rou-
tine that is located inkernel32.dll, as shown in Fig. 3. Thus,
the shellcode can start fromFS:[0] and walk the SEH chain un-
til reaching the last SEH frame, and from there get a pointer into
kernel32.dll by reading itsHandler field.

Another technique to reach the last SEH frame, known as “TOP-
STACK” [27], uses the stack of the exploited thread. The default
exception handler is registered by the system during thread cre-
ation, making its relative location from the bottom of the stack
fairly stable. Although the absolute address of the stack may vary,
a pointer to the bottom of the stack is always found in the second
field of the TIB atFS:[0x4]. TheHandler pointer of the de-
fault SEH handler can then be found 0x1C bytes into the stack, as
shown in Fig. 3. In fact, the TIB contains a second pointer to the
top of the stack atFS:[0x8].

Condition B1. Based on the same approach as in the previous
section, the first condition for the detection heuristic(BACKWD)
that matches the “backwards searching” method is the following
(B1): (i) any of the linear address betweenFS:[0]–FS:[0x8]
is read, and (ii) the current or any previous instruction involved the
FS register. The rationale is that a shellcode that uses the back-
wards searching technique should unavoidably read either i) the
memory location atFS:[0] for walking the SEH chain, or ii) one
of the locations atFS:[0x4] andFS:[0x8] for accessing the
stack directly.

Condition B2. In any case, the code will reach the default excep-
tion record on the stack and read itsHandler pointer. Since this
is a mandatory operation for landing intokernel32.dll, we
can use this dependency as our second condition(B2): the linear
address of theHandler field of the default SEH handler is read.

Condition B3. Finally, during the backwards searching phase,

the shellcode will inevitably perform several memory accesses to
the address space ofkernel32.dll in order to check whether
each 64KB-aligned address corresponds to the base address of the
DLL. In our experiments with typical code injection attacks in Win-
dows XP, the shellcode performed at least four memory reads in
kernel32.dll. Thus, after the first two conditions have been
met, we expect to encounter(B3): at least one memory read form
the address space ofkernel32.dll.

3.2 Process Memory Scanning
Some memory corruption vulnerabilities allow only a limited

space for the injected code—usually not enough for a fully func-
tional shellcode. In most such exploits though the attacker can in-
ject a second, much larger payload which however will land at a
random, non-deterministic location, e.g., in a buffer allocated in the
heap. The first-stage shellcode can then sweep the address space of
the process and search for the second-stage shellcode (also known
as the “egg”), which can be identified by a long-enough character-
istic byte sequence. This type of first-stage payload is known as
“egg-hunt” shellcode [28].

Blindly searching the memory of a process in a reliable way re-
quires some method of determining whether a given memory page
is mapped into the address space of the process. In the rest of this
section, we describe two known memory scanning techniques and
the corresponding detection heuristics that can capture these behav-
iors, and thus, identify the execution of egg-hunt shellcode.

3.2.1 SEH
The first memory scanning technique takes advantage of the struc-

tured exception handling mechanism and relies on installing a cus-
tom exception handler that is invoked in case of a memory access
violation.

Condition S1. As discussed in Sec. 3.1.2, the list of SEH frames
is stored on the stack, and the current SEH frame is always ac-
cessible throughFS:[0]. The first-stage shellcode can register a
custom exception handler that has priority over all previous han-
dlers in two ways: create a new SEH frame and adjust the current
SEH frame pointer of the TIB to point to it [28], or directly mod-
ify the Handler pointer of the current SEH frame to point to the
attacker’s handler routine. In the first case, the shellcode must up-
date the SEH list head pointer atFS:[0], while in the second
case, it has to access the current SEH frame in order to modify
its Handler field, which is only possible by reading the pointer
at FS:[0]. Thus, the first condition of the SEH-based memory
scanning detection heuristic(SEH) is (S1): (i) the linear address
of FS:[0] is read or written, and (ii) the current or any previous
instruction involved theFS register.

Condition S2. Another mandatory operation that will be encoun-
tered during execution is that theHandler field of the custom
SEH frame (irrespectively if its a new frame or an existing one)
should be modified to point to the custom exception handler rou-
tine. This operation is reflected by the second condition(S2): the
linear address of theHandler field in the custom SEH frame is or
has been written. Note that in case of a newly created SEH frame,
the Handler pointer can be written before or afterFS:[0] is
modified.

Condition S3. Although the above conditions are quite constrain-
ing, we can apply a third condition by exploiting the fact that upon
the registration of the custom SEH handler, the linked list of SEH
frames should be valid. In the risk of stack corruption, the excep-
tion dispatcher routine performs thorough checks on the integrity
of the SEH chain, e.g., ensuring that each SEH frame is dword-

290

1 push edx ; preserve edx across system call
2 push 0x8
3 pop eax ; eax = NtAddAtom
4 int 0x2e ; system call
5 cmp al, 0x05 ; check for STATUS_ACCESS_VIOLATION
6 pop edx ; restore edx

Figure 4: A typical system call invocation for checking if the
supplied address is valid.

aligned within the stack and is located higher than the previous
SEH frame [21]. Thus, the third condition requires that(S3): start-
ing fromFS:[0], all SEH frames should reside on the stack, and
theHandler field of the last frame should be set to 0xFFFFFFFF.
In essence, the above condition validates that the custom handler
registration has been performed correctly.

3.2.2 System Call
The extensive abuse of the SEH mechanism in various mem-

ory corruption vulnerabilities led to the introduction of SafeSEH, a
linker option that produces a table with all the legitimate exception
handlers of the image. In case the exploitation of some SafeSEH-
protected vulnerable application requires the use of egg-hunt shell-
code, an alternative but less reliable method for safely scanning
the process address space is to check whether a page is mapped—
before actually accessing it—using a system call [27, 28]. As al-
ready discussed, although the use of system calls in Windows shell-
code is not common, since they are prone to changes between OS
versions and do not provide crucial functionality such as network
access, they can prove useful for determining if a memory address
is accessible.

Some Windows system calls accept as an argument a pointer to
an input parameter. If the supplied pointer is invalid, the system call
returns with a return value ofSTATUS_ACCESS_VIOLATION.
Thus, the egg-hunt shellcode can check the return value of the sys-
tem call, and proceed accordingly by searching for the egg or mov-
ing on to the next address [28]. In Windows, a system call is ini-
tiated by generating a software interrupt through theint 0x2e
instruction.

Figure 4 shows a typical code that checks the address stored in
edx using theNtAddAtom system call. In Windows, a system
call is initiated by generating a software interrupt through theint
0x2e instruction (line 4). The actual system call that is going to be
executed is specified by the value stored in theeax register (line
3). Upon return from the system call, the code checks if the return
value equals the code forSTATUS_ACCESS_VIOLATION. The
actual value of this code is 0xC0000005, but checking only the
lower byte is enough in return for more compact code (line 5).

Condition C1. System call execution has several constraints that
can be used for deriving a detection heuristic for this kind of egg-
hunt shellcode. First, the immediate operand of theint instruction
should be set to 0x2E. Looking just for theint 0x2e instruction
is clearly not enough since any two-byte instruction will be encoun-
tered roughly once every 64KB of arbitrary binary input. However,
when encountering anint 0x2e instruction that corresponds to
an actual system call execution, theebx register should also have
been previously set to the proper system call number.

The publicly available egg-hunt shellcode implementations we
found (see Sec. 5.1) use one of the following system calls:NtAc-
cessCheckAndAuditAlarm (0x2), NtAddAtom (0x8), and
NtDisplayString (0x39 in Windows 2000, 0x43 in XP, 0x46
in 2003 Server, and 0x7F in Vista). The variability of the system
call number forNtDisplayString across the different Win-
dows versions is indicative of the complexity introduced in an ex-

ploit by the direct use of system calls. Based on the above, a nec-
essary condition during the execution of a system call in egg-hunt
shellcode is(C1): the execution of anint 0x2e instruction with
theeax register set to one of the following values: 0x2, 0x8, 0x39,
0x43, 0x46, 0x7F.

Condition C2. As shown in Sec. 5.2.2, condition C1 alone can
happen to hold true during the execution of random code, although
rarely. However, the heuristic can be strengthened based on the
following observation. The egg-hunt shellcode will have to scan a
large part of the address space until it finds the egg. Even when
assuming that the egg can be located only at the beginning of a
page [37], the shellcode will have to search hundreds or thousands
of addresses, e.g., by repeatedly calling the code in Fig. 4 in a loop.
Hence, condition C1 will hold several times. The detection heuris-
tic (SYSCALL) can then be defined as a meta-condition(C{N}):
C1 holds true N times. As shown in Sec. 5.2.2, a value of N = 2
does not produce any false positives.

In case other system calls can be used for validating an arbitrary
address, they can easily be included in the above condition. Start-
ing from Windows XP, system calls can also be made using the
more efficientsysenter instruction if it is supported by the sys-
tem’s processor. The above heuristic can easily be extended to also
support this type of system call invocation.

3.3 SEH-based GetPC Code
Before decrypting itself, polymorphic shellcode needs to first

find the absolute address at which it resides in the address space
of the vulnerable process. The most widely used types of GetPC
code for this purpose rely on some instruction from thecall or
fstenv instruction groups [23]. These instructions push on the
stack the address of the following instruction, which can then be
used to calculate the absolute address of the encrypted code. How-
ever, this type of GetPC code cannot be used in purely alphanu-
meric shellcode [19], because the opcodes of the required instruc-
tions fall outside the range of allowed ASCII bytes. In such cases,
the attacker can follow a different approach and take advantage of
the SEH mechanism to get a handle to the absolute memory address
of the injected shellcode [30].

When an exception occurs, the system generates an exception
record that contains the necessary information for handling the ex-
ception, including a snapshot of the execution state of the thread,
which contains the value of the program counter at the time the
exception was triggered. This information is stored on the stack,
so the shellcode can register a custom exception handler, trigger
an exception, and then extract the absolute memory address of the
faulting instruction. By writing the handler routine on the heap,
this technique can work even in Windows XP SP3, bypassing any
SEH protection mechanisms [30].

In essence, the SEH-based memory scanning detection heuris-
tic described in Sec. 3.2.1 does not identify the scanning behavior
per se, but the proper registration of a custom exception handler.
Although this is an inherent operation of any SEH-based egg-hunt
shellcode, any shellcode that installs a custom exception handler
can be detected, including polymorphic shellcode that uses SEH-
based GetPC code.

4. IMPLEMENTATION
We have implemented the proposed detection method in Gene, a

network-level attack detector that uses a custom IA-32 emulator to
identify the presence of shellcode in network streams. Gene scans
the client-initiated part of each TCP connection using the runtime
heuristics presented in this work. For evaluation purposes, a fifth

291

GetPC-based self-decrypting shellcode similar to the one usedin
existing detectors [9, 23, 38] can be enabled at will. Since the ex-
act location of the shellcode in the input data is not known in ad-
vance, the emulator repeats the execution multiple times, starting
from each and every position of the stream. In certain cases, how-
ever, the execution of some code paths can be skipped to optimize
runtime performance [24].

The heuristics used in Gene are mostly based on memory ac-
cesses to certain locations in the address space of a vulnerable Win-
dows process. To emulate correctly the execution of these accesses,
the virtual memory of the emulator is initialized with an image of
the complete address space of a typical Windows XP process taken
from a real system. The image consists of 971 pages (4KB each),
including the stack, heap, PEB/TIB, and loaded modules. All four
heuristics use the same memory image and thus can be evaluated in
parallel during execution.

Among other initializations before the beginning of a new exe-
cution [23], the segment registerFS is set to the segment selector
corresponding to the base address of the Thread Information Block,
the stack pointer is set accordingly, while any changes to the origi-
nal process image from the previous execution are reverted.

The runtime evaluation of the heuristics requires keeping some
state about the occurrence of instructions with an operand that in-
volved theFS register, as well as about read and write accesses
to the memory locations specified in the heuristics. Regarding the
SEH-based memory scanning heuristic (Sec. 3.2.1), although SEH
chain validation is more complex compared to other instrumenta-
tion operations, it is triggered only if conditions S1 and S2 are true,
which in practice happens very rarely.

When anint 0x2e instruction is executed, theeax register
is checked for a value corresponding to one of the system calls
that can be used for memory scanning, as described in Sec. 3.2.2.
Although the actual functionality of the system call is not emulated,
the proper return value is stored in theeax register depending on
the validity of the supplied memory address. In case of an egg-
hunt shellcode, this behavior allows the scanning loop to continue
normally, resulting to several system call invocations.

5. EXPERIMENTAL EVALUATION

5.1 Detection Effectiveness
We began our evaluation with the shellcodes contained in the

Metasploit Framework [2]. For Windows targets, Metasploit in-
cludes six basic payloads for downloading and executing a file,
spawning a shell, adding a user account, and so on, as well as nine
“stagers.” In contrast to an egg-hunt shellcode, which searches for
a second payload that has already been injected into the vulnera-
ble process along with the egg-hunt shellcode, a stager establishes
a channel between the attacking and the victim host for upload-
ing other second-stage payloads. We generated plain (i.e., non-
encrypted) instances of the above 15 shellcodes, as well as an-
other 15 polymorphic instances of the same shellcodes using the
ShikataGaNai encoder. As shown in Fig. 5, both Gene and the
GetPC-based heuristic detected the polymorphic versions of the
shellcodes. However, the original (plain) versions do not exhibit
any self-decrypting behavior and are thus detected only by Gene.
For both plain and polymorphic versions, Gene identified the shell-
code using the PEB heuristic. The use of the PEB-based method
for locatingkernel32.dll is probably preferred in Metasploit
due to its reliability.

We continued our evaluation with 22 samples downloaded from
the shellcode repository of the Nepenthes Project [6]. Two of the
samples had a broken decryptor and could not be executed prop-

Metasploit
(Polymorphic)

Metasploit (Plain)

Nepenthes

Individual Samples

15 samples

15 samples

20 samples

33 samples

Detected shellcodes (%)
0 20 40 60 80 100

15/15

15/15

17/20

31/33

15/15

0/15

15/20

4/33

Gene GetPC

Figure 5: Number of shellcodes detected by Gene and the ex-
isting GetPC-based heuristic [9, 23, 38] for different shellcode
sets. From a total of 83 different shellcode implementations,
Gene detected 78 samples (94%), compared to 34 (41%) for the
GetPC heuristic.

erly. By manually unpacking the two payloads and scanning them
with Gene, in both cases the shellcode was identified by the PEB
heuristic. From the rest 20 shellcodes, 16 were identified by the
PEB heuristic, and one, named “Saalfeld,” by the SEH heuristic.
The Saalfeld shellcode is of particular interest due to the use of a
custom SEH handler although it is not an egg-hunt shellcode. The
SEH handler is registered for safely searching the address space of
the vulnerable process starting from address 0x77E00000, with the
aim to reliably detect the base address ofkernel32.dll. The
SEH heuristic identifies the proper registration of a custom SEH
handler, so the shellcode was successfully identified.

The remaining three shellcodes were missed due to the use of
hard-coded addresses, e.g., the linear address ofkernel32.dll,
instead of reliable base address resolution. It would be trivial to
implement another detection heuristic similar to the PEB heuris-
tic based on commonly used hard-coded addresses in place of ad-
dressing based on theFS register to detect this kind of shellcode.
However, these samples correspond to quite old attacks and this
style naively implemented kind of shellcode is now encountered
rarely. From the 20 shellcodes, 15 are self-decrypting and are thus
detected by the GetPC-based heuristic.

Besides a few proof-of-concept implementations [5, 27] which
are identified correctly by Gene, we were not able to find any other
shellcode samples that locatekernel32.dll using backwards
searching, probably due to the simplicity of the alternative PEB-
based technique. In addition to the Saalfeld shellcode, the SEH
heuristic detected a proof-of-concept SEH-based egg-hunt imple-
mentation [28], as well as the “omelet” shellcode [36], an egg-hunt
variation that locates and recombines multiple smaller eggs into
the whole original payload. The SEH heuristic was also effective
in detecting polymorphic shellcode that uses SEH-based GetPC
code [30], which is currently missed by existing payload execution
systems. The SYSCALL heuristic was tested with three different
egg-hunt shellcode implementations [27,28,37], which were identi-
fied correctly. In addition to these eight shellcode implementations,
we gathered more Windows shellcode samples from public repos-
itories [1, 3, 4], totaling 33 different samples. As shown in Fig. 5,
the GetPC-based heuristic detected only four of the shellcodes that
use simple XOR encryption, while Gene detected all but two of the
samples, again due to the use of hard-coded addresses.

Finally, as an extra verification experiment, we tested Gene with
a large dataset of real polymorphic attacks captured in production
networks by Nemu [22]. Without using any self-decryption heuris-
tic, this data set allows us to test the effectiveness of Gene in iden-

292

tifying the actual plain shellcode after the decryption process has
completed. Gene analyzed more than 1.2 million attacks, which af-
ter the decryption process resulted to 98,602 unique payloads, and
in all cases it identified the decrypted plain shellcode correctly. Not
surprisingly, all shellcodes were identified by the PEB heuristic.

5.2 Heuristic Robustness

5.2.1 False Positives Evaluation
We tested the robustness of the heuristics against false positives

using a large and diverse set of benign inputs. For our first experi-
ment, we captured the internal and external traffic in two research
and educational networks and kept the client-initiated stream of
each TCP flow, since currently Gene detects only attacks against
network services. Collectively, the data set consists of 15.5 million
streams, totaling more than 48GB of data. Depending on its size, a
stream can have from a few hundreds to many thousands of valid in-
struction sequences which are all analyzed independently by Gene.
Thus, we consider as a false positive any benign input with at least
one instruction sequence that matches one of the heuristics. When
scanning the 15.5 million streams of this data set with Gene, none
of the inputs matched any of the heuristics, resulting to zero false
positives.

Seeking more evidence for the resilience of the heuristics against
false positives, we continued the experiments with a much larger
set of artificially generated benign data. The purpose of this ex-
periment is to ensure that the random IA-32 machine code that is
derived by interpreting arbitrary data as code does not match any of
the heuristics. For this purpose, we used a script that continuously
generates inputs of random binary and ASCII data that are subse-
quently scanned by Gene. The script generated 20 million 32KB-
inputs of each type, totaling more than 1.3TB of data. The rationale
behind using inputs consisting of random ASCII characters, in ad-
dition to random binary data, is to approximate the random code
found in network streams that use text-based protocols. Similarly
to the previous experiment, the false positive rate was again kept at
zero.

5.2.2 Heuristic Analysis
We repeated the experiments of the previous section with the aim

to explore in depth the behavior of the heuristics when operating on
benign data. This time we measured the number of inputs with at
least one instruction sequence that matched the first, the first two,
or all three conditions of a heuristic.

Figure 6(a) shows the percentage of network streams that matched
a given number of conditions. Out of 15.5 million inputs, only 82
(0.0005%) had an instruction sequence with a memory access to
FS:[0x30] through theFS register—satisfying the first condi-
tion of the PEB heuristic. There were no streams that matched both
the first and the second or all three conditions, which is a promis-
ing indication for the robustness of the PEB heuristic since all three
conditions must be true for flagging an input as shellcode. The
SYSCALL heuristic had a similar behavior, with just 51 of the in-
puts (0.0003%) exhibiting a single system call invocation, while
there were no streams with two or more system calls.

A much larger number of streams matched the first condition of
the BACKWD and SEH heuristics (8,620 and 41,063 streams, re-
spectively). In both heuristics, the first condition includes a mem-
ory access toFS:[0], which seems to appear more frequently
in random code compared to accesses atFS:[0x30]. A possi-
ble explanation for this is that the effective address computation in
the memory operand of some instruction can result to zero with a
higher probability compared to other values. For example, when

Execution threshold (log scale)

4K 8K 16K 32K 64K 128K

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

10

20

30

40

50

60
RPC
all traffic
port 80

Figure 7: The raw processing throughput of Gene for different
execution thresholds.

amov ebx,fs:[eax] instruction is executed, it is more likely
that eax will have been zeroed out, e.g., due to a previous two-
byte longxor eax,eax instruction, instead of being set to 0x30.
However, the percentage of inputs that matched both the first and
the second condition is very low (0.0003% and 0.0004%, respec-
tively), and no inputs matched all three conditions.

As shown in Fig. 6(b), the overall behavior when operating on
random binary data is comparable to that for network streams, with
no inputs fully matching any of the heuristics. However, for ASCII
data (Fig. 6(c)), although the first condition in the PEB, BACKWD,
and SEH heuristics matched in roughly 0.03% of the inputs, there
were no inputs matching any of the subsequent conditions. The op-
code for theint instruction falls outside the ASCII range, so no in-
put matched not even the first condition of the SYSCALL heuristic.
Overall, all heuristics seem to perform even better when operating
on ASCII data.

5.3 Runtime Performance
We evaluated the processing throughput of Gene using the real

network traffic traces presented in Sec. 5.2.1. Gene was running on
a system with a Xeon 1.86GHz processor and 2GB of RAM. Fig-
ure 7 shows the raw processing throughput of Gene for different ex-
ecution thresholds. The throughput is mainly affected by the num-
ber of CPU cycles spent on each input. As the execution threshold
increases, the achieved throughput decreases because more emu-
lated instructions are executed per stream. A threshold in the order
of 8–16K instructions is sufficient for the detection of plain as well
as the most advanced polymorphic shellcodes [24]. For port 80
traffic, the random code due to ASCII data tends to form long in-
struction sequences that result to degraded performance compared
to binary data.

The overall runtime throughput is slightly lower compared to ex-
isting emulation-based detectors [23,24] due to the overhead added
by the virtual memory subsystem, as well as because Gene does
not use the zero-delimited chunk optimization used in these sys-
tems [23]. Previous approaches skip the execution of zero-byte de-
limited regions smaller than 50 bytes, with the rationale that most
memory corruption vulnerabilities cannot be exploited if the attack
vector contains null bytes. However, the detection heuristics of
Gene can identify shellcode in other attack vectors that may contain
null bytes, such as document files. Furthermore, our approach can
be applied in other domains [14,15], for example for the detection
of client-side attacks, in which the shellcode is usually encrypted
at a higher level using some script language, and thus can be fully
functional even if it contains null bytes.

293

M
at

ch
in

g
st

re
am

s
(%

)
1

0.1

0.01

0.001

0

Condition 1
Conditions 1+2
Conditions 1+2+3

(a) Benign network streams
PEB BACKWD SEH SYSCALL

M
at

ch
in

g
in

pu
ts

 (
%

)

1

0.1

0.01

0.001

0

Condition 1
Conditions 1+2
Conditions 1+2+3

(b) Random binary data
PEB BACKWD SEH SYSCALL

M
at

ch
in

g
in

pu
ts

 (
%

)

1

0.1

0.01

0.001

0

Condition 1
Conditions 1+2
Conditions 1+2+3

(c) Random ASCII data
PEB BACKWD SEH SYSCALL

Figure 6: False positives evaluation with (a) 15.5 million real network streams (48GB total data size), (b) 20 million randomly
generated binary inputs (650GB), and (c) 20 million randomly generated ASCII inputs (650GB). For all heuristics, none of the
inputs matched all three conditions, resulting to zero false positives.

In practice, Gene can monitor high speed links when scanning
for server-side attacks because client-initiated traffic (requests) is
usually a fraction of the server-initiated traffic (responses). In our
preliminary deployments in production networks, Gene can scan
traffic of up to 100 Mbit/s without dropping packets. Furthermore,
Gene currently scans the whole input blindly, without any knowl-
edge about the actual network protocol used. Augmenting the in-
spection engine with protocol parsing would significantly improve
the scanning throughput by inspecting each protocol field sepa-
rately.

5.4 Real-world Deployment
We have deployed Gene in two University networks, where it

has been operational since 25 November 2009. In these two de-
ployments, Gene scans the traffic between the internal network and
the Internet, as well as the traffic between selected internal subnets.
As of 17 April 2010, Gene has detected 116,513 code injection at-
tacks against internal and external hosts in these two networks. Al-
though we cannot know how many of the attacks actually infected
the targeted host, since many systems might had been previously
patched, in all cases the attacker was able to connect and send the
malicious input to the potentially vulnerable service. Almost one
third of the attacks were launched from internal PCs, probably al-
ready infected by malware. About 86% of the attacks targeted port
445, while there were also attacks against ports 80, 135, 139, and
2967.

In both deployments, Gene uses the four new heuristics pre-
sented in this paper, as well as the GetPC heuristic used in existing
polymorphic shellcode detectors, allowing us to compare the detec-
tion coverage of both approaches. The PEB heuristic matched in all
of the attacks, supporting the fact that this is the most widely used
technique for resolvingkernel32.dll. However, the GetPC
heuristic was triggered only by 85,144 attacks, i.e., 31,369 attacks
(27%) did not use any form of self-decrypting shellcode. This
means that the ability of Gene to detect plain shellcode increased
the detection coverage for server-side code injection attacks by 37%
compared to existing polymorphic shellcode detection approaches.
By statically analyzing the identified machine code [22] we con-
firmed that in all cases it corresponds to actual shellcode, and so far
we have not encountered any false positives.

6. DISCUSSION
The runtime heuristics presented in this paper allows Gene to

detect a broad range of different shellcode classes. Of course, we
cannot exclude the possibility that there are other kinds of Win-

dows shellcode, or alternative techniques to those on which the
heuristics are based, that may have missed our attention or have
not been publicly released yet. Nevertheless, the architecture of
Gene allows the parallel evaluation of multiple heuristics, and thus
the detection engine can be easily extended with more heuristics
for other shellcode types. For example, for our experimental eval-
uation, we have already implemented a fifth heuristic based on the
widely used GetPC code technique used in existing polymorphic
shellcode detectors [23,24,38]. In our future work, we plan to im-
plement heuristics for the detection of the code required in a swarm
attack [13], Linux-specific plain shellcode, Windows shellcode that
uses hard-coded addresses, and so on.

A well known evasion technique against dynamic code analysis
systems is the use of very long loops that force the detector to spend
countless cycles until reaching the execution threshold, before any
signs of malicious behavior are shown [32]. Gene uses infinite loop
squashing [23] to reduce the number of inputs that reach the exe-
cution threshold. As stated in the literature [23,24], the percentage
of inputs with an instruction sequence that reaches the execution
threshold ranges between 3–6%, which we also verified during the
experiments of this paper. Since this is a small fraction of all in-
spected inputs, the endless loops in these sequences can potentially
be analyzed further at a second stage using other techniques such
as static analysis or symbolic execution [25].

Another inherent limitation of emulation-based shellcode detec-
tion is the lack of an accurate view of the system’s state at the time
the injected code would run on the victim system. This information
includes the values of the CPU registers, as well as the complete ad-
dress space of the particular exploited process [10, 23]. Although
register values can sometimes be inferred [24], and Gene augments
the emulator with the complete address space of a typical Windows
process, which includes the most common system DLLs used by
Windows shellcode, the shellcode may perform memory accesses
to application-specific DLLs that are not known in advance, and
thus cannot be followed by the emulator [16]. Fortunately, when
protecting specific services, exact memory images of each service
can be used in place of the generic process image. However, as
already discussed, since the linear addresses of DLLs change quite
often across different systems, and due to the increasing adoption
of address space layout randomization and DLL rebasing, the use
of absolute addressing results to less reliable shellcode. On the
other hand, when the emulator runs within the context of a pro-
tected application, as for example in the browser-embedded detec-
tor proposed by Egele et al. [14], the emulator can have full access
to the complete address space of the process.

294

Some of the operations matched by the heuristics, such as the
registration of a custom exception handler, might also be found in
legitimate executables. However, Gene is tailored for scanning in-
puts that otherwise should not contain executable IA-32 code. In
case of file uploads, Gene can easily be extended to identify and
extract executable files by looking for executables’ headers in the
inspected traffic, and then pass them on to a virus scanner.

7. RELATED WORK
Having realised the limitations of signature-based approaches in

the face of polymorphic code and targeted attacks, several research
efforts turned to static binary code analysis for identifying the pres-
ence of shellcode in network streams. One of the first such ap-
proaches by Toth and Kruegel uses code disassembly on network
streams to identify the NOP-sled that sometimes precedes the shell-
code [33]. Focusing on the shellcode itself, Anderson et al. [8]
propose to scan each input for multiple occurrences of instruction
sequences that end with anint 0x80 instruction for the identifi-
cation of Linux shellcode, with the rationale that the shellcode will
have to execute several system calls. Other detection methods that
use static code analysis aim to detect previously unknown polymor-
phic shellcode based on the identification of structural similarities
among different worm instances [17], control and data flow analy-
sis [12,34,35], or neural networks [20].

However, methods based on static analysis can be easily evaded
by malicious code that uses obfuscation methods such as indirect
jumps and self-modifications [23], which are widely used by cur-
rent malware packers and polymorphic shellcode engines. In con-
trast, emulation-based detection can correctly handle even exten-
sively obfuscated malicious code [23]. Polychronakis et al. pro-
pose the use of code emulation for the detection of self decrypt-
ing shellcode at the network level [23, 24]. The detection algo-
rithm is based on the identification of the GetPC code and the
self-references that take place during the execution of the shell-
code. Zhang et al. propose to combine network-level emulation
with static and data flow analysis for improving the runtime perfor-
mance of the GetPC heuristic [38].
Libemu [9] is an open-source x86 emulation library tailored to

shellcode analysis and detection. Shellcode execution is identified
using the GetPC heuristic.Libemu can also emulate the execution
of Windows API calls by creating a minimalistic process environ-
ment that allows the user to install custom hooks to API functions.
Although the actual execution of API functions can be used as an
indication for the execution of shellcode, these actions will be ob-
served only afterkernel32.dll has been resolved and the re-
quired API functions have been located through the EDT or IAT.
Compared to thekernel32.dll resolution heuristics presented
in Section 3.1, this technique would require the execution of a much
larger number of instructions until the first API function is called,
and also the emulation of the actual functionality of each API call
thereafter. This means that the execution threshold of the detector
should be set much higher, resulting to degraded runtime perfor-
mance. For applications in which the emulator can spend more
cycles on each input, both heuristics can coexist and operate in par-
allel, e.g., along with all other heuristics used in Gene, offering
even better detection accuracy.

Besides the detection of code injection attacks against network
services [22], emulation-based shellcode detection using the GetPC
heuristic has been used for the detection of drive-by download at-
tacks and malicious web sites. Egele et al. [14] propose a technique
that uses a browser-embedded CPU emulator to identify javascript
string buffers that contain shellcode. Wepawet [15] is a service for
web-based malware detection that scans and identifies malicious

web pages based on various indications, including the presence of
shellcode. The CPU emulator in both projects is based onlibemu.

Shellcode analysis systems help analysts study and understand
the structure and functionality of a shellcode sample. Ma et al. [18]
used code emulation to extract the actual runtime instruction se-
quence of shellcode samples captured in the wild. Spector [11] uses
symbolic execution to extract the sequence of library calls made by
the shellcode, along with their arguments, and at the end of the
execution generates a low-level execution trace. Yataglass [25] im-
proves the analysis capabilities of Spector by handling shellcode
that uses memory-scanning attacks.

8. CONCLUSION
The increasing professionalism of cyber criminals and the vast

number of malware variants and malicious websites make the need
for effective code injection attack detection a critical challenge.
To this end, shellcode detection using payload execution offers
important advantages, including generic detection without exploit
or vulnerability-specific signatures, practically zero false positives,
while it is effective against targeted attacks.

In this paper we present a comprehensive shellcode detection
method based on code emulation. Our approach expands the range
of malicious code types that can be detected by enabling the parallel
evaluation of multiple runtime heuristics that match inherent low-
level operations during the execution of different shellcode types.
The runtime heuristics presented in this work enable the effective
detection of plain and metamorphic shellcode, both of which are
not identified by existing shellcode detectors. This is achieved re-
gardless of the use of self-modifying code or dynamic code gen-
eration, on which existing emulation-based polymorphic shellcode
detectors are exclusively based.

Our experimental evaluation shows that the proposed approach
can effectively detect a broad range of diverse shellcode types and
implementations, increasing significantly the detection coverage
compared to existing emulation-based detectors, while extensive
testing with a large set of benign data did not produce any false
positives. Gene, our prototype implementation of the proposed
technique for the detection of server-side code injection attacks de-
tected 116,513 attacks against production systems in a period of
almost five months without false positives.

Although Gene currently operates at the network level, the pro-
posed detection heuristics can be readily implemented in emulation-
based systems in other domains, including host-level or application-
specific detectors. As part of our future work, we plan to implement
more heuristics to cover the detection of less widely used shellcode
types, such as shellcode that uses hard-coded addresses, and ex-
plore the design of a description language that would expedite the
development of new heuristics.

Acknowledgments
We would like to thank Periklis Akritidis and Angelos Keromytis for their
valuable feedback on earlier versions of this paper. This work was sup-
ported in part by the Marie Curie FP7-PEOPLE-2009-IOF project MAL-
CODE and the FP7 project SysSec, funded by the European Commission
under Grant Agreements No. 254116 and No. 257007, and by the project
i-Code, funded by the Prevention, Preparedness and Consequence Manage-
ment of Terrorism and other Security-related Risks Programme of the Eu-
ropean Commission—Directorate-General for Home Affairs under Grant
Agreement No. JLS/2009/CIPS/AG/C2-050. This publication reflects the
views only of the authors, and the Commission cannot be held responsi-
ble for any use which may be made of the information contained herein.
Michalis Polychronakis is also with FORTH-ICS. Evangelos Markatos is
also with the University of Crete.

295

9. REFERENCES
[1] Goodfellas security research team.

http://goodfellas.shellcode.com.ar/.
[2] The metasploit project.http://www.metasploit.com/.
[3] milw0rm. http://milw0rm.com/shellcode/win32/.
[4] Packet storm.http://www.packetstormsecurity.org/.
[5] Win32 assembly components, Dec. 2002.

http://lsd-pl.net.
[6] Common shellcode naming initiative, 2009.

http://nepenthes.carnivore.it/csni.
[7] Retrieving kernel32’s base address, June 2009.http:

//www.harmonysecurity.com/blog/2009/06/retrieving-

kernel32s-base-address.html.
[8] S. Andersson, A. Clark, and G. Mohay. Network-based

buffer overflow detection by exploit code analysis. In
Proceedings of the Asia Pacific Information Technology
Security Conference (AusCERT), 2004.

[9] P. Baecher and M. Koetter. libemu, 2009.
http://libemu.carnivore.it/.

[10] P. Bania. Evading network-level emulation, 2009.
http://piotrbania.com/all/articles/pbania-evading-

nemu2009.pdf.
[11] K. Borders, A. Prakash, and M. Zielinski. Spector:

Automatically analyzing shell code. InProceedings of the
Annual Computer Security Applications Conference
(ACSAC), 2007.

[12] R. Chinchani and E. V. D. Berg. A fast static analysis
approach to detect exploit code inside network flows. In
Proceedings of the 8th International Symposium on Recent
Advances in Intrusion Detection (RAID), Sept. 2005.

[13] S. P. Chung and A. K. Mok. Swarm attacks against
network-level emulation/analysis. InProceedings of the 11th
International Symposium on Recent Advances in Intrusion
Detection (RAID), September 2008.

[14] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending
browsers against drive-by downloads: Mitigating
heap-spraying code injection attacks. InProceedings of the
6th international conference on Detection of Intrusions and
Malware, & Vulnerability Assessment (DIMVA), 2009.

[15] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Wepawet, 2009.
http://wepawet.cs.ucsb.edu/.

[16] I)ruid. Context-keyed payload encoding.Uninformed, 9, Oct.
2007.

[17] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. InProceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection
(RAID), Sept. 2005.

[18] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker.
Finding diversity in remote code injection exploits. In
Proceedings of the 6th Internet Measurement Conference
(IMC), 2006.

[19] J. Mason, S. Small, F. Monrose, and G. MacManus. English
shellcode. InProceedings of the 16th ACM conference on
Computer and communications security (CCS), 2009.

[20] U. Payer, P. Teufl, and M. Lamberger. Hybrid engine for
polymorphic shellcode detection. InProceedings of the
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 19–31, July 2005.

[21] M. Pietrek. A crash course on the depths of
Win32TMstructured exception handling, 1997.http://www.

microsoft.com/msj/0197/exception/exception.aspx.
[22] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.

An empirical study of real-world polymorphic code injection
attacks. InProceedings of the 2nd USENIX Workshop on
Large-scale Exploits and Emergent Threats (LEET), April
2009.

[23] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis.
Network-level polymorphic shellcode detection using
emulation. InProceedings of the Third Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), July 2006.

[24] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis.
Emulation-based detection of non-self-contained
polymorphic shellcode. InProceedings of the 10th
International Symposium on Recent Advances in Intrusion
Detection (RAID), September 2007.

[25] M. Shimamura and K. Kono. Yataglass: Network-level code
emulation for analyzing memory-scanning attacks. In
Proceedings of the 6th international conference on Detection
of Intrusions and Malware, & Vulnerability Assessment
(DIMVA), 2009.

[26] sk. History and advances in windows shellcode.Phrack,
11(62), July 2004.

[27] Skape. Understanding windows shellcode, 2003.http://

www.hick.org/code/skape/papers/win32-shellcode.pdf.
[28] Skape. Safely searching process virtual address space, 2004.

http://www.hick.org/code/skape/papers/

egghunt-shellcode.pdf.
[29] SkyLined. Finding the base address of kernel32 in Windows

7. http://skypher.com/index.php/2009/07/22/
shellcode-finding-kernel32-in-windows-7/.

[30] SkyLined. SEH GetPC (XP SP3), July 2009.
http://skypher.com/wiki/index.php/Hacking/Shellcode/

Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_

(XP_sp3).
[31] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and

S. J. Stolfo. On the infeasibility of modeling polymorphic
shellcode. InProceedings of the 14th ACM conference on
Computer and communications security (CCS), 2007.

[32] P. Ször.The Art of Computer Virus Research and Defense.
Addison-Wesley Professional, February 2005.

[33] T. Toth and C. Kruegel. Accurate buffer overflow detection
via abstract payload execution. InProceedings of the 5th
Symposium on Recent Advances in Intrusion Detection
(RAID), Oct. 2002.

[34] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Still: Exploit code
detection via static taint and initialization analyses. In
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2008.

[35] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. Sigfree: A
signature-free buffer overflow attack blocker. InProceedings
of the USENIX Security Symposium, Aug. 2006.

[36] B.-J. Wever. SEH Omelet Shellcode, 2009.
http://code.google.com/p/w32-seh-omelet-shellcode/.

[37] G. Wicherski. Win32 egg search shellcode, 33 bytes.
http://blog.oxff.net/2009/02/win32-egg-search-

shellcode-33-bytes.html.
[38] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer. Analyzing

network traffic to detect self-decrypting exploit code. In
Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2007.

296

Cross-Layer Comprehensive Intrusion Harm Analysis for
Production Workload Server Systems

Shengzhi Zhang
Department of Computer
Science and Engineering,

Pennsylvania State University,
University Park, USA
suz116@psu.edu

Xiaoqi Jia
State Key Laboratory of

Information Security, Institute
of Software, Chinese

Academy of Sciences, China
xjia@is.iscas.ac.cn

Peng Liu
College of Information

Sciences and Technology
Pennsylvania State University,

University Park, USA
pliu@ist.psu.edu

Jiwu Jing
State Key Laboratory of

Information Security, Graduate
University of Chinese

Academy of Sciences, China
jing@is.ac.cn

ABSTRACT
Analyzing the (harm of) intrusion to enterprise servers is an
onerous and error-prone work. Though dynamic taint track-
ing enables automatic fine-grained intrusion harm analysis
for enterprise servers, the significant runtime overhead in-
troduced is generally intolerable in the production workload
environment. Thus, we propose PEDA (Production En-
vironment Damage Analysis) system, which decouples the
onerous analysis work from the online execution of the pro-
duction servers. Once compromised, the “has-been-infected”
execution is analyzed during high fidelity replay on a sepa-
rate instrumentation platform. The replay is implemented
based on the heterogeneous virtual machine migration. The
servers’ online execution runs atop fast hardware-assisted
virtual machines (such as Xen for near native speed), while
the infected execution is replayed atop binary instrumen-
tation virtual machines (such as Qemu for the implemen-
tation of taint analysis). From identified intrusion symp-
toms, PEDA is capable of locating the fine-grained taint
seed by integrating the backward system call dependency
tracking and one-step-forward taint information flow audit-
ing. Started with the fine-grained taint seed, PEDA applies
dynamic taint analysis during the replayed execution. Eval-
uation demonstrates the efficiency of PEDA system with
runtime overhead as low as 5%. The real-life intrusion stud-
ies successfully show the comprehensiveness and the preci-
sion of PEDA’s intrusion harm analysis.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—In-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

formation flow controls

General Terms
Security

Keywords
Cross-layer intrusion harm analysis, heterogeneous virtual
machine migration, forward and backward tracking

1. INTRODUCTION
Upon system being compromised, a dilemma faced by en-

terprise security technicians is whether to aggressively con-
tinue the service for business continuity or to conservatively
shut down the server for loss constrains. It can be even more
complicated as whether to resume the service from a clean
checkpoint regardless of accumulated system/services state
or to pause the execution for a comprehensive clean-up. In
this scenario, the right decision no doubt relies on a com-
prehensive intrusion harm analysis for the server systems,
e.g., locating the intrusion “breakin” and identifying the in-
trusion “footprint” (infection and cascading effects caused
by infection propagation). However, this basic yet essential
task continues to bother the security technicians for years
as an onerous and error-prone work. Hence, researchers’ at-
tention is caught by how to do automatic fine-grained intru-
sion harm analysis for production workload servers with con-
cerns of precision (without losing fidelity) and performance
(without slowing them down greatly). The recently pro-
posed dynamic taint analysis can be applied to the servers’
online execution to ensure the fidelity of intrusion analy-
sis, while it intuitively causes significant runtime overhead
(about 10-40X [21], [17], [15], [14] and [9]). Obviously, run-
ning the online server in that manner is not practical because
business-critical production workload servers can’t tolerate
such overhead.

How to solve this problem in a practical way without los-
ing fidelity depends on whether the following assumption
is assumed true or not. The “taint seed” assumption: the
taint seed is precisely located before the infection diagnosis

297

task starts. This assumption is indeed true in some par-
ticular cases. For example, when a remote exploit matches
a newly generated signature after the intrusion event, the
system would know which packet (seen during the past in-
trusion event) should be used as the taint seed. Under this
assumption, solution to the above problem could be inspired
from the fidelity-preserving whole machine replay idea pro-
posed in [8] and [20]. However, the original replay technique
cannot be directly applied because the replay required by
fine-grained infection diagnosis can no longer be performed
on the same online processing computer architecture “inter-
face”. Rather, the replay now needs to be performed on a
binary instrumentation platform (such as QEMU). To tackle
this challenge, we developed a heterogeneous VM (virtual
machine) migration technique, which is quite different from
the migration in Aftersight [6] as discussed in Section 7 (Note
that PEDA and Aftersight are two independent works.).

But can we now really claim“mission accomplished”? Our
answer is “perhaps not”, which is based on the observation
that the “taint seed” assumption in many other cases is not
practical. Typically, the intrusion detection may often hap-
pen after attack escalation so that the intrusion symptoms
reported by IDS (intrusion detection system) are not nec-
essarily the “taint seed”. For instance, IDS may report ma-
licious system binary modification through integrity check,
but the detected binary modification is obviously not the
intrusion root, in other words, the “taint seed”. To be able
to solve the above problem without relying on that not-
very-practical “taint seed” assumption, the following chal-
lenge must be tackled. The“seed-unknown”challenge: when
only some (indirect) symptoms of the intrusion could be
identified, how to do comprehensive fine-grained intrusion
analysis? Existing backward system call dependency analy-
sis Backtracking [11] can indeed identify the system-object-
level intrusion root (typically a process) from the detected
intrusion symptoms. However, directly treating the system-
object-level intrusion root as taint seed for dynamic taint
analysis will introduce much false positive, due to tainting
the whole process address space and all its following opera-
tions.

In this work, besides solving the problem under the “taint
seed” assumption through a heterogeneous VM migration
technique, we take a novel approach to tackle the “seed-
unknown”challenge. This approach integrates both the back-
ward system call dependency analysis and the forward suspi-
cious data flow analysis. Tracing the system call dependency
graph backward can help us quickly identify the system-
object-level intrusion root. Thereafter, we trace the identi-
fied system-object-level intrusion root to locate the one-step-
down buffers that it uses to propagate the intrusion harm.
In this way, the “seed-unknown” challenge can be addressed
by treating those buffers as taint seed. Alternatively, we
can also identify the malicious intrusion packets by trac-
ing the processing flow of each suspicious network packet
received by the system-object-level intrusion root. Then,
the “seed-unknown” challenge can be addressed by treating
the memory cells or disk sectors containing the malicious
intrusion packets as taint seed. We have integrated these
novel approaches into our heterogeneous VM migration so-
lution. As a result, we get a rather complete and practical
solution to do post-mortem fine-grained intrusion analysis
for production workload servers under the “seed-unknown”
assumption.

Figure 1: PEDA Architecture

The rest of this paper is organized as follows. Our PEDA
approach is described in Section 2. The design of PEDA
system with details of each functionality is presented in Sec-
tion 3. In Section 4, we focus on the implementation issues
of PEDA system. In Section 5, we evaluate PEDA in terms
of efficiency, precision and comprehensiveness. Limitations
and Related works are discussed in Section 6 and Section 7
respectively. Finally, we conclude the paper in Section 8.

2. PEDA APPROACH
The goal of PEDA system is to enable fine-grained intru-

sion analysis for enterprise-level production workload servers
with precision and comprehensiveness. Hence, PEDA de-
composes the intrusion analysis work into three phases: au-
diting phase, intrusion root identification phase and infec-
tion diagnosis phase. Figure 1 shows PEDA system architec-
ture with five functional components: underneath logger, de-
pendency tracking engine, translation engine, infection ana-
lyzer and reconstruction engine. Below, we briefly describe
each phase with several components working in tandem to
fulfil our desired functionality.

2.1 Auditing phase
During routine execution of enterprise servers, the under-

neath logger will periodically take a checkpoint of the whole
server system, including disk, raw memory, CPU registers,
RTC (real time clock), I/O devices, DMA, timers and etc.
The whole checkpoint serves as the starting point for replay.
Moreover, non-deterministic events, e.g. external inputs into
the server such as network packets, keyboard inputs, timer
interrupt and etc., between contiguous checkpoints are also
recorded for redelivery during replay. The deterministic exe-
cution of the server systems (from the same initial state) and
the non-deterministic events redelivery can ensure the high
“fidelity”of the replay. This replay in turn helps PEDA to re-
veal “what had happened” since intrusion occurred. In order
to tackle the “seed-unknown” challenge, during the routine
execution of the server system, PEDA needs to record all
the system operations that can cause potential dependency
between system objects. Then, the dependency tracking
engine operates on those system operations to dynamically
generate system-object (file or process) dependency graph.
Once intrusion symptoms detected, the graph is ready to be
used to quickly identify the fine-grained intrusion root for
dynamic taint analysis.

2.2 Intrusion root identification phase

298

This phase only works under the “seed-unknown”assump-
tion. Whenever some intrusion symptoms, e.g., system bina-
ries are suspiciously modified, are captured, the dependency
tracking engine will start to trace these captured symptoms
backward throughout the already-produced system-object
dependency graph. This backward tracking can help us
swiftly identify the system-object-level intrusion root, typi-
cally the network-oriented process. In order to identify the
fine-grained taint seed for infection analyzer, the depen-
dency tracking engine performs one-step-forward auditing
to locate the buffers (used by the system-object-level intru-
sion root) containing the taint propagation data. Simultane-
ously, the translation engine translates the logging informa-
tion recorded by the much faster hardware-assisted VM into
the form that the analyzing binary translation based VM
can “understand”. Thus, the later-on replay can be done on
a heterogeneous VM. All the work of dependency tracking
engine and translation engine is done on the backend sys-
tem, without incurring additional runtime overhead to the
online servers.

2.3 Infection diagnosis phase
When the translation engine finishes the system states and

non-deterministic events translation, the“has-been-infected”
server’s execution is ready to be replayed on the binary in-
strumentation platform with high fidelity. Started with the
fine-grained taint seed either known directly or identified
by dependency tracking engine, the infection analyzer per-
forms the fine-grained instruction flow taint analysis. Both
the data taint flow and the control taint flow are applied
to prevent some intended attackers crafting code that can
evade the data flow auditing. Generally, the fine-grained
taint analysis can only generate instruction flow dependency,
which contains valuable binary information but lacks oper-
ating system semantics. Therefore, reconstruction engine
is also developed to bridge this kind of “semantic gap” [5]
by dynamically mapping each instruction flow with system
objects. Through the coordination of the infection analyzer
and reconstruction engine, we can provide the cross-layer in-
fection diagnosis results both at the system object layer (full-
of-semantics) and the instruction layer (comprehensive).

3. DESIGN OF PEDA SYSTEM
In this section, we focus on the design of PEDA system by

describing the details of analysis decoupling, heterogeneous
VM migration, fine-grained intrusion root identification and
cross layer infection diagnosis.

3.1 Analysis Decoupling
PEDA takes the idea of analyzing the intrusion during

high fidelity replay instead of during the first run for the
following reasons. First, replay-based intrusion analysis can
take over the workload of fine-grained taint analysis from the
routine execution of production workload servers. In this
way, the performance of the server systems can be ensured,
without incurring the 10-40x overhead introduced by taint
analysis. Second, replay-based intrusion analysis can take
advantage of the “already-happened” knowledge to reduce
the assessment workload. For instance, intrusion root can
be identified by logging system calls, generating dependency
graph, and integrating IDS detected intrusion symptoms.
During the first run, however, the auxiliary information is
not available yet. Last, by decoupling the intrusion analysis

off the main server, PEDA offers the flexibility for enterprise
security technicians to either aggressively restart (or con-
tinue running) the service for business continuity (based on
swift system-object-level intrusion propagation assessment)
or conservatively shut down the server for loss constrains
(waiting for comprehensive intrusion analysis). The decou-
pling is implemented by recording the whole system state
and non-deterministic events during the routine execution
of the server.

3.1.1 Checkpointing
PEDA periodically takes a snapshot of the whole server

system to ensure that the replay shares the same initial state
as the first run. Different checkpoints enable the system ex-
ecution to be replayed at different time of the first run. This
is feasible and realistic to analyze a specific event, such as
intrusion, on a long-running server system, because there is
no need to replay the system execution from the very be-
ginning of the first run. The checkpoint contains all the
hardware states, such as CPU registers, raw memory, disk,
I/O device, timers, DMA and etc. A naive way to take a
consistent checkpoint of the whole system is to pause the
server system, take a snapshot, and then resume the execu-
tion. However, for production workload servers with large
disk and raw memory, this “stopping-the-world” checkpoint-
ing will cause intolerable service downtime to the servers.

On the other hand, we observed that during 2:00 am to
5:00 am, the amount of service requests are much more de-
graded than that during daytime for Amazon-style servers.
Hence, PEDA is designed to take checkpoint infrequently
(e.g., once per day during the service degradation period).
To further take advantage of the servers’ working style, PEDA
is designed to trade service response time off for service live
time. In particular, PEDA initializes a pre-checkpointing
phase, during which the disk and raw memory states are
recorded with the server system “on the fly”. Thereafter,
PEDA pauses the server system and establishes a stop-and-
copy phase. During this phase, PEDA records all the other
device states and the changes to disk as well as memory
since the start of pre-checkpointing phase. Finally, PEDA
commits the end of checkpointing and resumes the execution
of the server. By means of the pre-checkpointing phase, the
heavy workload of storage checkpointing is taken over from
the stop-and-copy phase, thus greatly reducing the service
downtime.

3.1.2 Non-deterministic events logging
For the production workload servers, the non-deterministic

events are mainly the service-requesting network packets,
the administrator’s management keyboard inputs, and the
I/O devices’ interrupts. Meanwhile, the keyboard inputs
happen quite infrequently for such kind of servers. Thus,
it will only introduce little runtime overhead to the servers
to log them directly using emulated keyboard of virtual ma-
chine. However, this is not the case for network packets.
Typically, the production workload server deals with thou-
sands of or even more service-requesting packets everyday.
Hence, it will introduce intolerable overhead to log these
packets by emulated NIC (network interface card) of virtual
machine, because the NIC needs to perform an additional
data transfer per packet.

PEDA successfully solves this problem by leveraging a
router to split the incoming packets and to forward them to

299

Figure 2: Xen Devices Emulation

both the target server and the backend server. The backend
server will log the contents of all these packets. Simultane-
ously, the emulated NIC on target server will only record
the header identification information of each packet. Dur-
ing the intrusion root identification phase, the translation
engine will associate each logged packet with its identifica-
tion information. All the I/O devices’ interrupts to CPU are
logged through the device emulation code of virtual machine.
In order to exactly redeliver the interrupt during replay, we
record the timing semantics at which the interrupt occurs.
For instance, we log the time at which the keyboard input
arrives, and the instruction at which the corresponding in-
terrupt is delivered to CPU. The time is logged by the unit
of CPU clicks, while the instruction is logged using the pro-
gram counter and the number of branches executed [4] by
means of one provided hardware performance counter.

3.2 Heterogeneous VM Migration
Typically, the instruction flow taint analysis needs to be

implemented in the binary translation based VM. Thus,
a direct way to do decoupled analysis is to let the online
server run on top of such kind of VM during routine exe-
cution, and to migrate the recorded VM image onto such
kind of VM with analyzing module when intrusion anal-
ysis is needed. However, the problem with this approach
is the intolerable runtime overhead (3X-4X compared with
native execution [3]) introduced to the production work-
load server by VM binary translation during routine exe-
cution. To minimize the runtime overhead, PEDA runs the
server with underneath logger atop hardware-assisted near
native-speed VM during routine execution. When intrusion
analysis is needed, PEDA replays the recorded VM image
atop binary-translation based VM to capture the infection
propagation. In particular, PEDA implements heteroge-
neous VM migration functionality to help the latter (binary-
translation based VM) “understand” the system states and
events recorded by underneath logger in the former (hardware-
assisted VM).

Generally, different virtual machines use different device
emulation techniques, so“translating”the device state of one
VM to that of the other VM is not an easy task. One way to
evade such kind of device state translation is to only consider
the output data flow from each device to CPU. Aftersight
[6] applies this approach by directly recording the data flows
from the devices to CPU and redelivering them to CPU
during replay. However, performance is trade off for the
“bypass” of the device emulation incompatibility. Logging
raw data out of the device introduces much more runtime
overhead than recording the external inputs to the device,
especially for the large amount of data read from disk (As
also noted in Aftersight [6], to replay a disk read operation,
their method must record the actual data being read from
the emulated disk.).

With much concern of production workload server’s per-
formance, PEDA takes the approach of directly recording
the external inputs to devices, and leverages a translation

engine to eliminate the device emulation incompatibility.
PEDA simplifies the the whole system state translation/migration
work by choosing Xen as hardware-assisted VM and Qemu
as binary translation based VM. The reason is that Xen-
HVM relies a lot on Qemu “device manager” (qemu-dm)
daemon running backend in Domain 0 to provide device I/O
emulation. Figure 2 shows various Xen devices emulated by
qemu-dm. There exist several devices such as CPU registers,
apic and etc., as shown in Figure 2, which are emulated by
Xen-HVM itself. However, they share similar entries with
those emulated by Qemu, and our implementation shows
that the scaling will not consume much time for an experi-
enced programmer. Although translation engine can elimi-
nate the device emulation incompatibility, it cannot handle
hardware diversities without adding new“translation rules”,
such as rtl8139 NIC and e1000 NIC.

3.3 Addressing the Seed-Unknown Challenge
Identifying the intrusion root is a critical step of intrusion

analysis, because it determines where to patch the vulnera-
bilities and what to be audited during analysis. We cannot
simply rely on IDS (Intrusion Detection System) to inform
us the intrusion root, because intrusion symptoms notified
by IDS often lag behind the actual intrusion breakin. PEDA
identifies the system-object-level (processes or files) intru-
sion root in a similar way as Backtracking [11]. However, the
system-object-level intrusion root cannot be provided to in-
fection analyzer as taint seed, because dynamic taint track-
ing requires the taint seed at the granularity of memory cell
or disk segment. For instance, if taking a process as taint
seed, then all the operations and the whole address space
of this process should be tainted since it was compromised.
This will generally result in taint explosion [16] through-
out the server system with high false positive, thus hurting
not only the efficiency but also the precision (correctness)
of our infection diagnosis. Hence, PEDA implements one-
step-forward auditing to “dip” further down to the memory
buffer and identifies the fine-grained intrusion root there. As
shown in Figure 1, PEDA relies on the dependency tracking
engine to do both the system-object-level dependency graph
generation during the auditing phase and fine-grained taint
seed identification during the intrusion root identification
phase.

3.3.1 Dependency Graph Generation
We specify system object dependency as a source object,

a destination object, and a specific time. For instance, if
one process reads a file, then the file is the source object;
the process is the destination object; while the time is de-
fined as when the process issues the read system call. PEDA
records the process id issuing the system call, parameters of
that system call, and the system call issuing time or se-
quence. Then they are associates with source object, des-
tination object and time respectively. Since system objects
are generally processes and files, we define two categories
of system-object dependency: process/process dependency
and process/file dependency.

Process/Process Dependency Whenever one process af-
fects the operation of the other process, we should mark
these two processes as dependency relationship. The system
call issuer should be marked as source object and the pro-
cess identity specified in the system call parameters should
be marked as destination object. The time t should be set as

300

Figure 3: Dependency Tracking Engine Functionality

the system call issuing time or sequence. Note the creation
of child process through issuing clone system call. We will
apply bi-directional dependency between parent and child
process during the period of address space sharing, because
the parent process and the child process will share the par-
ent’s address space until the child process issues execv sys-
tem call.

Process/File Dependency One process may create, open,
read, write, delete files, or change the owner, property of
the files, and etc. The dependency between process and
file should be established once any of these operations takes
effect. The determination of source object and destination
object depends on the actual data flow as shown in Figure
3(b). Generally, the time t should be set as the system
call issuing time or sequence. However, one process can
map one file to its address space by issuing mmap system
call, and then read/write the file directly by using store/load
instructions, which can no longer be captured by system
call level auditing. In this scenario, we will maintain the
dependency from the time when the mmap is issued to the
time when the corresponding munmap is issued.

Taking the system call auditing records as input, depen-
dency tracking engine can generate system object depen-
dency graph dynamically during auditing phase. Figure
3(b) shows a segment of the dependency graph based on
the system call records in Figure 3(a). Each node denotes

a system object either as source or destination. The
[t]−→

denotes the dependency relationship between the source ob-
ject and the destination object at time t. Since the graph
may grow quite large and produce false positive results on
taint propagation, PEDA performs graph pruning to reduce
the storage size and false dependencies. For instance, we
do not consider situations like independent process termi-
nation, irrelevant signals, or accessing dummy objects like
stdin/stdout or /dev/null.

3.3.2 Coarse-grained and Fine-grained Intrusion Root
Identification

When any intrusion symptom is detected by IDS, e.g.,
some maliciously modified system binaries through integrity
check, the dependency tracking engine switches to intrusion
root identification mode. It starts tracing the system-object-
level dependency graph backward from the detected intru-
sion symptoms. The system-object-level intrusion root iden-
tification is already studied by Backtracking [11]. Here, we
adopt a similar approach. Figure 3(c) shows the system-
object-level intrusion root identification results based on de-

pendency graph segment in Figure 3(b). We locate the de-
tected infected objects from the dependency graph, trace
the dependency chain back with timestamps, and eliminate
uninfected objects from the graph. For production work-
load servers with constrains of physical access, the intrusion
breakin should mainly occur at the network-service-oriented
applications. Therefore, we trace back the intrusion propa-
gation flow, locate the very beginning network-oriented pro-
cess, and identify it as the system-object-level intrusion root.
In addition, system security technicians can also specify a
set of vulnerable services and ports to further refine this
procedure. PEDA also records the intrusion propagation
timestamp when the intrusion root object performs the first
operation that eventually propagates to the detected intru-
sion symptoms.

In order to bridge the gap between the system-object-level
intrusion root and the instruction flow taint tracking, we
develop a straightforward but effective method, one-step-
forward auditing, to locate the fine-grained intrusion root
for infection analyzer. Once we have identified the system-
object-level intrusion root (generally network-oriented pro-
cess), we examine all the system calls issued by it. By
analyzing the parameters of these system calls, we extract
the ones propagating the intrusion to the detected intru-
sion symptoms. In this way, we can locate the buffers that
actively expand the infection, i.e., from the intrusion root
object to the one-step-down objects in the intrusion prop-
agation graph. Taking these buffers as fine-grained taint
seed will provide us the precise and comprehensive infection
diagnosis.

There are several drawbacks for the one-step-forward-auditing
approach to identify the fine-grained intrusion root. First,
it cannot provide any information regarding how the intru-
sion root object is compromised, so there is no way for the
infection analyzer to trace the intrusion breakin from the
very beginning. Second, it relies on an implicit assumption
that the backward tracking can extract at least all the one-
step-away infected objects from intrusion root in the depen-
dency graph. This can be generally true, but some intended
attackers aware of backward tracking could craft intrusion
programs to evade such kind of auditing.

Therefore, we provide an alternative way to identify the
fine-grained intrusion root. We take advantage of the gen-
eral belief that the intrusion breakin should start from the
network packets, and try to associate some packets with the
infection propagation. If any packet processing information
flow finally “contributes” to the infection propagation, we

301

provide the receiving buffer or storing disk sectors of this
packet to the infection analyzer as taint seed. However,
tracking the everyday thousands of packets to production
workload server is generally infeasible.

Fortunately, we have already identified the system-object-
level intrusion root with intrusion propagation timestamp,
so we have a rough idea of where (the intrusion root ob-
ject) and when (before the timestamp) the intrusion breaks
into the victim system. Thus, we only need to track those
network packets sent to this intrusion root object (generally
an application) before the intrusion propagation timestamp.
Furthermore, it is feasible for system security technicians to
refer to the server firewall’s “whitelist” to filter the packets
from trustable remote identities. Finally, we can start mul-
tiple packet-auditing instances simultaneously on separate
analysing instrumentation platforms to further increase the
efficiency.

After a much smaller set of suspicious packets is identified,
we use the following technique to determine the actual intru-
sion packets. The dependency tracking engine can leverage
the translation engine to replay the server system execution.
During the high fidelity replay, it audits the processing in-
formation flow of those packets by applying instruction flow
taint tracking since they entered the receiving buffers. If any
packet is manipulated by the intrusion root object and hits
the system-object-level intrusion propagation chains, then
the corresponding packet should be considered as the intru-
sion packet. Note that several packets instead of one may
contribute to one single intrusion. Generally, when one in-
trusion packet has been identified, we can rely on the iden-
tification information contained in the header of that packet
to swiftly locate other intrusion packets if any. Once all the
intrusion packets are identified, we specify the buffers or the
disk sectors storing those packets as fine-grained intrusion
root, i.e., taint seed.

3.4 Cross Layer Infection Diagnosis
The infection analyzer is implemented in the binary trans-

lation based, whole system emulator Qemu [3]. With an
abstract view of the hardware such as CPU registers, mem-
ory, and I/O devices, it enables down-to-byte comprehen-
sive infection diagnosis by auditing the emulated hardware.
However, the “semantic gap” [5] really exists because it lacks
the meaningful information of operating system semantics.
Thus, we also develop reconstruction engine to present the
infection diagnosis results both at the system object layer
and at the instruction layer.

Our infection analyzer works similarly to several exist-
ing systems using dynamic taint analysis [21], [13] and [7]:
auditing each instruction executed. Essentially, we capture
the data flow dependences between instructions and certain
control flow dependences such as switch and if-else state-
ments. We implement the reconstruction engine totally at
the VMM (virtual machine monitor) level without any in-
terference to the guest OS. Our approach is also different
from static analysis of raw memory and sysmap reconstruc-
tion ([10] and [18]). Our reconstruction engine extracts the
system object semantics directly from CPU registers and
dynamically maps the kernel address space with kernel data
structures. Though this renders the reconstruction work a
little more difficult, we can ensure the correctness of replay
and the security of the PEDA components.

4. IMPLEMENTATION ISSUES OF PEDA SYS-
TEM

We implement PEDA prototype on Qemu-0.9.0 and Xen-
3.3.0 to demonstrate its capability of comprehensive intru-
sion analysis for production workload servers. On both of
them, we run the same image file with Linux kernel version
2.6.20 as Guest OS. The goal and design of PEDA system
pose various challenges, hence we discuss the implementa-
tion issues of PEDA system in the rest of this section.

4.1 Checkpointing and Non-deterministic Event
Logging

On Xen Domain 0 management console, we implement a
new command xm checkpoint. Once issued, xm checkpoint
is passed to Xend via XML RPC. Xend responses to this
checkpoint request by initializing a pre-checkpointing phase,
during which Xend coordinates with Xen hypervisor to start
recording raw memory and virtual disk contents. Moreover,
the hypervisor makes a shadow copy of all the following
“writes”to memory and disk. Then, Xend pauses the system
execution and establishes a stop-and-copy phase. During
the stop-and-copy phase, the hypervisor records CPU reg-
isters, interrupt controllers and etc. Simultaneously, Xend
commits all the shadow copy of “writes” to the memory and
virtual disk recorded during previous phase, and calls qemu-
dm to log other devices states such as NIC, VGA, keyboard,
DMA and etc. Thereafter, Xend calls qemu-dm to start au-
diting the following keyboard inputs, network header iden-
tification information, and their arrival time at the unit of
CPU clicks. The router is also notified to start directing the
following network packets to both the server and the back-
end system separately. The backend system is modified to be
able to receive and record these redirected packets. In addi-
tion, the hypervisor will activate the system events auditing
functionality to record all the following system calls of the
server system execution for dynamic dependency tracking.
The whole system states from checkpoint together with key-
board inputs, packet identity, timing and system call records
during the system execution are transferred to backend sys-
tem through Gigabit Ethernet.

4.2 Translation Engine
Translation engine cannot handle hardware diversities, such

as X86 processor and AMD processor, or rtl8139 NIC and
e1000 NIC. Therefore, we pre-configure QEMU and Xen
device emulation module to emulate the same type of de-
vices for Guest OS, such as X86 processor, rtl8139 NIC and
etc. We also configure them to have the same amount of
memory and to share the same image file as virtual disk.
As a result, translation engine only needs to deal with the
emulation implementation incompatibility of the same de-
vice. For instance, considering the emulation differences
of IOAPIC (I/O Advanced Programmable Interrupt Con-
troller) between Xen-HVM and Qemu, we observe that the
significant differences are the number of IOAPIC pins and
the definition of each redirectory entry. In order to elimi-
nate such kind of device emulation incompatibility, we refer
to the Intel IOAPCI datasheet [1] for the functionality of
each specific pin, and match them at the granularity of Xen
and Qemu device emulation code. Note that only the devices
emulated by Xen HVM itself require this kind of scaling and
this work needs to be done only once before our system is

302

0 3 6 9 12 15
0

200

400

600

800

1000

Baseline

Th

ro
ug

hp
ut

 (M
bp

s)

Time (s)
(a)

0 3 6 9 12 15
0

200

400

600

800

1000

(b)

With Router

Th

ro
ug

hp
ut

 (M
bp

s)

Time (s)
0 3 6 9 12 15
0

50

100

150

200

(c)

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Figure 4: Runtime Overhead and Performance Degradation in terms of Throughput

deployed.

4.3 Infection Analyzer and Reconstruction En-
gine

As a binary-translation based emulator, Qemu enables our
implementation of instruction flow taint analysis. Each ex-
ecuted instruction is audited before Qemu translation block
works to keep consistent with the view of Guest OS. Each
register, memory cell and disk block are associated with
one specific taint bit indicating whether this storage unit
is tainted or not. Specifically, when instructions are exe-
cuted, we apply tainting and untainting policies to examine,
set or clear the taint bit. Therefore, we can exactly locate
the taint propagation by checking the taint bit throughout
the registers, memory cells and disk blocks.

We also implement the reconstruction engine to provide
OS semantics. For instance, to dynamically reconstruct pro-
cess lists, we start from the structure env defined by Qemu
to emulate the processor for VM. We can obtain all the reg-
isters there including the register esp pointing to the kernel
stack of the currently running process. At the bottom of the
kernel stack resides the thread info structure that includes
a pointer to the task struct of the corresponding process.
Similarly, with the help of other registers and the process
profiles, we can further identify the process list, all the file
objects and part of kernel data structures (almost 800) such
as system call table, interrupt table and etc.

5. EVALUATION
In this section, we evaluate PEDA system in terms of

logging efficiency and intrusion analysis comprehensiveness.
The Xen hypervisor and the backend system are running
separately on two Lenovo Thinkstation Tower D10 machines,
each with Dual Intel(R) PRO/1000 NICs. We run CentOS
5.2 (kernel version 2.6.18) as coordination platform on back-
end system and as Xen Domain 0 on Xen hypervisor. Both
Xen-HVM Domain U and Qemu Guest OS are installed with
Fedora 6 (kernel version 2.6.20). Both Qemu and Xen-HVM
are preconfigured to have the same amount of memory (1
GB), the same NAT based networking, and the same kind of
devices emulation for Guest OS or Domain U. We also deploy
a router, connecting these two machines with Gigabit Eth-
ernet and responsible for packets direction to them. Outside
the router, we have two Dell OptiPlex 745 machines used as
client request simulation and attacker platforms, with Giga-
bit Ethernet connection to the router.

5.1 Logging Efficiency

We install Apache 1.3.9 on Xen-HVM Domain U as a
http server. We evaluate the runtime overhead introduced
by non-deterministic events plus system call logging, and
measure the server performance degradation during the pre-
checkpointing phase and service downtime during the stop-
and-copy phase.

Runtime Overhead We compare the performances of
apache running on the native Xen-HVM Domain U and on
the Xen-HVM Domain U with our instrumentation. On the
Dell machines, we simulate clients sending continuous re-
quests over concurrent connections to fetch an 8 KB file.
Figure 4(a) shows that the native Xen-HVM Domain U
achieves the throughput of almost 800 Mbps, which is con-
sidered as baseline performance in our evaluation. It did
not reach up to 2000 Mbps (Two Gigabit NICs on the ma-
chine) probably due to the impact of network I/O virtual-
ization introduced by Xen. The baseline performance can
be improved by optimizations proposed in [12] to achieve
the near-native throughput. Figure 4(b) shows the apache
throughput with the packets redirected to the logging back-
end system (from the edge router). Compared with Figure
4(a), we can see that our logging achieves about 95% base-
line performance, which the 5% runtime overhead is mainly
caused by the system call logging.

Downtime and Performance Degradation Caused
by Checkpointing In order to simulate the Amazon-style
server during 2 am-5 am, we reduce user requests to apache
server by 90%. Figure 4(c) shows that the server through-
put decreases correspondingly. At the time (about 5 seconds
from the very beginning) when we issued the command xm
checkpoint, the server throughput drops by 24%, which lasts
for almost 4 seconds. This performance degradation can be
explained by the fact that we introduced a pre-checkpointing
phase, during which the whole virtual disk and physical
memory are recorded. Following is the service downtime
(no throughput) during the “stop-and-copy” phase, which
only lasts for less than 0.4 second. To take a checkpoint of a
running system, the service downtime cannot be eliminated,
because it is generally impossible to take a consistent whole
system checkpoint considering the fact that a running sys-
tem may do “write” operations to either memory or disk.
We reduce this kind of service downtime by introducing a
pre-checkpointing phase, which takes the large amount of
copying workload from the “pausing” phase. Note that in
Figure 4(c), the short pulse immediately after the downtime
is likely to be caused by the accumulated requests from the
performance degradation period.

5.2 Intrusion Analysis Comprehensiveness

303

Figure 5: Fine-Grained Intrusion Root Identifica-
tion

To show the comprehensiveness and precision of our intru-
sion analysis, we conduct two case studies of real-life intru-
sion. For the page limit, we only show the detailed results of
the first case in terms of fine-grained intrusion root identifi-
cation and dynamic taint tracking. For the second case, we
focus on showing the advance of PEDA system over previous
system-call-level intrusion analysis.

5.2.1 Case Study 1
The attack scenario of Case 1 is as follows. The attacker

first logs into the server system by ssh using an unprivileged
user account. Then he downloads a Linux NULL pointer
dereference exploit and launches the attack [2] to gain root
privilege. Afterwards, he mails back, examines and modifies
the syslog.conf file to let the system logs be sent to his email
account. Finally, he deletes all files under the /var/log/
directory to hide his intrusion “footprint”.

Fine-grained Intrusion Root Identification We as-
sume that the IDS detects the maliciously modified file sys-
log.conf and the missing files under the directory /var/log/.
These intrusion symptoms are notified to the PEDA sys-
tem. Afterwards, we start the intrusion root identifica-
tion from the detected intrusion symptoms, and trace the
automatically-generated dependency graph backward. We
tailor the intrusion flows at the system object level from
the dependency graph, and locate the system-object-level
intrusion root wget. Figure 5 shows the fine-grained intru-
sion root identification procedure. We audit system calls
issued by wget to identify the buffers containing the intru-
sion packet. Finally, we can obtain the disk sectors used
to store the intrusion packet, which is taken as fine-grained
taint seed for infection diagnosis.

Infection Diagnosis In order to show sufficient infor-
mation regarding the intrusion behaviour, and the details of
how the intrusion happens on the server system and what
has been infected by the intrusion propagation, we start a
whole system dynamic taint tracking from the disk sectors
containing the intrusion packet during replay. For the space
limitation, Figure 6 presents only partial outcome of our in-
fection diagnosis. The rectangle denotes memory address
space or disk sectors on the server system. The ellipse at-
tached to each rectangle includes the OS semantics from our

reconstruction engine, including the processes which the ad-
dress space belongs to, the files which the disk sectors are
allocated to, or the dynamic libraries which the memory ad-
dress space is loaded to. It is sufficient to demonstrate that
our cross-layer infection diagnosis features with specific in-
fected memory space, disk sectors, and kernel address space,
which are far beyond the system-call-level intrusion track-
ing. Moreover, the infected memory address information
provides the system admin a feasible way to “sweep out”
any intrusion harm on the victim system. In addition, we
can catch the“blind spot”of system-call-level intrusion anal-
ysis. For instance, we can capture how the attacker obtains
the root privilege through the intrusion packet.

5.2.2 Case Study 2
Case Study 2 is designed to demonstrate the advance of

PEDA system over other system-call-level intrusion analysis.
The attacker logs into the system by ssh using an unpriv-
ileged user account. Then he launches the sendmail local
escalation exploit to gain root access. The attacker uses the
root shell to download and install the adore rootkit, which
replaces several kernel hooks in the system call table with
its own implementation. Afterwards, he uses the same root
shell to download and install the ARK rootkit, which re-
places system binaries (e.g., syslogd, login, sshd, ls, ps, net-
stat, and etc.) with backdoored versions. We rely on IDS to
detect the modification of system binaries by integrity check.
By virtue of the backward system call dependency tracking,
all of PEDA, SHELF [19] and Backtracking [11] can iden-
tify ssh as the system-object-level intrusion root. However,
neither SHELF nor Backtracking can locate the malicious
kernel hook modification by adore rootkit. Instead, they are
only capable of diagnosing the intrusion infection of ARK
rootkit due to their system call flow auditing. Rather, the
fine-grained intrusion root identification of PEDA system
can audit the system calls issued by ssh, and identify the
disk sectors containing the downloaded rootkits adore and
ARK as taint seed. By applying dynamic taint tracking
and semantics reconstruction, PEDA is able to capture not
only the damage identified by SHELF and Backtracking, but
also the intrusion harm of the kernel hooks modification im-
planted by adore rootkit, such as the replaced sys write and
etc.

6. LIMITATIONS
In this section, we discuss the limitations of PEDA sys-

tem. First, the automatic intrusion backtracking is not 100
% accurate, especially at the granularity of memory cell or
disk sector. Our PEDA system relies on intrusion backtrack-
ing to locate the fine-grained intrusion root, which in turn
is provided as taint seed to infection analyzer. To reduce
the false positive on PEDA’s intrusion harm analysis result,
the intrusion backtracking of PEDA involves some human
interference to accurately locate the fine-grained intrusion
root. Second, to replay the execution of a busy server with
significantly high workload, the amount of non-deterministic
events to be recorded might be huge. In this case, it may
not be feasible for PEDA to store a history of events that
is much longer than the expected intrusion detection de-
lay. Thus, if the intrusion is detected much later than its
occurrence, the first run compromised execution cannot be
completely replayed due to the removal of long time ago
non-deterministic event logs.

304

Figure 6: Whole System Infection Diagnosis

7. RELATED WORK
First, our fine-grained intrusion root identification is im-

plemented by integrating backward system-object depen-
dency tracking [11] and forward instruction flow taint anal-
ysis. This is the first attempt to bridge the gap between
the forward fine-grained analysis and the backward system-
object intrusion root identification. As a general intrusion
analysis tool, PEDA advances existing system-object-level
analysis in terms of intrusion harm comprehensiveness and
precision, as shown in our second case study of evaluation
section. VM replay is a relatively mature technique in the
VM industry (e.g., VMWare) these days. However, the re-
play on another heterogeneous VM is not. Some new issues
exit, such as how to address the device emulation incompati-
bilities. Aftersight [6] is the first work that we can find talk-
ing about these heterogeneous VM migration issues. The
following we will mainly discuss the differences between our
work and Aftersight.

Being a generic technology for decoupling dynamic pro-
gram analysis from execution, Aftersight decouples instruc-
tion level analyses from the normal execution (of online
servers) for a spectrum of purposes, including bug finding
and forensics. Aftersight records program execution and
replays it on a separate analysis platform against a set of
memory safety guarantee policies. Hence, it enables heavy-
weight analysis during replay to find serious bugs in large
complex systems such as VMWare ESX Server and Linux.
In contrast, PEDA focuses on the post-mortem intrusion
analysis for production workload servers from intrusion root
identification to fine-grained infection diagnosis. Thus, the
problems faced by PEDA are to precisely locate the intrusion
root object to patch the vulnerabilities, and to reasonably

associate the intrusion root object with the fine-grained taint
seed to start comprehensive infection diagnosis. Though Af-
tersight and PEDA share the same idea of decoupling anal-
ysis from normal execution, they aim at different types of
analysis, thus dealing with different sets of design and im-
plementation issues.

In addition to dealing with different analysis, PEDA also
differs from Aftersight in the architecture design. After-
sight migrates guest server system from recording platform
(VMWare Workstation) to analysis platform (Qemu), while
PEDA does it from Xen to Qemu. Since Xen relies on qemu-
dm to emulate majority of devices, PEDA takes the ap-
proach of recording the external inputs to each device and
redelivering them to the corresponding device during the
replay. Because VMWare and Qemu emulate I/O devices
differently, Aftersight chooses to record all the outputs from
each emulated device to CPU and to redeliver them to CPU
during the replay to “bypass” the device emulation incom-
patibility. In order to avoid the significant runtime over-
head introduced by the large amount of the device output
logging, Aftersight adopts the approach of “replay based re-
play”. In particular, Aftersight records external inputs to
the device during normal execution, logs the device outputs
to CPU during the first replay, and finally replays the second
recording for analysis. Compared with Aftersight, the de-
vice emulation incompatibility elimination of PEDA is more
straightforward and efficient for production workload server
systems, though less generic.

Several other works exist to help security administrators
to do intrusion analysis, such as Repairable File Service [23],
Intrusion Recovery [22] and Backtracking [11]. All of them
log system calls during execution, and use them to track

305

the flow/dependency between system objects. This kind
of coarse-grained dependency tracking typically cannot cap-
ture the whole“footprint”of intrusion, because the attackers
can craft programs with direct memory load/store instruc-
tions that can evade the system call level auditing. Rather,
PEDA applies the fine-grained instruction flow taint track-
ing to capture the intrusion propagation with both com-
prehensiveness and precision. Both Backtracking [11] and
PEDA use backward tracking from detected intrusion symp-
toms to locate the intrusion root. However, Backtracking
only identifies the system-object-level intrusion root, typi-
cally a process. In order to provide the infection analyzer
the fine-grained taint seed, PEDA extends the Backtrack-
ing to “dip” further into the memory cells or disk storage
segments granularity. Thus, PEDA can effectively integrate
the backward system object intrusion root identification and
the the forward fine-grained taint analysis.

8. CONCLUSION
PEDA is a systematic approach doing post mortem fine-

grained intrusion analysis for production workload servers.
It helps security technicians swiftly identify the fine-grained
intrusion root “breakin” to the server and precisely pinpoint
the infection propagation throughout the server. PEDA ef-
fectively decouples the analysis work off the online server
execution by novelly integrating the backward system call
dependency tracking and forward fine-grained taint analysis.
The proposed heterogeneous VM migration significantly re-
duces the runtime overhead of online server execution. Our
evaluation demonstrates PEDA’s advance over existing in-
trusion analysis systems in terms of efficiency and compre-
hensiveness. We believe that the comprehensive intrusion
analysis functionality of our PEDA system should have a
profound impact on any system recovery framework.

9. ACKNOWLEDGMENTS
We extend thanks to our shepherd, Reiner Sailer, for valu-

able feedback and constructive suggestions. We thank all the
anonymous reviewers for carefully reading the drafts and
providing helpful revision comments. This work was sup-
ported by AFOSR FA9550-07-1-0527 (MURI), ARO W911NF-
09-1-0525 (MURI), NSF CNS-0905131, and AFRL FA8750-
08-C-0137.

10. REFERENCES
[1] Intel i/o apic datasheet.

http://www.intel.com/design/chipsets/datashts/290566.htm.

[2] Linux null pointer dereference.
http://archives.neohapsis.com/archives/fulldisclosure/
2009-08/0174.html.

[3] F. Bellard. Qemu, a fast and portable dynamic
translator. USENIX Annual Technical Conference,
2005.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault tolerance. ACM Transactions on Computer
Systems, pages 80–107, 1996.

[5] P. M. Chen and B. D. Noble. When virtual is better
than real. HotOS, 2001.

[6] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. USENIX Annual Technical Conference,
2008.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P.Barham. Vigilante
end-to-end containment of internet worms. SOSP,
2005.

[8] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: enabling intrusion analysis
through virtual-machine logging and replay.
Proceedings of the 5th OSDI, pages 211–224, 2002.

[9] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. Eurosys, 2006.

[10] X. Jiang, X. Wang, and D. Xu. Stealthy malware
detection through vmm-based “out-of-the-box”
semantic view reconstruction. Proceedings of the 14th
ACM CCS, pages 128–138, 2007.

[11] S. T. King and P. M. Chen. Backtracking intrusions.
SOSP, 2003.

[12] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in xen. USENIX Annual
Technical Conference, 2006.

[13] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks.
EUROSYS, 2006.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, pages 391–411, 1997.

[15] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. USENIX
Annual Technical Conference, 2005.

[16] A. Slowinska and H. Bos. Pointless tainting?:
Evaluating the practicality of pointer tainting.
Eurosys, 2009.

[17] G. E. Suh, J. W. Lee, D. Zhang, and S. Devada.
Secure program execution via dynamic information
flow tracking. ASPLOS, 2004.

[18] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering
persistent kernel rootkits through systematic hook
discovery. RAID, 2008.

[19] X. Xiong, X. Jia, and P. Liu. Shelf: Preserving
business continuity and availability in an intrusion
recovery system. ACSAC, 2009.

[20] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
and B. Weissman. Retrace: Collecting execution trace
with virtual machine deterministic replay. MoBS,
2007.

[21] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. CCS, 2007.

[22] S. Zhang, X. Xiong, X. Jia, and P. Liu.
Availability-sensitive intrusion recovery. VMSec, 2009.

[23] N. Zhu and T. Chiueh. Design, implementation, and
evaluation of repairable file service. DSN, 2003.

306

Forenscope: A Framework for Live Forensics

Ellick Chan†

emchan@illinois.edu
Shivaram Venkataraman†

venkata4@illinois.edu
Francis David∗

francis.david@microsoft.com

Amey Chaugule†

achaugu2@illinois.edu
Roy Campbell†

rhc@illinois.edu

ABSTRACT

Current post-mortem cyber-forensic techniques may cause
significant disruption to the evidence gathering process by
breaking active network connections and unmounting en-
crypted disks. Although newer live forensic analysis tools
can preserve active state, they may taint evidence by leav-
ing footprints in memory. To help address these concerns we
present Forenscope, a framework that allows an investigator
to examine the state of an active system without the effects
of taint or forensic blurriness caused by analyzing a run-
ning system. We show how Forenscope can fit into accepted
workflows to improve the evidence gathering process.
Forenscope preserves the state of the running system and

allows running processes, open files, encrypted filesystems
and open network sockets to persist during the analysis pro-
cess. Forenscope has been tested on live systems to show
that it does not operationally disrupt critical processes and
that it can perform an analysis in less than 15 seconds while
using only 125 KB of memory. We show that Forenscope
can detect stealth rootkits, neutralize threats and expedite
the investigation process by finding evidence in memory.
Keywords: forensics, introspection, memory remanence

1. INTRODUCTION
Current forensic tools are limited by their inability to pre-

serve the hardware and software state of a system during in-
vestigation. Post-mortem analysis tools require the investi-
gator to shut down the machine to inspect the contents of the
disk and identify artifacts of interest. This process breaks
network connections and unmounts encrypted disks causing
significant loss of potential evidence and possible disruption
of critical systems. In contrast, live forensic tools can allow
an investigator to inspect the state of a running machine
without disruption. However existing tools can overwrite
evidence present in memory or alter the contents of the disk
causing forensic taint which lowers the integrity of the evi-
dence. Furthermore, taking a snapshot of the system can re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

sult in a phenomena known as forensic blurriness [26] where
an inconsistent snapshot is captured because the system is
running while it is being observed. Forensic blurriness af-
fects the fidelity and quantity of evidence acquired and can
cast doubt on the validity of the analysis, making the courts
more reluctant to accept such evidence [4].

Experts at the SANS institute and DOJ are starting to
recognize the importance of volatile memory as a source of
evidence to help combat cybercrime [1, 3]. In response, the
SANS institute recently published a report on volatile mem-
ory analysis [7]. To help address the limitations of exist-
ing volatile memory analysis tools we present Forenscope, a
framework for live forensics, that can capture, analyze and
explore the state of a computer without disrupting the sys-
tem or tainting important evidence. Section 2 shows how
Forenscope can fit into accepted workflows to enhance the
evidence gathering process.

Forenscope leverages DRAM memory remanence to pre-
serve the running operating system across a ”state-preserving
reboot”(Section 3) which recovers the existing OS without
having to go through the full boot-up process. This pro-
cess enables Forenscope to gain complete control over the
system and perform taint-free forensic analysis using well
grounded introspection techniques [22]. Finally, Forenscope
resumes the existing OS, preserving active network connec-
tions and disk encryption sessions causing minimal service
interruption in the process. Forenscope captures the con-
tents of system memory to a removable USB device and
activates a software write blocker to inhibit modifications
to the disk. To maintain fidelity, it operates exclusively in
125 KB of unused legacy conventional memory and does not
taint the contents of extended memory. Since Forenscope
preserves the state of a running machine, it is suitable for
use in production and critical infrastructure environments.
We have thoroughly tested and evaluated Forenscope on an
SEL-1102, a power substation industrial computer, and an
IBM desktop workstation. The machines were able to per-
form their duties under a variety of test conditions with
minimal interruption and running Forenscope did not cause
any network applications to time out or fail. Our current im-
plementation is based on Linux 2.6, although the technique
is also applicable to other major operating systems.

We have implemented several modules that can check for
the presence of malware, detect open network sockets and
locate evidence in memory such as rootkit modifications to
help the investigator identify suspicious activity.

†University of Illinois, ∗Microsoft

307

The contributions of this work include:

1. An extensible software framework for high-fidelity live
forensics conforming to the best practices of a legal frame-
work of evidence.

2. Efficient techniques to gather, snapshot and explore a sys-
tem without bringing it down.

3. Implementation and evaluation on several machines in-
cluding a standard industrial machine and against several
anti forensics rootkits.

This paper is organized as follows: Section 2 introduces
cyber-forensics followed by Section 3 which describes the de-
sign of Forenscope. We evaluate the effectiveness of Foren-
scope in Section 4. Section 5 discusses forensics issues, Sec-
tion 6 surveys related work and Section 7 concludes.

2. BACKGROUND
To provide an overview of the accepted legal framework

of evidence collection currently in place, we summarize the
workflow from the CERT guide on FBI investigation [10]:

1. Preserve the state of the computer by creating a backup
copy of logs and files left by the intruder.

2. If the incident is in progress, log activity.
3. Document the losses suffered by your organization.
4. Contact law enforcement.

While the steps executed are similar for various cases, there
are special requirements for each case. For instance, in
criminal investigation, integrity and fidelity of the data is
paramount. As evidence presented in court must be as ac-
curate as possible, special steps must be taken to ensure fi-
delity. For incident response, the goal is to detect and react
to security breaches while minimizing the intrusiveness of
the process. In some critical systems it is impractical to in-
terrupt the system to perform forensic analysis of a potential
breach and service level agreements (SLAs) may impose fi-
nancial penalties for downtime. The cases chosen above are
example of evidentiary requirements but a more thorough
analysis is beyond the scope of this paper. To preserve the fi-
delity of the original evidence, many forensic workflows cap-
ture a pristine image of the evidence and draw conclusions
based on analysis of the copy. Conventional post-mortem
forensic workflows perform this task by physically shutting
down a computer and copying the contents of the hard drive
for subsequent analysis. On the other hand, live forensics
are often desired for step 2 because they provide access to
networked resources such as active SSH and VPN sessions,
remote desktop connections, IM clients and file transfers.
However even state-of-the-art solutions often cannot image
a system with high fidelity and frequently introduce taint in
the process. In summary, existing tools require the investi-
gator to make a tradeoff between increased fidelity through
post mortem analysis or the potential to collect important
volatile information using live forensic tools at the cost of
tainting evidence.
One of the key issues in collecting volatile information is

that various forms of data such as CPU registers, memory,
disk and network connections have different lifetimes. To

1Encase: www.encase.com,
Helix: www.e-fense.com,
FTK Imager: www.accessdata.com,
Memoryze: www.mandiant.com/software/memoryze.htm

maximize evidence preservation, RFC 3227 [8] outlines the
order of volatility of these resources and dictates the order in
which evidence should be collected for investigation. Com-
mercial products currently used by forensic experts for inci-
dent response such as Encase, Helix, FTK Imager and Mem-
oryze 1 etc, do not capture all forms of data. A comparison
of these products is presented in Table 1. Scalpel and Sleuth
kit are solely designed for disk analysis while other tools such
as Encase, Helix and FTK include some level of memory cap-
ture and analysis capability. Memoryze is the only tool listed
in the table that performs volatile memory analysis. Some
tools such as Helix, FTK and Memoryze can list the state of
open network sockets, but the underlying network connec-
tions are not preserved during the analysis process. All live
forensic tools listed in this table rely on the integrity of the
running kernel. Compromised systems may provide inac-
curate information. Evidence preservation and minimizing
forensic intrusiveness are hard problems that haven’t been
adequately addressed in the literature.

In contrast, Forenscope was built to comply with steps
1 and 2 where it maximizes the preservation of evidence
and avoids disruption of ongoing activities to allow the cap-
ture of high fidelity evidence. As a result, we believe that
Forenscope may be more broadly applicable to various sce-
narios which require live forensics such as incident response
and criminal investigation. For incident response, we recog-
nize that the integrity of the machine may be violated by
malware and our solutions have been designed to address
this scenario. For criminal investigation, we presume that
the machine may have various security mechanisms imple-
mented such as encrypted disks coupled with authentication
mechanisms such as logon screens and screensaver locks.

3. DESIGN
Forenscope utilizes the principle of introspection to pro-

vide a consistent analysis environment free of taint and blur-
riness which we term as the golden state. In this state, the
system is essentially quiescent and queries can be made to
analyze the system. As a result, analysis modules can access
in-memory data structures introspectively. The investigator
activates forenscope by forcing a reset where the state of the
machine is preserved by memory remanence in the DRAM
chips. Then, the investigator boots off the Forenscope me-
dia which performs forensic analysis on the latent state of
the system and restores the functionality of the system for
further live analysis. Forenscope is designed to work around
security mechanisms by interposing a lightweight analysis
platform beneath the operating system. For example, in in-
cident response, the machine may be controlled by malicious
software and the operating system cannot be trusted. The
observation capabilities afforded by Forenscope offer addi-
tional visibility in these scenarios.

3.1 Taint and Blurriness
Taint and blurriness are concepts related to the use of

forensic tools. Taint is a measurement of change in the
system induced by the use of a forensic tool and it may
be present both in memory and on disk. In this section,
we only consider the in-memory portion because BitBlocker
(Section 3.6) eliminates disk taint by blocking writes. Blurri-
ness refers to the inconsistency of a memory snapshot taken
while a system is running.

308

Table 1: Comparison of Forenscope with existing forensic tools

Evidence Registers Memory Network Processes Disk Encryption

RFC 3227 Reqs Nanosecs Seconds Minutes Minutes Hours Hours

Encase × Xa × × X ×
Helix × Xa Xb X X ×
FTK × Xa X X X X

Scalpel × × × × X ×
Memoryze × Xa Xb X × ×
Sleuth kit × × × × X ×
Forenscope X X X X X X

a Subject to forensic blurriness
b Connection is recorded but not persisted

Table 2: Definitions

Quantity Description

Snapshot St Contents of memory at time t
Natural drift δv Change in the system state over time v

Snapshot Ŝv Contents of captured memory snapshot
with v being the time taken to capture
the snapshot

Taint f f is defined as the memory taint caused
by the forensic introspection agent

To quantify the relationship between taint and blurriness,
let St be the contents of memory at any given instant of
time t. The state of a system changes over a period of time
due to the natural course of running processes and we define
this as the natural drift of the system, δ. When a traditional
live forensic tool attempts to take a snapshot of the system,
there is a difference between what is captured, Ŝv and the
true snapshot St, where v represents the time taken to cap-
ture the snapshot. There are two reasons for this difference:
the first being δv the natural drift over the time period when
the snapshot was being acquired (v) and the second due to
the footprint f of the forensic tool. We define the former
as the blurriness of the snapshot and the latter quantity to
be the taint caused by the forensic tool. Table 2 captures
these definitions in a concise form. In general, there are
two ways to obtain a snapshot of the machine’s state: ac-
tive techniques and passive techniques. Active techniques
involve the use of an agent on the machine which may leave
a footprint. Passive techniques operate outside the domain
of the machine and do not affect its operation, one such
example is VM introspection. When a passive acquisition
tool is used, the relationship Ŝv = St + δv indicates that the
approximate snapshot differs from the true snapshot due to
the blurriness δv. In contrast, when an active forensic tool
is used, Ŝv = St + f + δv, where f represents taint and
δv represents blurriness. Collectively, these quantities are
a measure of the error in the snapshot acquisition process.
Taint can result from the direct action of forensic tools or in-
direct effects induced in the system through the use of these
tools. We call the former first-order taint, f ′, and the lat-
ter second-order taint, f ′′. First-order taint can result from
loading a forensic tool into memory and second-order taint
can result from processes such as file buffering due to the
effects of a forensic tool writing a file.

3.2 Memory Remanence
Modern memory chips are composed of capacitors which

store binary values using charge states. Over time, these ca-
pacitors leak charge and must be refreshed periodically. To

save power, these chips are designed to retain their values
as long as possible, especially in mobile devices such as lap-
tops and cell phones. Contrary to common belief, the act of
rebooting or shutting down a computer often does not com-
pletely clear the contents of memory. Link and May [21]
were the first to show that current memory technology ex-
hibited remanence properties back in 1979. More recently,
Gutmann [18] elaborated on the properties of DRAM mem-
ory remanence. Halderman et al. [19] recently showed that
these chips can retain their contents for tens of seconds at
room temperature and the contents can persist for several
minutes when the RAM chips are cooled to slow the natu-
ral rate of bit decay. Forenscope utilizes memory remanence
properties to preserve the full system state to allow recovery
to a point where introspection can be performed. We refer
the reader to [11,19] for a more detailed analysis of memory
remanence.

3.3 Activation
Forenscope currently supports two methods of activation.

The first is based on a watchdog timer reset and the second is
through a forced reboot. For incident response, a watchdog
timer may be used to activate Forenscope periodically to au-
dit the machine’s state and check for the presence of stealth
malware. Watchdog timers are used in embedded systems to
detect erroneous conditions such as machine lockups. These
timers contain a count down clock which must be refreshed
periodically. If the system crashes, the watchdog software
will fail to refresh the clock. Once the clock counts down to
zero, the watchdog timer will issue a warm hardware reset
signal to the machine causing it to reboot in the hopes that
the operating system will recover from the erroneous condi-
tion upon a fresh start. On our test machine, the built-in
watchdog timer is programmable via a serial port interface
and the contents of DRAM memory are not cleared after a
reboot initiated by the watchdog timer reset signal.

On the other hand, a forensic investigator may encounter
a machine that is locked by a screensaver or login screen and
in this situation, Forenscope can be activated by forcing a
reboot. Some operating systems such as Linux and Win-
dows can be configured to reboot or produce a crash dump
by pressing a hotkey. These key sequences are often used for

Figure 1: Forenscope vs normal boot paths

309

debugging and are enabled by default in many Linux distri-
butions. In Linux, the alt-sysrq-b hotkey sequence forces an
immediate reboot. If these debug keys are disabled, then a
reset may be forced by activating the hardware reset switch.
Forenscope supports multiple modes of operation for versa-
tility. After the machine has been rebooted forcefully, the
Forenscope kernel is selected from the boot loader menu in-
stead of the incumbent operating system.

3.4 Forenscope framework
Instead of booting afresh, Forenscope alters the boot con-

trol flow to perform its analysis. Figure 1 illustrates this
process. After the machine restarts, it boots off a CD or
USB stick with the Forenscope media. The machine then
enters the golden state monitor mode which suspends execu-
tion and provides a clean external view of the machine state.
To explain how the monitor works, we first describe the op-
erating states of the x86 architecture. When a traditional
PC boots, the processor starts in real mode and executes
the BIOS. The BIOS then loads the bootloader which in
turn loads the operating system. During the boot sequence,
the operating system first enables protected mode to ac-
cess memory above the 1 MB mark and then sets up page
tables to enable virtual memory to bootstrap the OS. Foren-
scope interposes on this boot sequence and first establishes
a bootstrap environment residing in the lower 640 KB rung
of legacy conventional memory and then it reconstructs the
state of the running machine. Forenscope has full control
of the machine and its view is untainted by any configura-
tion settings from the incumbent operating system because
it uses a trustworthy private set of page tables; thus rootkits
and malware which have infected the machine cannot inter-
fere with operations in this state. Next, Forenscope obtains
forensically-accurate memory dumps of the system and runs
various kinds of analyses. For integrity, Forenscope does not
rely on any services from the underlying operating system.
Instead, it makes direct calls to the system’s BIOS to read
and write to the disk. Therefore, Forenscope is resistant to
malware that impedes the correct operation of hardware de-
vices. The initial forensic analysis modules are executed in
this state and then Forenscope restores the operation of the
incumbent operating system.

3.5 Reviving the Operating system
To revive the incumbent operating system, Forenscope

needs to restore the hardware and software state of the sys-
tem to“undo”the effects of the reboot. Hardware devices are
reset by the BIOS as part of the boot process. Some of these
devices must be reconfigured before the incumbent operat-
ing system is restored because they were used by Forenscope
or the BIOS during initialization. To do so, Forenscope first
re-initializes core devices such as the hard drive and inter-
rupt controller and then assumes full control of these devices
for operation in its clean environment. Before resuming the
operating system, Forenscope scans the PCI bus and gathers
a list of hardware devices. Each hardware device is matched
against an internal database and if an entry is found, Foren-
scope calls its own reinitialization function for the particu-
lar hardware device. If no reinitialization function is found,
Forenscope looks up the device class and calls the operat-
ing system’s generic recovery function for that device class.
Many devices such as network cards and disk drives have fa-

cilities for handling errant conditions on buggy hardware.
These devices typically have a timeout recovery function
which can revive the hardware device in the event that it
stops responding. We have found that calling these recov-
ery functions is usually sufficient to recover most hardware
devices. In Linux, 86 out of the 121 (71%) PCI network
drivers implement this interface and all IDE device drivers
support a complete device reset. For instance, the IBM uses
an Intel Pro/100 card and the SEL-1102 uses a built-in AMD
PCnet/32 chip. On both these machines Forenscope relies
on calling the tx_timeout function to revive the network.
We use a two-stage process to restore the operating sys-
tem environment. The first stage reconstructs the processor
state where the values of registers are extracted and altered
to roll back the effects of the restart and the second stage
runs forensic analysis modules. Our algorithm scans the ac-
tive kernel stack and symbol information from the kernel for
call chain information. Forenscope uses this information to
reconstruct the processor’s state. In the alt-sysrq-b case,
the interrupt handler calls the keyboard handler which in
turn invokes the emergency sysrq-handler. The processor’s
register state is saved on the stack and restored by using
state recovery algorithms from [11, 13]. If the alt-sysrq-b

hotkey is disabled, Forenscope supports an alternate method
of activation based on pressing a physical reset switch. In
this case, Forenscope assumes that the system is under light
load and that the processor spends most of its time in the
kernel’s idle loop. In this loop, most kernels repeatedly call
the x86 HLT instruction to put the processor to sleep. Since
the register values at this point are predictable, Forenscope
restores the instruction pointer, EIP, to point to the idle
loop itself and other registers accordingly. Once the state
has been reconstructed, Forenscope reloads the processor
with this information and enables virtual memory.

3.6 Modules
We have developed a number of modules to aid in forensic

analysis. These modules, shown in Figure 2, run in groups
where stage 1 modules run in the golden state to collect pris-
tine information while stage 2 modules rely on OS services
to provide a shell and block disk writes. Finally, stage 3
resumes the original operating environment.
Scribe: Scribe collects basic investigation information such
as the time, date, list of PCI devices, processor serial num-
ber and other hardware features. These details are stored
as evidence to identify the source of a snapshot.
Cloner: Cloner is a memory dump forensic tool that is able
to capture a high-fidelity image of volatile memory contents
to an external capture device. Existing techniques for creat-
ing physical memory dumps are limited by their reliance on
system resources which are vulnerable to deception. Cloner
works around forensic blurriness issues and rootkit cloaking
by running in stage 1 before control is returned to the origi-
nal host OS. In the golden state, the system uses protected
mode to access memory directly through Forenscope’s safe
memory space. Using this technique, Cloner accesses mem-
ory directly without relying on services from the incumbent
operating system or its page tables. To dump the contents of
memory, Cloner writes to disk directly using BIOS services
instead of using an OS disk driver. This channel avoids a po-
tentially booby-trapped or corrupted operating system disk
driver and ensures that the written data has better forensic
integrity. Most BIOS firmware supports read/write access

310

Figure 2: Forenscope modules

Figure 3: File system architecture
to USB flash drives and hard disks. Another reason to use
the BIOS for dumping is that it minimizes the memory foot-
print of Forenscope and reduces dependencies on drivers for
various USB and SATA chipsets. Once cloner captures a
clean memory dump, the investigator can run other mod-
ules tools that may alter the contents of memory without
worry of tainting the evidence.
Informant: Informant checks for suspicious signs in the

system that may indicate tampering by identifying the pres-
ence of alterations caused by malware. In order to extract
clean copies of the program code and static structures such
as the system call table, Forenscope must have access to a
copy of the vmlinux kernel file which is scanned to locate
global kernel variables and the location of various functions.
Most Linux distributions provide this information. Read-
only program code and data structures are checked against
this information to ensure that they have not been altered or
misconfigured. Such alterations have the potential to hinder
the investigation process and Informant helps to assess the
integrity of a machine before further analysis is attempted.
After Informant verifies the system, it also records other use-
ful information such as the contents of the kernel dmesg log,
running processes, open files and open network sockets. This
information can help expedite the investigation process.
Neutralizer: Neutralizer inoculates against anti-forensic

software by detecting and repairing alterations in binary
code and key system data structures such as the system
call table. These structures can be repaired by restoring
them with clean copies extracted from the original sources.
Since many rootkits rely on alteration techniques, Neutral-
izer can recover from the effects of common forms of cor-
ruption. Presently, Neutralizer is unable to recover from
corruption or alteration of dynamic data structures. Neu-
tralizer also suppresses certain security services such as the
screensaver, keyboard lock and potential malware or anti-
forensic tools by terminating them. To terminate processes,
neutralizer sends a SIGKILL signal instead of a SIGTERM sig-
nal so that there is no opportunity to ignore the signal. Cus-
tomized signals can be sent to each target process. For some
system services that respawn, terminating them is ineffec-
tive, so forcefully changing the process state to zombie (Z)
or uninterruptible disk sleep (D) is desired instead of killing
the application directly. An alternative would be to send the
SIGSEGV signal to certain applications to mimic the effects

Table 3: Correctness assessment

Application Results

Idle system System is correctly recovered over 100 times.
SSH SSH recovers, protocol handles lost packets.
PPTP VPN VPN recovers, queued messages are delivered.
AES pipe File encryption continues.
Netcat File transfers correctly without checksum errors.
DM-crypt Mounted filesystem remains accessible.

of a crash. Neutralizer selects processes to kill based on the
analysis mode. For incident response on server machines, a
white list approach is used to terminate processes that do
not belong to the set of core services. This policy prevents
running unauthorized applications that may cause harm to
the system. For investigation, Neutralizer takes a black list
approach and kills off known malicious processes.
ForenShell: ForenShell is a special superuser bash shell
that allows interactive exploration of a system by using stan-
dard tools. When coupled with BitBlocker(below), Foren-
Shell provides a safe environment to perform customized live
analyses. In this mode, Forenshell becomes non-persistent
and it does not taint the contents of storage devices. Once
ForenShell is started, traditional tools such as Tripwire or
Encase may be run directly for further analysis. To provide
an audit log of the investigator’s activities, ForenShell pro-
vides a built-in keylogger that writes directly to the evidence
collection medium without tainting the disk. Forenscope
launches the superuser shell on a virtual console by directly
spawning it from a privileged kernel thread. ForenShell runs
as the last analysis module after Informant and Neutralizer
have been executed. At this point, the system has already
been scanned for malware and anti-forensic software. If Neu-
tralizer is unable to clean an infection, it displays a message
informing the investigator that the output of ForenShell may
be unreliable due to possible system corruption.
BitBlocker: BitBlocker is a configurable software-based
write blocker that inhibits writing to a given set of storage
devices to avoid tainting the contents of persistent media.
Since actions performed by ForenShell during exploration
can inadvertently leave undesired tracks, BitBlocker helps
to provide a safe non-persistent analysis environment that
emulates disk writes without physically altering the contents
of the media. Because BitBlocker modifies the contents of
memory, it executes after Cloner has captured a clean copy
of memory.

Simply re-mounting a disk in read-only mode to prevent
writing may cause some applications to fail because they
may need to create temporary files and expect open files to
remain writable. Typically, when an application creates or
writes files, the changes are not immediately flushed to disk
and they are held in the disk’s buffer cache until the system
can flush the changes. The buffer cache manages interme-
diate disk operations and services subsequent read requests
with pending writes from the disk buffer when possible. Bit-
Blocker mimics the expected file semantics of the original
system by reconfiguring the kernel’s disk buffer cache layer
to hold all writes instead of flushing them to disk. This
approach works on any type of file system because it oper-
ates directly on the disk buffer which is one layer below the
file system. BitBlocker’s design is similar to that of some
Linux-based RAM disk systems [5] which cleverly use the
disk buffer as a storage system by configuring the storage
device with a null backing store instead of using a physical
disk. Each time a disk write is issued, barring a sync opera-

311

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 50 100 150 200 250 300

B
y
te

s

Time (in seconds)

Cached-Normal
Dirty-Normal
Free-Normal

Cached-BitBlocker
Dirty-BitBlocker
Free-BitBlocker

Figure 4: BitBlocker memory usage

tion, the operating system’s disk buffer subsystem holds the
request in the buffer until a certain write threshold or time-
out is reached. In Linux, a system daemon called pdflush
handles flushing buffered writes to disk. To prevent flush-
ing to the disk, BitBlocker reconfigures the write threshold
of the disk to inhibit buffer flushing, disables pdflush and
hooks the sync, sync file range, fsync, bdflush and umount
system calls with a write monitor wrapper. Figure 3 shows
the architectural diagram of the Linux filesystem layer and
where BitBlocker intercepts disk write operations. Although
BitBlocker inserts hooks into the operating system, it does
not interfere with the operations of Informant and Neutral-
izer because those modules are run before BitBlocker and
they operate on a clean copy of memory. The hooks and
techniques used by BitBlocker are common to Linux 2.6.x
kernels and they are robust to changes in the kernel version.
Similar techniques are possible for other operating systems.

4. RESULTS AND EVALUATION
We evaluate Forenscope as a forensic tool by measuring

five characteristics: correctness, performance, downtime, fi-
delity and effectiveness against malware.
Hardware and Software Setup: To demonstrate func-
tionality, we tested and evaluated the performance of Foren-
scope on two machines: a Schweitzer 1102 industrial com-
puter and an IBM Intellistation M Pro. The SEL-1102 used
in our experiments is a rugged computer designed for power
system substation use and it is equipped with 512 MB of
DRAM and a 4 GB compact flash card mounted in the first
drive slot as the system disk. The SEL-1102 can operate in
temperatures ranging from -40 to +75 degrees Celsius. The
IBM Intellistation M Pro is a standard desktop workstation
equipped with 1 GB of DRAM. For some tests, we opted
to use a QEMU-based virtual machine system to precisely
measure timing and taint. Forenscope and the modules that
we developed were tested on the Linux 2.6 kernel. Although
Forenscope was originally built to target Linux, we plan to
expand this work to other systems.
Correctness: To show that Forenscope is robust, we

tested it against a collection of applications listed in Ta-
ble 3. In each case, after rebooting the machine forcefully,
Forenscope recovered the operating state, took control and
ran successfully without breaking the semantics of the appli-
cation. As a basic sanity test, Forenscope was able to revive
an idle system with no load. We chose a mix of applications
to show that a wide range of hardware, software and net-
work applications are compatible. Running SSH, PPTP and
Netcat showed that network connections persist. Further

0

20000

40000

60000

80000

100000

120000

140000

160000

0 30 60 90 120 150

B
y
te

s
/s

e
c

Time (in seconds)

Curl-10-sec-control

Curl-5-sec-control

Curl-10-sec-Forenscope

Curl-5-sec-Forenscope

Figure 5: HTTP data transfer rate comparison

testing using DM-crypt and AES pipe showed that security
programs continue to operate properly. A more thorough
evaluation of the correctness can be found in [11]. To evalu-
ate the correctness of BitBlocker, we ran it on the IBM and
on a QEMU system emulator. Using the emulator allowed
us to verify integrity by checksumming the contents of the
virtual disk. Our test cases include using the dd utility to fill
up the disk, then issuing a sync command and unmounting
the disk. Other cases tested include copying large files and
compiling programs consisting of hundreds of files. In each
case, BitBlocker worked correctly and no writes were issued
to the physical disk. After the test completed, we confirmed
that the contents of the disk were unchanged by comparing
hashes of the contents against the original contents.
Performance: In terms of performance, BitBlocker made
disk operations appear to be faster because no data is flushed
to the physical disk from the disk buffer. A write of a 128
MB file took 32.78 s without BitBlocker and 3.71 s with
BitBlocker. The number of dirty disk buffers consumed in-
creases proportionately with the size of the files written.
Since BitBlocker inhibits flushing to disk, running out of file
buffers can create a condition where the filesystem fills up
and reports a write error. To measure these effects on the
system, we collected buffer cache usage information once a
second in several key applications: creating a compressed
archive with tar-bzip2, downloading a file using wget and
compiling the software package busybox. Figure 4 shows
the utilization of dirty file buffers over time for the tar-gzip
case. Wget and busybox compilation have similar results. In
the graphs, we report statistics from /proc/meminfo such as
cached, dirty and free. According to the documentation
for /proc, cached in Linux represents the amount of data in
the page cache which includes cached data from read-only
files as well as write buffers. Dirty represents items that
need to be committed to the disk and free represents free
memory. From our observations, dirty is generally very
low in the normal case because the kernel commits write
buffers periodically. However, in BitBlocker, dirty grows
steadily because the data cannot be committed back to the
disk. To estimate the amount of memory required to run
BitBlocker, our experiments show that in many scenarios,
even 128 MB of free memory is sufficient for BitBlocker to
operate. Our experiments show that BitBlocker is robust
even when the system runs low in memory. At 200 seconds,
the physical memory of the machine fills up and the tar-bz2
process stops because the disk is ”full.”The system does not
crash and other apps continue to run as long as they do not
write to the disk. On a typical system with 2 GB of memory,
BitBlocker should be able to maintain disk writeability for
a much longer period of time.

312

Table 4: Taint measurement (pages)

Description (32,768) Conventional
Memory

Extended
Memory

Forenscope 41 (0.125%) 0(0%)
dd 0 (0%) 7100 (21.66%)
dd to FS mounted with
sync flag

0 (0%) 7027 (21.44%)

dd with O DIRECT 0 (0%) 480 (1.46%)

Downtime: As discussed earlier, one important metric for
evaluating a forensic tool is the amount of downtime in-
curred during use. To show that Forenscope minimally dis-
rupts the operation of critical systems, we measured the
amount of time required to activate the system. Foren-
scope, without Cloner, executed in 15.1 s using the reboot
method on the SEL-1102 and in 9.8 s on the IBM Intellista-
tion while the watchdog method took 15.2 s to execute on
the SEL-1102. The majority of the downtime is due to the
BIOS bootup sequence and this downtime can be reduced on
some machines. Many network protocols and systems can
handle this brief interruption gracefully without causing sig-
nificant problems. We tested this functionality by verifying
that VPN, SSH and web browser sessions continue to work
without timing out despite the interruption. Many of these
protocols have a timeout tolerance that is sufficiently long to
avoid disconnections while Forenscope is operating and TCP
is designed to retransmit lost packets during this short inter-
ruption. To measure the disruption to network applications
caused by running Forenscope continuously over a period
of time, we ran a test within a virtualized environment to
mimic the brief reboot cycle used by the analysis process.
The test measures the instantaneous speed of an HTTP file
transfer between a server and a client machine. While the file
transfer is in session, we periodically interrupt the transfer
by forcibly restarting the machine and subsequently reviving
it using Forenscope. Each time the system is interrupted,
the server process is suspended while the machine reboots.
The process is then resumed once Forenscope is done run-
ning. As a baseline, we created a control experiment where
the server process is periodically suspended and resumed by
a shell script acting as a governor to limit the rate at which
the server operates. This script sends the SIGSTOP signal to
suspend the server process, waits a few seconds to emulate
the time required for the bootup process and then sends a
SIGCONT signal to resume operation. In each experiment, a
curl client fetches a 1 MB file from a thttpd server at a
rate of 10 KB/s. We chose these parameters to illustrate
how a streaming application or low-bandwidth application
such as a logger may behave. During this download process,
the server was rebooted once every 20 seconds and we mea-
sured the instantaneous bandwidth with a bootup delay of
5 and 10 seconds to observe the effects of various bootup
times. We observed that the bandwidth drops to zero while
the system boots and the download resumes promptly after
the reboot. No TCP connections were broken during the ex-
periment and the checksum of the downloaded file matched
that of the original file on the server. A graph of the in-
stantaneous bandwidth vs time is plotted in Figure 5. We
compared the results of our test against the control experi-
ment and observed that the behavior was very similar. Thus
we believe that running Forenscope can be considered as safe
as suspending and resuming the process. During the exper-
iment we noticed that the bandwidth spiked immediately
after the machine recovered and attribute this behavior to

the internal 2-second periodic timer used by thttpd to adjust
the rate limiting throttle table.
Taint and Blurriness: We evaluated the taint in a snap-
shot saved by Forenscope using a snapshot captured by dd

as the baseline. In an experimental setup running with 128
MB of memory, we collected an accurate snapshot St of the
physical memory using QEMU and compared that with a
snapshot Ŝv obtained from each forensic tool. The number
of altered pages for each of the configurations is presented
in Table 4. We observe that since Forenscope is loaded in
conventional memory, the only pages which differ are found
in the lower 640 KB of memory. Our experiments show that
Forenscope is far better than dd because we observed no dif-
ference in the extended memory between the snapshot taken
by Forenscope and the baseline snapshot. It should be noted
that as the machine is suspended in the golden state when
running Forenscope, there is no blurriness associated with
the snapshot taken by Forenscope. For dd, we measured
the taint when using a file system mounted with and with-
out the sync option. The number of pages affected remains
almost the same in both cases and we observed that the
majority of second-order taint was due to the operating sys-
tem filling the page-cache buffer while writing the snapshot.
To evaluate how much taint was induced due to buffering,
we ran experiments in which dd was configured to write di-
rectly to disk, skipping any page-cache buffers by using the
O_DIRECT flag. The results show that the taint was much
lower than the earlier experiment, but still greater than the
taint caused by using Forenscope. In order to estimate the
amount of blurriness caused when tools like dd are used, we
measured the natural drift over time of some typical config-
urations. We collected and compared memory dumps from
Ubuntu 8.04 and Windows Vista with 512 MB of memory in
a virtual machine environment hosted in QEMU. In each case,
we snapshot the physical memory of the virtual machine and
calculate the number of pages that differ from the initial im-
age over a period of time. The snapshots were sampled using
a tilted time frame to capture the steady state behavior of
the system in an attempt to measure δv. The samples were
taken at 10 second intervals for the first five minutes and
at 1 minute intervals for the next two hours. From Figure
6, we observe that the drift remains nearly constant after a
short period of time for our experimental setup and for the
idle Ubuntu and Vista systems, the drift stabilizes within a
few minutes. The drift for a system running Mozilla Firefox
was found to be nearly constant within 10 minutes. Running
tar and gzip for compressing a large folder or dd to dump
the contents of memory into a file resulted in most of the
memory being changed within a minute due to second-order
taint. To summarize, our tests demonstrated that there is
no taint introduced in the extended memory by using Foren-
scope and that Forenscope can be used for forensic analysis
where taint needs to be minimized.
Effectiveness against anti-forensics tools: Although
forensics techniques can collect significant amounts of in-
formation, investigators must be careful to ensure the ve-
racity and fidelity of the evidence collected because anti-
forensic techniques can hide or intentionally obfuscate in-
formation gathered. In particular, rootkits can be used
by hackers to hide the presence of malicious software such
as bots running in the system. Malware tools such as the
FU rootkit [16] directly manipulate kernel objects and cor-
rupt process lists in ways that many tools cannot detect.

313

Table 5: Sizes of Forenscope and modules

Component Lines of Code Compiled Size
(bytes)

Forenscope (C) 1690 15,420
Forenscope (Assembly) 171 327
Forenscope (Hardware) 280 1,441
Neutralizer & Forenshell 34 8,573
Other Modules 861 22,457
Total 3,036 48,218

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

%
 o

f
ch

an
g

ed
 p

ag
es

Time (in seconds)

firefox
ubuntu-idle

vista-idle
dd

tar-gzip

Figure 6: Comparison of Memory Blurriness

Malware researchers have also demonstrated techniques to
evade traditional memory analysis through the use of low-
level rootkits [28] which cloak themselves by deceiving OS-
based memory acquisition channels on Linux and Windows.
Hardware [12] and software [20] virtualization-based rootkits
may be tricky to detect or remove by the legitimate oper-
ating system or application software because they operate
one layer below standard anti-malware facilities. We de-
scribe and evaluate how Forenscope reacts to several pub-
licly available rootkits. The set of rootkits was chosen to
cover a gamut of representative threats, but the list is not
meant to be exhaustive due to space constraints.
DR: The DR rootkit uses processor-level hardware de-

bug facilities to intercept system calls rather than modifying
the actual system call table itself. DR reprograms a hard-
ware breakpoint which is reached every time a system call
is made [15]. The breakpoint then intercepts the call and
runs its own handler before passing control to the legitimate
system call handler. Since Forenscope does not restore the
state of debug registers, DR is effectively neutralized across
the reboot, and as a result, hidden processes are revealed.
Informant detects DR in several ways: DR is present in the
module list, DR symbols are exported to the kernel and DR
debug strings are present in memory. If an attacker modifies
DR to make it more stealthy by removing these indicators,
we contend that it is still hard to deceive Forenscope, since
the debug registers are cleared as part of the reboot pro-
cess. Although Forenscope doesn’t restore the contents of
the debug registers faithfully, this doesn’t pose a problem
for most normal applications because only debuggers typi-
cally use this functionality.
Phalanx B6: Phalanx hijacks the system call table by di-
rectly writing to memory via the /dev/mem memory device.
It works by scanning the internal symbol table of the kernel
and redirecting control flow to its own internal functions.
Informant detects Phalanx while checking the system call
table and common kernel pointers. Neutralizer restores the
correct pointers to inoculate Phalanx.

Adore: Adore 8 is a classic rootkit which hijacks kernel point-
ers to deceive tools such as ps and netstat. It works by over-
writing pointers in the /proc filesystem to redirect control
flow to its own functions rather than modifying the syscall
table directly. Informant detects that the pointers used by
Adore do not belong to the original read-only program code
segment of the kernel and Neutralizer restores the correct
pointers. Restoration of the original pointers is simple and
safe because the overwritten VFS function operations tables
point to static functions such as proc readdir, while Adore
has custom handlers located in untrusted writable kernel
module address space.
Mood-NT: Mood-NT is a versatile multi-mode rootkit that
can hook the system call table, use debug registers and mod-
ify kernel pointers. Because of its versatility, the attacker
can customize it for different purposes. Like the rootkits de-
scribed previously, Forenscope detects Mood-NT in various
modes. Our experiments indicate that Mood-NT hooks 44
system calls and Forenscope detects all of these alterations.
Furthermore, each hook points out of the kernel’s read-only
program code address space and into the untrusted memory
area occupied by the rootkit.
Size: Forenscope is written in a mixture of C and x86 as-
sembly code. Table 5 shows that Forenscope is a very small
program. It consumes less than 48 KB in code and 125 KB
in running memory footprint. The lines of code reported
in the table are from the output of the sloccount [29] pro-
gram. We break down the size of each component into core C
and assembly code, hardware-specific restoration code and
module code. To minimize its size, Forenscope reuses ex-
isting kernel code to reinitialize the disk and network; the
size of this kernel code is device-specific and therefore ex-
cluded from the table, since these components are not part
of Forenscope. The small compiled size of Forenscope and
its modules implies that a minimal amount of host memory
is overwritten when Forenscope is loaded onto the system.
Furthermore, the diminutive size of the code base makes it
more suitable for auditing and verification.

5. DISCUSSION
While evaluating Forenscope, we observed different be-

havior of rootkits on virtual machines and physical hard-
ware. Our observations confirm the results of Garfinkel et
al [17] that virtual machines cannot emulate intricate hard-
ware nuances faithfully and as a result some malware fails to
activate on a virtual machine. For example, malware such
as the Storm worm and Conficker [30] intentionally avoid
activation when they sense the presence of virtualization to
thwart the analysis process. Hence analyzing a system for
rootkits using a virtual machine may not only cause some
rootkits to slip under the radar but also alert them to de-
tection attempts. Since Forenscope continues to run the
system without exposing any of the issues raised by running
virtualization systems, we argue that the system is unlikely
to tip off an attacker to the presence of forensic software.
Legally, the jury is still out on the use of live forensic tools
because of the issues of taint and blurriness. While some
recent cases [2] suggest that courts are starting to recognize
the value of the contents of volatile memory, the validity
of the evidence is still being contested. A recent manual
on collecting evidence in criminal investigations released by

8http://stealth.openwall.net

314

Table 6: Effectiveness against rootkit threats

Rootkit Description Sanitization action

DR Uses debug registers to hook system calls Rebooting clears debug registers
Phalanx b6 Uses /dev/kmem to hook syscalls Restore clean syscall table
Mood-NT Multi-module RK using /dev/kmem/ Clear debug regs, restore pointers
Adore Kernel module hooks /proc VFS layer Restore original VFS pointers

the Department of Justice [6], instructs that no limitations
should be placed on the forensic techniques that may be used
to search and also states that use of forensic software, no
matter how “sophisticated,” does not affect constitutional
requirements. Although we do not make strict claims of le-
gal validity in the courts, we are encouraged by the above
guidelines to collect as much volatile information as possi-
ble. We objectively compare our tool against the state of
the art and find that it does collect more forms of evidence
with better fidelity than existing tools.
Countermeasures: Although Forenscope provides deep
forensic analysis of a system in a wide variety of scenar-
ios, there are countermeasures that attackers and criminals
can use to counter the use of Forenscope. From an incident
response perspective, we assume that the machine is con-
trolled by the owner and that the attacker does not have
physical access to it. This means that only software-based
anti-forensic techniques are feasible, although some of these
techniques may involve changing hardware settings through
software. Most of the hardware and software state involved
in these anti-forensic techniques are cleared upon reboot or
rendered harmless in Forenscope’s clean environment. In in-
vestigation, the adversary may elect to use a BIOS password,
employ a secure bootloader, disable booting from external
devices or change BIOS settings to clear memory at boot
time. These mitigation techniques may work, but if the
investigator is sophisticated enough, he can try techniques
suggested by Halderman et al [19] to cool the memory chips
and relocate them to another machine which is configured
to preserve the contents of DRAM at boot time. One other
avenue for working around a password-protected BIOS is to
engage the bootloader itself. We found that some bootload-
ers such as GRUB allow booting to external devices even
if the functionality is disabled in the BIOS. The only mit-
igation against this channel is use password protection on
GRUB itself, which we believe is not frequently used.
Limitations: The only safe harbor for malware to evade
Forenscope is in conventional memory itself because the act
of rebooting pollutes the contents of the lower 640 KB of
memory considerably thus potentially erasing evidence. How-
ever, we contend that although this technique is possible, it
is highly unlikely for three reasons: first, for such malware
to persist and alter the control flow, the kernel must map in
this memory area in the virtual address space. This requires
a change in the system page tables which is easily detectable
by Forenscope since most modern operating systems do not
map the conventional memory space into their virtual mem-
ory space. Secondly, such malware would have to inject a
payload into conventional memory and if the payload is cor-
rupted by the reboot process, the system will crash. Finally,
such malware won’t survive computer hibernation because
conventional memory is not saved in the process. Even if
Forenscope is unable to restore the system due to extenu-
ating circumstances, we still have an intact memory dump
and disk image to analyze. Although Forenscope has been
designed with investigation in mind, we have not designed it

to be completely transparent. For instance, malware might
detect the presence of Forenscope by checking BitBlocker
write latencies or scanning conventional memory.

6. RELATEDWORK
Forenscope uses many technologies to achieve a high fi-

delity forensic analysis environment through introspection,
data structure analysis and integrity checking. Many of
the introspective techniques used by Forenscope were in-
spired by similar functionality in debuggers and simulators.
VMware’s VMsafe protects guest virtual machines from mal-
ware by using introspection. A virtual machine infrastruc-
ture running VMsafe has a security monitor which period-
ically checks key structures in the guest operating system
for alteration or corruption. Projects such as Xenaccess [22]
take the idea further and provide a way to list running pro-
cesses, open files and other items of interest from a running
virtual machine in a Xen environment. Although Xenaccess
and Forenscope provide similar features, Xenaccess depends
on the Xen VMM, but the investigator cannot rely on its
presence or integrity. On some older critical infrastructure
machines, legacy software requirements make it impractical
to change the software configuration. Forenscope does not
have such requirements. Forenscope’s techniques to recover
operating system state from structures such as the process
list have been explored in the context of analyzing mem-
ory dumps using data structure organization derived from
reverse-engineered sources [14,27]. Attestation shows that a
machine is running with an approved software and hardware
configuration by performing an integrity check. Forenscope
builds upon work from the VM introspection community to
allow forensic analysis of machines that are not prepared a
priori for such introspection. It provides a transparent anal-
ysis platform that does not alter the host environment and
Forenscope supports services such as BitBlocker that allow
an investigator to explore a machine without inducing taint.

The techniques used by Forenscope for recovering run-
ning systems are well grounded in the systems community
and have been studied previously in different scenarios. The
original Intel 286 design allowed entry into protected mode

from real mode, but omitted a mechanism to switch back.
Microsoft and IBM used an elegant hack involving memory
remanence to force re-entry into real mode by causing a re-
boot to service BIOS calls. This technique was described by
Bill Gates as ”turning the car off and on again at 60 mph”
[24]. Some telecommunications operating systems such as
Chorus [25] are designed for quick recovery after a watch-
dog reset and simply recover existing data from the running
operating system rather than starting afresh. David [13]
showed that it is possible to recover from resets triggered by
the watchdog timer on cell phones. BootJacker [11] showed
that it is possible for attackers to recover and compromise a
running operating system by using a carefully crafted forced
reboot. Forenscope applies these techniques in the context
of forensic analysis and our work presents the merits and
limitations of using such techniques to build a forensic tool.

315

Devices such as the Trusted Platform Module and Intel
trusted execution technology (TXT) provide boot time and
run-time attestation respectively. Although TPM may be
available for some machines, the protection afforded by a
TPM may not be adequate for machines which are meant
to run continuously for months. These machines perform an
integrity check when they boot up, but their lengthy uptime
results in a long time of check to time of use (TOCTTOU)
that extends the duration for breaches to remain undetected.
Hardware solutions such as Copilot [23] are available to
check system integrity. In contrast, Forenscope performs
an integrity assessment at the time of use; which allows the
investigator to collect evidence with better fidelity.

7. CONCLUDING REMARKS
Forenscope explores live forensic techniques and the is-

sues of evidence preservation, non-intrusiveness and fidelity
that concern such approaches. Measured against existing
tools, our experiments show that Forenscope can achieve
better compliance within the guidelines prescribed by the
community. Forenscope shows that volatile state can be
preserved and the techniques embodied in Forenscope are
broadly applicable. We encourage further development of
tools based on our high-fidelity analysis framework and be-
lieve that it can enable the advancement of analysis tools
such as KOP [9]. Extensive evaluation of our techniques has
shown that they are safe, practical and effective by mini-
mally tainting the system, while causing no disruption to
critical systems. We believe that these techniques can be
used in cases where traditional tools are unable to meet the
needs of modern investigations. To continue the develop-
ment of this tool, we plan to work closely with partners to
better evaluate use of this tool in real-world scenarios such
as incident response in a variety of contexts.
Acknowledgements We would like to thank the anony-

mous reviewers, Winston Wan, Mirko Montanari and Kevin
Larson for their valuable feedback. This research was sup-
ported by grants from DOE DE-OE0000097 under TCIPG
(tcip.iti.illinois.edu) and a Siebel Fellowship. The opinions
expressed in this paper are those of the authors alone.

8. REFERENCES
[1] SANS Top 7 New IR/Forensic Trends In 2008.

http://computer-forensics.sans.org/community/top7_
forensic_trends.php.

[2] Columbia Pictures Indus. v. Bunnell, U.S. Dist. LEXIS
46364. C.D. Cal. http://www.eff.org/cases/
columbia-pictures-industries-v-bunnell, 2007.

[3] Prosecuting Computer Crimes, pages 141–142. US
Department of Justice, 2007.

[4] Electronic Crime Scene Investigation: A Guide for First
Responders. pages 25–27, 2008.

[5] Ramdisks - Now We are Talking Hyperspace!
http://www.linux-mag.com/cache/7388/1.html, 2009.

[6] Searching and Seizing Computers and Obtaining Electronic
Evidence in Criminal Investigations, pages 79,89.
Computer Crime and Intellectual Property Section
Criminal Division, 2009.

[7] K. Amari. Techniques and Tools for Recovering and
Analyzing Data from Volatile Memory, 2009.

[8] D. Brezinski and T. Killalea. Guidelines for Evidence
Collection and Archiving. RFC 3227 (Best Current
Practice), Feb. 2002.

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic

integrity checking. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications
security, pages 555–565, New York, NY, USA, 2009. ACM.

[10] C. C. Center. How the FBI Investigates Computer Crime.
http://www.cert.org/tech_tips/FBI_investigates_
crime.html, 2004.

[11] E. Chan, J. Carlyle, F. David, R. Farivar, and
R. Campbell. BootJacker: Compromising Computers using
Forced Restarts. In Proceedings of the 15th ACM
conference on Computer and Communications Security,
pages 555–564. ACM New York, NY, USA, 2008.

[12] D. Dai Zovi. Hardware Virtualization Rootkits. BlackHat
Briefings USA, August, 2006.

[13] F. M. David, J. C. Carlyle, and R. H. Campbell. Exploring
Recovery from Operating System Lockups. In USENIX
Annual Technical Conference, Santa Clara, CA, June 2007.

[14] B. Dolan-Gavitt. The VAD tree: A Process-eye View of
Physical Memory. Digital Investigation, 4:62–64, 2007.

[15] Edge, Jake. DR rootkit released under the GPL.
http://lwn.net/Articles/297775/.

[16] Fuzen Op. The FU rootkit.
http://www.rootkit.com/project.php?id=12.

[17] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin.
Compatibility is not transparency: VMM detection myths
and realities. In Proceedings of the 11th Workshop on Hot
Topics in Operating Systems (HotOS-XI), May 2007.

[18] P. Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In Proceedings of the 6th USENIX
Security Symposium, pages 77–90, July 1996.

[19] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, and J. A. Calandrino. Lest We Remember: Cold
Boot Attacks on Encryption Keys. In Proc of the 17th
USENIX Security Symposium, San Jose, CA, July 2008.

[20] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. SubVirt: Implementing malware
with virtual machines. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 314–327,
Washington, DC, USA, 2006. IEEE Computer Society.

[21] W. Link and H. May. Eigenshaften von
MOS-Ein-Transistorspeicherzellen bei tieften
Temperaturen. In Archiv fur Elektronik und
Ubertragungstechnik, pages 33–229–235, June 1979.

[22] B. Payne, M. de Carbone, and W. Lee. Secure and flexible
monitoring of virtual machines. In Proceedings of 23rd
Annual Computer Security Applications Conference, pages
385–397, 2007.

[23] N. Petroni, T. Fraser, J. Molina, and W. Arbaugh.
Copilot-A Coprocessor-based Kernel Runtime Integrity
Monitor. In Proceedings of the 13th USENIX Security
Symposium, pages 179–194, 2004.

[24] J. Pournelle. OS | 2: What is is, What is isn’t – and some
of the Alternatives. Infoworld, 1988.

[25] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,
P. Lonard, and W. Neuhauser. Overview of the CHORUS
Distributed Operating Systems. Computing Systems,
1:39–69, 1991.

[26] A. Savoldi and P. Gubian. Blurriness in Live Forensics: An
Introduction. In Proceedings of Advances in Information
Security and Its Application: Third International
Conference, Seoul, Korea, page 119. Springer, 2009.

[27] A. Schuster. Searching for Processes and Threads in
Microsoft Windows Memory Dumps. The Proceedings of
the 6th Annual Digital Forensics Research Workshop, 2006.

[28] S. Sparks and J. Butler. Raising The Bar for Windows
Rootkit Detection. Phrack, 11(63), 2005.

[29] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount.

[30] B. Zdrnja. More tricks from Conficker and VM detection.
http://isc.sans.org/diary.html?storyid=5842, 2009.

316

A Multi-User Steganographic File System
on Untrusted Shared Storage

Jin Han Meng Pan Debin Gao HweeHwa Pang

Singapore Management University

{jin.han.2007, mengpan, dbgao, hhpang}@smu.edu.sg

ABSTRACT

Existing steganographic file systems enable a user to hide the
existence of his secret data by claiming that they are (static)
dummy data created during disk initialization. Such a claim
is plausible if the adversary only sees the disk content at the
point of attack. In a multi-user computing environment that
employs untrusted shared storage, however, the adversary
could have taken multiple snapshots of the disk content over
time. Since the dummy data are static, the differences across
snapshots thus disclose the locations of user data, and could
even reveal the user passwords.

In this paper, we introduce a Dummy-Relocatable Stegano-
graphic (DRSteg) file system to provide deniability in multi-
user environments where the adversary may have multi-
ple snapshots of the disk content. With its novel tech-
niques for sharing and relocating dummy data during run-
time, DRSteg allows a data owner to surrender only some
data and attribute the unexplained changes across snapshots
to the dummy operations. The level of deniability offered
by DRSteg is configurable by the users, to balance against
the resulting performance overhead. Additionally, DRSteg
guarantees the integrity of the protected data, except where
users voluntarily overwrite data under duress.

1. INTRODUCTION
Steganographic File Systems (stegfs) are intended to pro-

vide plausible deniability to data owners in the event that
they are forced to disclose their secret data [4]. A stegfs
hides encrypted user data among dummy data that contain
only pseudo-random bits. Without the correct password, it
is not possible to differentiate user data from dummy (based
on the assumption that the output of the block cipher is in-
distinguishable from random bits [3, 4]), even for an adver-
sary who understands the mechanisms of the file system and
is able to gain access to the storage devices. This feature al-
lows a data owner to selectively reveal some directories/files,
but disclaim the existence of his sensitive data.

To be believable, the disclaimer of the data owner must be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

consistent with the information that the adversary is able to
gather about the file system. This is much more challenging
to achieve in modern computing environments when the user
data are encrypted and stored in shared network storage.
Compared to portable and local storage, network storage
dramatically increases the availability and accessibility of
user data. However, it also brings new challenges in securing
user data. With shared network storage, the adversary is no
longer limited to a single snapshot of the disk content at the
point of attack. Instead, the adversary could now locate the
physical server machines being used [17] and quietly amass
multiple snapshots of the file system over a period of time
before launching his attack. The additional knowledge that
the adversary gleams from the multiple snapshots must be
factored into the stegfs design.

In earlier stegfs designs [4, 15, 12, 16], dummy data are
created when the disk is formatted and remain static there-
after. These schemes are effective against adversaries who
only see the final state of the storage, but cannot defend
against adversaries who possess multiple snapshots of the
storage. Indeed, changes among different snapshots not only
reveal the location of secret data, but could even be uti-
lized to recover the access keys (for example, when the first
scheme by Anderson et al. [4] is utilized). Recent stegfs
schemes, which are proposed to defend against multiple-
snapshots attacks, either cannot guarantee the integrity of
user data even under legitimate data operations [8, 9], or re-
quire a trusted agent to manage all the user passwords and
dummy data [20], which effectively presents a single point
of disclosure for user passwords.

In this paper, we propose a multi-user stegfs for shared
storage systems, which is named as DRSteg – Dummy Re-
locatable Steganographic file system. DRSteg is designed to
meet the following requirements:

• Security: To provide plausible deniability of secret
data in a multi-user environment in which the adver-
sary could obtain multiple snapshots of the storage
content. This protection should extend to any user
even when the storage server and all the other users
are completely compromised, i.e., they have surren-
dered all the information in their possession.

• Usability: To guarantee data integrity, and at the same
time enable individual users to trade off between deni-
ability and system performance.

To the best of our knowledge, DRSteg is the first stegfs
that allows I/O operations observed on shared storage to

317

be plausibly attributed to dummy data without requiring a
trusted agent as used by Zhou et al. [20]. In addition, our
work also manages to increase the deniability provided to in-
dividual users by sharing dummies among multiple users in
the system. It is technically challenging to satisfy both the
security and usability requirements, especially when dum-
mies are shared. DRSteg incorporates a special dummy
relocation mechanism that enables individual users to dis-
tinguish dummies from other users’ data (in order to free
dummies without destroying data), and to prevent adver-
saries from discerning the difference between dummy and
user data even after obtaining multiple snapshots.

This is also the first work that formalizes the deniability
achieved by a multi-user stegfs. The formalization enables
us to develop a tunable mechanism for users to balance be-
tween deniability and system responsiveness. In DRSteg,
the deniability enjoyed by individual users could be main-
tained beyond a specified threshold, whether or not all the
other users are fully compromised. The amount of dummy
operations is controlled individually; a user who specifies
a more aggressive amount enjoys higher deniability at the
expense of slower file operations.

To substantiate the usability of DRSteg, we present re-
sults of an empirical evaluation using file operation logs col-
lected from 12 graduate students in our school. The results
confirm that DRSteg is capable of achieving a wide range of
user-specified deniability levels. We also implemented a pro-
totype of DRSteg as a file system module in Linux kernel.
Performance experiments on the prototype show that secu-
rity and performance can be traded off against each other.

2. RELATED WORK
Cryptographic file systems (e.g., [5, 7, 11, 19]) and their

implementations (e.g., [1, 2]) have been studied extensively
in the last two decades . A cryptographic file system comple-
ments the access control mechanism of the operating system
(OS). Even if the OS is compromised or the data storage is
removed from the OS, data in the file system remain pro-
tected by the user’s password. A weakness of cryptographic
file systems is that they leave evidence of the existence of
encrypted data, so a determined attacker may compel the
users to reveal their decryption passwords.

In order to provide plausible deniability of the existence
of secret data, Anderson et al. proposed two steganographic
file system (stegfs) schemes [4]. In the first scheme, the disk
is initialized with several cover files that have equal length
and contain random data. A secret object is stored through
an exclusive-or operation on a subset of the cover files, iden-
tified by the corresponding bits in the access key. To protect
against brute force attacks, the number of cover files must
be sufficiently large; this imposes heavy I/O overheads as
each read/write request for an object translates into opera-
tions on multiple cover files. The scheme is effective against
single-snapshot attacks but not multiple-snapshot attacks.
In particular, the differences between just two snapshots of
the storage can expose the access key used1.

In Anderson’s second scheme [4], the disk is first filled with

1This is because only cover files whose indexes correspond
to bits with value “1” in the access key will be modified for
any data modification. Those files which do not change will
correspond to bits with value“0” in the access key. Thus, the
access key can be reconstructed by observing the changes of
the cover-file matrix in the storage.

random bits. Subsequently, secret data blocks are written to
pseudorandom addresses. An implementation of this scheme
on Linux is reported by McDonald et al. [15], a peer-to-
peer version by Hand et al. [12] and a distributed version by
Giefer et al. [10]. The disadvantage of the scheme is that the
probability of collision in the locations where data are stored
increases as more data are added to the disk. Although
replicating each data block in different locations reduces the
likelihood of data loss, the risk cannot be eliminated; hence
data integrity is not guaranteed.

Pang et al. [16] utilized a bitmap to track block alloca-
tion to avoid overwriting data and to improve system perfor-
mance. To defend against single-snapshot attacks, dummy
data are added when the disk is initialized. The dummy data
cannot be changed or relocated at runtime, so the scheme
is susceptible to multiple-snapshot attacks. Zhou et al. [20]
provided for the relocation of dummy blocks. Their solution
requires a trusted agent to manage all the user passwords
and dummy data, which effectively transfers the risk of pass-
word disclosure to the agent.

Diaz et al. [8] proposed to defend against traffic analy-
sis [18] through a mix-based stegfs that employs a local mix
to relocate files in the remote storage. They show that the
security of the scheme depends on the file-size patterns in
the system. Another work by Domingo-Ferrer et al. [9] ad-
dressed the problem of data loss in a stegfs with multiple
users. It is not designed to defend against multiple-snapshot
attacks though. Furthermore, neither of the two schemes
guarantees data integrity under legitimate data operations.

TrueCrypt2, an open-source disk-encryption software pack-
age, enables a user to create a deniable file system within a
regular encrypted file or partition. The file system is deni-
able if the adversary only sees the final content of the disk.
However, it cannot defend against an adversary who pos-
sesses multiple snapshots of the encrypted partition. The
same weakness exists in similar products that provide deni-
ability for secret files, e.g., Phonebook3 and Rubberhose4.

Note that deniability in stegfs is different from deniable
encryption [6] which allows an encrypted message to be
decrypted into different sensible plaintexts with different
keys. Stegfs is also different from private information re-
trieval (PIR) [13] which allows a user to retrieve an item
from a server without revealing which item is retrieved. A
stegfs allows the untrusted server to be cognizant of which
disk blocks are retrieved, yet provides deniability that they
stemmed from operations on secret data. A stegfs is not de-
signed to prove non-existence of secret data but to provide
plausible deniability of the existence of secret data.

3. PROBLEM DEFINITION

3.1 Threat Model
Figure 1 depicts our model of a multi-user file system. In

the model, user data are stored on a shared storage. The
stegfs functionalities are implemented in the client module
that runs on the user computers. This client module is se-
cured so that sensitive data that are operated on as well as
any passwords used for encrypting and decrypting the data
are protected. The storage server manages the shared stor-

2TrueCrypt, http://www.truecrypt.org/
3Phonebook, http://www.freenet.org.nz/phonebook
4Rubberhose, http://iq.org/~proff/rubberhose.org

318

Figure 1: A multi-user stegfs with untrusted shared
storage

age devices which provide block-level operations, including
DAS (direct attached storage) and SAN (storage area net-
work). Different from the model where the server manages
all the user passwords [20], the storage server and shared
storage in our model are not stegfs specific.

The server and the storage devices are not trusted. This
means that an adversary may infiltrate the server or the
storage devices directly (or the backup of these devices) to
copy and analyze the stored content. Although our scheme
provides better protection when the communication between
users and the server is anonymized, it is not a necessary
condition for DRSteg to provide deniability to users. We will
analyze the deniability of DRSteg under different scenarios
in Section 5.

In this paper, we focus on adversaries who are after the
user data, and we explicitly rule out considerations of sab-
otage like overwriting/deleting data and denial of service.
The threat posed by the adversary thus hinges on two fac-
tors: (a) his knowledge of the file system state, and (b) his
access to the users of the system. These two factors together
determine the adversary’s ability to make deductions about
the hidden data on the storage, and to verify any claims
elicited from the users.

The first factor, knowledge of the storage state, is char-
acterized by the number of observations of the storage con-
tent. An adversary who is able to access the storage only
once (i.e., at the point of attack) only gains a single snap-
shot of the storage. An example is someone who is cap-
tured by criminals and forced to reveal all the contents in
his portable drive. However, when the adversary has more
than one chance to access the storage, he can record mul-
tiple snapshots. The information in those snapshots is then
utilized to deduce the existence of secret data.

The second factor that defines the adversary’s ability con-
cerns his access to the users. Here, we make the following
assumption:
Victim isolation assumption. In coercing information from
the users, it would be effective for the adversary to in-
terrogate them separately and cross-check the information
elicited. Placed in isolation, a victim knows neither which
other users have been compromised nor what information
they have surrendered. Consequently, each victim has to
assume the worst, i.e., that all the other users are compro-
mised and all their secrets are revealed. He thus has to
independently decide what data he can hide without being
contradicted by other users’ disclosure.

Multi-user encrypting file systems [2, 5, 7] are inadequate
under the victim isolation assumption, as it is not safe for a
user to claim his data to belong to someone else. A solution

is to use dummy blocks, which should be operated on in
similar ways as encrypted data blocks in order to defend
against multiple snapshot attacks.

3.2 Definition of Deniability
To formalize the threat, an adversary has access to a se-

quence of snapshots S = {s1, s2, . . . , sT} of the stegfs parti-
tion on the disk, where sT is the snapshot at the time of
coercion. Following the victim isolation assumption, the ad-
versary extracts all the passwords from other users (P′) at
the time of attack, and also coerces the victim to reveal his
passwords Pt = {p1, p2, . . . , pt}. The adversary then utilizes
the passwords obtained to decode the information in each
snapshot.

Let Hdummy
i and Hdata

i denote the hypotheses that an al-
located block blki is a dummy block and a data block, re-
spectively. Let ei denote the evidence on blki observed from
S, and E = {ei} the aggregate evidence across all the disk
blocks. We define the plausible deniability of blki as follows.

Definition 1. Given the evidence E = {ei} = S∪P′∪Pt,
where S = {s1, s2, . . . , sT} is a sequence of snapshots taken
by the adversary and P′ ∪Pt is the set of passwords revealed
to the adversary (along with the blocks decrypted with these
passwords), the deniability of an allocated block blki is the
posterior probability that ei was generated by operations on
dummy block blki:

denyi = Pr(Hdummy
i |ei) (1)

A steganographic file system is said to be α-deniable if

denyi ≥ α

for all blki that cannot be decrypted with P′ ∪ Pt, for any
t ≥ 1 of the user’s choice.

An α-deniable stegfs guarantees that any evidence gath-
ered by an adversary (e.g., disk images across multiple snap-
shots) is caused by dummy data operations with at least a
probability of α. This means that a user of the system can
attribute the evidence to dummy operations without reveal-
ing his secret data.

4. DESIGN OF DRSteg
DRSteg is designed to enable a user to selectively disclose

some of his data, while enjoying α-deniability for the rest
of the data that he is withholding from the adversary. We
begin this section with an overview of the DRSteg design,
before presenting the detailed data structures and imple-
mentation considerations.

4.1 Overview of DRSteg
In DRSteg, each user must be able to protect his data

with different passwords, so that he can surrender some data
but not others. To achieve α-deniability for the data blocks
that he is withholding, our approach is to (a) enforce a joint
ownership for allocated disk blocks to prevent the adversary
from associating with certainty a withheld block with any
particular user, and (b) introduce dummy blocks that are
operated on at runtime, so that changes to the withheld
blocks can be plausibly explained by dummy operations.

We realize the joint ownership through a voting protocol.
For every allocated block, m ownership shares are created
and distributed to m users, including the user who requested

319

for the block (also known as the creator). A block can sub-
sequently be altered or freed only after all the m shares
have been garnered from consenting owners. By following
this policy, we ensure that the block is never deallocated
without the creator’s share, yet the creator of the block is
obfuscated among the share owners. The creator may use
an allocated block either for his data or as a dummy.

For each user, the disk blocks that hold his data are pro-
tected by one of his passwords p1, p2, . . . , pn. The number
of passwords n is expected to vary from user to user, though
we use the same symbol n across users for brevity. More-
over, the passwords are generated as a hash chain [14], i.e.,
pl = h(pl+1) for a hash function h and 1 ≤ l < n (as il-
lustrated in the upper part of Figure 2). By supplying any
password pl, 1 ≤ l ≤ n, the user can access all the secret
data at and below level l.

As for those disk blocks that are allocated as dummies,
no bookkeeping information is maintained to track them
directly; otherwise, the adversary can simply demand the
bookkeeping information from the users, and with it discover
the dummy blocks in the file system. Instead, a dummy
block can only be identified through the cooperation of its
owners: Each shareholder of the block checks whether it is
protected with one of his passwords; if not, the block is a
potential dummy – it may indeed be a dummy, or it may
hold the data of some other user. It is freed in the same way
as data blocks, i.e., after gathering m shares.

In the event of an attack, our DRSteg design allows a
coerced user to supply some password pt, 1 ≤ t < n, to the
adversary and deny the existence of the passwords pj for
t < j ≤ n. The data blocks that are protected by pj then
appear to be potential dummies, thus enabling the user to
hide the existence of the data.

4.2 Detailed Design of DRSteg
Drawing on the approaches introduced above, we now put

together the concrete DRSteg design. Each user u keeps
track of a set of blocks Au on which he currently holds a
share. Moreover, each password pl protects a set of data
blocks Du,l. The set difference Au −∪lDu,l gives the blocks
that exclude u’s data, and dummy blocks are the allocated
blocks that contain nobody’s data, i.e., ∩u(Au − ∪lDu,l).
Figure 2 depicts our detailed design for DRSteg (the en-
cryption is done at the granularity of individual blocks).

Figure 2: Key management and user view of the
storage

Whenever a user u requires a disk block blk from the file
system to write data or dummy patterns, a free disk block
is allocated and shares of the block are also created. One
share is given to u, while the remaining shares of blk are
distributed to other users u′, i.e., Au ← Au ∪ {blk} and
Au′ ← Au′∪{blk}. If user u encrypts data with his password
pl and stores it in blk, then Du,l ← Du,l ∪ {blk}.

Any user u may propose the deletion of a block in his Au.
The deletion is effected only after all the users who hold
shares of the block have acquiesced. Obviously, if the block
holds the data of user u′, he would relocate the data before
supporting the deletion. This is to avoid leaving clues for
differentiating between dummy and data blocks.

With DRSteg, user u can surrender any password pt, 1 ≤
t < n and claim that data blocks in Au − ∪1≤j≤tDu,j are
not his data. Claiming that data blocks in Du,j for t < j ≤
n are dummy blocks is plausible since they also appear in
Au′ −∪lDu′,l of other users u′ who hold shares of the blocks.

4.2.1 Joint ownership of blocks
We implement the joint ownership of disk blocks through a

voting protocol and two data structures – a set of encrypted
user share boxes (USB) and a global voting table (GVT) in
clear text. A USB is used to track the Au of each user, and
a GVT records the votes surrendered by users. Two other
structures are additionally maintained in clear text in the
storage: a list of the users’ public keys, and a bitmap to
track the allocation status of the disk blocks.

When a user allocates a disk block blki, he 1) sets the
bit of this block to “1” in the bitmap; 2) creates m shares
and writes them to the corresponding USBs; 3) writes the
encrypted/random data content to the block. The format of
each encrypted share is given as E(Kpub,u, i), an encryption
of i with a user’s public key. The encrypted shares denote
the ownership of this block. A block blk ∈ Au if the share
E(Kpub,u, i) exists in the USB of user u. The m owners of
a block include the creator and m− 1 other users randomly
selected from the public-key list.

Any of the m owners can subsequently initiate the dele-
tion of the block blk by writing i to the global voting table
(GVT) and removing his share from his USB. To support
the deletion, other owners also contribute their shares into
GVT. When the number of accumulated shares of a block
reaches m, this block can be removed from GVT and its
bit in the bitmap is set to “0” (indicating that this block is
free). The share constitution ensures that the block can be
deallocated only when block creator signals his agreement
by surrendering his share to the GVT.

4.2.2 Management of data blocks
In order to provide plausible deniability against multiple-

snapshot attacks, disk blocks that contain data must be
managed carefully so that they leave the same evidence as
operations on dummy blocks.

First, consider the modification of secret data. By com-
paring snapshots, the adversary may discover that the con-
tent of a block changes before all the m shares are added
into GVT. This would never happen to a dummy block ac-
cording to our voting protocol. Therefore, instead of over-
writing data blocks, each user always migrates his updated
content to new blocks, and initiates the deletion of the out-
dated blocks in GVT so that they will be freed in due course.
However, the initiation of the deletion operation is delayed,

320

in order to break the temporal correlation between the allo-
cation of new blocks and the deallocation of outdated blocks.

Next, consider the case where some user’s data block is
registered for deallocation in GVT by other users. If the
user never concurs, the adversary will suspect that the block
contains data, since deallocation of dummy blocks are sup-
ported readily. To avoid suspicion, the user has to migrate
the content to a fresh disk block, before relinquishing his
share to the old data block.

In real implementations, the block creating operations are
carried out immediately, but the voting (including removing
shares from USB and writing block numbers into GVT) are
delayed. We pass the voting operations to a background user
process that survives beyond user log-off. The background
process repeatedly initiates the deletion of a block in its
pool after sleeping for a random duration. This makes the
operations for data blocks plausible since the creation and
voting could be caused by either creating and freeing dummy
blocks or creating, modifying and freeing data blocks.

4.3 Discussions

4.3.1 Comparing to naive designs
There also exist alternatives in designing a multi-user stegano-

graphic file system. A naive one could simply let each user
manage his own blocks (including data and dummy). Since
dummy blocks are no longer shared, one has to create many
more dummy blocks in order to achieve the same deniabil-
ity compared to our design, when anonymous channels are
used between the users and the storage server. When this
channel is not anonymized, our design still provides similar
security and disk utilization compared to the naive design.
The deniability provided by DRSteg under both scenarios is
analyzed in the next section.

4.3.2 Encryption of the block shares
Another security issue relates to the encryption of the

shares in USB. If the shares are stored in clear text, it will be
straightforward for an adversary to identify who the owners
of any particular block are. By encrypting the shares, the
owners of any block are obfuscated so long as multiple blocks
have been allocated between snapshots. In this way, our
approach safeguards shareholders from being earmarked to
be the next target of coercion.

4.3.3 Organization of the user passwords
The last design issue concerns the organization of the user

passwords. One option is to have only one password in each
account and to give every user multiple accounts. Under
coercion, a user reveals some of his accounts and tries to hide
the remaining ones. However, this simple option fails when
the adversary captures all the users of the system. When
that happens, the adversary can check whether there are m
shares among the surrendered accounts for every allocated
block; if not, there must exist more user accounts. This
is why we choose to allow multiple passwords (for different
security levels) in each user account.

Organizing multiple passwords in a hash chain has been
proposed in other stegfs [4, 10, 16], and its one-way prop-
erty meets our requirements well. Under coercion attack,
the disclosure from surrendering t independent passwords is
the same as giving up the t lowest-level passwords in a hash
chain. Thus, in our system design, the hash chain mecha-

nism is chosen due to the performance and usability benefits
gained compared to independent passwords.

5. PLAUSIBLE DENIABILITY OF DRSteg
Having introduced the design of DRSteg, we now quantify

the deniability it provides under a spectrum of progressively
challenging attack scenarios. Based on the last and most
demanding scenario, we then show how to operationalize the
DRSteg design so as to sustain the system security above
user-specified deniability thresholds. Table 1 summarizes
the terms and notations which are used in the analysis.

5.1 Analysis of Deniability
We first expand Equation 1.

denyi = Pr(Hdummy
i |ei) =

Pr(ei|Hdummy
i) × Pr(Hdummy

i)

Pr(ei)
(2)

According to our problem formulation in Section 3, the ad-
versary is capable of taking multiple snapshots of the storage
content. He may also augment the snapshots with secrets
that he coerced from one or more users. The following attack
scenarios differ on the amount of secrets thus extracted, and
deserve particular attention in deploying DRSteg. These
scenarios will be further evaluated in Section 6. In the fol-
lowing analysis, we consider the case where the evidence
contains two snapshots. The analysis extends easily to mul-
tiple snapshots. Note that Equation 2 implicitly takes the
frequency of these snapshots into consideration by evaluat-
ing ei, i.e., the more frequently snapshots are taken, the more
information ei would include.

5.1.1 Passive-adversary scenario
In this scenario, the adversary may be curious and has not

resorted to force, or he may not be ready to expose himself
just yet. Thus he only relies on the snapshots collected,
i.e., the evidence E = S. By comparing any two recorded
snapshots (s1, s2), the adversary could observe a lot of user
activities, e.g., new blocks being created, deleted, and etc.

Let us first consider the creation of new blocks. A block
blki is created between s1 and s2 if flagi changes from 0 in s1

to 1 in s2. Let crtdata represent the net number of data blocks
created between s1 and s2, and crtdummy the net number of
dummy blocks created in the same period. ttls2 , ttldummy

s2 ,

and ttldata
s2 denote, respectively, the total number of allocated

blocks, the total number of dummy blocks, and the total
number of data blocks in s2. Given an evidence that blki is
newly allocated, the probability that blki is a dummy block
in s2 is calculated with Equation (2) as

denyi =
crtdummy

ttldummy
s2

× ttldummy
s2

ttls2
/
crtdata + crtdummy

ttls2
=

crtdummy

crtdata + crtdummy

This derivation extends to block deletion and other evi-
dence listed in Table 2. Denoting the number of data/dummy
block operations between s1 and s2 by opdata and opdummy, the
deniability can be calculated as opdummy/(opdata + opdummy).

For an individual user u in DRSteg, let opdata
u denote the

number of data blocks operated on in ∪lDu,l between s1

and s2, and opdummy denote the number of dummy blocks
operated on in the system. The deniability that DRSteg
provides for u under this scenario is expressed as

denyu,i =
opdummy

opdata
u + opdummy

(3)

321

Notation Explanation
S = {s1, s2, . . . , sT} Snapshots (of the stegfs partitions) taken by the adversary.
Pt = {p1, p2, . . . , pt} Passwords revealed to the adversary under coercion.
E = {ei} = S ∪ P′ ∪ Pt Evidence possessed by the adversary.

sk = {BLK, USB, GVT}k

BLK = {blki}: Blocks in the stegfs partition (blki is the i-th block).
USB = {USBu}: User share boxes (USBu is the USB of user u).
GVT: Global voting table.

blki = 〈texti, flagi〉
texti: If blki is dummy, texti contains random bits;

If blki holds user data, texti = E(p,plaintexti)
flagi: A flag indicating whether blki has been allocated.

Hdummy
i , Hdata

i Hypothesis that blki is a dummy/data block in sT.

Table 1: Summary of notations used

Evidence DRSteg operation
flagi changes from 0 to 1 and new shares appear in some USBs Create blki as a new dummy or data block
A share of blki is moved from USBu to GVT User u votes to delete blki

flagi changes from 1 to 0, and blki’s entry is removed from GVT Delete blki as enough votes are present in GVT
Some combination of the above Some combination of the above

Table 2: Evidences and the corresponding DRSteg operations

5.1.2 Anonymous-channel scenario
Once the adversary starts to coerce users, by the victim

isolation assumption in Section 3, one has to assume that all
of the users have been captured and be wary about offering
conflicting information to the adversary. In this scenario, we
consider a victim u who discloses the passwords for up to
level t of his files and attempts to hide his remaining data,
when all the other users are compromised (E = S∪P′ ∪Pt).
We assume that all the user requests where sent through
an anonymous channel to the storage server, so that the
adversary is not able to trace each request to a specific user.

With all the passwords of every user except u, the adver-
sary not only sees all the data of the other users, he also
uncovers the dummy blocks for which the ownership is lim-
ited to those users. The only outstanding blocks are those
on which u holds a share (Au). Figure 3 illustrates the dis-
tinction between various groups of blocks in the system, and
also the ones used in the calculation of denyu,i.

Figure 3: System view of allocated blocks

Taking into account the organization of the user data into
different password levels n and Pt, operations on data blocks
in level t and below are disclosed to the adversary. Let
opdata

u,l denote the number of data blocks in Du,l, and opdummy
u

denote the number of dummy blocks recorded in USBu. The
deniability of a user u (who has revealed pt) is a function of
the undisclosed blocks held by him:

denyu,i =
opdummy

u∑
l>t opdata

u,l + opdummy
u

(4)

The disclosed passwords do not affect opdummy
u in the above

equation. Therefore, a bigger t improves the deniability for
the data of user u being withheld from the adversary. This
is intuitive, since a bigger t means that there is less user
data to be hidden among the fixed pool of dummy blocks.

5.1.3 Worst-case scenario
When the user-server channel is not anonymized and the

storage server is compromised by the adversary, the adver-
sary is able to distinguish the creator from other share hold-
ers by monitoring the requests sent to the server. Under
such a scenario, a user cannot utilize the dummy blocks
that are not created by himself to provide deniability for his
secret data (even if he is one of the owners of these dummy
blocks). This leads to the worst-case deniability denyu,i for
DRSteg since opdummy

u in Equation 4 only contains dummy
blocks created by user u himself.

5.2 α-deniable DRSteg
We now show how to operationalize the dummy manipula-

tion mechanism to secure DRSteg under the worst-case sce-
nario described above. Specifically, we demonstrate how to
manipulate dummy data to maintain the deniability above
a given threshold αT , thus making DRSteg αT -deniable.

5.2.1 Number of Dummy Blocks to Manipulate
Let σu,l = opdummy

u,l /opdata
u,l . The number of dummy blocks

operated on by u, opdummy
u =

∑
l opdummy

u,l =
∑

l opdata
u,l × σu,l.

322

Substituting into Equation (4), we have

denyu,i =

∑
l(opdata

u,l × σu,l)
∑

l>t opdata
u,l +

∑
l(opdata

u,l × σu,l)
(5)

In order to ensure that every blki ∈ Au meets the denia-
bility threshold of αT no matter which password level user
u chooses to surrender, we need

denyu,i =

∑
l(opdata

u,l × σu,l)
∑

l opdata
u,l +

∑
l(opdata

u,l × σu,l)
> αT

Simplifying the above equation, we get

σu,l >
αT

1 − αT
(6)

Since σu,l = opdummy
u,l /opdata

u,l , Equation (6) implies that to
achieve the target deniability threshold αT , the number of
dummy blocks manipulated must be at least αT

1−αT
times

opdata
u,l , the number of data operations.

5.2.2 Controlling dummy operations
Having determined the number of dummy blocks to ma-

nipulate, we give the procedures for controlling the dummy
manipulation in DRSteg in order to achieve the deniability
configured by users.

There are three types of operations on the dummy blocks
– creating, deleting and voting – among which dummy cre-
ation is the easiest to control. When a user logs in at security
level l, he configures σl (which is bigger than αT

1−αT
). If x

free blocks are allocated for creating or modifying a secret
file, then after a random delay, the DRSteg client creates
x · σl dummy blocks to maintain the deniability.

Deletion is more complex because a user does not know
which blocks are really dummy blocks (he can only identify
blocks that are not his data, as illustrated in Figure 2). To
conceal the deletion of x data blocks, the DRSteg client has
to delete x · σl dummy blocks. This is done by moving the
shares of x · σl randomly selected blocks in Au − ∪lDu,l

from USBu to GVT after a random delay. Although some
of these x · σl blocks may be data blocks of other users,
the respective data owners will turn these (data) blocks into
dummy anyway as explained next.

Now suppose that user u′ logs in, and discovers that a
block blk ∈ Au′ has been put up in GVT for deletion. If blk
does not contain his data, i.e., if blk ∈ (Au′ − ∪lDu′,l), u′

will support the deletion by adding his votes on blk in GVT.
If blk is a data block of u′ (i.e., blk ∈ ∪lDu,l), then u′ has
to migrate the content to a new block before voting for the
deletion. As discussed in Section 4.2, this is to avoid leaving
clues that blk contains user data.

5.2.3 Security Discussions
There are several security concerns relating to dummy ma-

nipulation. First, in our current design, every block opera-
tion is either a direct data operation or the effect of a data
operation. Besides introducing random delays, their associ-
ation could be masked by breaking each of the dummy cre-
ations and block deletions into smaller steps and interleav-
ing them with data block operations. In addition, DRSteg
could initiate dummy operations independently of data op-
erations. These enhancements will be incorporated in future
work.

Second, the parameter σu,l is of special interest to the
adversary, who might force the victims to reveal their choices
of σu,l. With the σu,l values, the adversary may estimate
the actual number of data block operations, thus limiting the
victims’ flexibility to attribute as dummy those data blocks
that they are trying to hide. To substantiate his denial in the
event of an attack, DRSteg furnishes each user u with a fake
σfake

u,t at log-out, where t is the password level that the user is

willing to disclose. σfake
u,t is calculated as the ratio between the

number of blocks claimed to be dummy (including dummy
blocks and hidden data blocks), and the number of revealed
data blocks: σfake

u,t = (Σl>topdata
u,l + opdummy

u)/Σl≤topdata
u,l .

Another potential security threat is, if the adversary is
able to take snapshots of the storage content with infinitesi-
mal delay, he may be able to distinguish dummy blocks from
data blocks. Troncoso et al. [18] showed that this distinc-
tion is possible because data blocks belonging to the same
file are often accessed one after another, whereas dummy
blocks are accessed individually and are not likely to ex-
hibit the same access pattern. To mitigate against such a
threat, one possible solution is to introduce dummy files into
DRSteg. A dummy file would span several dummy blocks,
which are then accessed sequentially like data blocks. In or-
der to present similar access pattern as data files, dummy
files should also be accessed frequently. Such an improve-
ment in dummy file operations is left for future work.

6. EVALUATION

6.1 Empirical Evaluation on Deniability
To investigate DRSteg’s ability to maintain user-specified

deniability thresholds under multiple-snapshot attacks, we
perform an empirical evaluation by re-playing file operations
logged in a typical office environment. We deployed a logger
to record the file operations (operation type and time) on
the computers of 12 graduate students in our lab. Over 9
days, we recorded more than 50,000 user file operations5.

We begin by mirroring the user files of all 12 computers
in DRSteg, which add up to about 1 Tbyte of data. We
also initialize the same number of dummy blocks, making
the original utilization of data blocks 0.5. The shares for
data and dummy blocks are distributed randomly among
the 12 users. We assume that users are automatically logged
out from the stegfs system after some period of inactivity
(10 minutes in our experiments), and they login again right
before their next observed data operations. For each session,
the user enters the password to one of his security levels l
(randomly chosen by our simulator) and picks a σu,l value
(chosen to follow a power-law distribution p(σ) ∝ L(σ)σ−ξ

assuming that more users will tend to choose lower σ values
to minimize overhead). We set αT = 0.4, σmin = 0.7 and
ξ = 3.0 for all users. The parameters and statistics are
summarized in Table 3.

We use the first two days of logs to warm up DRSteg.
As the remaining seven days of traces are executed, we take
a snapshot of the disk image every 10 minutes. Figure 4
shows the deniability for one of the (randomly chosen) users
by comparing each successive snapshot with the first one.

Figure 4(a) shows the deniability under the passive-adversary
scenario, calculated with Equation 3. The upper graph gives

5We assume that the operating system and software pro-
grams are not installed in the stegfs partition.

323

Parameter Value User-log Statistics Value Simulated DRSteg Statistics Value

of users 12 Total logging time 9 days Initial amt. of data blocks 1011.34 GB
αT 0.4 # of file operations 50,113 Initial amt. of allocated blocks 2022.68 GB
of security levels 5 Data blocks created 26.613 GB # of user sessions 294
Interval before auto logout 10 mins Data blocks deleted 80.069 GB Final amt. of data blocks 970.60 GB
Avg. # of shares per block 3 Data blocks modified 160.317 GB Final amt. of allocated blocks 1995.89 GB

Table 3: Simulation parameters and statistics

(a) Passive-adversary scenario (b) Anonymous-channel scenario (c) Worse-case scenario

Figure 4: Deniability of DRSteg under different scenarios

the deniability with respect to block creation evidence, while
the lower is for delete operations. As seen from the graphs,
sharing dummy blocks among users enables individual users
to enjoy high deniability.

Next, we examine Figure 4(b) for the anonymous-channel
scenario, which is calculated with Equation 4. Here, the
selected user has revealed up to level t of his passwords
(the lines in the graphs represent different settings of t),
whereas the other users have revealed all their passwords.
Since the selected user can only rely on the operations on
dummy blocks which are recorded in his UMB, the deniabil-
ity is lower than that in the previous scenario. Nevertheless,
DRSteg still manages to achieve high deniability.

Turning to the worst-case scenario where the adversary is
aware of the creator of every block, Figure 4(c) shows the
deniability levels achieved. In this scenario, deniability is
derived solely from operations on the dummy data created
by the user himself, which explains the much reduced deni-
ability. Even so, DRSteg manages to keep the deniability
above the configured threshold of αT = 0.4.

The deniability for the other 11 users are similar to the
results in Figure 4 quantitatively and qualitatively. In par-
ticular, the lowest deniability observed for the worst-case
attack scenario is 0.46. These results affirm the security
property of our proposed DRSteg.

6.2 Implementation and Performance Evalu-
ation

We have implemented DRSteg as a file system module
in parallel with ext3 in Linux kernel 2.6, on the client ma-
chines which communicate with the shared storage through a
server (see Figure 1). The client module manages the blocks
in the shared storage automatically according to the pass-
word entered by the user. This includes creating new data
and dummy blocks (and allocating shares to other owners),
voting blocks for deallocation, etc. We explain below how
the storage is organized by the system and benchmark the
performance of DRSteg.

6.2.1 File system construction
In our DRSteg file system, the (remote) disk storage is

partitioned into blocks of 1 Kbyte in size by default. A
bitmap tracks the allocation status of the blocks: 1 corre-
sponds to an allocated block and 0 a free block. An allocated
block is either a dummy or a data block, both of which ap-
pear to contain random patterns.

To accelerate access to directories and files, DRSteg uses
a designated storage area, called the super block (see Fig-
ure 5), to store inode structures so that they can be located
efficiently. The super block is essentially a mini-DRSteg
system for the addresses of inode roots, and is calved into
fixed-size slots that are capable of holding one address each.
A slot may be a free slot, a dummy slot, or may contain

324

Figure 5: Block organization in DRSteg

the encrypted address of an inode root (with redundancy
so that it is distinguishable from random bits upon decryp-
tion). Each password level of a user is allocated one slot.
Since the super block is expected to be only a few Kbytes
in size, it can be scanned quickly to find the inode roots for
each user. The super block has its own bitmap to track slot
allocation, while it shares the same set of user share boxes
and the global voting table with the main file system.

6.2.2 Performance Evaluation
The key parameters of the computing hardware for our

experiments are listed in Table 4, while Table 5 summarizes
the workload parameters and their default settings.

The first experiment is designed to study how well DRSteg
performs. For comparison, we include StegCover, StegRand [4]
and NSteg [16] as baselines. StegCover is configured with 20
cover files (the authors recommended 16 to 100 [4]). For Ste-
gRand, we use a replication factor of 4 to reduce the prob-
ability of data loss [15]. NSteg is set to populate 30% of
the disk with dummy blocks during initialization. We also
include two settings of the native Linux file system (ext3) in
our tests. In the CleanDisk setting, data files are loaded into
a freshly formatted native Linux partition, so that the files
occupy contiguous disk blocks; with file operations translat-
ing to sequential I/Os, CleanDisk gives the best-case tim-
ings. In contrast, results of FragDisk are obtained with
a well-used ext3 partition in which the free space is frag-
mented.

In the first experiment, we configure DRSteg with σu,l =
0.25, which produces a worst-case deniability of 0.2. For a
given concurrency level, we generate file creation requests
one after another for each user and measure the elapse time.
Figure 6(a) shows the average write time for various file
systems, with the number of concurrent users ranging from
1 to 32. Every performance result is averaged over 1000
observations.

The results show that StegCover is the worst performer;
this is because each file operation translates into disk I/Os
on several cover files. StegRand is also slow because it has
to modify all the replicas. DRSteg and NSteg use a bitmap
to track the status of disk blocks, so they can ensure data

Parameter Value

CPU Intel Duo Core 2.53GHz
RAM 2GB (1GB DDR2-667 x 2)
Hard Disk SATA 7200rpm, 250 GB with 8MB cache

Table 4: Hardware Parameters

Parameter Default Value

Capacity of the test partition 40 Gbytes
Size of each disk block 1 Kbytes
Number of blocks for each file 1024
File access pattern Interleaved

Table 5: Workload Parameters

integrity with just one copy of each data file. Consequently,
they are substantially faster than StegCover and StegRand.
They are slower than FragDisk though, because they encrypt
the protected files block by block and spread them across the
disk, resulting in higher fragmentation.

Recall that DRSteg needs to write additional messages
into the UMB’s during block creation and generate dummy
operations dynamically. As the file creation requests in our
experiment are issued one after another with no delay, the
file system is fully loaded, leaving no idle period for DRSteg
to schedule its dummy operations. Thus, the dummy opera-
tions add directly to the write times, and the observed tim-
ings represent the worst-case performance of DRSteg. For
example, with σu,l = 0.25 it is roughly 30% slower than
NSteg. This is the cost paid by DRSteg to achieve better
security protection, compared to NSteg which is not able to
relocate its dummy blocks.

In the second experiment, we investigate the performance
of DRSteg under different load conditions. The load con-
dition is determined by various factors, including the σ pa-
rameter that controls the amount of dummy operations, the
concurrency level, and the activity level of each user. We
model the activity level after a Poisson process with mean
arrival rate of λ block operations per minute. The results
are summarized in Figure 6(b), which plots the average write
time against λ for several σ-concurrency combinations.

We first consider the impact of λ. For every σ-concurrency
combination, DRSteg’s write time is short initially because
there are ample lull periods during which dummy opera-
tions can be scheduled so as to reduce contention with data
operations. Such opportunities diminish with increasing λ,
leading to longer write times observed in the figure. Next,
we compare the three σ-concurrency combinations with σ =
0.25. With the same σ and λ settings, raising the concur-
rency level introduces more contention between the data and
dummy operations and lengthens the write time. Similarly,
a bigger σ generates more dummy operations to cover the
data operations, again resulting in longer write times.

In summary, our experiment demonstrates that DRSteg
is capable of striking a wide range of trade-offs between
deniability and system performance. If high deniability is
required, the file system should be configured with enough
resources to prevent it from becoming overloaded. On the
other hand, to support a heavy workload, we could configure
DRSteg for a lower deniability assurance.

7. CONCLUSION
In this paper, we address the threat to steganographic

325

1 2 4 8 16 32
number of concurrent users

0

100

200

300

400

500

600

700

800

av
er

ag
e

w
ri

te
 ti

m
e

(m
s/

K
B

) CleanDisk
FragDisk
NSteg
StegRand
StegCover
DRSteg

(a) Comparing with previous stegfs designs

256 512 1024 2048 3092 4096 5120 6144
expected number of data block operations per minute

0

30

60

90

120

150

180

210

240

270

300

av
er

ag
e

w
ri

te
 ti

m
e

(m
s/

K
B

) DRSteg-0.25, one user
DRSteg-1.0, one user
DRSteg-5.0, one user
DRSteg-0.25, 2 users
DRSteg-1.0, 2 users
DRSteg-0.25, 4 users

(b) Trade-off between deniability and performance

Figure 6: Performance evaluation results

file systems (stegfs) that arises when the underlying stor-
age is untrusted and shared by multiple users. In such sys-
tems, an adversary could obtain and analyze multiple snap-
shots of the storage content to deduce the existence of secret
user data. To counter the threat, we introduce a Dummy-
Relocatable Steganographic (DRSteg) file system that em-
ploys novel techniques to share and relocate dummy data
at runtime. This enables users to surrender only some of
their data, and attribute any unexplained changes across
snapshots to dummy operations. The deniability enjoyed by
users is configurable individually. DRSteg guarantees the
integrity of the protected data, except where users voluntar-
ily overwrite data under duress. A trace-driven simulation
confirms the security of our scheme. Further experiments
on a Linux prototype demonstrate that DRSteg is able to
effectively trade off deniability with system performance.

8. REFERENCES

[1] eCryptfs, a POSIX-compliant enterprise-class stacked
cryptographic filesystem for Linux.
https://launchpad.net/ecryptfs.

[2] Encrypting File System in Windows XP and Windows
Server 2003. http://www.microsoft.com/technet/
prodtechnol/winxppro/deploy/cryptfs.mspx.

[3] R. J. Anderson and E. Biham. Two practical and provably
secure block ciphers: Bears and lion. In Proceedings of the
Third International Workshop on Fast Software
Encryption, pages 113–120, 1996.

[4] R. J. Anderson, R. M. Needham, and A. Shamir. The
steganographic file system. In Proceedings of the 2nd
International Workshop on Information Hiding, pages
73–82, 1998.

[5] M. Blaze. A cryptographic file system for unix. In
Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 9–16, 1993.

[6] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky.
Deniable encryption. In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science,
pages 90–104, 1997.

[7] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano.
The design and implementation of a transparent
cryptographic file system for unix. In Proceedings of the
2001 USENIX Annual Technical Conference, pages
199–212, 2001.

[8] C. Diaz, C. Troncoso, and B. Preneel. A framework for the
analysis of mix-based steganographic file systems. In
Proceedings of the 13th European Symposium on Research
in Computer Security, pages 428–445, 2008.

[9] J. Domingo-Ferrer and M. Bras-Amorós. A shared
steganographic file system with error correction. In
Proceedings of the 5th International Conference on
Modeling Decisions for Artificial Intelligence, pages
227–238, 2008.

[10] C. Giefer and J. Letchner. Mojitos: A distributed
steganographic file system. Technical report, Univerisity of
Washington, 2004.

[11] F. Graf and S. D. Wolthusen. A capability-based
transparent cryptographic file system. In Proceedings of the
2005 International Conference on Cyberworlds, pages
101–108, 2005.

[12] S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer
steganographic storage. In Proceedings of the First
International Workshop on Peer-to-Peer Systems, pages
130–140, 2002.

[13] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database, computationally-private information
retrieval. In Proceedings of the Annual IEEE Symposium
on Foundations of Computer Science, pages 364–373, 1997.

[14] L. Lamport. Password authentication with insecure
communication. Communications of the ACM, 24(11),
1981.

[15] A. D. McDonald and M. G. Kuhn. StegFS: A
steganographic file system for Linux. In Proceedings of the
3rd International Workshop on Information Hiding, pages
462–477, 2000.

[16] H. Pang, K.-L. Tan, and X. Zhou. StegFS: A
steganographic file system. In Proceedings of the 19th
International Conference on Data Engineering, pages
657–668, 2003.

[17] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th
ACM Conference on Computer and Communications
Security, pages 199–212, 2009.

[18] C. Troncoso, C. Diaz, O. Dunkelman, and B. Preneel.
Traffic analysis attacks on a continuously-observable
steganographic file system. In Proceedings of the 9th
Information Hiding, pages 220–236, 2008.

[19] C. P. Wright, M. C. Martino, and E. Zadok. NCryptfs: A
secure and convenient cryptographic file system. In
Proceedings of the 2003 USENIX Annual Technical
Conference, pages 197–210, 2003.

[20] X. Zhou, H. Pang, and K.-L. Tan. Hiding data accesses in
steganographic file system. In Proceedings of the 20th
International Conference on Data Engineering, pages
572–583, 2004.

326

Heap Taichi: Exploiting Memory Allocation Granularity in
Heap-Spraying Attacks

Yu Ding1,2, Tao Wei1,2∗, TieLei Wang1,2, Zhenkai Liang3, Wei Zou1,2,

1Institute of Computer Science and Technology, Peking University
2Key Laboratory of Network and Software Security Assurance(Peking University),

Ministry of Education, Beijing 100871, China
3Department of Computer Science, School of Computing, National University of Singapore

ABSTRACT

Heap spraying is an attack technique commonly used in hijacking
browsers to download and execute malicious code. In this attack,
attackers first fill a large portion of the victim process’s heap with
malicious code. Then they exploit a vulnerability to redirect the
victim process’s control to attackers’ code on the heap. Because the
location of the injected code is not exactly predictable, traditional
heap-spraying attacks need to inject a huge amount of executable
code to increase the chance of success. Injected executable code
usually includes lots of NOP-like instructions leading to attackers’
shellcode. Targeting this attack characteristic, previous solutions
detect heap-spraying attacks by searching for the existence of such
large amount of NOP sled and other shellcode.

In this paper, we analyze the implication of modern operating
systems’ memory allocation granularity and present Heap Taichi, a
new heap spraying technique exploiting the weakness in memory
alignment. We describe four new heap object structures that can
evade existing detection tools, as well as proof-of-concept heap-
spraying code implementing our technique. Our research reveals
that a large amount of NOP sleds is not necessary for a reliable
heap-spraying attack. In our experiments, we showed that our heap-
spraying attacks are a realistic threat by evading existing detection
mechanisms. To detect and prevent the new heap-spraying attacks,
we propose enhancement to existing approaches and propose to use
finer memory allocation granularity at memory managers of all lev-
els. We also studied the impact of our solution on system perfor-
mance.

1. INTRODUCTION
Heap spraying is a new attack technique commonly used in re-

cent attacks to web browsers [4–8, 36]. In a heap-spraying attack,
attackers allocate objects containing their malicious code in the vic-
tim process’s heap, and then trigger a vulnerability to force the
victim process to execute code from the heap region. Compared
to traditional buffer overflow attacks, heap spraying is simpler, as

∗Corresponding author. Email: weitao@icst.pku.edu.cn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

there is no need to know the detailed layout of memory regions
surrounding the buffer vulnerable to overflow, but the heap object
locations are not predictable. In order to increase the chance of suc-
cess, existing heap-spraying techniques allocate lots of heap blocks
filled with a large amount NOP-like instructions (e.g. 0x90, 0x0c
0x0a), called NOP sled, and followed by the malicious shellcode.
The NOP sled serves as the landing area of the shellcode, which
leads the execution to the shellcode if the victim process jumps to
anywhere in the NOP sled.

Since a typical heap object used in a heap-spraying attack is in
the form of “NOP sled + shellcode," the large amount of NOP sled
and existence of shellcode are the main characters used by heap-
spraying attack detectors. Accordingly, existing approaches to de-
tect heap-spraying attacks mainly fall into two types: sled-oriented
and shellcode-oriented. Shellcode-oriented methods detect heap-
spraying attacks by detecting the existence of shellcode. For ex-
ample, Egele et al. [21] detect heap-spraying attacks by inspecting
the JavaScript string objects to identify shellcode using lightweight
emulation [9]. However, this type of approach have difficulty in
dealing with shellcode obfuscation techniques, such as, shellcode
encoding [28, 34], encryption [46], polymorphism [20, 24], and
other obfuscation schemes [17, 27, 31, 37].

A more successful type of techniques to detect heap-spraying at-
tacks are sled-oriented [11, 29, 32, 42]. Such techniques focus on
identifying large chunks of NOP sled. In particular, NOZZLE [32]
uses static analysis to build the control-flow graph (CFG) of heap
memory blocks and measures the size of NOP sled, called surface
area, across a process’s entire heap region. If the percentage of
surface area is above a certain threshold, NOZZLE reports an at-
tack. NOZZLE assumes that heap-spraying attacks must inject a
large number of executable codes (especially NOP sled) because
attackers cannot predict the location of their malicious code. Next,
we will show that this assumption is not always valid.

We observe that modern operating system memory allocation be-
havior is more predictable than we usually believe, even in the pres-
ence of address space layout randomization (ASLR). For instance,
the Windows-family systems (from Windows XP to Windows 7)
enforce a memory allocation granularity of 64K bytes [22, 33],
which makes all memory blocks directly allocated by Windows (us-
ing API VirtualAlloc) aligned to a 64K-byte boundary. As a
result, addresses of such heap blocks are less random. For example,
a particular address in a 1MB block only has 16 possible locations,
much less than the one million possible locations if the heap block
can be allocated at random addresses. We discuss this in detail in
Section 3.

327

A new attack. Based on the above analysis, we present a new
heap-spraying technique, called Heap Taichi, which can evade ex-
isting detection mechanisms. By precisely manipulating the heap
layout, Heap Taichi only needs to put executable code at a small
number of offsets in a heap block, and thus makes the “large of
NOP sled” feature in traditional heap-spraying attacks unnecessary.

To demonstrate the feasibility of Heap Taichi, we made proof-of-
concept heap-spraying attacks using Heap Taichi. Our experiments
showed that the surface area of a Heap Taichi attack is significantly
less than the acceptable threshold used in existing solutions. We
also studied the impact of different memory-allocation granularity
on heap-spraying attacks and system performance, and found that
larger memory allocation granularity gives attackers more flexibil-
ity without significant gain in performance.

To address this problem, we proposed methods to enhance exist-
ing heap-spraying attack detection techniques by considering mem-
ory allocation granularity, and experimented with new ways of mem-
ory allocation.

Contributions:

∙ We analyze the implication of modern operating systems’
memory allocation granularity on heap-spraying attacks, and
present a new heap-spraying technique utilizing the weak-
ness of memory alignments, which can effectively evade ex-
isting detection tools.

∙ We present four heap object structures that do not require a
large amount of NOP sled. We provide insight into the rela-
tionship between memory alignment size and heap-spraying
attack surface areas.

∙ We implement proof-of-concept Heap Taichi, and measure
the attack surface areas of these attacks. Experiments showed
that our heap-spraying attacks are a realistic threat, which
can evade existing detection tools.

2. HEAP SPRAYING AND DEFENSE
In this section, we describe a typical heap-spraying attack, and

discuss existing defense mechanisms.

2.1 Heap-spraying attacks
Throughout the paper, we use the term heap region to refer to

all the memory areas of a process’s heap. We use the term heap
block to refer to the memory block allocated for heap, e.g., the
blocks allocated by Windows’s memory management through the
VirtualAlloc family APIs. We call individual objects allo-
cated on the heap heap objects, e.g., objects allocated by the API
HeapAlloc. Therefore, a heap region consists of several heap
blocks, and a heap block contains one or more heap objects.

Figure 1 illustrates a typical heap-spraying attack found by our
web crawler. The attack is launched by malicious JavaScript in a
web page, targeting a vulnerability in the Internet Explorer version
6 or version 7 [18]. In the first step of this attack, attackers cre-
ate a large amount of heap objects. Each heap object is filled with
a large number of NOP-like instructions (0x0c0c, the instruction
or al, 0ch) followed by a block of malicious shellcode. Illus-
trated in the right-hand side of Figure 1, the large white areas are
the NOP-like instructions, while the grey areas are the shellcode. If
attackers can hijack the process’s execution to any byte in the range
of NOP-like instructions, the malicious shellcode will be executed.
Although attackers cannot know the exact address of the injected
code, when the browser process’s heap region is very large, certain

sprayed heap area

Sled

0x0c0c : or al, 0ch
0x0c0c : or al, 0ch
0x0c0c : or al, 0ch
0x0c0c : or al, 0ch

shellcode

0x0c0c0000

0x0bfc0000

0x0bec0000

0x0c0c0c0c
0x0c0c0c0c

0x0c0c0c0c
0x0c0c0c0c

Stack area

return
address

ret

shellcode

shellcode

Shellcode
entry

Landing
action

Landing
position:
0x0c0c0c0c

stack buffer
overflow

Figure 1: The traditional heap spraying with stack buffer over-

flow exploit.

range of address, such as 0x0c0c0c0c, will be in the region of
allocated heap objects, as is illustrated in Figure 1.

After the heap is prepared with malicious shellcode, the second
step of this attack is to exploit a vulnerability in the victim pro-
cess, forcing the victim process to transfer control to the sprayed
heap region. Any vulnerability that can be exploited to affect the
control flow can be used in this step. Here we show an example
using a stack-based buffer overflow vulnerability, illustrated in the
left-hand side of Figure 1. By exploiting the buffer overflow vul-
nerability, attackers inject lots of 0x0c characters onto the stack,
overwriting the return address. When the program returns using the
corrupted return address, its execution is redirected to the address
0x0c0c0c0c, which is in the NOP sled of a sprayed heap object.
The victim program will continue through the NOP sled and reach
attackers’ shellcode.

Thanks to the defense mechanisms against buffer overflow at-
tacks, it is very hard for attackers to know the exact address of their
shellcode. Therefore, they cannot use the stack overflow to ex-
ecute their shellcode directly. In contrast, heap-spraying attacks
do not require attackers to know the detailed layout of the data
structures of the targeted memory region. But the object addresses
on the heap are harder to predict, even with the deployment of
ASLR [22, 33, 40, 44]. To increase the chance of success in the
second step of the attack, attackers usually put a long NOP sled
before the shellcode in their heap objects, and they have to inject
a large amount of heap objects containing shellcode, so that the
jump target of the attack will be covered by injected code with a
high probability. Otherwise, if the victim process jumps into the
middle of shellcode, or even jumps out of the heap region sprayed
by the attacker, the victim process often crashes because of invalid
memory access or invalid instructions.

In the rest of the paper, we use the following terms to describe the
behavior of a heap-spraying attack. 1) We call the execution after
the exploit and before running the shellcode a landing action. In
traditional heap-spraying attacks, the landing action usually runs
on the huge sled area, byte by byte. The traditional sled is filled
with NOP like bytes, such as 0x90 (NOP), 0x0c0c (or al, 0ch)
and these bytes lead to smooth landing actions. On the contrary,
landing actions executing some jump instructions, such as jmp,
are called bumpy landing. 2) The place where the landing action
starts is called landing position, or landing point. 3) The notion of
surface area is defined in the NOZZLE paper [32] as the number of
available landing positions in one heap object. 4) The normalized
attack surface area (NSA) is a heap object’s surface area divided by
the heap object’s size. The normalized attack surface area repre-
sents the percentage of sled in a memory block. It also represents
the possibility of successfully executing the shellcode when execu-

328

tion randomly falls into a heap object. 5) The shellcode entry is the
starting point of the shellcode.

2.2 Existing defense mechanisms
Existing defense mechanisms against heap-spraying attacks can

be classified into two main types based on the analysis they perform
on heap objects. Approaches of the first type detect shellcode by
searching for common patterns of shellcode. Approaches of the
second type analyze the control flow structure of heap objects to
identify common structures used in heap-spraying attacks.

Egele et al. [21] is an example of the first type. It monitors all
strings objects allocated in a browser’s JavaScript engine, and re-
ports an attack when there is shellcode detected in string objects
created by the script. To detect shellcode, it uses the libemu library
to identify suspicious and valid instruction sequences longer than
32 bytes. As is discussed in the paper [21], attackers can evade
detection by breaking shellcode into multiple fragments smaller
than 32 bytes and linking them with indirect jump/call instructions.
However, unless attackers can precisely control the landing posi-
tion, they still need a large portion of NOP sled to make a reliable
attack, which is well over the 32 byte threshold.

NOZZLE [32] is an example of the second type. Given a heap
object, it disassembles possible x86 instructions in the object and
build a control flow graph (CFG). As we have described earlier in
this section, the heap block used in a typical heap-spraying attack
contains a block of shellcode, and the rest of the heap block con-
tains instructions leading to the shellcode. NOZZLE searches for
this property in the CFG by identifying the location 𝑆 that can be
reaching from most of other locations in the heap object. The to-
tal number of locations that lead to 𝑆 is the surface area of the
heap object. In other words, NOZZLE draws the CFG of the heap
block. For each basic block in the CFG, it counts the number of
instructions that connect to the basic block. NOZZLE then calcu-
lates the surface area of the entire heap. When the surface-area-to-
heap-size ratio is greater than a threshold, NOZZLE reports a heap-
spraying attack. This approach is more accurate than the first type
approaches, because it looks for more intrinsic properties of heap-
spraying attacks: when the location of shellcode is not predictable,
it is necessary to include large surface areas to increase the chance
for success.

Both types of existing solutions assume attackers have little in-
formation about the address of their shellcode. With this assump-
tion, attackers cannot break sled and shellcode into small pieces to
evade the approach of Egele et al.; they also cannot evade NOZZLE
by only including very little NOP sled instructions. This assump-
tion is valid if heap objects are allocated randomly without restric-
tion. However, the randomness of heap object allocation is limited
by memory alignment enforced in operating systems. Next, we dis-
cuss its impact on heap memory allocation and describe an attack
that can evade both types of defense mechanisms.

3. HEAP SPRAYING WITH LITTLE SUR-

FACE AREAS
Memory alignment is commonly adopted in modern operating

systems for better memory performance. With memory alignment,
a memory block allocated for a process cannot start from arbitrary
addresses. Instead, the addresses must be multiples of the align-
ment size defined by the system.

In this section, we analyze the memory allocation behavior of the
Windows platform and its implication on heap-spraying attacks.
Then we describe a new attack technique that can evade existing
heap-spraying detection mechanisms. Note that other operating

systems such as Linux have a similar memory allocation behavior
to Windows, which differs mainly in the default memory alignment
size.

3.1 Windows memory allocation granularity
Windows memory alignment is controlled by the allocation gran-

ularity. On all existing Windows platforms, the value of alloca-
tion granularity1 is always 64K [33]. This size 64K was chosen
in part for supporting future processors with large page sizes [22],
as well as solving relocation problems on existing processors [3].
The memory allocation granularity only affects user-mode code;
kernel-mode code can allocate memory at the granularity of a sin-
gle page [22]. As a result of the Windows memory allocation gran-
ularity, almost all of the base addresses of non-free regions are
aligned with 64K boundaries. In a process’s memory space, only
few regions (allocated by kernel-mode code [33]) are not aligned.
Even with ASLR enabled [40], the alignment of memory region ad-
dresses is not affected. On Linux systems, the memory allocation
granularity is 4K bytes.

Therefore, taking Windows as an example, all heap blocks al-
located by user-mode code start from 64K boundaries. Note that
heap objects allocated by HeapAlloc can still start at random ad-
dresses in a heap block, but we have an interesting observation:
when a heap object is bigger than a certain threshold, 512K in
our experiment, Windows always allocates a separate heap block
for this object. That is, the addresses of large heap objects are
also aligned according to the allocation granularity, thus more pre-
dictable.

What is the implication of such a memory allocation behavior
on heap-spraying attacks? Recall that in the second step of a heap-
spraying attack, after the attacker triggers a control-hijacking ex-
ploit successfully, the victim process’s EIP register is loaded with
a value assigned by the attacker. If the starting addresses of heap
objects are fully random, the EIP can fall anywhere in a heap ob-
ject. For example, when the heap object’s size is 512K bytes, the
hijacked EIP can point to any byte of the 512K bytes. This is the
main reason for requiring a large amount of NOP-like instructions
in heap-spraying attacks. However, the Windows memory alloca-
tion granularity makes large heap objects’ addresses much more
predictable. If an EIP assigned by an attacker have few possi-
ble locations in a large heap object, the attacker only need to put
jump-equivalent instructions at those locations to guide the victim
process to execute malicious shell code, which breaks the assump-
tions, relied on by previous defense mechanisms. As a result, the
large block of NOP sled is no longer necessary for a heap-spraying
attack with high chances to succeed.

In fact, an EIP assigned by an attacker can only point to EIGHT
possible locations in a 512K-byte heap object, which is explained
in Figure 2 using the address 0x0c0c0c0c. Due to the 64K
(0x10000) Windows memory allocation granularity, a 512K-byte
heap object covering the address 0x0c0c0c0c can only start from
0x0c050000, 0x0c060000, ..., 0x0c0c0000. Therefore, the
offset of the address 0x0c0c0c0c0 inside the object have eight
possible values: 0x70c0c, 0x60c0c, ..., 0x00c0c. On each
of these offsets, if the attacker puts a few bytes, say 20 bytes (the
unconditional jump instruction takes five bytes on 32-bit x86), of
jumping instructions, the resulting surface area is very little: 160
bytes out of a 512K-byte object.

1It can be retrieved by the GetSystemInfo API (the
dwAllocationGranularity member of the returned
SYSTEM_INFO structure).

329

Memory address

512KB blocks

64KB
0x0c050000

offset=0x70c0c

0x0c0c0c0c

offset=0x60c0c
offset=0x50c0c
offset=0x40c0c

offset=0x30c0c
offset=0x20c0c
offset=0x10c0c
offset=0x00c0c

Figure 2: Possible offset of 0x0c0c0c0c in a 512KB heap blocks.

shellcode

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

Landing position

Shellcode entry
Type A

Passing the flower

Shellcode entry

Type B
Jumping all together

Landing position

shellcode

Shellcode entry

Type C
Returning home

A 512 KB memory block A 512 KB memory block

shellcode

shellcode

shellcode

shellcode

shellcode

shellcode

shellcode

shellcode

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

Landing position

A 512 KB memory block

Figure 3: Structures of new heap-spraying memory blocks.

3.2 Structure of malicious heap objects with
little surface area

As is discussed in the previous section, given a specific address
𝑎𝑑𝑑𝑟 in the heap region, the landing action can only start at few
offsets in a large heap object. Executable code at other offsets will
never be the direct jump target when the process transfers control
to the address 𝑎𝑑𝑑𝑟. With this new insight, we describe a few new
structures of malicious heap objects that result in very little surface
area.

The general idea is to put jump-equivalent instructions at possi-
ble landing positions to guide execution into attackers’ shellcode.
The shellcode is a small piece of code connected by jump-family
instructions, which can evade the approaches that detect valid in-
struction sequences. Figure 3 shows three types of the new heap
block structures that have little surface area. In this figure, each
rectangle with bold boundary stands for a heap object. The shadow
areas are bytes with random values. The possible landing positions
are represented as solid dots. Shellcode is represented as white
rectangles, with a circle indicating its entry point.

∙ In the Type A structure, attackers first copy the block of ma-
licious shellcode into the heap object. The landing positions
are chained together to reach the shellcode entry. That is,
each landing position is a set of jump-equivalent instructions
that point to the next landing position. The instructions at the
last landing position lead to the shellcode entry.

∙ In the Type B structure, attackers put jump-equivalent in-
structions at the possible landing positions. Each group of
jump instruction will jump to the shellcode entry.

∙ In the Type C structure, the malicious shellcode is directly
put at each landing position. By using this kind of memory
blocks, the landing action is eliminated and the shellcode is
executed immediately after the exploit is triggered.

In the Type C structure, although there are several copies of
shellcode, the surface area is as small as one copy because the
copies of shellcode are not connected. The Type C structure re-
quires the shellcode size to be smaller than the alignment granular-
ity. To launch such an attack on an operating system using a small
alignment granularity, say 32 bytes, we introduce the Type D heap
object structure, which is an improved Type C structure.

Shown in Figure 4, the main idea of this structure is that we
can split the shellcode into pieces and link these pieces with jump
instructions. We place jump instructions at each landing point to
jump to the shellcode. Similar to the Type C structure, although
there are lots of shellcode copies in the heap block, the measurable
surface area is small. We illustrate this type of structure by an ex-
ample. Assuming the memory allocation granularity is 32 bytes,
we construct a 512K-byte heap block using the Type D structure,
which includes 1024 copies of shellcode. In the heap block, we
need to create 512𝐾/32 = 16384 landing points. Each landing
point connects to one of the shellcode copies sequentially or arbi-

330

Shellcode(no more than 400bytes)

1024 linked shellcodes (512k bytes)

Shellcode
piece

Shellcode
piece

......
Shellcode
piece

Shellcode
piece

400 bytes

25 byte

Shellcode piece
25 byte

hdr
jump

tail
jump

Shellcode piece
25 byte

hdr
jump

tail
jump

to a shellcode start

to next
shellcode
piece

from
previous
tail jump

to another shellcode start

32 byte 32 byte

......

512 bytes linked shellcode

1

2

3

4

......

......

......

Figure 4: Type D layout ‘Dropping around’

trarily. This transformation is still a “sled construction” technique,
which plants landing points inside the shellcode. The shellcode
features are not changed after these landing points inserted.

Type D structures can be created using the following technique.
Given a piece of shellcode2, we first split it into pieces, where each
piece is less than or equal to 25 bytes. If a piece is less than 25
bytes, we append a few NOP-like instructions to it to make the size
of all pieces 25 bytes. To connect the shellcode pieces, we enclose
each shellcode piece between a prologue and an epilogue, shown
in Step 2 of the figure. The prologue is called “header (hdr) jump”
and it’s a jump instruction (5 bytes, jump near, relative, displace-
ment relative to next instruction) pointing to the shellcode’s starting
position. We need to distribute the header jumps to the start of 1024
copies of shellcode evenly. In the attack, the prologues are put at
landing points. The epilogue is called “tail jump” and it’s a jump
instruction (2 bytes, jump short, relative, displacement relative to
next instruction). In the attack, the epilogues connect the shellcode
pieces. The tail jump only jumps 2 + 5 = 7 bytes forward. So
with the prologue and epilogue, each shellcode piece is extended to
25 + 5 + 2 = 32 bytes. In the third step, we combine 16 such 32-
byte pieces to form shellcode of 16× 32 = 512 bytes. We call it a
512-byte linked shellcode. To fit the selected original shellcode into
such a block, the shellcode size should be less than 25× 16 = 400
bytes. Finally, we merge 1024 linked shellcode pieces into one
heap memory block. There are 1024 × 16 = 16384 header jumps
inside the heap memory block and they are the landing positions.

The final heap memory block will be used in our new heap-
spraying attack. The possible landing positions are at each 32 byte

2The size of shellcode ranges from dozens to hundreds [12].

Alignment size Type A Type B Type C Type D
64 kbytes

√ √ √ √
32 bytes

√ √
×

√
8 bytes

√ √
× ×

4 bytes
√

× × ×

Table 1: Relationship between layout types and alignment size.

boundary. So we could exploit to address such as 0x0c0c0c20,
0x0c0c0c40, 0x0c0c0c60, and etc. When the execution starts
from any one of the landing positions, it will reach the shellcode.

We summarize the relationship between four heap object struc-
tures and the memory alignment boundaries in table 1. When the
alignment size is 64K bytes, all four heap object structures can be
used. More generally, all four heap object structures can be used as
long as the alignment size is larger than the size of the shellcode.
When the alignment size is smaller than the size of the shellcode,
the Type C layout does not work anymore, but the Type D is still
effective.

In the new attack discussed in this paper, the sprayed heap ob-
jects are mostly filled with bytes that cannot be treated as NOP sled
or bytes that cannot be interpreted as legal x86 instructions. NOZ-
ZLE can only find memory blocks that have a normalized surface
area much lower than its threshold.

3.3 Surface area calculation
Our calculation involves the following variables: heap mem-

ory block size 𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘, alignment size 𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡, shellcode
size 𝑠𝑖𝑧𝑒𝑠𝑐, and normalized attack Surface Area 𝑁𝑆𝐴. We use
𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝑋 to represent the normalized attack surface area of Type
X.

331

8 4k32 64k

1/8

1/32

1/4k

1/64k

X

X

X

XO O O

X - Type A,B
O - Type C,D

NSA

Alignment
size(byte)

Figure 5: Normalized attack surface.

𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐴 ≈ 𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐵

≈
𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

=
1

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+

𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐶 ≈ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑁𝑆𝐴𝑡𝑦𝑝𝑒𝐷 ≈
𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
+ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

=
𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
× (1 +

1

𝑠𝑖𝑧𝑒𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
)

≈ 𝑠𝑖𝑧𝑒𝑠𝑐

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

From the formulas we can see that

∙ The 𝑁𝑆𝐴 of Type A and B consists of two parts. The first
term of the 𝑁𝑆𝐴 is only relevant to alignment size, and the
second term is relevant to both shellcode size and block size.
The 𝑁𝑆𝐴 of Type A and Type B increases when the align-
ment size or block size decrease, or when the shellcode size
increases.

∙ The 𝑁𝑆𝐴 of Type C is only relevant to the size of shellcode
and memory block size. The 𝑁𝑆𝐴 is proportional to the size
of shellcode, and is inversely proportional to the size of the
memory block size.

∙ The 𝑁𝑆𝐴 of Type D is more complex, but it is clear that
the 𝑁𝑆𝐴 is inversely proportional to the size of the mem-
ory block. We also found that the 𝑁𝑆𝐴 of Type D is much
smaller than that of Type A and B.

There are three independent variables in these formulas and the
function graph is hard to plot. To draw the graph, we must fix two
of them. We assume that the heap memory block size is 1M bytes
and the shellcode size is 256 bytes. Figure 5 shows the function
graphs. The X-axis indicates the alignment size in bytes and the
Y-axis indicates the normalized attack surface area (NSA). To sim-
plify the calculation, we assume all the size of all instructions is
one. Therefore, the surface area of practical samples may be two or
three times of the theoretical value. As is showed in Figure 5, the
normalized attack surface of all new heap objects is lower than the
threshold of NOZZLE (50%).

3.4 Detecting Heap Taichi attacks

Enhanced NOZZLE detection.
From the above discussion, we can see that the assumptions made

by NOZZLE are not necessary for a reliable heap-spraying attack.
NOZZLE can be enhanced to detect some of the new attacks by

considering the effect of memory allocation granularity. The key is
that all the landing positions should not be treated as the same. In-
stead, an enhanced NOZZLE algorithm should count the numbers of
landing positions on each offset inside an “alignment-size segment”
and record these numbers into an array. For example, on a 64K-byte
aligned system, in a 1M-byte heap memory block, the three land-
ing positions at 0x00c0c, 0x10c0c, 0x20c0c number the
count at 0x0c0c as three. In the example of case study, the array
at offset 0x0c0c is counted as 8. Then we calculate the success
rate on each offset. In the example of case study, the success rate
on 0x0c0c is 8 ÷ 8 = 100% and on other positions the success
rates are 0 ÷ 8 = 0%. Any success rate over 50% means a poten-
tial threat that may trigger a shellcode with a high success rate. The
improved NOZZLE report a potential heap-spraying attack when it
finds an offset with success rate over 50%.

However, the enhanced algorithm cannot deal with the Type C
and D attack, where there are many copies of shellcode in one
heap memory block. The landing positions are different from each
other when analyzed statically because that they connect to differ-
ent shellcode copies and these shellcode copies are not connected
in the CFG. So, in Type C and D attack, the enhanced NOZZLE
calculates the success rate at offset 0x0c0c as 1 ÷ 8 = 12.5%.
We report our evaluation results of this enhanced algorithm in Sec-
tion 4.2.

Heap memory allocation in finer granularity.
The main problem behind this new type of attack is the pre-

dictability of heap addresses resulted from the coarse granularity
of memory allocation. So a natural solution to prevent Heap Taichi
attacks and similar attacks is to aligning memory allocation at a
smaller-sized boundary. But we found it not easy to achieve in our
experiments, because several application-level libraries align allo-
cated memory objects by themselves.

There are many heap managers on different levels of a program,
each of which has its own heap management strategy. For exam-
ple, at the kernel level, there are “heap manager” in Windows,
“SLUB allocator” in Linux, and Address Space Layout Permuta-
tion (ASLP) [26] in Linux. At the library level, there are libraries
like jemalloc [23] and tcmalloc [35]. At the program level, we
found that Firefox implemented a memory allocator based on ob-
ject lifetimes named “JSArena” [25]. The heap manager on each
level always manages its own “chunks” and also tries to get the
chunks aligned on its own boundaries. Therefore, the granular-
ity enforced by lower levels may be ignored in higher levels. For
instance, jemalloc wraps VirtualAlloc and keeps its chunks
aligned at 2M-byte boundaries. If the VirtualAlloc returns
a memory block not aligned at the 2M-byte boundary, jemalloc
frees the chunk and repeats the allocation until the returned mem-
ory block is aligned at the 2M-byte boundary.

To our understanding, the main reason for user-level alignment
is performance. However, our performance evaluation (discussed
in Section 4.3) showed that the gain in performance by the user-
level alignment is not significant (less than 5% in our experiment).
Therefore, memory managers at all levels should use finer memory
allocation granularity for better security, a trade-off by sacrificing
a limited amount of performance.

332

0xCC 0xCC 0xCC
0xE9 0xFB 0xFF
0x00 0x00 0xCC

0xCC 0xCC 0xCC

Jump to next
landing point

3084 bytes 6 bytes 62446 bytes0x0 0xC0C 0xC12 0xffff

0xCC 0xCC 0xCC shellcode 0xCC 0xCC 0xCC

3084 bytes
0xC0C

Type1_64k Type1_64k ... Type2_64kType1_64k

Extra 36
byte header

0x0 0xffff

Type1_64k:

Type2_64k:

Final block

Figure 6: A sample structure of memory blocks with little surface area.

1 function heapspray(){
2 var scstring = unescape("%u9090...");
3 var alignment_size = 0x10000;
4 var pre_len = 0x00000c0c;
5 var post_len = alignment_size - 0x00000c0c - 0x6;
6 var head_offset = 0x24;
7 var jmp_str = unescape("%uFBE9%u00FF%uCC00");
8 var type1_str = CreateCCstringwithsize(pre_len) + jmp_str + CreateCCstringwithsize(post_len);
9 var type2_str = CreateCCstringwithsize(pre_len) + scstring +

CreateCCstringwithsize(post_len + 0x6 - scstring.length * 2);
10 var type1_total_str = DuplicateStr(type1_str, 15);
11 type1_total_str = type1_total_str.substr(head_offset / 2,

type1_total_str.length - head_offset / 2);
// cut off the header bytes

12 var m = new Array();
13 for(i = 0; i < 200; i++)
14 m[i] = type1_total_str + type2_str;
15 }

Figure 7: Sample JavaScript spraying heap with Type A blocks.

4. EXPERIMENT AND EVALUATION
In this section, we describe our experiments of Heap Taichi,

which generated heap objects that can bypass existing detection
mechanisms. We also measure their normalized attack surface with
different alignment sizes in the experiments.

4.1 Case study: A sample JavaScript code cre-
ating Type A heap objects

In this section, we give a JavaScript example of spraying a browser’s
heap with our Type A heap objects. This attack can also be done in
other languages, including VBScript and ActionScript.

Figure 6 illustrates the structure used in this example. The ma-
licious heap object’s size is 1M bytes, consisting of two types of
64K-byte memory blocks. The first type only contains jump in-
structions at the landing positions, pointing to the landing position
in the next block. The second type of block contains the shellcode
at the landing position. We use the address 0x0c0c0c0c as the
jump target in step two of the attack. According to our analysis
in Section 3, the landing position is at the offset 0x0c0c of each
64K-byte block. We construct the final block by concatenating 15
type-1 blocks and one type-2 block, forming a heap object of 1M
bytes. Note that each heap object allocated by Javascript has a 36-
byte header (a Windows heap management header and a Javascript
heap management header); we need to remove 36 bytes at the be-
ginning of the final block, so that the offsets of landing positions
will not be shifted by the header.

Figure 7 shows a piece of JavaScript code that implements a
Heap Taichi attack, performing the heap object construction and

heap spraying. The function CreateCCstringwithsize is
used to create a string filled with value 0xCC and the function
DuplicateStr is used to create a long string. We fill the blocks
with 0xCC, because it is the opcode of x86’s INT 3 instruction,
regarded as a terminator of a sequence of shellcode by existing ap-
proaches. We can fill these blocks with random bytes, because they
are not used anyway. Because JavaScript strings use unicode en-
coding where each character takes 16 bits, we need to divide the
length measured in bytes by two to get the correct length of uni-
code strings. Line 7 constructs the type1_64k block, and line 8
constructs the type2_64k block. Then line 9 and line 10 prepare
the first half of the final block. Thirty six bytes are cut from the first
half to accommodate the heap header. Finally, the heap is sprayed
in line 12 to line 14 by an array of 200 strings containing the final
block, taking up 200M bytes of the browser’s heap region.

The scstring is filled with shellcode that libemu [9] cannot
detect, which is captured by our drive-by download monitoring sys-
tem [47]. The main reason that libemu cannot detect such shell-
code is that libemu just emulates shellcode and once the shellcode
includes instructions like xor eax, [edi] where register eax
can only be determined at run-time, libemu cannot work well. For
more evasion techniques, we refer readers to [29]. We extracted
44 shellcode pieces from those cached web pages, and 12 of them
can’t be detected by libemu. We choose a 236-byte shellcode to
fill the scstring. Thus this script can bypass defending tech-
niques based on libemu shellcode detection. We have also scanned
this shellcode using 12 anti-virus products, and none of them could
recognize it as a malicious code.

333

Sample ID Heap Object Type Alignment size
A64k Type A 64k bytes
B64k Type B 64k bytes
C64k Type C 64k bytes
A4k Type A 4k bytes
B4k Type B 4k bytes
C4k Type C 4k bytes
A32 Type A 32 bytes
B32 Type B 32 bytes
D32 Type D 32 bytes
A8 Type A 8 bytes
B8 Type B 8 bytes

Table 2: Samples used in surface area measurement

Block type Alignment size
8 bytes 32 bytes 4K bytes 64K bytes

Type A 14% 3.6% 0.030% 0.0068%
Type B 25% 3.6% 0.030% 0.0068%
Type C 0.0055% 0.0054%
Type D 0.015%

Table 3: Normalized attack surface area in our experiments

In our experiment, we modified a cached drive-by download web
page by replacing its heap-spraying script with the one shown in
Figure 7. Then we browsed the page using IE6 on Windows XP.
The script reliably executed the shellcode, which downloaded and
installed a bot on the victim machine.

4.2 Surface area measurement experiments
We build several example heap blocks of all the four heap struc-

tures and various alignment sizes, shown as Table 2. For exam-
ple, A64k is the one given in the last subsection. B64k uses type
B structure, a modified version of A64k with different jump in-
structions. C64k uses Type C structure, which can be achieved
by replacing all type1_str with type2_str in our example
JavaScript. The shellcode used in our experiment has 236 bytes,
including 101 instructions. Its maximum attack surface area is 56.

To measure the normalized attack surface area (NSA), we im-
plemented NOZZLE’s surface area measurement algorithm. Table 3
summarizes the measured NSAs. We also plotted the results in Fig-
ure 8, where the Y-axis indicates the NSA of the attack vectors and
the X-axis indicates the test cases. In Figure 8, we also marked
several thresholds used in NOZZLE. When alignment size is 32 or
higher, the normalized attack surface areas of the samples are far
below the 50% threshold in NOZZLE.

When alignment size is 8, the Type C and Type D heap objects
cannot be created. B8 exceeds the 20% “no false positive thresh-
old” of NOZZLE, and A8 is on the border. The enhanced NOZZLE
detection should cooperate with 8-byte or 4-byte heap allocation
granularity. In the Type A and Type B objects, there are many
landing positions connects to one copy of shellcode. The enhanced
NOZZLE detects all of them and reports a heap spraying attack.

Also, we can see the difference in ratio between these results and
the theoretical calculation in Section 3 is less than 3.0, which is
close to the average instruction length. Therefore, the experiments
confirm our theoretical analysis.

4.3 Performance of fine-grained memory allo-
cation granularity

To evaluate the performance of 8-byte alignments, we built the
Firefox 3.6.3 with jemalloc enabled and also modified jemalloc and
SpiderMonkey with 8-byte randomization. Then we measured the
modified Firefox’s Javascript performance with Sunspider Javascript

Threshold proposed by Nozzle(50%)

No false positive threshold of Nozzle(20%)

Max top 150 Alexa sites(12%)

Figure 8: Sorted normalized attack surface area

shellcode

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

64KB cycle

Type A+B+C

A 512 KB memory block

shellcode

Figure 9: A sample mixed layout

Benchmark and V8 Benchmark. The result showed that the perfor-
mance overhead is less than 5%. Researchers [26] also reported
acceptable performance overhead of an 8-byte aligned randomiza-
tion using other benchmarks.

5. DISCUSSION

5.1 Variations of Heap Taichi
Section 3 describes four basic memory layouts of Heap Taichi.

Attackers may create new attacks by extending Heap Taichi.
At instruction level, attackers can replace those jump instruction

with different instruction sequences, and fill arbitrary instructions
between landing points and shellcode. At layout level, attackers
can use the basic layouts to compose new layouts. For example,
Figure 9 shows a “mixed” layout by combining Type A, B and C.
Type C includes multiple copies of shellcode but keeps a small sur-
face area; Type A and B layouts introduce more surface area but
fewer shellcode copies. Attackers could use all these types in one
heap block to balance these characteristics to evade detections.

5.2 Difficulty of detecting Heap Taichi attack
Under the 64K-byte alignment size, there are only 16 landing

points in one 1M heap block as analyzed in Section 3. Attackers

334

could use mixed layouts similar to the example in Figure 9: place 3
to 5 shellcode pieces in one 1M heap block, and let landing points
lead to any one of these shellcode pieces. In average, four landing
points flow into one shellcode copy. Under this situation, there are
no obvious anomalies in statistics compared to benign heap blocks,
and it is very hard for methods like NOZZLE to detect this kind of
attack without a high false positive rate.

As a consequence, to detect Heap Taichi under 64k memory
alignment is as hard as to detect four shellcode copies in a 1M-
byte heap object in real time. This could be a real challenge, and
there is no practical solution which achieve both low false negative
and low false positive so far.

6. RELATED WORK

6.1 Heap spraying with ASLR and DEP
The Address Space Layout Randomization(ASLR) technique [22,

33,40,44] is widely used in recent Windows versions such as Win-
dows Vista and Windows 7. Analyses [40, 44] show that the ran-
domization of heap area is quite weak. For each heap memory
block, the system creates a five bit random number (between 0 and
31) and multiplies it with 64K, and then adds the product to the ini-
tial allocation base. This technique affects heap-spraying attacks,
because it creates unpredictable gaps between the memory blocks.
But attackers can deal with it by allocating a huge memory block
and structure it carefully, so that the risk of landing in the gaps
would be significantly reduced.

The ASLR-based defense is not effective on the new attack dis-
cussed in this paper. Because of the Windows memory allocation
granularity, heap blocks are still aligned to 64K boundaries even
after randomization. That means, the relative landing positions
in each heap object is unchanged. As long as attackers can spray
enough memory area using the heap region, the attack can still have
a high success rate.

Data Execution Prevention (DEP) [1] is complementary to ASLR.
It is an effective scheme to prevent an application or service from
executing code from a non-executable memory region. Since shell-
code is injected into non-executable memory region, most code in-
jection attacks cannot work anymore when both DEP and ASLR are
turned on. However, the attack techniques that can bypass DEP and
ASLR are continually proposed. For example, Nenad Stojanovski
et al. [41] showed that initial implementation of the software for
DEP in Windows XP is actually not at all secure, and many at-
tacks (such as return-to-libc like attack) can bypass DEP protec-
tion. Furthermore, Alexander Sotirov and Mark Dowd [39] imple-
mented several exploitation techniques to bypass the protections
and reliably execute remote code on Windows Vista. Dion Blaza-
kis [15] illustrated two novel techniques (i.e., pointer inference and
JIT spraying) to Windows Vista with IE8. Recently, during the
PWN2OWN hacking contest 2010 [10], both IE 8 and Firefox 3
web browsers running on the Windows 7 system (both DEP and
ASLR enabled) were successfully compromised. We believe that
the attacks against DEP and ASLR cannot be completely avoided
due to the vulnerabilities in operating systems or security-critical
applications.

6.2 Heap-spraying attack and detection
Our approach is closely related to existing work on heap be-

havior manipulation, heap-spraying detection, as well as x86 ex-
ecutable code detection.

Heap behavior manipulation. A successful heap-spraying
attack requires attackers to be able to predict the heap organiza-

tion and, more importantly, locations of allocated heap objects.
Sotirov [38] introduced a technique to use JavaScript to manipu-
late browser heap’s layout, and implemented this technique into
a JavaScript library for setting up heap state before triggering a
vulnerability. Daniel et al. [19] developed a technique to reliably
position a function pointer after a heap buffer that is vulnerable to
buffer overflow. In this paper, we leverage a weakness on Windows
heap allocation due to the large memory allocation granularity en-
forced on Windows systems, which makes heap allocation more
predictable for attackers.

Executable code detection. Recent researches such as [28,
37] have proved that detecting arbitrary shellcode by static code
features is difficult and even infeasible. In the context of network
packets, several solutions [11,30,42] can detect executable code in
the payload, but they cause high false positives in the context of
heap objects [32], which makes them unsuitable for heap-spraying
detection. In section 2.2, we have discussed several detection meth-
ods in detail.

6.3 Memory exploit detection and prevention
Note that heap spraying itself cannot directly cause the malicious

payload to be executed. A successful attack needs another vulner-
ability to trigger the change of control flow to the sprayed heap.
Detecting and preventing such vulnerabilities can stop heap spray-
ing.

Buffer overflow is the common vulnerability exploited to redirect
victim process’s control flow. Traditional buffer overflow attacks
target the pointer variables on stack or heap. A large number of
solutions [45] have been proposed to address this problem. Among
these efforts, address space layout randomization (ASLR) [2, 13,
14] provides general protection against memory exploits by ran-
domizing the location of memory objects. It is now widely adopted
in major operating systems. Note that address space layout ran-
domization makes the location of memory objects, including heap
objects, unpredictable, thus forcing heap-spraying attacks to in-
ject a huge amount of heap objects containing code to increase the
chance of success. This forms the basis for existing heap-spraying
detection solutions.

Another common vulnerability exploited in browsers is integer
overflow. Many integer overflow vulnerabilities are disclosed in
recent years, and some integer overflow detection and prevention
methods are proposed [16,43]. Integer overflow leads to heap over-
flow in many cases, and heap spraying could construct step stones
when exploiting these vulnerabilities.

In practice, it is very hard to eliminate all such vulnerabilities.
Also, the runtime overhead prevents many of these approaches from
being deployed widely. Therefore, the solution from this paper
complements the approaches in memory exploit prevention.

7. CONCLUSION
Heap-spraying code injection attacks are commonly used in web-

sites with exploits and drive-by downloads. This technique pro-
vides the attacker an easy-to-use code injection method which can
be implemented in many type-safe languages. Since traditional
heap spraying attacks require large number of NOP sled to increase
the possibility of successful attacks, existing detection solutions
mainly check for large amount of executable instructions on the
heap.

By analyzing the operating systems’ memory allocation mech-
anism, we found that the large amount of NOP sled is not neces-
sary for heap spraying attacks if the memory alignment size is large
enough. We introduced a new technique to launch heap-spraying

335

attack, which only injects a little amount of executable instruction,
making it undetectable by existing approaches. We discussed the
four basic types of attack modes and provide insight into the re-
lationship between memory alignment size and heap spraying at-
tack surface areas. We verified the technique by a proof-of-concept
implementation. Even when the alignment size is 32 bytes, our
attack can evade existing detection techniques. As a solution, we
propose to enforce finer memory allocation granularity at memory
managers of all levels, trading a limited amount performance for
better security.

Acknowledgments The authors would like to thank the anony-
mous reviewers for their valuable comments. This work was sup-
ported in part by National Natural Science Foundation of China
under the grant No. 61003216, National Development and Reform
Commission under the project "A monitoring platform for web safe
browsing", and Singapore Ministry of Education under the NUS
grant R-252-000-367-133.

8. REFERENCES
[1] Microsoft Corporation. Data execution prevention. http:

//technet.microsoft.com/enus/library/cc738483.aspx.
[2] The PaX team. http://pax.grsecurity.net.
[3] Why is address space allocation granularity 64k? http://blogs.msdn.

com/oldnewthing/archive/2003/10/08/55239.aspx.
[4] Microsoft Internet Explorer .ANI file “anjh” header BoF exploit, 2004.

http://skypher.com/wiki/index.php?title=www.edup.
tudelft.nl/~bjwever/details_msie_ani.html.php.

[5] Microsoft Internet Explorer DHTML object handling valuerabilities
(MS05-20), 2004.
http://skypher.com/wiki/index.php?title=www.edup.
tudelft.nl/~bjwever/advisory_msie_R6025.html.php.

[6] Microsoft Internet Explorer IFRAME src&name parameter BoF remote
compromise, 2004.
http://skypher.com/wiki/index.php?title=www.edup.
tudelft.nl/~bjwever/advisory_iframe.html.php.

[7] Microsoft Internet Explorer javaprxy.dll COM object vulnerability, 2005.
http://www.frsirt.com/english/advisories/2005/0935.

[8] Microsoft Internet Explorer “msdds.dll” remote code execution, 2005.
http://www.frsirt.com/english/advisories/2005/1450.

[9] libemu - shellcode detection, 2007. http://libemu.carnivore.it.
[10] Pwn2own 2010, 2010. http://dvlabs.tippingpoint.com/blog/

2010/02/15/pwn2own-2010.
[11] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. STRIDE:

Polymorphic sled detection through instruction sequence analysis. In Security
and Privacy in the Age of Ubiquitous Computing, 2005.

[12] C. Anley, J. Heasman, F. Lindner, and G. Richarte. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes. Wiley, 2004.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In Proceeding of
12th USENIX Security Symposium, 2003.

[14] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of 14th
USENIX Security Symposium, 2005.

[15] D. Blazakis. Interpreter exploitation: Pointer inference and jit spraying. In
Blackhat, USA, 2010.

[16] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. RICH: Automatically
protecting against integer-based vulnerabilities. In Proceedings of the 14th
Annual Network and Distributed System Security Symposium (NDSS), 2007.

[17] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In POPL ’98: Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, 1998.

[18] CVE, 2007. http://www.cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2007-0038.

[19] M. Daniel, J. Honoroff, and C. Miller. Engineering heap overflow exploits with
JavaScript. In Proceedings of the 2nd USENIX Workshop on Offensive
Technologies, 2008.

[20] T. Detristan, T. Ulenspiegel, and Yann_malcom. Polymorphic shellcode engine
using spectrum analysis. Phrack 11,57-15 (2001).

[21] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browser against
drive-by downloads: Mitigating heap-srpaying code injection attacks. In
Proceedings of the 6th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2009.

[22] M. E.Russinovich and D. A.solomon. Microsoft Wndows Internals, Fourth
Edition: Microsoft Windows Server 2003, Windows Xp, and Windows 2000.
Microsoft Press, 2008.

[23] J. Evans. A scalable concurrent malloc(3) implementation for freebsd. In
BSDCan conference, 2006.

[24] P. Fogla and W. Lee. Evading network anomaly detection systems: formal
reasoning and practical techniques. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security, 2006.

[25] D. R. Hanson. Fast allocation and deallocation of memory based on object
lifetimes. Softw. Pract. Exper., 20(1):5–12, 1990.

[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout
permutation (aslp): Towards fine-grained randomization of commodity
software. In ACSAC’06: Proceedings of the 22th Annual Computer Security
Applications Conference, 2006.

[27] C. Linn and S. Debray. Obfuscation of executable code to improve resistance to
static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, 2003.

[28] J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode. In CCS
’09: Proceedings of the 16th ACM conference on Computer and
communications security, 2009.

[29] M. Polychronakis, K. Anagnostakis, and E. Markatos. Emulation-based
detection of non-self-contained polymorphic shellcode. In Proceedings of the
10th International Symposium on Recent Advances in Intrusion Detection
(RAID), 2007.

[30] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-level
polymorphic shellcode detection using emulation. In Proceedings of the 3rd
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2006.

[31] I. V. Popov, S. K. Debray, and G. R. Andrews. Binary obfuscation using signals.
In SS’07: Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, Berkeley, CA, USA, 2007.

[32] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZZLE: A defense against
heap-spraying code injection attacks. In Proceedings of the 18th USENIX
Security Symposium, 2009.

[33] J. Richter and C. Nasarre. Windows via C/C++ 5th edition. Microsoft Press,
2008.

[34] RIX. Writing ia32 alphanumeric shellcodes. Phrack 11,57-15 (2001).
[35] P. M. Sanjay Ghemawat, 2005. http:

//goog-perftools.sourceforge.net/doc/tcmalloc.html.
[36] SecurityFocus. Mozilla Firefox 3.5 ‘TraceMonkey’ component remote code

execution vulnerability, 2009.
http://www.securityfocus.com/bid/35660.

[37] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo. On the
infeasibility of modeling polymorphic shellcode. In CCS ’07: Proceedings of
the 14th ACM conference on Computer and communications security. ACM,
2007.

[38] A. Sotirov. Heap feng shui in JavaScript. In Blackhat, USA, 2007.
[39] A. Sotirov. Bypassing browser memory protections in windows vista. In

Blackhat, USA, 2008.
[40] A. Sotirov and M. Dowd. Bypassing browser memory protections. In BlackHat,

USA, 2008.
[41] N. Stojanovski, M. Gusev, D. Gligoroski, and Svein.J.Knapskog. Bypassing

data execution prevention on microsoftwindows xp sp2. In The Second
International Conference on Availability, Reliability and Security (ARES), 2007.

[42] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract payload
execution. In Proceedings of the 5th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2002.

[43] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In Proceedings
of the 16th Annual Network and Distributed System Security Symposium
(NDSS), 2009.

[44] O. Whitehouse. An analysis of address space layout randomization on windows
vista™. In Symantec Advanced Threat Research, 2007.

[45] Y. Younan, W. Joosen, and F. Piessens. Code injection in C and C++ : A survey
of vulnerabilities and countermeasures. Technical Report CW386, Department
of Computer Science, Katholieke Universiteit Leuven, 2004.

[46] A. Young and M. Yung. Cryptovirology: Extortion-based security threats and
countermeasures. In SP ’96: Proceedings of the 1996 IEEE Symposium on
Security and Privacy, page 129, Washington, DC, USA, 1996. IEEE Computer
Society.

[47] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Studying malicious
websites and the underground economy on the chinese web. In Proceedings of
the 7th Workshop on the Economics of Information Security (WEIS’08), 2008.

336

SCOBA: Source Code Based Attestation on Custom
Software ∗

Liang Gu‡, Yao Guo‡
†

, Anbang Ruan§, Qingni Shen§,Hong Mei‡
‡Key Laboratory of High Confidence Software Technologies (Ministry of Education),

‡Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
§School of Software and Microelectronics, Peking University, Beijing, China

‡{guliang05,yaoguo,meih}@sei.pku.edu.cn,§{ruanab, shenqn}@infosec.pku.edu.cn

ABSTRACT
Most existing attestation schemes deal with binaries and
typically require an exhaustive list of known-good measure-
ments beforehand in order to perform verification. However,
many programs nowadays are custom-built: the end user is
allowed to tailor, compile and build the source code into
various versions, or even build everything from scratch. As
a result, it is very difficult, if not impossible, for existing
schemes to attest the custom-built software with theoret-
ically unlimited number of valid binaries available. This
paper introduce SCOBA, a new Source COde Based Attes-
tation framework, to specifically deal with the attestation
on custom software. Instead of trying to obtain a know-
good measurement list, SCOBA focuses on the source code
and provides a trusted building process to attest the result-
ing binaries based on the source files and building configu-
ration. SCOBA introduces a trusted verifier to certify the
binary code of custom-build program according to its source
code and building configuration. For custom-built software
based on open-source distributions, we implemented a fully
automatic trusted building system prototype for SCOBA
based on GCC and TPM. As a case study, we also applied
SCOBA to Gentoo and its Portage, which is a source code
based package management system. Experimental results
show that remote attestation, one of the key TCG features,
can be made practically available to the free software com-
munity.

∗This work is supported by the National Basic Research Pro-
gram of China (973) under Grant No. 2009CB320703, the
Science Fund for Creative Research Groups of China under
Grant No. 60821003, National Key S & T Special Projects
under Grant No. 2009ZX01039-001-001 and the National
High-Tech Research and Development Plan of China under
Grant No. 2007AA010304 and No.2009AA01Z139, and Na-
tional Natural Science Foundation of China under Grant No.
60873238 and No. 60903178.†corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Au-
thentication, Invasive software; D.2.4 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering, and reengineering

General Terms
Security

Keywords
Remote attestation, custom software, trusted computing,
free software, property-based attestation

1. INTRODUCTION
Many IT systems nowadays are conducted on open com-

puter platforms across heterogeneous domains or over the
public Internet. Entities in such an open, distributed and
dynamic environment usually behave on their own behalf
and may not trust each other for mission-critical operations
or transactions. Remote attestation provides an important
way to establish trust on parties in an open network. In
Trusted Computing Group’s trusted computing standard
[23], remote attestation allows a challenging platform, usu-
ally referred to as a challenger, to verify the configuration in-
tegrity of a remote platform (i.e., an attester). Recent years
have witnessed various evolutions out of the basic TCG at-
testation in many dimensions, including IMA [21], program
semantics attestation [12], security policy enforcement [14],
property attestation [4, 19], BIND [22], remote attestation
on program execution [11], and so on.

Most of the existing remote attestation schemes are based
on the integrity measurement of programs and configura-
tions. The size of known-good measurements greatly limits
the practicability of the existing attestation schemes. For
example, free software and open-source software make it dif-
ficult, if not impossible, for existing attestation schemes to
verify the genuineness of the corresponding binary code.

From the perspective of software deployment, there are
usually two types of software: custom software and pre-
packaged software. Many software nowadays are based on
open-source software distributions, which greatly accelerate
the software development process. However, since the users
are in control of all the source files, they are able to tailor,
configure and build their own executables to be deployed in
their own environment. Even worse, they could also modify
the source files at their own discretion, which would make

337

the situation worse for attestation schemes. Custom soft-
ware can be configured and tailored according to the end
user’s requirements which cannot be predicted by the soft-
ware provider. For example, Linux kernel can be configured
and built for each and different platform, with different re-
quirements specified by the users. The result is that even
all users download a specific software from the same trusted
source website, the executables they built themselves could
all differ from each others.

Existing remote attestation schemes are not adequate to
verify these custom-built software, mainly because it is im-
possible to hold a known-good measurement database for
so many different programs of unpredictable versions. Al-
though existing property-based attestation schemes [4, 19]
introduced the concept of attesting programs based on their
properties, these stated properties are still tied to the binary
code. As a result, these property-based attestation scheme
still need a giant known-good binary database, which is still
not able to handle the custom software.

To deal with these challenges from custom software, we
propose SCOBA, a new Source COde Based Attestation
framework to solve the above problems and initiate an ef-
fort for applying remote attestation, one of the key TCG
features, in the free software community. The rationale of
our scheme is to link specified binary code of the customized
software with its source code, and certify the generated bi-
nary code of the software according to both its source code
and building configuration.

In order to validate the generated binary code of custom
software, we introduce a Trusted Building System (TBS) to
enable a trusted building process for compiling the custom
software (Figure 1). In the trusted building process, the
source code of the target program is tailored according to
the end user’s requirements and it is complied into binary
code with the TBS, in which the binary code is bound with
its corresponding source code and building configurations.
The building process can be attested to prove the validation
of the generated binary code. With the generated binary
code and its corresponding source code as well as building
configuration, a trusted verifier is introduced to certify the
property of the custom software (step a and step b in Figure
1). At runtime, challenger may use the certificate to enable
remote attestation on the custom software (step c and step
d in Figure 1). So the trust chain of our attestation scheme
can be built from the TPM to the building process, and
finally to the attested custom software at runtime.

This paper makes the following key contributions:

• SCOBA solves the problem of known-good measure-
ments database for custom software. With the pro-
posed framework, it becomes practical to attest cus-
tomized software in open networks. To our best knowl-
edge, it is the first effort for employing attestation to
enhance trust establishment on customized software,
especially for customized open-source software.

• The proposed Trusted Building System enables an-
other party to validate and certify the generated binary
code of custom software according to its source code
and building configuration. Existing solutions can not
attest custom software, because it has no way of vali-
dating the binary code of custom-built software.

• The source code based approach is a more practical
way to obtain the software property. As SCOBA binds

the source code files and building configuration of the
customized software, the trusted verifier may obtain its
property by evaluating and testing these information.

• The trusted verifier in SCOBA serves as the verifica-
tion agent, which can be customized to accommodate
different types of software. As a result, SCOBA pro-
vides a flexible framework, which can be customized
according to different types of software development
process, as demonstrated by the case study on Gen-
too.

The paper is organized as follows: we will give a brief in-
troduction on background in Section 2. Section 3 introduces
the design of SCOBA. Section 4 presents the implementa-
tion and evaluation on the prototype of SCOBA. Section 5
introduces the application of SCOBA in Gentoo. Section 6
introduces the related work. Section 7 discusses the possi-
ble solutions for improving our scheme and its application.
Section 8 concludes the paper and discusses the future work.

2. BACKGROUND

2.1 Custom Software
From the perspective of software deployment, there are

usually two types of software: custom software and pre-
packaged software. Custom software, which is also called
bespoke software, allows end user to design and implement
software based on its own requirements. Pre-packaged soft-
ware, or“off-the-shelf”software is released by software provider
with specified configurations, such as the installation pack-
ages under Windows, rpm packages and Debian packages
under Linux.

Sometimes custom software is referred to as configured
software, or customized software, which is tailored or cus-
tomized from the original version of delivered software. The
custom software starts from an existing structure and it is
flexible for various requirements. Free software and open
software are the most widely available custom software. Like
the Linux kernel, end users may modify and configure the
free software at will to satisfy their specific requirements.
However, such flexibility results large number of unpredictable
versions for binary code of free software.

In this paper, we will consider two kinds of custom soft-
ware: custom-built software–customizing without modify-
ing the source code files; fully custom software–customizing
with modifications on source code files. For the first type,
the users customize the software distribution before build-
ing, but do not modify individual source code files that are
attained from trusted parties. For the fully custom soft-
ware, users can modify the source code of the original soft-
ware. For the custom-built software, as it is supposed to
have fixed source code, SCOBA is able to automatically cer-
tify this type of customized software. For the fully custom
software, SCOBA may have to employ experts or more so-
phisticated certification techniques to certify these modified
source code, such as model checking and testing.

When considering their tailoring platform, compilation
platform and execution platform, the custom software de-
ployment can either take place all on the same platform, or
it could be performed on separated platforms. For example,
the compilation and execution are carried out on separated
platforms; the source code is tailored and built on a sep-
arated platform according to the end user’s requirements.

338

d. Challenge Response

Attester Platform Challenger

Trusted b. Certificate Response

c. Challenge Request

d. Challenge Response

Binary

Code Property

Certificate

e. Certificate

Verification

Attester Platform

Trusted

Verifier
a. Certificate Request

b. Certificate Response

Source

Code

Building

Configuration

Trusted

Building

Code Configuration

TPM

Figure 1: The overview of SCOBA

These approaches may require different designs and imple-
mentations of secure execution environment for the trusted
building process in our scheme, and this will be discussed in
Section 3.3 and Section 4. For most existing customized soft-
ware, the first approach with the same platform is the most
frequently used, thus we will focus on it most of the time
and point out the difference if separated platforms might be
used.

2.2 Dynamic Root of Trust
The TCG specifications introduce authenticated boot (or

secure boot) to prove or guarantee that the system is booted
into a secure state. The authenticated boot and secure boot
provide a static root of trust based on the TPM. How-
ever, the static root of trust can not guarantee the secu-
rity of a runtime system. With AMD’s Secure Virtual Ma-
chine (SVM)[2] and Intel’s Trusted Execution Technology
(TXT)[13], it becomes practical to provide a dynamic root
of trust for runtime system. The dynamic root of trust can
strongly support a secure domain for dedicated system at
runtime. Some studies for leveraging dynamic root of trust
to provide secure execution environment have already been
proposed, such as OSLO [15], Flicker [17] and TrustVisor
[16]. For custom software delivered on the same platform,
the end user may run the compilation process in the secure
domain, which is supported by a dynamic root of trust.

3. SCOBA DESIGN

3.1 Attestation Framework
To provide remote attestation for custom software, we pro-

pose a new source code based attestation framework called
SCOBA, which is illustrated in Figure 2. Instead of trying
to obtain a list of known-good measurement list, SCOBA
focuses on the source code, and provides a trusted build-
ing process to verify the resulting binaries according to the
source files and building configuration.

Three parties are involved in SCOBA: the challenger, the
attester and the trusted verifier. A typical scenario is as
follows: the builder configures, tailors and builds a custom
software P according to the challenger’s requirement; the
trusted verifier certificates the custom software by check-
ing its source code, compiling configuration, binary code
and records of building process; the builder delivers the cus-
tom software to the challenger with its certification; at run-

time, the challenger wants to attest the property of this
customized program; the challenger and attester will carry
out the attestation procedure for this free software with the
help of the trusted verifier.

Attester
The attester is the end user of a customized program P ,
which is executed on the attester platform. The attester
customizes the source code of program P and takes a trusted
building process to compile the source code into binary code.
The trusted building process is introduced in Section 3.3.
The attester employs a trusted verifier for property certi-
fication on the tailored program. The attester platform is
supposed to be equipped with TPM.

Challenger
The challenger needs to attest the customized software being
executed on the attester platform. The challenger requests
the attester platform to return the integrity measurement
and certificate of the target program. With these results,
the challenger requests the trusted verifier to verify the cer-
tificate to determine the property of the target program.

Trusted verifier
The trusted verifier carries out two key tasks: property certi-
fication on customized software; runtime certificate verifica-
tion. When the attester finishes the trusted building process,
it requests a property certification on the customized pro-
gram by sending all required source code, binary code and
other records of trusted building process to the trusted veri-
fier. The trusted verifier checks all these files and records to
conclude with certain property for the customized program.
At runtime, the challenger requests the trusted verifier to
verify the certificate of the target program with specific in-
tegrity measurement. The trusted verifier can be a Trusted
Third Party that issues property certificates and verifies cer-
tificates. The original provider of the program from which
the customized software originates, can naturally serve as
the role of trusted verifier.

3.2 Attester Platform
In the SCOBA framework, we assume that the attester

platform (shown in Figure 2) is equipped with TPM, TXT[13]
or SVM[2], the Secure Virtual Machine, the TCG software
stack and an Attestation Agent, as well as a trusted building

339

Attester Platform Trusted Verifier

Binary

Attester Platform

Trusted Building System
Known-good

source code file s

and

building configurations

Trusted Verifier

Runtime

System

application

Source

Building

Config
GCC

with

TBS

hooks

Binary

Code

Certification

building configurations

Challenger

Attestation

Agent

OS

Source

Code

Certificate Repository

And

Revocation List

Challenger

Verification

Secure Virtual Machine

Hardware

OS

Certificate

VerificationTXT/SVM TPM

Figure 2: SCOBA Framework

system. The attester has privileges in controlling the soft-
ware system on its platform. The attester platform may pro-
vide both static root of trust and dynamic root of trust. The
challenger can establish trust on the integrity of a trusted
domain based on Secure Virtual Machine with a dynamic
root of trust.

Two separated domains are supported by the Secure Vir-
tual Machine on the attester platform. One domain is a
normal domain for ordinary operating systems. We intro-
duce an attestation agent as the kernel module in the OS for
runtime monitoring and recording target applications. The
attestation agent is also responsible for communications be-
tween the challenger and attester platform. When the attes-
tation agent receives the attestation request from the chal-
lenger, it records the states of target program and returns
the target program’s measurement and property certificate
to the challenger. With the support of TPM and Secure
Virtual Machine, the integrity of the attestation agent can
be recorded for attestation each time before it starts.

The other domain is a secure domain that hosts a Trusted
Building System (TBS). The TBS provides a trustworthy
process for building these customized source code into binary
code. The Secure Virtual Machine leverages the TXT/SVM
facilities to provide a trusted domain for TBS. The building
process can be attested to prove its trustworthiness.

The attester platform in Figure 2 is designed for cus-
tomized software deployed on the same platform (Section
2.1). The TBS is supported by a dynamic root of trust. If it
is carried out on separated platforms, the attester platform
can have only the normal domain with attestation agent,
while the TBS can be host on another separated platform.
So TBS can run in a separated environment and its trust
chain can be built on a static root of trust.

3.3 Trusted Building System
The Trusted Building System provides a trusted compi-

lation process. A compilation process is considered trusted
if the integrity of its execution can be attested to be with-

out tampering. As a result, the compiled binary can be
guaranteed to be generated from the input source code with
specified configuration. In our scheme, the execution of TBS
is protected by the secure domain, which can be set up at
runtime based on a dynamic root of trust. TBS is supposed
to be the minimal size for carrying out a compiling task and
it is practical to implement the TBS with a thin OS and
necessary compilation tools, e.g., the Linux From Scratch
[1].

TBS records the states of all required proofs for program
property certification. At the beginning of the trusted com-
piling process, TBS needs to record the building configura-
tion. TBS records the state of compiled source code and
output binary code files in a fine-grained and exact way ac-
cording to their compiling order: the state of each source
code file is recorded immediately before compilation; the
state of each binary code file is recorded immediately when
it is output by the compiler; meanwhile, TBS also binds
the binary code file’s measurement with the records of its
corresponding source code files. In order to guarantee the
integrity of these records, TPM is employed to record the
states of all files.

3.4 SCOBA Procedure
The SCOBA procedure consists of three phases in our

scheme: trusted building phase (trusted building in Figure
1), certification phase (step a, step b in Figure 1) and at-
testation phase (step c, step d, step e in Figure 1). TBS
is responsible for the trusted building phase and records all
required proofs for property certification on the target pro-
gram. The trusted verifier issues the certificate according
to these records generated by TBS. During the attestation
phase, the challenger attests the target program with the
help of the trusted verifier.

For a program P , its binary code files Fe = {fe1 , fe2 , ..., fei}
is built from its corresponding source code files S = {fs1 ,
fs2 , ..., fsj} with specified building configurations C = {cs1 ,
cs2 , ..., csj} and other dependent files Fd = {fd1 , fd2 , ..., fdk},

340

where fe is an executable file of P , fsi denotes a source code
file for P and csj stands for the building configuration of
fsj . These building configurations may be stored in some
script files FC = {fc1 , fc2 , ..., fcm}, such as Makefile, .config
files on Linux and the building command options. Other
dependent files include mainly library files used during the
building process.

3.4.1 Trusted Building Phase
In the trusted building phase, we bind the binary code of

a program with its source code and building configuration.
By leveraging a secure domain and TPM, a trust chain is
built from the source code and building configuration to the
generated binary code.

In order to construct the trust chain from TPM, two
PCRs are employed in our scheme: one for authenticated
boot of TBS (PCRab) and another for the trusted building
process(PCRtbp). These two PCRs are reset at the initial-
ization stage of the secure domain. When the attester starts
the trusted building process, a secure domain is initiated
by the Secure Virtual Machine and the subcomponents of
TBS are measured and recorded with an authenticated boot
before it is about to run. After TBS finishes initialization,
it starts to compile the target source code files and records
the state of input and output files. TBS employs TPM to
record the compilation process with PCR extend. All in-
puts, intermediate outputs and generated codes are recorded
to attest the compilation process.

As shown in Figure 3, a typical compilation task is carried
out in roughly five stages: Preprocessing, Parsing, Transla-
tion, Assembling, and Linking. We may consider each stage
as a transformation process with certain inputs and outputs.
As shown in Figure 4, we may consider the compilation pro-
cess as a sequence of transformations. The output of each
prior stage can be the input of the next stage. The out-
put of each stage may be in different forms according to
different compiler implementations and building configura-
tions. Usually the output includes specific data structure in
the compiling process, and other supporting files. The TBS
records the states of these output files and binds it with its
corresponding inputs.

A transformation process T may have input files Fin =
{fin1 , fin2 , ..., fini} from the prior transformation process,
output files Fout = {fo1 , fo2 , ..., foj} and other dependent
files Fd(T) = {fd1 , fd2 , ..., fdk}. For example, the object files
generated by the Assembling process are the inputs files of
Linking stage; the executable files produced at the Linking
stage (F©) are output files; the library files at the Linking
stage are dependent files.

As shown in Figure 4, four key points for monitoring and
recording the trusted building process are identified:

• Point S©:the moment immediately before the initial-
ization of the building process ;

• Point A©:the moment immediately before a transfor-
mation process T is going to run;

• Point B©:the moment immediately after a transforma-
tion process finishes.

• Point F©:the moment immediately after the trusted
building process terminates ;

At each point, the monitoring and recording actions are
required to execute according to the following rules:

• Point S©: For all script files in FC that store the build-
ing configuration, TBS measures and extends them
with TPM: Hck = SHA1(fck), where SHA1 stands
for an SHA-1 hash function; HC = SHA1(Hc1 ||Hc2 ||...
||Hck); PCRtbp extend(HC). For all source code files
and corresponding configurations, TBS records their
states and extends them into the TPM: Hsi =
SHA1(fsi ||csi); HS = SHA1(Hs1 || Hs2 ||...|| Hsi);
PCRtbp extend(HS). If these building configurations
are stored in some configure files, these files are also
recorded and extended by the TPM.

• Point A©: At the beginning of a transformation pro-
cess T , all files in Fin are recorded and extended by
TPM: Hini = SHA1(fini); Hin(T) = SHA1(Hin1 ||
Hin2 ||...||Hini); PCRtbp extend(Hin(T)). All depen-
dent files, if exist, are also recorded and extended by
TPM: Hdi = SHA1(fdi); Hd(T) = SHA1(Hd1 ||Hd2 ||
...||Hdi); PCRtbp extend(Hd(T)).

• Point B©: TBS records the state of all output files and
employs TPM to extend their measurements: Hoi =
SHA1(foj); Hout(T) = SHA1(Ho1 || Ho2 ||...|| Hoi);
PCRtbp extend(Hout(T)). For an output file foj , all
input files which determine the generation of foj are
also recorded in set: Fin(foj) = {finj1 , finj2 , ..., finji |
finji ∈ Fin}.

• Point F©: At the termination stage of compilation,
TBS records the states of all output executable files:
Hei = SHA1(fej); He = SHA1(He1 || He2 ||...||Hei);
PCRtbp extend(He). At last, TBS will employ the
TPM to generate a signature on the final values in
PCRs:

Quotetbp = sig{PCRtbp}AIKpriv

Quoteab = sig{PCRab}AIKpriv

where AIKpriv is the private attestation key of TPM.

As the TPM extends all these records in sequence, an
unbroken chain is established between the generated binary
code and the source files with a given building configuration.

3.4.2 Certification Phase
After the trusted building process terminates, the attester

sends a certificate request to a trusted verifier (step a) with
the following messages:

{Fe, S, FC , He, HS , HC , Hin, Hd, Hout, PCRtbp, PCRab,
Quotetbp, Quoteab, AIKpub, cert{AIKpub}, SIGM}

where SML stands for Stored Measurement Log, AIKpub

stands for the public attestation key of TPM, cert{AIKpub}
means the trusted certificate of TPM, Hin = {Hin(T1),
Hin(T2), ..., Hin(Ti)} is the set of input file records for all
transformation processes, Hd = {Hd(T1), Hd(T2), ..., Hd(Ti)}
is the set of dependent file records for all transformation
processes, SIGM is the signature of these message which
is generated with the session keys between the attester and
trusted verifier. We assume that the communications be-
tween the attester and trusted verifier are protected. When
the original provider of the customized software plays as the
trusted verifier, it is not necessary to send all source code

341

Preprocessor
Source Code

Parser
Source w/Substitutions

Translation

Parse Tree

Object File
Translation

Assembler AssemblyLinker

Object File
Object File

…
Executable

File

Figure 3: A typical compilation process in a trusted building phase.

Outputs

…

Inputs

…Transformation

Initialization Termination

Source Code

Configuration Executable

File

…
…

SS
AA BB FF

Fin
Fout

Dependent files

Figure 4: The detailed steps in a transformation process.

and configuration back to the trusted verifier. Only an up-
date based on a standard version is required, such as the
case with the Linux kernel patch.

The trusted verifier can conclude with certain properties
for P by examining the received messages with following
steps:

• First, the trusted verifier needs to attest the validation
of TPM by checking its certification cert{AIKpub} and
verify the integrity of messages.

• Second, it verifies the authenticated boot of TBS by
checking PCRab and Quoteab.

• Third, the verifier validates the trusted building pro-
cess by checking PCRtbp, Quotetbp according to Fe,
S, HC , He, HS , Hin, Hd, Hout. Specially, the in-
tegrity of intermediate output files are required to be
checked. For a input file fini ’s record Hini in transfor-
mation process (Ti+1), Hini should be consistent with
its record Hoj as output file in Ti.

• Finally, with all prior steps succeeded, the verifier will
examine the source code, building configurations and
binary code to determine the property of P . We will
introduce a semantic approach of certifying the build-
ing configurations and source code in Section 3.5.
If any of the above steps fails, the certification phase
terminates with failure.

With a successful result, the trusted verifier issues the
certificate on P and returns it to the attester platform (step
b in Figure 1):

cert(TV, p, He) =
(He, HS , Hd, HC , p, sig{He||HS ||Hd||HC ||p}SKT V)

where (PKTV , SKTV) is the key pair of trusted verifier
TV for signature, p is a property, cert(TV, p, He) denotes
the property certificate for P . With the certificate cert(TV,
p, He), the trust chain is linked from the source code to the
properties of generated binary code via a trusted building
process.

3.4.3 Attestation Phase
In the attestation phase, we assume the attestation target

program is P . The challenger first sends a challenge request
to the attester with a nonce (step c in Figure 1). Then the
attester platform employs the attestation agent to collect
the state and certificate of P . These records are sent back
to the challenger as the challenge response (step d in Figure
1). Then the challenger may verify the certificate with the
help of the trusted verifier and concludes with an attesta-
tion result on P (step e in Figure 1). During the verification
stage in the attestation phases, challenger only has to sub-
mit the collected certificates to the trusted verifier to verify
its validation, and with a successful verification result, the
challenger can verify the runtime measurements according
to these certificates.

3.5 Property Certifying via Semantic Verifi-
cation on Building Configuration

During the certification phase, the trusted verifier needs to
certify the program by examining the source code and build-
ing configuration to judge the property of the generated bi-
nary code. The property of the binary code is strictly linked
with the building configuration. Let’s take Gentoo Linux [9]
as an example: Gentoo Linux employs Use Variable Descrip-
tions (Global/Local Use Flags) to indicate which software
features are included, and finally generates packages with
different properties. Meanwhile, the source code of differ-
ent versions hold different properties. The trusted verifier
maintains a database for recording the properties according
to their source code versions and building configurations.
The trusted verifier will use this database to check the re-
ceived source code and building configurations to determine
the property of generated binary code.

It is straightforward to manually examine the building
configuration according to standard configurations and lim-
itations. However, it involves a lot of unnecessary effort, and
it may involve human faults when it comes to a large number
of configurations. With the cryptographic hash functions, it
is also possible to automatically examine the hash values of
the building configuration files, when only limited and pre-
dictable configurations exist according to involved program
properties. However, the building configurations may have

342

huge amount of possible candidates and sometimes even in-
finite. When an option can be set as a floating value, the
number of hash values for possible configuration files are
almost infinite.

Fortunately, the building configurations are usually orga-
nized in a well-defined form, such as the Makefile, command
options and .config files. Thus it is practical to examine the
building configurations in a semantic way. We may con-
sider a building configuration file as a collection of option
pairs < option, value >. The trusted verifier has a set of
criteria items < option, criteria, operation, p > according
to a specific program property p. The operation is deter-
mined by the type of option value. For example, the pos-
sible operations for integer values or floating values can be
equal,unequal,smallerthan, etc. The operation set for all
criteria can be determined according to the syntax of con-
figuration file. In order to check whether the building con-
figurations satisfy a certain property, an automatic process
can be carried out to compare the option value with corre-
sponding criteria according to specified operation. When
the criteria of a specific program property is satisfied, the
trusted verifier can conclude that the building configurations
are with the property.

To perform semantic attestation on software configura-
tions, we can apply a similar approach recently proposed in
[24].

3.6 Property Certificate Revocation
It is possible that a program P , which is built based on

a specific version of source code and building configuration,
may be later found to be vulnerable or erroneous. So the
trusted verifier needs to maintain a certificate revocation list
to be able to revoke the corresponding property certificate.
Once a program is identified as vulnerable, the correspond-
ing certificate is added into the revocation list. During the
attestation phase, the challenger is required to first check
whether the property certificate is in the revocation list at
certificate verification step (step e in Figure 1).

4. SCOBA IMPLEMENTATION FOR OPEN-
SOURCE SOFTWARE

The proposed SCOBA framework could be applied to gen-
eral custom software, however, it is most suitable for custom
open-source software, where automatic attestation could be
provided based on the open-source distributions. In this
section, we apply SCOBA specifically to deal with custom
open-source software, where users are allowed to tailor and
configure the downloaded software, but are not allowed to
modify the specific source code files. For cases of modifying
source code, we will discuss it in Section 7.

We implement a prototype of this SCOBA framework to
demonstrate its practical usage. Particularly, we focus on
the customized open-source software on the Linux platform.

4.1 Attester Platform
We employ XEN [3] supported by the TXT facility as

the Secure Virtual Machine. Ubuntu Linux is chosen as
the operating system to host our prototype. In our imple-
mentation, we use Linux to run in two different domains
of XEN: one is for ordinary applications in the ordinary do-
main of XEN and another is for the Trusted Building System
in a protected domain. For the ordinary one, we introduce

the attestation agent module as a Linux Security Module to
monitor and record the execution of applications. For the
TBS, we configure the Linux kernel via Linux From Scratch
to get a minimal kernel to support the compilation tools,
which carries out a trusted building process. We employ
TXT to dynamically set up the secure domain for TBS [5].

4.2 Trusted Verifier
Trusted verifier maintains following repositories: a repos-

itory of known-good source code files and building configu-
rations, a certificate repository, and a revocation list.

The known-good repository helps the trusted verifier to
certify customized software. The known-good repository
also records the properties of a software with specific source
code files and building configurations for certain versions.
The trusted verifier can automatically obtain the property
of the target customized software. The certificate repository
holds the records of all issued certificates and revocation list.
The trusted verifier employs it to finish the certificate veri-
fication.

4.3 Trusted Building System
The Trusted Building System is the core of our scheme,

and we will study its implementation based on GCC (GNU
project C and C++ compiler) on Linux.

The GCC compilation process normally involves four steps:
preprocessing, compiling, assembling and linking. The pre-
processing step usually does not involve intermediate out-
puts, so TBS only has to monitor the intermediate outputs
of following steps: compiling, assembling and linking. At
the beginning of the above steps, we insert hooks into gcc,
as and ld to monitor the inputs and outputs of these trans-
formation processes. These hooks employ TPM to record
the states of these inputs and outputs, and extend these
records with the PCR extend operation. At the end of the
compilation process, TPM is invoked to generate quotes on
these recorded proofs. In order to counter the “Time-of-
measurement and Time-of-use” issue, we employ a similar
mechanism as IMA [21] to deal with this problem.

4.4 Evaluation
We evaluate our prototype of TBS on a Lenovo ThinkPad

X60 laptop with Intel Core 2 CPU T5500 @ 1.66GHz, and
1GB memory. We build a number of open-source appli-
cations with and without the proposed prototype, and the
performance comparison is shown in Table 1.

In the table, we show the number for source code files,
compilation time before and after applying the proposed
scheme for each application. The cost for recording these
proofs are roughly proportional to the number of source
files in each application. The results show that TBS incurs
roughly 2-4X slowdown on the evaluated benchmarks. The
exception is TPM tools, which has an overhead of almost
15X because it involves only a handful of source files, thus
the compilation time is relatively very short.

The overhead is pretty significant because of the large
amount of TPM extend operations and low computation ca-
pability of TPM. However, the cost is still acceptable in
practice, as TBS is only executed once for each build imme-
diately before the certification.

343

Table 1: Comparison of compilation time before and after applying the proposed scheme.
applications # of source code files GCC-4.4.2 GCC-4.4.2 with TBS hooks

TPM-tools-1.3.4 59 14402 ms 209814 ms
Openssl-0.9.8k 1267 158106 ms 1318902 ms
Gmp-4.3.0 898 160279 ms 646499 ms
Trousers-0.3.1 326 118463 ms 345175 ms
Tboot-20090330 429 133646 ms 405173 ms
Linux-2.6.30 23214 7007143 ms 29034100 ms

5. CASE STUDY: APPLYING SCOBA TO GEN-
TOO

Gentoo [9] is a free operating system based on either Linux
or FreeBSD that can be automatically optimized and cus-
tomized for just about any application. Most applications
are distributed in the form of source code in Gentoo and its
package management tool Portage is responsible for build-
ing and installing these applications. We can apply SCOBA
straightforwardly to Portage to support attestation on cus-
tom software in Gentoo systems. Besides our modified GCC
compilation tools with TBS hooks, we may also leverage
Portage to provide a more flexible monitoring and recording
mechanism for attesting customized software in Gentoo.

Portage is the heart of Gentoo, and performs many key
functions. It serves as the software distribution system for
Gentoo. It can maintain a local Portage tree which contains
a complete collection of scripts that can be used by Portage
to create and install the latest Gentoo packages. Portage
is also a package building and installation system. It will
build a custom version of the package to the user’s exact
specifications, optimizing it for the hardware and ensuring
that only the optional features in the package that the users
want are enabled.

Portage is characterized by its main function: compiling
from the source code of these packages that the user in-
stalls. In doing so it allows customizing package functional-
ities to the user’s own wishes, and customizing all packages
to the systems specifications. In order to accomplish this,
several functionalities are provided. Functionalities concern-
ing managing the system are: allowing parallel package ver-
sion installation, influencing cross-package functionalities,
managing an installed-packages database, providing a local
ebuild (explained later) repository, and syncing of the lo-
cal Portage tree with remote repositories. Functionalities
concerning installing the individual package are: specifying
compilation settings for the target machine, and influencing
specified package components.

The basis for the entire Portage system is the ebuild scripts.
They contain all the information required to download, un-
pack, compile and install a set of sources, as well as how to
perform any optional pre/post install/removal or configura-
tion steps. An ebuild is a specialized bash script format cre-
ated by the Gentoo Linux project for use in its Portage soft-
ware management system, which automates compilation and
installation procedures for software packages. Each version
of an application or package in the Portage repository has
a specific ebuild script written for it. The script is used by
the emerge tool, also created by the Gentoo Linux project,
to calculate any dependencies of the desired software in-
stallation, download the required files (and patch them, if
necessary), configure the package, compile, and perform a

sandboxed installation. Upon successful completion of these
steps, the installed files are merged into the live system, out-
side the sandbox.

Base on the characteristics of Gentoo, we can easily extend
TBS into the Gentoo Portage, and hence support trusted
building in Gentoo. There are a number of different func-
tions that we can define in ebuild files that control the build-
ing and installation process of the package. Hence, we can
add specific TBS hooks in the call-sites of these functions in
Portage to perform monitoring on the trusted building and
installing procedure. These functions include:

• Pkg setup: This function can perform any miscella-
neous prerequisite tasks. This might include checking
for an existing configuration file. We can add functions
to initialize a trusted and isolated environment for the
building procedure.

• Src unpack: This function unpacks the sources, ap-
plies patches, and runs auxiliary programs such as
the autotools. We can initialize the trusted measure-
ment repository for all the source codes. Normally,
the source codes are distributed in a single compressed
package (e.g. tar file). Hence we should first gener-
ate the genuine measurement value for each file in the
package (e.g. source codes, configuration files, etc.)
from the signed measurement value of the source code
package.

• Src compile: This function configures and builds the
package. We can integrate our trusted building mech-
anisms here.

Moreover, the following functions can be modified for im-
plementing advanced trusted installation procedures, e.g.
generating proof chains or related certificates.

• pkg preinst: The commands in this function are run
just prior to merging a package image into the file sys-
tem.

• Src install: This function installs the package to the
destination.

• Pkg config: This function sets up an initial configu-
ration for the package after it’s installed.

• Pkg postinst: The commands in this function are exe-
cuted immediately following merging a package image
into the file system.

The package repository of Gentoo is in the best position to
serve as the trusted verifier. Besides the package data, the
package repository also maintains the corresponding prop-
erty information in order to certify customized software. In

344

order to support runtime certificate verification, the package
repository maintains the certificate repository and revoca-
tion list.

6. RELATED WORK
Since TCG attestation was introduced as a key feature in

the TCG specification[23], many remote attestation schemes
have been proposed in the literature. Terra [7] employs a
Trusted Virtual Machine Monitor (TVMM) to transform a
tamper resistant hardware platform into multiple isolated
virtual machines (VMs). With the protection of the trusted
hardware, TVMM offers both the open-box VM and the
closed-box VM. The attestation in TVMM only measures
the programs before their executions and is not able to check
their behaviors after attestation. As an extension of TCG
attestation, IMA [21] employs a loading time integrity mea-
surement mechanism which measures all software compo-
nents including BIOS, the OS loader, the operating system,
and programs at the application layer. The limitation of
integrity-based attestation such as IMA is that it checks at
the loading time. Since there exists a gap between time of
measurement and time of execution, loading time integrity
does not necessarily lead to stronger security assurance. As
a follow-up of IMA, [20] employs IMA to enforce remote
access control by attestation.

Property-based attestation [4, 19, 18] was introduced to
provide a scalable attestation framework to support privacy
preserving for the attester platform. A trusted third party
is introduced to exam the runtime measurements and judge
the property of the target platform. The challenger only
verifies the property certificate to conclude the attestation
result and the configuration information of the attested plat-
form is preserved. Existing schemes of TCG attestation
and property-based attestation are based on the known-good
measurements of these attested programs.

Haldar et al. [12] introduced a semantic attestation mech-
anism based on the Trusted Virtual Machine (TVM). The
TVM based semantic attestation mechanism enables the
remote attestation of high-level program properties. Shi
et al. proposed a fine-grained attestation scheme called
BIND [22]. It provides evaluation interfaces to attest the
security-concerned segments of code. Jaeger et al. [14] in-
troduced the Policy-Reduced Integrity Measurement Archi-
tecture (PRIMA) based on the information flow integrity
checking against the Mandatory Access Control (MAC) poli-
cies. Program execution attestation introduced in [11] is to
attest whether a program is executed as expected. These
semantic attestation mechanisms still require a know-good
binary code repository.

However, most of the existing schemes are still based on
binary attestation, as it plays an important role for authen-
tication on software. As the binary attestation involves veri-
fication on the measurement of binary code, most of existing
schemes have to face the problem of keeping a huge known-
good measurements database in practical solutions.

Trusted Execution Technology (TXT) and Secure Virtual
Machine (SVM) are introduced to provide a trusted execu-
tion environment. Recent years, there are already several
practices [8, 15, 17] exploiting TXT or SVM. Open Secure
LOader (OSLO) [15] leverages the dynamic root of trust to
implement a bootloader based on AMD SKINIT instruc-
tion. Flicker [17] was introduced as an infrastructure for
executing security sensitive code in complete isolation. It

leverages the Secure Virtual Machine (SVM) of AMD pro-
cessors and provides fine-grained attestation on program ex-
ecution. LaLa [8] combines the latest hardware virtualiza-
tion and trust technologies to deliver a more robust platform
to support both instant-on system and a full-featured OS,
and the flexible architecture enables a platform user to ben-
efit from the advantages of a fast booting platform and a
full-featured mainstream OS at the same time.

7. DISCUSSION
The proposed SCOBA framework could be applied to gen-

eral custom software provided that a trusted verifier could
be provided for all source files and configurations, which is
not always practical. Here we discuss some of the limitations
and possible enhancements of the proposed approach.

Selection of Trusted Verifier
It is important to choose the right party to play as the role
of trusted verifier. In order to certify a customized software,
the trusted verifier is supposed to have enough knowledge
for carrying out the certification process. The provider of
the original software holds the best position to serve as the
role of trusted verifier for certifying the property of the cus-
tomized software. However, when the original provider is
not trusted or not available, a trusted third party can be
employed and it should maintain a repository to store the
property information of all known-good source code, which
may come from different software providers, another trusted
third party or trusted agent for software certification.

Automatic source code certification on custom-
built software
For a custom-built program with only variant building con-
figurations, the trusted verifier can employ semantic verifica-
tion to automatically examine the building configurations.
If the custom-built software does not make any modifica-
tions on the source code, the trusted verifier can maintain
a repository of known-good source code files according to
specific properties. In the certification phase, the proofs of
trusted building process for the target custom software can
be automatically analyzed to conclude its property.

Attestation on fully custom software
For fully custom software, users may modify the source code
of the target custom software or even add new source code
files into the software. It is difficult for a trusted verifier to
automatically certify the modified source code. A straight-
forward way is to have experts manually checking these mod-
ifications and determine the property of the custom software.
For programs with source code modifications at lower gran-
ularity (such as instructions), besides the manual verifica-
tion on these modified codes, the trusted verifier can also
employ more sophisticated certification techniques for auto-
matic program certification, such as testing [6] and model
checking. The certification on a whole customized software
can be accomplished by certifying its software components
[10]. The custom software may be built from scratch, and
its source code files or subcomponents may come from other
open source software. So it is possible to automatically
certify these subcomponents from known software distribu-
tions.

345

Supporting semantic based attestation on cus-
tom software
The proposed scheme can serve as a building block for other
types of semantic based attestation [12] on customized soft-
ware. Different types of semantic attestation solutions may
concern different properties of software. However, the in-
tegrity of a program is the basis for all different solutions.
Our scheme provides the possibility to attest the customized
software with unpredictable versions and configurations.

8. CONCLUDING REMARKS
In this paper, we introduce SCOBA, a source code based

attestation scheme for custom software. SCOBA enables
property attestation on custom software with unpredictable
versions and building configurations. With a trusted build-
ing process, SCOBA binds the binary code of a program
with its source code and building configuration. Then a
trusted verifier is able to certify the generated binary code
with the proofs from the Trusted Building System and deter-
mine the property of the target custom software by checking
the source code and building configurations. Thus SCOBA
links the trust chain between TPM to the runtime attested
custom software. We implement a prototype of SCOBA
based on GCC compilation tools and TPM. Experiments
show that the performance is acceptable in practice. We
also studies the application of SCOBA on Gentoo to sup-
port attestation on free software distributed in the source
code form. With the support of SCOBA, it is possible for
the free software community to employ remote attestation,
one of the key TCG feature, to support trust establishment
on applications in an open networking environment.

9. REFERENCES
[1] Linux From Scratch.

http://www.linuxfromscratch.org/index.html.

[2] AMD. AMD64 Virtualization Codenamed “Pacifica”
Technology–Secure Virtual Machine Architecture
Reference Manual. Technical Report Publication
Number 33047, Revision 3.01, AMD, May 2005.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, volume 37, 5 of Operating Systems Review,
pages 164–177, Oct. 19–22 2003.

[4] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R.
Sadeghi, and C. Stüble. A protocol for property-based
attestation. In STC ’06, pages 7–16, New York, NY,
USA, 2006. ACM Press.

[5] J. Cihula. Trusted Boot: Verifying the Xen Launch.
http://www.linuxfromscratch.org/index.html. Xen
Summit 07 Fall.

[6] G. Fink and M. Bishop. Property-based testing: a new
approach to testing for assurance. In ACM SIGSOFT
Software Engineering Notes, volume 22(4), 1997.

[7] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra a virtual machine-based platform for
trusted computing. In SOSP 2003, Bolton Landing,
New York, USA, October, 2003.

[8] C. Gebhardt and C. Dalton. Lala: a late launch
application. In STC ’09: Proceedings of the 2009 ACM
workshop on Scalable trusted computing, pages 1–8,
New York, NY, USA, 2009. ACM.

[9] Gentoo. Gentoo Linux. http://www.gentoo.org/, 2009.

[10] A. K. Ghosh and G. McGraw. An approach for
certifying security in software components. In Proc.
21st NIST-NCSC National Information Systems
Security Conference, pages 42–48, 1998.

[11] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei.
Remote attestation on program execution. In S. Xu,
C. Nita-Rotaru, and J.-P. Seifert, editors, STC, pages
11–20. ACM, 2008.

[12] V. Haldar, D. Chandra, and M. Franz. Semantic
remote attestation—a virtual machine directed
approach to trusted computing. In the Third virtual
Machine Research and Technology Symposium (VM
’04). USENIX., 2004.

[13] Intel Corporation. Intel trusted execution technology
— preliminary architecture specification. Technical
Report Document Number: 31516803, Intel
Corporation, 2006. ftp://download.intel.com/
technology/security/downloads/31516803.pdf.

[14] T. Jaeger, R. Sailer, and U. Shankar. PRIMA:
policy-reduced integrity measurement architecture. In
SACMAT ’06, pages 19–28, 2006.

[15] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proceedings of the 16th USENIX
Security Symposium, 2008.

[16] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2010.

[17] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. In J. S. Sventek and S. Hand, editors,
EuroSys, pages 315–328. ACM, 2008.

[18] J. Poritz, M. Schunter, E. Van Herreweghen, and
M. Waidner. Property attestation—scalable and
privacy-friendly security assessment of peer computers.
Technical Report RZ 3548, IBM Research, May 2004.

[19] A.-R. Sadeghi and C. Stüble. Property-based
attestation for computing platforms: caring about
properties, not mechanisms. New security paradigms,
2004.

[20] R. Sailer, T. Jaeger, X. Zhang, and L. v. Doorn.
Attestation-based policy enforcement for remote
access. In CCS 04, October 25-29, 2004.

[21] R. Sailer, X. Zhang, T. Jaeger, and L. v. Doorn.
Design and implementation of a tcg-based integrity
measurement architecture. In Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA,
August, 2004.

[22] E. Shi, A. Perrig, and L. V. Doorn. Bind: A
fine-grained attestation service for secure distributed
systems. In 2005 IEEE Symposium on Security and
Privacy, 2005.

[23] Trusted Computing Group. TPM main specification.
Main Specification Version 1.2 rev. 85, Trusted
Computing Group, Feb. 2005.

[24] H. Wang, Y. Guo, and X. Chen. Saconf: Semantic
attestation of software configurations. In ATC ’09:
Proceedings of the 6th International Conference on
Autonomic and Trusted Computing, pages 120–133,
2009.

346

Paranoid Android: Versatile Protection For Smartphones

Georgios Portokalidis∗

Network Security Lab
Dept. of Computer Science

Columbia University, NY, USA
porto@cs.columbia.edu

Philip Homburg
Dept. of Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

philip@cs.vu.nl

Kostas Anagnostakis
Niometris R&D

Singapore
kostas@niometrics.com

Herbert Bos
Dept. of Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

herbertb@cs.vu.nl

ABSTRACT

Smartphone usage has been continuously increasing in re-
cent years. Moreover, smartphones are often used for privacy-
sensitive tasks, becoming highly valuable targets for attack-
ers. They are also quite different from PCs, so that PC-
oriented solutions are not always applicable, or do not offer
comprehensive security. We propose an alternative solution,
where security checks are applied on remote security servers
that host exact replicas of the phones in virtual environ-
ments. The servers are not subject to the same constraints,
allowing us to apply multiple detection techniques simulta-
neously. We implemented a prototype of this security model
for Android phones, and show that it is both practical and
scalable: we generate no more than 2KiB/s and 64B/s of
trace data for high-loads and idle operation respectively, and
are able to support more than a hundred replicas running
on a single server.

Categories and Subject Descriptors

D.2.0 [General]: Protection mechanisms

General Terms

Design, Security, Reliability

Keywords

Decoupled security; Smartphones; Android

1. INTRODUCTION
Smartphones have come to resemble general-purpose com-

puters: in addition to traditional telephony stacks, calen-

∗This work was done while the author was in Vrije Univer-
siteit Amsterdam.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

dars, games and address books, we use them for browsing,
reading email, watching videos, and many other activities
that we used to perform on PCs. As software complexity
increases, so does the number of bugs and exploitable vul-
nerabilities [17, 32, 20, 31]. Vulnerabilities in the past have
allowed attackers to exploit bugs in the Bluetooth network
stack to take over various mobile phones. More recently, Ap-
ple’s iPhone and Google’s Android platform have also shown
to be susceptible to remote exploits [28, 24, 25] .

Moreover, as phones are used more and more for privacy
sensitive and commercial transactions, there is a growing
incentive for attackers to target them. For instance, smart-
phones can be used to perform online purchases, control
bank accounts, store passwords and other sensitive infor-
mation like social security numbers, etc. Phone-based pay-
ment for physical goods, services, mass transit, and parking
is also provided by various companies like Upaid Systems,
Black Lab Mobile, and others. Compromised smartphones
can also be used to spy upon users, as they include a GPS
sensor and a microphone that can be used to obtain a user’s
location or eavesdrop.

Smartphones will most likely become targets in the fu-
ture, and while average users may not be willing – for the
time being – to pay the cost (both in financial and perfor-
mance terms) of securing their devices, this is not the case
for senior officials in industry, government, law enforce-
ment, banks, health care, and the military1. Smartphones
are already an integral tool in many such organisations, but
due to security and privacy concerns, and due to the lack
of security mechanisms, administrators often resolve in lim-
iting the functionality of employees’ devices (like disabling
WiFi connectivity and reception of SMS messages). In this
paper, we address the problem of security for smartphones
for organisations and individuals that care deeply about the
detection of attacks. Our goal is to provide versatile secu-
rity for smartphones, offering detection of a wide range of
attacks including zero-day ones.

Deploying security mechanisms on already severely resource-
constrained smartphones can be problematic. For instance,
running a simple file scanner like ClamAV on the Android

1A famous case in point was president Obama’s 2008 strug-
gle to keep his Blackberry phone after being told this was
not possible due to security concerns. Eventually, he was
allowed to keep an extra-secure smartphone.

347

HTC G1’s data and application folders took approximately
30 minutes, and reduced battery capacity by 2%. Other
work [6] has also shown that running a naive file scanning
application on an HTC G1 is 11.8x slower than running it
on single-core virtual machine (VM) running on a desktop
PC. We argue for a different security model that completely
devolves attack detection from the phone.

At a high level, we envision that security (in terms of at-
tack detection) will be just another service hosted in the
cloud, much like storage and email. Whether this is practi-
cal, or even feasible at the granularity needed for thwarting
today’s attacks has been an open research question, which
we attempt to answer in this paper. More specifically, we
propose running a synchronised replica of the phone on a
security server in the cloud. As the server does not have
the tight resource constraints of a phone, we can perform
security checks that would be too expensive to run on the
phone itself. To achieve this, we record a minimal trace of
the phone’s execution (enough to permit replaying and no
more) which we then transmit to the server. The implemen-
tation of our security model is known as Paranoid Android
(PA).

Our approach is consistent with the current trend to host
activities in the cloud, including security-related functions.
Oberheide et al. have explored AV file scanning in the cloud
with [29] and [30], but file scans are not able to detect zero-
days, remote exploits, or memory-resident attacks (all of
which have targeted mobile phones in the past [20, 14, 31,
25]). One could argue that smartphone components are fre-
quently coded in languages like Java that do no suffer from
such attacks. But the runtime environments (JREs) used
on smartphones are usually smaller, optimized versions of
the original JRE (e.g., Android uses the DEX Dalvik VM),
which do not necessarily provide the same security and iso-
lation guarantees , and can be themselves vulnerable to at-
tacks. Furthermore, most platforms (including Android) of-
fer native APIs for high performance applications that are
vulnerable to a wider range of attacks.

Our solution builds on work on VM recording and replay-
ing [11, 42, 26, 5, 12, 19, 37, 38, 23]. Previous work on
PC systems, makes use of tailored VMs, and assumes ample
and cheap communication bandwidth. Rather than record-
ing and replaying at the VM level, we record the trace of a
set of processes (running everything in a VM on the phone
is not realistic on any current phone). In addition, we tai-
lor the solution to smartphones, and compress and transmit
the trace in a way that minimises computational and battery
overhead. We also ensure that an attacker compromising a
device cannot bypass the security measures applied at the
server, and elude detection.

The main contributions of this paper are:

• A scalable smartphone security architecture that is
able to apply multiple security checks simultaneously
without overburdening the device.

• A prototype implementation of an execution recording
and replaying framework for Android.

• Transparent backup of all user data in the cloud.

• A replication mechanism that guarantees the detection
of an attack.

• Application transparent recording and replaying.

The remainder of the paper is organised as follows. The
architecture of PA is discussed in Section 2, while implemen-
tation details of our prototype are given in Section 3. We
evaluate the system in Section 4, and review related work in
Section 5. Conclusions are in Section 6.

2. PARANOID ANDROID ARCHITECTURE
A high-level overview of PA’s architecture is illustrated

in Figure 1. On the phone, a tracer records all information
needed to accurately replay its execution. The recorded ex-
ecution trace is transmitted to the cloud over an encrypted
channel, where a replica of the phone is running on an emula-
tor. On the cloud, a replayer receives the trace and faithfully
replays the execution within the emulator. We can apply se-
curity checks externally, as well as from within the emulator,
as long as they do not interfere with the replayed applica-
tions (i.e., they do not perform IPC with replayed processes,
modify user files, etc.). Provided we observe this rule of non-
interference, we may even run additional processes or instru-
ment the kernel. Furthermore, we use a network proxy to
connect to the Internet, which allows us to intercept and
temporarily store inbound traffic. The replayer can access
the proxy to retrieve the data needed for replaying. This way
the tracer does not have to retransmit the data received over
the network to the replica.

2.1 Recording And Replaying
Recording and replaying a set of processes and entire sys-

tems has been broadly investigated by previous work [11,
42, 26, 5, 12, 19, 37, 38, 23, 16]. We will only briefly dis-
cuss how execution replaying is performed, while implemen-
tation specifics and various optimisations are discussed in
Section 3.1. Readers interested in recording and replaying
in general are referred to the above cited papers, and our
technical report on PA [34].

A computer program is by nature deterministic, but it re-
ceives nondeterministic inputs and events that influence its
execution flow. To replay a program, we need to record all
these nondeterministic inputs and events. Such inputs usu-
ally come from the underlying hardware (e.g., time comes
from the HW clock, network data from the WiFi adaptor,
location data from the GPS sensor, etc.), which a process
receives mostly through system calls to the kernel. Thus, to
replay execution the tracer records all data transferred from
kernel to user space through system calls. The replayer then
uses the recorded values when replaying the system calls on
the replica. Note that we only replay process and not kernel
execution. While this implies that PA may not be able to
detect an attack against the kernel, most kernel vulnerabil-
ities are only exploitable locally, which would require that
the attacker first compromises a user process.

Beside system calls, operating systems (OSs) can also al-
ter a process’ control flow by using synchronous and asyn-
chronous notification mechanisms such as signals. For in-
stance, a signal may be sent to a process when a certain
event occurs (e.g., a timer expires). Signals that notify of
serious errors (e.g., a segmentation fault, or a floating point
exception) are delivered synchronously, when the instruction
that caused the error is executed. Consequently, they will
be also generated by the OS on the replica. On the other
hand, asynchronous signals can be delivered arbitrarily, and
in fact most OSs (except real-time ones) do not even guaran-
tee their delivery. To ensure that such signals are delivered

348

Encode/filter

Tamper-evident
storage

Synchronise Replayer

Proxy API

Smartphone
emulator

Security checks

RECORD REPLAY

Mirrored
traffic

Data

UMTS,
Internet,…

logging
data

g
PROXY

regular
traffic

t,…
mirrored
traffic

Tracer

REPREPREPPPPPEPR LLAYLLAYY

Figure 1: Paranoid Android architecture overview

at exactly the same time during replay, we defer their deliv-
ery until the target process performs a system call.

Concurrency and inter-process communication (IPC) can
also be a source of nondeterminism. Two processes can ex-
change data using various mechanisms such as pipes, mes-
sage queues, files, sockets, shared memory, and memory
mapped files. Most of these mechanisms are implemented
using system calls to send and receive data, therefore we im-
plicitly support them by accurately replaying system calls.

This is not the case for shared memory and memory mapped
files, since they can be accessed directly. When two or
more processes use such objects to exchange data, they may
affect one another in unpredictable ways, producing non-
reproducible behaviour. In the case of threads, almost all
process memory is shared. In the presence of shared ob-
jects, accesses on these objects need to be serialised to en-
able deterministic replay [19]. In past work, Courtois et
al. [9] solve the serialisation problem using a concurrent-
read-exclusive-write (CREW) protocol for shared objects,
while Russinovich et al. [38] propose a repeatable determin-
istic task scheduler. He have adopted the latter for PA, as it
outperforms CREW protocols on uniprocessor architectures.

2.2 Synchronisation
Smartphone users enjoy plentiful wireless connectivity over

3G, WiFi, GPRS, etc.PA can use any of these networks
to synchronise with the replica by transmitting the execu-
tion trace. However, wireless connectivity can be costly in
terms of energy consumption, and detrimental to battery
life. Therefore, we assume that network connectivity may
not be always available (e.g., because the device is low on
power), and safeguard the execution trace to ensure that at-
tacks which occured while disconnected are eventually dis-
covered.

2.2.1 Loose Synchronisation
We adopt a loose synchronisation strategy between the

phone and the cloud to minimise its effects on battery life.
Particularly, we do not activate or keep any of the network
adaptors from sleeping, but rather attempt to transmit the
trace only when the device is awake and connected to the
Internet. This can be due to the user performing an action
like reading email or surfing the web, when he is also most
likely to be attacked (e.g., by receiving a malicious email, or

accessing a malicious web site). Alternatively, we also sup-
port an extremely loose synchronisation model, where the
device synchronises with its replica only when it is recharg-
ing. Such a model may be suitable for users with more re-
laxed security requirements, as attacks can only be detected
after synchronising with the server.

2.2.2 Tamper-Evident Secure Storage
Loose synchronisation with the server is ideal for preserv-

ing power, but unless we protect the execution trace, an at-
tacker may compromise the phone and disable the synchro-
nisation procedure. Even worse, a capable attacker could
modify the execution trace to remove the entries that ex-
pose the attack (e.g., a specific read from the network), while
keeping the system operational to make it appear as if ev-
erything is still running properly.

We defend against such attacks by employing a secure
storage to detect if someone has tampered with the execu-
tion trace. Every block of data written to secure storage
is associated with an HMAC code [2], that simultaneously
verifies the block’s authenticity and integrity. HMAC is a
specific type of message authentication code (MAC) that
involves a cryptographic hash function in combination with
a secret key. We achieve tamper-evidency by continuously
“rolling” the key used with the HMAC, as we explain below.

Each time an entry along with its HMAC code is writ-
ten to secure storage, we generate a new key by applying a
second cryptographic hash function on the old key (which
is completely overwritten). This way an attacker compro-
mising the device, cannot alter old entries already in the
execution trace to hide an attack. At worst, attackers can
delete entries or block synchronisation, which both count as
synchronisation errors.

STORE(message+HMAC(key,message))
key′ = HASH(key)
key = key′

Writes to secure storage occur regularly during the oper-
ation of PA, or can be triggered by a specific event. While
the system is running, the data produced by the tracer are
initially buffered and compressed in the manner described
in Section 3.2. When data can no longer be buffered (e.g.,
because the buffer has been exhausted), or when it is de-
termined that they cannot be further compressed, they are

349

written to secure storage and a new key is generated. Al-
ternatively, writes to secure storage may be “forced” when
certain events occurs, even if additional buffering is possi-
ble. For instance, when a network read occurs that could
potentially introduce malicious data, we request that the
entry describing the network read (as well as the previously
buffered entries) are written into secure storage. Different
algorithms and strategies that determine the frequency of
writes to secure storage can be explored in future work.

Using HMAC is more lightweight than digital signatures,
as it requires less processing cycles (and consequently power)
and storage. The only requisite is that a secret key is initially
shared between the device and the server. Such a key can
be established when setting up the device for use with PA.
The replayer authenticates the received data by calculating
their HMAC code, and comparing it with the one received.

2.2.3 Synchronisation Errors
An error during synchronisation can be the result of a

software bug, or a failed attempt by an attacker to cover his
tracks. It can manifest itself as a mismatch in the HMAC
code, a corrupted execution trace, or failure to communi-
cate for a long period of time. The true cause of such an
error cannot be determined with confidence by the security
server, and in any case we lose the ability to further replay
execution. Consequently, devices exhibiting such errors are
treated as potentially compromised, and the user needs to be
notified and his device restored to a clean state (Section 2.5).

2.3 Security Methods
The real power of PA lies in the scalability and flexibility

in security methods. By replicating smartphone execution
in the cloud, we have ample resources for running a combina-
tion of security tasks. Moreover, we can apply any detection
method that obeys the rule of noninterference For instance,
all of the following detection methods are compatible with
PA’s security model. As a proof of concept, we implemented
the first two in the list (Section 3.3) and are currently work-
ing on the others.

1. Dynamic analysis in the emulator. We instrument the
emulator to perform runtime analysis to detect certain
types of zero-day attacks such as buffer-overflows and
code-injection attacks [18, 41, 10, 8].

2. AV products in the cloud. We modified a popular open
source AV to run in the emulator, and perform peri-
odical file scans. Additionally, on access file scanning
can be applied with few modifications to the replayer.
On access scanning AV intercept file handling system
calls and scan the target file before allowing a pro-
cess to access it. As we already intercept system calls,
the replayer could be transformed to an on access AV
scanner.

3. Memory scanners. We can scan emulator memory for
patterns of malicious code directly. Memory scanners
are able to detect memory-resident attacks that leave
no files behind for AV scanners to detect.

4. System call anomaly detection. Detection methods
based solely on the system calls [36, 15], can even be
applied directly to the execution trace, without any
need for replaying. As a result, system call detection
methods are extremely fast.

While, all the techniques we have referred to in this sec-
tion have been around for some time, execution replay offers
great flexibility, even enabling future runtime security solu-
tions to be applied retrospectively. Furthermore, the execu-
tion trace can be retained and used for auditing purposes.

2.4 Proxy And Server Location
The location of the security server and the proxy, and who

controls them is a policy decision beyond the scope of this
paper. For instance, institutions running their own cloud
could deploy the proxy and replica in-house. Alternatively,
PA could be offered as a service by wireless providers, host-
ing the server on their own cloud. While privacy is impor-
tant both for companies and individuals, smaller companies
and individuals frequently place their data on cloud services
offered by providers such as Amazon and Google.

In an extreme scenario, users with strong privacy consid-
erations could run their own replicas on their desktop or
notebook, and not use a proxy at all. Doing so gives them
full control over their data, but implies a very loose syn-
chronisation model, where the device synchronises with the
server only when the device is plugged to the computer, or
when they are on the same network (e.g., similarly to Ap-
ple’s Time Capsule).

2.5 User Notification And Recovery
When an attack is detected, PA needs to warn the user,

so that recovery procedures can be initiated. This is not
trivial. Sending an SMS or email message may not work, as
a skilled attacker could block such messages. As such, a sig-
nalling channel beyond the control of the attacker is needed.
The nature of this channel is not very important for this pa-
per, but various options are already available. For instance,
we could use special hardware on the phone to have it de-
stroy all data, when it receives a privileged message by the
owner or provider (e.g., the “kill pill” message on Black-
berry phones [39]). If hardware support is not available, the
provider could also simply deny service to the device, which
would (hopefully) inform the user that something is wrong.

Compromised devices can be restored to a pristine state
using the data held at the replica. Data-loss can be kept at
a minimum, as an exact copy of all user data exists in the
cloud. Furthermore, using multiple intrusion detection tech-
niques we can accurately detect the moment of the attack,
to restore the really last clean state of the system. Unfor-
tunately, recovery over the network cannot be guaranteed,
so we adopt an approach similar to current systems such as
the iPhone, where the device needs to be plugged-in a PC
to be recovered.

2.6 Handling Data Generated On The Device
While we can proxy the data that is already available ‘in

the network’, we cannot do so for data that is generated
locally. Examples include key presses, speech, downloads
over Bluetooth (and other local connections), and pictures
and videos taken with the built-in camera. Keystroke data
is typically limited in size. Speech is not very bulky either,
but generates a constant stream. We will show in Section 4
that PA is able to cope with such data quite well.

Downloads over Bluetooth and other local connections fall
into two categories: (a) bulk downloads (e.g., a play list of
music files), typically from a user’s PC, and (b) incremental
downloads (exchange of smaller files, such as ringtones, of-

350

ten from other mobile devices). Incremental downloads are
relatively easy to handle. For bulk downloads, we can save
on transmitting the data if we duplicate the transmission
from the PC such that it mirrors the data on the replica.
However, this is an optimisation that we have not yet ap-
plied.

Pictures and videos taken using the device may incur sig-
nificant overhead in transmission. PA caters more to se-
curity sensitive environments like corporations and govern-
ment institutions, where such data are encountered less fre-
quently. Nevertheless, in application domains where such ac-
tivities are common, users will probably have to disconnect
from the server, and only resynchronise when their device is
recharging to avoid draining the battery. In the future, we
could exploit the increasing trend of users uploading their
content to the Internet directly from their devices, to also
proxy the uploaded data and make them available to the
replica.

3. IMPLEMENTATION
In this section, we discuss a prototype implementation of

PA for Google’s Android system. While it is possible to im-
plement the tracer and replayer in different ways, the most
efficient way is to intercept system calls and signals in the
kernel. It is also the most convenient way to influence the
scheduling to serialise accesses to shared objects (discussed
in 2.1). However, it is hard to maintain such an implemen-
tation, as it requires frequent updates to keep it operational
with new kernels, and it requires that a new boot image is in-
stalled on the device every time the tracer is updated. This
motivated us to implement PA’s prototype in user space.

Our implementation is transparent to applications and the
OS, and only requires process tracing functionality, compa-
rable to the one offered by Linux’s ptrace, which enables us
to attach to arbitrary processes, and intercept system calls
and signals. Similar interfaces are also support by BSD-
and Windows-style OSs used on other devices, such as the
iPhone OS and Windows Mobile.

3.1 Recording And Replaying
In this section, we explain the novel aspects of implement-

ing execution recording and replaying on Android.

3.1.1 Starting The Tracer And Everything Else
In UNIX tradition, Android uses the init process to start

all other processes, including the supporting framework and
user applications. The tracer itself is also launched by init,
before launching any of the processes we wish to trace. Init
launches the processes that are to be traced using an execu-
tion stub. This process serves a twofold purpose: it allows
the tracer to start tracing the target processes from the first
instruction, and it enables us to run processes without trac-
ing them (e.g., debugging and monitoring applications).

Init brings up the tracer process first. The tracer ini-
tialises a FIFO to allow processes that need tracing to con-
tact it. Next, init starts the other processes. Rather than
starting them directly, we add a level of indirection, which
we call the exec stub. So, instead of forking a new thread and
using the exec system call directly to start the new binary,
we fork and run a short stub. The stub writes its process
identifier (pid) to the tracer’s FIFO (effectively requesting
the tracer to trace it) and then pauses. Upon reading the
pid, the tracer attaches to the process to trace it. Finally,

the tracer removes the pause in the traced process, mak-
ing the stub resume execution. The stub immediately calls
exec to start the appropriate binary with the corresponding
parameters.

3.1.2 Scheduling And Shared Memory
In Section 2.1, we briefly mentioned that we serialise ac-

cesses to shared objects using a modified task scheduler that
operates in a deterministic way. Unfortunately, we can only
do so with coarse granularity, as we operate entirely in user
space. Our scheduling algorithm is quite simple and far from
optimal, but sufficient for our purpose, as it is reproducible.
Furthermore, it does not require us to log any additional
information in the execution trace. It operates by ensuring
that no two threads that share a memory object can ever
run concurrently. Because the scheduler is triggered by sys-
tem calls, it can be unfair, and it may theoretically deadlock
in the presence of spinlocks. To avoid the latter, we created
a spinlock detector that is activated when a task keeps run-
ning for more than a predefined period of time. In practice,
Android does not use spinlocks as they are wasteful in terms
of CPU cycles. Instead, locking is performed using mutexes,
which results in a system call in case of contention, and are
handled by PA in a straightforward way. While the spin-
lock detector provides the robustness that is required for a
production system, so far we have only seen it triggered for
contrived test cases.

Modern operating systems also allow processes to directly
memory map HW memory. If such memory was to be used
for directly reading data from hardware, neither repeatable
scheduling nor a traditional CREW protocol could ensure
proper serialisation of accesses to that memory. To the best
of our knowledge, Android does not use memory in this way.
However, it could be a problem in the future in a different
hardware/software combination. In that case, we need a
modified CREW protocol that will track all reads from such
memory to keep execution deterministic. This can be ac-
complished by making the area inaccessible to the reader,
and intercepting all read attempts using the generated page
faults. Doing so would be expensive, especially if done from
user space. Fortunately, we have had no need for this in our
implementation.

3.1.3 Ioctls
I/O control, mostly performed using the ioctl system call,

is part of the interface between user and kernel space. Pro-
grams typically use ioctls to allow userland code to commu-
nicate with device drivers. Each request uses a command
number which identifies the operation to be performed and
in certain cases the receiver. Attempts have been made to
apply a formula on this number that would indicate the di-
rection of an operation, as well as the size of the data being
transferred. Unfortunately, due to backward compatibility
issues and programmer errors actual ioctl numbers do not
always follow this convention. Furthermore, Android per-
forms most of its IPC through the kernel using the binder
framework [33]. Many of the binder operations actually re-
sult in one or more ioctls on the“/dev/binder”device. Thus,
it is important that we can access the Android kernel source
code to check the semantics of the various ioctls being used.
Fortunately, smartphones make use of fewer ioctls than PCs,
but the procedure is still a tedious one. Our prototype han-
dles about two hundred ioctl commands.

351

3.2 Execution Trace Compression
One of our primary goals is to minimise transmission costs,

which requires minimising the size of the execution trace.
Here we discuss the rules we applied to reduce the size of
the trace:

• Record only system calls that introduce nondetermin-
ism. Phone and replica execute the same instruction
stream, so there is no need to record system calls that
have identical effects in both (e.g., creating a socket,
opening a file, reading from local storage, etc.). We
also do not record the results of systems call used for
IPC between processes, as the mirror processes on the
replica will generate the same data.

• Use a network proxy so that inbound data are not logged
in the trace. The data received by the phone over the
network are not directly seen by the replica (e.g., a re-
ceived email). We introduce a transparent proxy that
logs all Internet traffic towards the phone, and makes
it available to the security server upon request. This
way the phone does not need to waste precious energy
to log and transmit them to the replica.

• Compress data using three algorithms. First, we en-
code time related data returned by calls such as get-
timeofday and clock gettime using delta encoding, re-
placing the actual time data in the trace with the
differences of consecutive values. Second, we employ
Huffman encoding to represent frequent values in the
trace. For instance, we use a bit to represent a system
call that returned zero, another one to indicate that
a log entry has been produced by the same thread as
the previous entry, etc. Finally, we employ general
purpose compression using the DEFLATE algorithm
(also used by the gzip utility).

3.3 Attack Detection Mechanisms
We demonstrate the detection capabilities of the security

server by developing two very different detection mecha-
nisms: an anti-virus scanner, and an emulator-based detec-
tor that uses dynamic taint analysis.

3.3.1 Virus Scanner
One of the security measures we apply at the server is anti-

virus scanning. For this purpose, we modified the popular
open source anti-virus ClamAV to run in the Android em-
ulator. ClamAV contains more than 500000 signatures for
viruses that a user would have to store locally on his phone
and update daily. Using PA, we perform file scanning on the
server where both storage and processing is much cheaper.
Moreover, if we wish to further increase detection coverage
we may employ multiple scanners at the same time, as sug-
gested by Oberheide et al. [30].

3.3.2 Dynamic Taint Analysis
PA can go a lot further than just running multiple anti-

virus software in the cloud. We modified the Android em-
ulator to apply dynamic taint analysis (DTA) on the re-
plica [10, 27]. DTA is a powerful, but expensive method to
detect intrusions. The technique flags all data that arrive
from a suspect source (like the network) as tainted. Tainted
data are tracked throughout the execution of the system, so
that all data the depend on tainted data are also flagged

Hours
00 04 08 12 16 20 24

K
iB

yt
es

5

10

15

20
25
30
35

Average Rate

Data Averate Data Generation Rate

Figure 2: Data generated by PA on a user operated
HTC G1 for a day.

as tainted. For instance, when tainted values are used as
source operands in ALU operations or copied, the destina-
tion is also tainted. When an attacker exploits a vulnera-
bility (e.g., a buffer overflow, a format string attack, a dan-
gling pointer, etc.) to inject and execute arbitrary code, or
simply arbitrarily redirect the execution flow of the vulner-
able program (e.g., using return-to-libc, or return oriented
shellcode), DTA identifies the illegal use of tainted data and
raises an alert. For instance, an alert is raised when tainted
data are executed, or used as an operand of a CALL instruc-
tion.

DTA works against a host of exploits, including zero-day
attacks, and incurs practically no false positives. Unfor-
tunately, the overhead imposed is very high, making it an
impractical solution to deploy on production systems (both
PCs and phones). By applying DTA on a smartphone’s re-
plica, we manage to hide its overhead from the end user,
and concurrently exploit the more powerful hardware in the
cloud to accelerate it.

4. EVALUATION
We evaluate our implementation of PA along three axes:

the amount of trace data generated during recording, the
overhead imposed by the tracer on the device, and finally the
performance and scalability of the server hosting the repli-
cas. We run the tracer on the HTC G1 developer phone,
while the replayer is hosted on the modified QEMU [1] em-
ulator that comes with the official SDK. We do not perform
a security evaluation of our taint analysis implemention on
QEMU, as it has been sufficiently demonstrated by [35].

4.1 Data Volume
The volume of data generated by the tracer constitutes

an important metric, as it directly affects the amount of en-
ergy required to transmit the trace log to the server, and the
storage space needed to store it on the device when discon-
nected from the server. Additionally, the upload bandwidth
available to smartphone users (usually a few hundred Kbps)
is a scarce resource, as it is frequently much less than the

352

Tasks

Booting Idle Calling Web
Browsing

Google
Maps

Audio
Playback

0

0.5

1

1.5

2

2.5
R

at
e

(K
iB

/s
)

0

Figure 3: Average data generation rate, when per-
forming various tasks.

available download bandwidth.
Our traces collected from actual users using their phones

show, not surprisingly perhaps, that mobile devices are mostly
idle, or used for voice calls. A plot of the amount of data
generated by PA over time is shown in Figure 2. Mean-
while, Figure 3 shows that the data generated when the
device is idle or the user is making a call is negligible, with
an average of 64B/s and 121B/s respectively. Even when
performing more intensive tasks, such as browsing or listen-
ing to music, the tracer generates less than 2KiB/s. For
instance, 5 hours2 of audio playback would generate about
22.5MB of trace data. Transmitting such an amount of data
solely over 3G may burden users with excessive costs, spe-
cially when operators cap their bandwidth and charge extra
for data transfers over the cap, but it can be easily stored
locally on the smartphone (devices already offer relatively
large amounts of storage; e.g., the iPhone 4 offers 32GB of
storage) until a WiFi connection is available. Taking into
account that many users spend most of their time at home
or at the office, it is very likely that WiFi connectivity will
be frequently available to synchronize with the server.

4.2 Overhead
PA imposes two types of overhead on the phone. First,

it consumes additional CPU cycles and thus incurs a per-
formance overhead. Second, it consumes more power be-
cause of the increased CPU usage and the transmission of
the execution trace to the server. To quantify these costs, we
monitored the device’s CPU load average, and battery level,
while randomly browsing URLs from [7]. We performed this
task natively as well as under PA, and show the results in
Figure 4.

Figure 4 confirms that PA increases the CPU load on the
device. In particular, the mean CPU load during this ex-
periment was about 15% higher when using PA. The use of
compression and encryption is somewhat costly in terms of

2Typical battery life when browsing or reproducing audio
can range from 3 to 8 hours depending on the device.

Time
0:00 0:10 0:20 0:30

B
at

te
ry

 c
ap

ac
ity

 (
%

)

80

85

90

95

100

0

1

2

3

4

5

6

Battery−Native

Battery−PA

Load−Native

Load−PA

Figure 4: Battery level and CPU load average
while browsing on the HTC G1 developer phone.
We draw two independent experiments, where we
browse URLs from [7] natively and under PA.

processing, but the amount of data we generate does not
seem to justify for such a divergence. The figure also shows
how battery capacity drops in time while browsing. As ex-
pected power is consumed faster when using PA. When idle
or in light use, the additional battery consumption is mini-
mal, but heavyweight tasks, such as browsing may consume
up to 30% more energy.

However, most of this overhead seems to be due to the
additional CPU cycles consumed by the user space tracer.
We confirmed this by way of an experiment where we only
transmit the trace data corresponding to the browsing ac-
tivity (using SSL as the tracer would do), and found that
the device did not report any drop in battery level. We in-
vestigate the cause behind this increase in CPU load and
battery consumption, and discuss our findings in 4.4.

4.3 Server Scalability
Chun et al. [6] has shown that simply moving computation

from a smartphone to faster hardware such as a PC, even
when running on an emulator, can increase performance up
to 11.8 times. While we cannot replay execution faster than
it is recorded, the significant difference in processing power
between smartphones and PCs enables us to host multiple
replicas on each security server.

We corroborate our assumption by measuring the number
of phone replicas that can be run concurrently on various
hardware configurations. Each replica was run on the An-
droid Qemu-based emulator, executing the same task as the
original. It is also in-sync with the replayed device, i.e., the
replica has to wait for trace data from the device. While
running the replicas, we did not introduce any detection
mechanism or instrumentation, which represents an opti-
mal scenario for this experiment. The results are shown in
Figure 5, where we draw the number of replicas that can
be run under these conditions using different hardware con-
figurations. Particularly, we used a dual-core (x2 2.26GHz
P8400) HP HDX18 notebook with 4GB of RAM, a four-
core (x4 2.40GHz Q6600) desktop PC with 8GB of RAM,
and a high-memory extra-large instance on Amazon’s Elastic

353

In
st

an
ce

s

10

20

30

40

50

60

70

80

90

100

CPU utilisation (%) on the smartphone
0 25 50 75 100

Dual−Core Notebook

Quad−Core Desktop

EC2 Extra−Large Instance

Figure 5: Number of replica instances that can be
run on a server without delay. As CPU utilisation
increases on the phone, fewer replicas can be exe-
cuting in sync with the phone.

Cloud (EC2) service with 68.4GB or RAM. When running
in the EC2 cloud, we were able to concurrently run more
than 100 replicas of devices exhibiting an average 25% CPU
utilisation. Utilisation is a key factor, since it determines
the number of replicas that can be run without delays, as
computation is relatively expensive when running under the
emulator.

Determining the average CPU utilisation of smartphones
in a realistic scenario is not a trivial task, and we are not
aware of any preexisting studies on the subject. Neverthe-
less, we can look at the intensity of different tasks com-
monly performed on these devices. For instance, on the
HTC G1 developer phone we measured 90%-100% CPU util-
isation when running a game, 20%-25% when reproducing
audio, 30%-100% when browsing, and finally 0%-5% when
the phone is idle. We can intuitively argue that smartphones
remain idle or run non-interactive tasks like listening to mu-
sic most of the time. In the opposite case, battery is drained
quickly by the CPU (when running intensive tasks such as
browsing or gaming), the display, and various device sensors
(GPS, accelerometer, etc.).

We already mentioned that the results presented in Fig-
ure 5 present an optimal scenario, as no security mechanism
is applied. PA’s scalability actually depends on the type
and number of mechanisms introduced at the server. For
instance, previous work that implemented DTA for the x86
architecture using the Qemu emulator reported a x2-x2.5
slowdown compared with execution under Qemu alone. We
obtained similar results implementing DTA for the ARM ar-
chitecture using Android’s Qemu-based emulator. As such,
we estimate that if DTA is applied on every replica, we would
be able to run roughly half of the instances reported in Fig-
ure 5 without any delay. Finally, we have tested our scheme
on Amazon’s EC2 cloud service to demonstrate the scala-
bility of our approach. In practice, organisations that are
willing to invest in smartphone security, will most probably
host their own security servers as well as proxies to ensure

re
ad

()
 d

ur
at

io
n

(m
se

c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System call tracing
None Kernel User space

Figure 6: The time it takes to read 4Kbytes of data
from /dev/urandom natively, and when tracing.

Function Time Spent %
ptrace() % 33.63
waitpid() % 32.68
deflate slow() % 7.62
pread64() % 6.78
mcount interval() % 2.84
event handler run() % 2.15

Table 1: Top executing functions in the tracer.

that privacy sensitive data remain within the organisation,
and to reduce costs3.

4.4 Overhead Imposed By Ptrace
Wementioned earlier that we observed an increase in CPU

load and consequently battery consumption under PA that
was unexpected. We investigated further by profiling the
tracer to identify its “expensive” functions, and list the top
five functions in Table 1. We see that compression (per-
formed by deflate slow) consumes only 7.62% of the tracer’s
execution time, and no cryptographic function is even re-
ported in the top results. On the other hand, a bit more
than 65% is spent in ptrace and waitpid. The latter is called
continuously to retrieve events from the kernel. Every time a
traced process enters or exits a system call, it is blocked and
such an event is delivered to the tracer through waitpid. Ad-
ditionally, we use ptrace at least once for every event to re-
trieve additional information (e.g., the system call number).
These two calls cause a large number of context switches
between the tracer, traced processes, and the kernel, and
incur the larger part of the overhead we observe. Similarly,
pread64 is used to copy data from the memory of traced
processes (such as data returned by a system call).

We are confident that moving event reception and the ini-
tial part of event handling of PA in the kernel, would greatly
improve performance. This is supported by what we see in
Figure 6. Even when tracing a single system call like read,
using ptrace incurs a huge overhead when compared with

3Products that offer data proxying are already available for
devices like BlackBerry smartphones [3].

354

native execution. On the contrary, tracing the same system
call, including copying the returned data, within the kernel
imposes no observable overhead. Future work on PA will
focus on moving part of the implementation in the kernel.

5. RELATED WORK
The idea of decoupling security from execution has been

explored previously in a different context. Malkhi et al. [22]
explored the execution of Java applets on a remote server
as a way to protect end hosts. The code is executed at the
remote server instead of the end host, and the design fo-
cuses on transparently linking the end host browser to the
remotely executing applet. Although similar at the con-
ceptual level, one major difference is that PA is replicating
rather than moving the actual execution, and the interaction
with the operating environment is more intense and requires
additional engineering.

Ripley [40] is another system that proposes the replication
of an application in a server to automatically preserve its in-
tegrity. Unlike PA, it focuses on distributed web 2.0 appli-
cations, and particularly AJAX based applications. Attacks
are detected by comparing the results of the replica with the
client’s. A discrepancy indicates an attack, so Ripley is in
fact investing on the two executions deviating. Furthermore,
it does not apply to a broad range attacks like PA, and it is
not transparent to the application.

The idea of off-loading execution from smartphones to the
cloud was first proposed in CloneCloud [6]. The main focus
of this work is the acceleration of CPU intensive and low
interaction applications. While the authors recognize its po-
tential use for decoupling security from phones, they do not
investigate the effects of disconnected operation on security
(i.e., the need for secure storage), nor do they investigate
the cost of replication for the phone and the server. Finally,
CloneCloud is not always transparent to applications.

Decoupling security from smartphones was first explored
in SmartSiren [4], albeit with a more traditional anti-virus
file-scanning security model in mind. As such, synchronisa-
tion and replay is less of an issue compared to PA. Oberheide
et al. [30] explore a design that is similar to SmartSiren, fo-
cusing more on the scale and complexity of the cloud back-
end for supporting mobile phone file scanning, and sketching
out some of the design challenges in terms of synchronisa-
tion. Some of these challenges are common in the design of
PA, and we show that such a design is feasible and useful.
However, both these approaches can only protect against a
limited set of attack vectors.

Other work on smartphone security includes VirusMeter
by Liu et al. [21]. This work also identifies that traditional
defences do not perform as well on smartphones due their
limited resources. They propose using power consumption
levels to identify potentially malicious software operating on
a smartphone. Their solution uses very little resources, but
it may incur false positives. Enck et al. address the issue
of malicious applications downloaded on smartphones with
Kirin [13]. They propose a system that can automatically
analyse applications submitted to application stores (e.g.,
Google’s Marketplace and Apple’s Apple Store) for poten-
tially malicious behaviour. Kirin is orthogonal to our sys-
tem, and could in fact be used in combination.

Our architecture also bears some similarities to BugNet [26]
which consists of a memory-backed FIFO queue effectively
decoupled from the monitored applications, but with data

periodically flushed to the replica rather than to disk. We
store significantly less information than BugNet, as the iden-
tical replica contains most of the necessary state.

6. CONCLUSION
In this paper, we have discussed a new model for protect-

ing mobile phones. These devices are increasingly complex,
increasingly vulnerable, and increasingly attractive targets
for attackers because of their broad application domain. The
need for strong protection is apparent, preferably using mul-
tiple and diverse attack detection measures. Our security
model performs attack detection on a remote server in the
cloud where the execution of the software on the phone is
mirrored in a virtual machine. In principle, there is no limit
on the number of attack detection techniques that we can
apply in parallel. Rather than running the security mea-
sures locally, the phone records a minimal execution trace,
and transmits it to the security server, which faithfully re-
plays the original execution.

The evaluation of a user space implementation of our ar-
chitecture Paranoid Android, shows that transmission over-
head can be kept well below 2.5KiBps even during periods
of high activity (browsing, audio playback), and to virtually
nothing during idle periods. Battery life is reduced by about
30%, but we show that it can be significantly improved by
implementing the tracer within the kernel. We conclude that
our architecture is suitable for protection of mobile phones.
Moreover, it offers more comprehensive security than possi-
ble with alternative models.

Acknowledgments

This work has been supported by the European Commis-
sion through projects FP7-ICT-216026-WOMBAT and FP7-
ICT-257007 SYSSEC. Also, with the support of the Preven-
tion, Preparedness and Consequence Management of Terror-
ism and other Security-related Risks Programme European
Commission - Directorate-General Home Affairs. This pub-
lication reflects the views only of the author, and the Com-
mission cannot be held responsible for any use which may
be made of the information contained therein.

7. REFERENCES
[1] F. Bellard. QEMU, a fast and portable dynamic

translator. In Proc. of USENIX’05, April 2005.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. In Proc. of
Crypto’96, pages 1–15, August 1996.

[3] BlackBerry, Inc. BlackBerry Enterprise Server.
http://na.blackberry.com/eng/services/

business/server/full/.

[4] J. Cheng, S. H. Wong, H. Yang, and S. Lu.
SmartSiren: virus detection and alert for smartphones.
In Proc. of MobiSys’07, pages 258–271, June 2007.

[5] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In Proc. of USENIX’08, pages 1–14,
June 2008.

[6] B.-G. Chun and P. Maniatis. Augmented smartphone
applications through clone cloud execution. In Proc. of
HotOS XII, May 2009.

[7] A. T. W. I. company. Top 500 global sites.
http://www.alexa.com/topsites.

355

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-end containment of internet worm epidemics.
In Proc. of SOSP’05, October 2005.

[9] P. J. Courtois, F. Heymans, and D. L. Parnas.
Concurrent control with “readers” and “writers”.
Commun. ACM, 14(10):667–668, 1971.

[10] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–243, 1976.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proc.
of OSDI’02, pages 211–224, December 2002.

[12] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen. Execution replay of multiprocessor
virtual machines. In Proc. of VEE ’08, pages 121–130,
March 2008.

[13] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proc. of CCS, pages 235–245, 2009.

[14] F-Secure. ”sexy view” trojan on symbian s60 3rd
edition. http://www.f-secure.com/weblog/
archives/00001609.html, February 2008.

[15] J. Giffin, S. Jha, and B. Miller. Efficient
context-sensitive intrusion detection. In Proc of
NDSS’04, February 2004.

[16] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
M. F. Kaashoek, and Z. Zhang. R2: An
application-level kernel for record and replay. In Proc.
of OSDI, 2008.

[17] L. Hatton. Reexamining the fault density component
size connection. Software, IEEE, 14(2):89–97, 1997.

[18] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure execution via program shepherding. In Proc. of
the 11th USENIX Security Symposium, pages 191–206,
August 2002.

[19] T. Leblanc and J. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE
Transactions on Computers, 36(4):471–482, 1987.

[20] G. Legg. The bluejacking, bluesnarfing, bluebugging
blues: Bluetooth faces perception of vulnerability.
http://www.wirelessnetdesignline.com/

192200279?printableArticle=true, August 2005.

[21] L. Liu, G. Yan, X. Zhang, and S. Chen. VirusMeter:
Preventing your cellphone from spies. In Proc. of
RAID, pages 244–264, 2009.

[22] D. Malkhi and M. K. Reiter. Secure execution of java
applets using a remote playground. IEEE Trans.
Softw. Eng., 26(12):1197–1209, 2000.

[23] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas.
Capo: a software-hardware interface for practical
deterministic multiprocessor replay. In Proc. of
ASPLOS ’09, pages 73–84, March 2009.

[24] H. Moore. Cracking the iPhone (part 1).
http://blog.metasploit.com/2007/10/

cracking-iphone-part-1.html, October 2007.

[25] R. Naraine. Google Android vulnerable to drive-by
browser exploit.
http: // blogs. zdnet. com/ security/ ?p= 2067 ,
October 2008.

[26] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for
deterministic replay debugging. SIGARCH Comput.
Archit. News, 33(2):284–295, 2005.

[27] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In Proc.
of NDSS’05, February 2005.

[28] Niacin and Dre. The iPhone/iTouch tif exploit is now
officially released. Available at
http://toc2rta.com/?q=node/23, October 2007.

[29] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:
N-version antivirus in the network cloud. In Proc. of
the 17th USENIX Security Symposium, San Jose, CA,
July 2008.

[30] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn,
and F. Jahanian. Virtualized in-cloud security services
for mobile devices. In Proc. of MobiVirt ’08, pages
31–35, June 2008.

[31] oCERT. CVE-2009-0475: OpenCORE insufficient
boundary checking during MP3 decoding. http:
//www.ocert.org/advisories/ocert-2009-002.html,
January 2009.

[32] A. Ozment and S. E. Schechter. Milk or wine: Does
software security improve with age? In Proc. of the
15th USENIX Security Symposium, July 2006.

[33] I. PalmSource. OpenBinder.
http://www.angryredplanet.com/~hackbod/

openbinder/docs/html/index.html, 2005.

[34] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Zero-day protection for
smartphones using the cloud. Technical report, Vrije
Universiteit Amsterdam, 2010.

[35] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In Proc.
of ACM EuroSys, April 2006.

[36] N. Provos. Improving host security with system call
policies. In Proc. of the 12th USENIX Security
Symposium, August 2003.

[37] M. Ronsse and K. De Bosschere. RecPlay: a fully
integrated practical record/replay system. ACM
Trans. Comput. Syst., 17(2):133–152, 1999.

[38] M. Russinovich and B. Cogswell. Replay for
concurrent non-deterministic shared-memory
applications. In Proc. of PLDI ’96, pages 258–266,
May 1996.

[39] V3.co.uk. BlackBerry ’kill pill’ vital for IT security.
http://www.v3.co.uk/vnunet/news/2159105/

blackberry-kill-pill-vital.

[40] K. Vikram, A. Prateek, and B. Livshits. Ripley:
automatically securing web 2.0 applications through
replicated execution. In Proc. of CCS, pages 173–186,
2009.

[41] J. Xu and N. Nakka. Defeating memory corruption
attacks via pointer taintedness detection. In Proc. of
DSN ’05, pages 378–387, June 2005.

[42] M. Xu, R. Bodik, and M. D. Hill. A ”flight data
recorder” for enabling full-system multiprocessor
deterministic replay. SIGARCH Comput. Archit.
News, 31(2):122–135, 2003.

356

Exploiting Smart-Phone USB Connectivity
For Fun And Profit

Zhaohui Wang
Department of Computer Science

George Mason University, Fairfax, VA
zwange@gmu.edu

Angelos Stavrou
Department of Computer Science

George Mason University, Fairfax, VA
astavrou@gmu.edu

ABSTRACT

The Universal Serial Bus (USB) connection has become the
de-facto standard for both charging and data transfers for
smart phone devices including Google’s Android and Ap-
ple’s iPhone. To further enhance their functionality, smart
phones are equipped with programmable USB hardware and
open source operating systems that empower them to al-
ter the default behavior of the end-to-end USB communi-
cations. Unfortunately, these new capabilities coupled with
the inherent trust that users place on the USB physical con-
nectivity and the lack of any protection mechanisms render
USB a insecure link, prone to exploitation. To demonstrate
this new avenue of exploitation, we introduce novel attack
strategies that exploit the functional capabilities of the USB
physical link. In addition, we detail how a sophisticated ad-
versary who has under his control one of the connected de-
vices can subvert the other. This includes attacks where a
compromised smart phone poses as a Human Interface De-
vice (HID) and sends keystrokes in order to control the vic-
tim host. Moreover, we explain how to boot a smart phone
device into USB host mode and take over another phone
using a specially crafted cable. Finally, we point out the un-
derlying reasons behind USB exploits and propose potential
defense mechanisms that would limit or even prevent such
USB borne attacks.

1. INTRODUCTION
Recent advances in the hardware capabilities of the mo-

bile hand-held devices have fostered the development of open
source operating systems for mobile phones. These new gen-
eration of smart phones such as iPhone and Google Android
phone are powerful enough to accomplish most of the tasks
that previously required a personal computer. Indeed, this
newly acquired computing power gave rise to plethora of ap-
plications that attempt to leverage the new hardware. This
includes Internet browsing, email, GPS navigation, messag-
ing, and custom applications to name a few. In addition,
the ubiquitous use and the wide-spread adoption of Univer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

sal Serial Bus (USB) [7] led the phone device manufacturers
to equip the majority of third-generation phones with USB
ports. In fact USB is currently employed as a means of
charging, communicating, and synchronizing the contents of
the phone with computers and other phones. Moreover, to
support an open programming model that allow third party
developers to contribute their applications, these new de-
vices come with an extended set of features. These features
enable them use the USB interface to perform more complex
functions including data and application synchronization.

In this paper, we assume the role of an adversary and
study the new threats that stem from the use of USB in-
terface to connect, synchronize, and program the mobile de-
vice. Unlike the network and bluetooth communications for
mobile devices that have defense mechanisms in place, USB
traffic is not authenticated, filtered, or vetted. For example,
to establish bluetooth connectivity, the user is required to
enter a password to establish connection between unpaired
devices. Moreover, all cellular and wireless communication
connections and packets are inspected by stateful firewall
or intrusion detection systems. On the other hand, USB
connections are overlooked both by the users and by the de-
fenses and are assumed as a trusted communication channel.
This inherent trust is rooted in the belief that physical prox-
imity implies trust. To debunk that myth, we explain how
software vulnerabilities in today’s mobile devices can spread
through the USB interface and affect both the USB device
and the host that is connected to.

This new threat vector creates the potential for malware
to take over a smart phone device when the device is con-
nected via standard USB to an infected computer and vice-
versa. In practice, a malicious host can abuse the USB con-
nection to unlock and flash the software of the phone by-
passing all software and hardware defenses. Reversely, we
show how a malicious smart phone device can take over a
computer by posing as a Human Interface Device (HID) such
as a keyboard or a mouse among others. Additionally, we
detail how an adversary can abuse the inherent USB mount-
ing and synchronization capabilities to run malicious code
on the host computer. To make matters worse, we illustrate
attacks that can empower an infected smart phone to con-
nect and take over another smart phone by placing its USB
connection into the USB-host mode. Current smart phone
devices run full-fledged mobile operating systems. These
mobile operating systems provide a programmable interface
to control the existing USB ports thus empowering them
to launch attacks against desktop computers rather than
merely acting as a USB storage device.

357

In addition, in most cases, smart phones connect to one or
more desktop systems for file backup, data synchronization
in addition to charging the battery. The strong coupling re-
lationship between the device and the desktop system makes
either side vulnerable to attacks that exploit this tight and
trusted coupling when the other is compromised. Most end-
users have little or no knowledge about the system running
on the phone. To make matters worse, the device vendors
lock the phone by default disallowing the end-users from
having full access to the device. In the meantime, locking
the device does not prevent or even deter an experienced
adversaries or malicious code from attacking the mobile de-
vices. Moreover, the USB functionality on the smart phone
can be programmed to play the role of a USB host and drive
other “peripheral” devices. This can be leveraged to attack
other USB devices including smart phones.

Furthermore, currently USB-borne attacks are not con-
sidered as a problem: most of the current mobile security
research focus on malicious applications [21, 19, 11]. This
includes mobile phone rootkits such as Cloaker [12] and oth-
ers [10]. In addition, drive-by downloads from untrusted
sources, execution of foreign code, leaking of sensitive infor-
mation, corruption and file integrity are just a few among
the current threats that the mobile phones face. Unlike pre-
vious research, we focus on the new avenues of infection
that go beyond the regular software vulnerabilities spread
via the cellular or network connections. Our aim is to study
and model new possible mechanisms available to mobile mal-
ware through exploiting the technical capabilities of the mo-
bile device. We don’t devise new exploit payloads but rather
expose new avenues of automatic and stealthy exploitation.
Any existing or future exploits can take advantage of this
new ways to spread and propagate between devices.

The main contributions of this paper are summarized as
follows:

• We are the first to study attacks that take advantage
of the USB interface connectivity and utilize it as an
avenue of exploitation. To that end, we show how
malicious code can leverage USB as a new infection
vector for propagation and self-replication.

• We present examples of attacks for three basic con-
nectivity scenarios: Phone-to-Computer, Computer-
to-Phone, and Phone-to-Phone. Also, we provide a
detailed description of the required steps for attacks
in each scenario. We demonstrate that it’s enough for
an adversary controlling one end of the USB connect-
ing ends to infect the other end.

• Finally, we discuss the potential defenses based on
common limitations of such USB-borne attacks.

The rest of this paper is organized as follows: Section 2
introduces the motivation and background about contem-
porary smart phone devices. The threat model and the de-
scription of the new USB attacks are presented in Section 3.
We discuss the underlying limitations of attacks as well as
potential defenses in Section 4. Section 5 presents security
related research on mobile device and mobile operating sys-
tem security and Section 6 concludes this paper.

2. MOTIVATION & BACKGROUND

2.1 Motivation
Currently, USB connections are inherently trusted and as-

sumed secure by the users. This can be partly attributed to
the physical proximity of the device and the desktop system
and the fact that, in most cases, the user owns both systems.
However, as we show, this trust can be easily abused by a
malicious adversary. For instance, in a typical usage sce-
nario, an unsuspected user connects the smart phone device
to her computer to charge its battery and to synchronize
the two devices including her contact list, calendar and me-
dia content. All of these tasks are performed automatically
either completely transparently to the user or with mini-
mal user interaction: the simple press of a mouse click upon
connecting the USB cable. To make matters worse, the com-
puter is completely unaware of the type of the device that
is connected to the USB port. As we elaborate later, this
observation can be exploited by a sophisticated adversary
to launch attacks against the desktop system. Furthermore,
there are no mechanisms to authenticate the validity of the
device that attempts to communicate with the host. This
lack of authentication allows the connecting device to dis-
guise and report itself as another type of USB device, abus-
ing the ubiquitous nature operating system.

Traditionally, a smart phone device is connected to the
host as a peripheral USB device. Being controlled by the
host, the device is more prone to be taken over by a com-
promised computer. However, the potential attack surface
is much wider: the USB creates a bidirectional communica-
tion channel, permitting, in theory, exploits to traverse both
directions. New generation phones are equipped with com-
plete operating systems which make them as powerful as a
desktop system. These recent hardware advancements en-
ables them to perform attacks that are far beyond their pre-
vious computational and software capabilities. Additionally,
unlike desktop computers and servers that do not change
their physical location, phones are mobile. This empowers
them to potentially communicate to an even larger number
of un-infected devices across a wider range of administrative
domains. For example, a smart phone left unattended for
a few minutes can be completely subverted and become an
point of infection to other devices and computers. Lastly,
because USB-borne attacks have not been seen before, there
are no defenses in place to prevent them from taking place
or even detect them.

In the meantime, the lack of deployed USB defenses or de-
tection mechanisms empowers the attacks to remain stealthy.
Currently, the only instance of USB-borne threats is flash
drive viruses spreading from USB files. However, the new
smart phones are capable of accomplishing a much more
powerful and widespread propagation of malfease. The prop-
agation that can be caused by this new infection vector goes
beyond viruses that are passively hidden in traditional USB
storage devices. The above observations motivate our study
of this new infection vector that is spurred by the new tech-
nology trends, as well as propose potential defenses.

In the next section, we briefly introduce hardware and
software background information necessary to understand
the technical details behind the new USB attacks. Even
though we implemented the attacks using specific devices,
the threats that the USB connectivity raise apply in general
to all smart phone devices.

358

Devices USB interface types
iPhone/iTouch Apple Proprietary 5-pin wide USB
Motorola Droid and other Android based Micro USB AB
HTC Windows CE-Based Micro HTC ExtUSB with 11-pin connector
Old Nokia models Pop-Port connector
Google’s Nexus One Micro USB AB

Table 1: USB interfaces of various mobile devices.

Figure 1: The logical communication channels of the composite USB Device as they appear in Windows XP
systems.

2.2 Background
Here, we discuss the background information and the spe-

cific devices employed in our experiments. In 2008, Google
and Open Handset Alliance launched Android Platform[1]
for mobile devices. Google’s Android is a comprehensive
software framework for mobile communication devices (i.e.,
smart phones, PDAs). The Android framework is an full
operating system including system library files, middleware,
and a set of key applications.

Nowadays, most smart phones are equipped with a Mini
USB or Micro USB interface for PC to phone connectivity.
This USB interface provides the physical link for the syn-
chronization of contacts and calendar data. Table 1 gives
the different USB interfaces with different devices.From the
operating system point of view, all Android driven devices
contain more than one interface descriptor, which is known
as a composite USB device. This physical link can be mul-
tiplexed: with a single physical USB interface, the device
can act as multiple devices simultaneously as long as they
comply with the USB specification.

For our experiments, the device is Google’s Nexus One.
The operating system is Android 2.1 (codename eclair).
While Google’s website [5] lists the specifications from a
marketing point of view, Table 2 lists the hardware mod-
ules of the device from the operating system’s point of view:
the second column is the internal device driver names of
the different modules. Table 3 provides the MTD (Memory
Technology Device) device partition layout , whereas MTD
is the Linux abstraction layer between the hardware-specific
device drivers and higher-level applications. How fast we
can flash the device depends on the size of the storage each
specific device equipped with. In addition to the NAND
device storage, Google’s Nexus One uses a 4GB sd card as
external storage. This works as separated device in the An-
droid operating system and can be mounted as a USB mass
storage device to the desktop system. We will leverage this
hardware design to launch the Phone-to-Computer attacks.
In the manufacture state, the Google’s Nexus One has only

two logical USB interfaces by default, one is the USB mass
storage while the other is the Android ADB Interface. By
modifying the kernel source code with corresponding kernel
compilation options, we enabled other hidden USB interfaces
in the kernel, show in Figure 1.

3. NOVEL INFECTION VECTORS

3.1 Threat Model
To establish basic communication, the both end of the

USB connection are connected via off-the-shelf USB cables.
In our threat model, we assume an adversary that is al-
ready in control of one end of the USB connection. This is
true for all our three attack scenarios. For instance, in the
Phone-to-Computer attacking scenario, the phone is fully
under the control of the adversary. Moreover, we assume
that the attacker can manipulate any component of the de-
vice, ranging from applications to programmable hardware
components. The victim, in this case the desktop system,
is assumed to have a basic set of device drivers that come
with the installation of the operating system and support
Human Interface Device (HID) installation. Note that this
is not an additional step required to be accomplished by
the adversary. In the case of Computer-to-Phone infection,
we assume the desktop system is compromised. Put it dif-
ferently, we assume that the adversary has already placed
malicious software that runs alongside with the regular le-
gitimate software. The phone is considered intact and in
the default manufacturer state. We only focus on how the
compromised desktop system could infect the phone and
propagate malware while connected through USB to the de-
vice. How the desktop system became comprised is beyond
the scope of this paper. Such exploitation can be accom-
plished via traditional browser exploitation, email phishing,
or buffer overflow.

For Phone-to-Phone attacks, the attacking device is ma-
nipulated to take over the innocent victim device. Beyond
the full control of the mobile operating system of the at-

359

Modules Hardware
CPU Qualcomm QSX8250 1Ghz
Mother board Qualcomm Mobile Station Modem (MSM) SoC
RAM 512 MB
ROM 512 MB , partitioned as boot/system/userdata/cache and radio
External Storage 4GB micro SD
Audio Processor Msm qdsp6 onboard processor
Camera 5 MegaPixels Sensor s5k3e2fx
Wifi+BlueTooth+FM Boardcom BCM 4329, 802.11a/b/g/n
Touch Screen Input Msm ts touchscreen controller, capella
Vibrator Msm vibrator on board vibrator
Digital Compass AK8973 compass

Table 2: Google’s Nexus One Hardware Modules.

USB connection

Malicious content in Sync

Remount+autorun.inf
Simulate as a HID device

Figure 2: The Phone-to-Computer Attacks over the USB Connection.

tacking device, the adversary also has to craft a special USB
cable. This cable is used to place the malicious device into
USB host-mode and establish a connection to the the target
phone device. We explain the necessary USB cable modifi-
cations in Section 3.4. Having established a thread model
and listed our assumptions, we detail the steps to accomplish
USB-borne attacks in the following sections.

3.2 Phone-to-Computer Attacks
Upon connection, USB becomes a bidirectional commu-

nication channel between the host (normally a desktop sys-
tem) and the peripheral device. The established belief that
only the master device (i.e the host computer) is poten-
tially capable of taking over the slave device (i.e. the smart
phone) is incorrect. Indeed, an attacker can launch attacks
and transfer malicious programs from a USB peripheral to
the machine that acts as a host. Launching attacks against
the connected desktop system is a new emerging avenue of
exploitation that can be used to spread malware. We demon-
strate this new infection vector by focusing on two general
classes of attacks which have not been introduced previously.

The first class takes advantage of the fact that smart
phones have open source operating systems and can pose as
Human Interface Device (HID) peripherals (also called gad-
gets) and connect to the computer. This new functionality
can be leveraged by an sophisticated adversary to cause more
damage than traditional passive USB devices. The second
class of attacks harnesses the capability of the phone to be
automatically mounted as a USB device and automatically
run content. The process of a USB device being mounted is
not a threat on its own. Even having the possible malware
hidden in sd card partition in the device and mounted on
the computer as a USB stick is not a novel attack. However,
being able to identify the operating system on the other side

of the USB connection and prepare an attack payload selec-
tively is a new attack capability. This is because the phone
can arbitrarily control and repeat this mount and unmount
operation within the device.

To demonstrate first class of attacks, we developed a spe-
cial USB gadget driver in addition to existing USB com-
posite interface on the Android Linux kernel using the USB
Gadget API for Linux [8]. The UGAL framework helped
us implement a simple USB Human Interface Driver (HID)
functionality (i.e. device driver) and the glue code between
the various kernel APIs. Using the code provided in:
“drivers/usb/gadget/composite.c”, we created our own gad-
get driver as an additional composite USB interface. This
driver simulates a USB keyboard device. We can also sim-
ulate a USB mouse device sending pre-programmed input
command to the desktop system. Therefore, it is straight-
forward to pose as a normal USB mouse or keyboard device
and send predefined command stealthily to simulate mali-
cious interactive user activities. To verify this functionality,
in our controlled experiments, we send keycode sequences to
perform non-fatal operations and show how such a manipu-
lated device can cause damages In particular, we simulated
a Dell USB keyboard (vendorID=413C, productID=2105)
sending ”CTRL+ESC”key combination and ”U”and ”Enter”
key sequence to reboot the machine. Notice that this only
requires USB connection and can gain the ”current user”
privilege on the desktop system. With the additional local
or remote exploit sent as payload, the malware can escalate
the privilege and gain full access of the desktop system.

Another class of attacks are content exploitations. Such
attacks take advantage of media content to exploit vulner-
able softwares that exist in the victim system. These at-
tacks are not new and have been known for quite some
time (e.g. PDF and Flash exploits). However, we show

360

USB connection

Install malware

Rooting

Unlock

Figure 3: The Computer-to-Phone Attacks over the USB Connection.

a new way to accomplish these attacks using the USB con-
nection. In Android devices, in addition to the NAND de-
vice, an sd card works as external storage. This separated
device can be mounted as a USB mass storage device to
the desktop system. There are system-wide options for the
user to set:1, connecting only for battery charging;2, allow-
ing NAND ROM device available to the desktop system via
USB Android Debugging Bridge driver (adb);3, allowing sd
card device available to the desktop system as a USB mass-
storage device. If the last option is set, the sd card device is
automatically mounted by generic USB mass-storage driver
in major commodity operating systems by default bypass-
ing any restrictions. We leverage this platform-specific ob-
servation to implement the basic attack against the desktop
system. Our malicious program drops an autorun.inf and
the calc.exe to the sd card partition. The next time when
the user want to transfer files (e.g. movie, photo, mp3 file
etc), once the sd card is mounted as a partition, the calc.exe
will be executed in our default configuration Windows XP
system [2].

Moreover, unlike the traditional passive USB stick de-
vices, the CPU powered phone as a USB peripheral device
promotes the attacks in a more intelligent manner. As a
starting point, we (the attacker) wrote the malware on the
phone monitoring the USB connectivity. Once the phone is
connected to a desktop system, we probe and identify the
operating system by looking at the URB (USB Requesting
Block) ID in the USB packets. By doing this, we differen-
tiate the targeted system and avoid brute force approaches.
After the target system is being identified, using the com-
putational power on the phone, we enumerate the available
vulnerabilities and change the attacking payload with mul-
tiple runs with different content. For example, in our con-
trolled experiments, the targeted desktop system is a Win-
dows XP SP3 with a vulnerable version Adobe PDF software
and fully updated JPG parse engine. Our proof-of-concept
malware on the phone will compose the autorun.inf upon
detecting it is a Windows, and launch Windows Picture and
Fax Viewer program to view the special crafted JPG file
and the PDF program to view the malicious PDF file we
dropped. We observed the expected result that the malicious
logic in the crafted PDF file was executed and the Windows
system is compromised. We acknowledge that this depends
on malware-writer’s knowledge on contemporary vulnerabil-
ities. However, the CPU equipped phone device as a gadget
can help malware-writers generate composite malware and
highly infectious code, to achieve higher successful ratio.

For iPhone devices, the strong coupling between iTunes
software and iPhone devices makes such Phone-to-Computer
attacks even simpler. Once the iPhone connected to the

desktop system, the iPhone/iPod Service installed by iTunes
will detect the device and launch iTunes. iTunes will scan
the media content on the device and make them available
in the iTunes. Since the attacker has the full control of the
device, it can drop any specially crafted media file (e.g. jpg,
pdf, mp3, mov etc) to exploit the corresponding processing
engine.

3.3 Computer-to-Phone Attacks
In this section, we detail the steps required to take over

a smart phone device when its connected via the USB port
to a computer. A closer look into the attacking process
reveals that it can be decomposed into a sequence of op-
erations. The phone is not unlocked and in manufacture
out-of-box state in terms of installed software. This is usu-
ally true for most of the end-users. To mount the attack, we
take advantage of the open source program fastboot which
can manipulate the boot-loader of the Android phone de-
vices. By issuing the command fastboot oem unlock, the
device will display a warning page and once we click ”yes”,
it is officially unlocked and the manufacture warranty also
is voided. However, this is far from being inconspicuous and
requires user input. To achieve fully automation, we crafted
a small program to simulate the clicking of yes action. We
do so by sending the touchscreen input event with the corre-
sponding touchscreen coordinators need be pressed directly
via the USB connection. Upon completion of the unlocking
process, we can replace the system images. This means that
all software including kernel, libraries, utility binaries, and
applications are now under our control. The second step is
to do a full system dump from device, so that we can ex-
filtrate all the programs and user information. This can be
used for phishing purposes in addition to creating a backup
of the applications to prevent the user from noticing any
changes in the device.

The entire unlocking and flashing process takes 4 mins
5 seconds on our device and may vary for different devices
due to different content sizes. To be more specific, we flash
the recovery partition using a third party modified recovery
image which provide the functionality that can do a whole
NAND file system backup based on the partition informa-
tion in Table 3. Such backup covers boot partition, system
partition, userdata partition, and a hash checksum. We dis-
assemble this boot partition dump boot.img to a raw ker-
nel zimage binary file and corresponding ram-disk file. The
boot.img file is composed with the kernel in zimage format,
the compressed ram-disk in gzip format, and the paddings.
The overall layout of the boot.img file is listed as follows:
0x0-0x7ff: File Magic:”Android!”,kernel size in bytes, kernel
physical loading address, ram-disk size in bytes, ram-disk

361

Dev Size Name Range Erasesize
mtd0: 0x000e0000 896KB misc 0x000003ee0000-0x000003fc0000 0x00020000
mtd1: 0x00500000 5MB recovery 0x000004240000-0x000004740000 0x00020000
mtd2: 0x00280000 2.5MB boot 0x000004740000-0x0000049c0000 0x00020000
mtd3: 0x09100000 145MB system 0x0000049c0000-0x00000dac0000 0x00020000
mtd4: 0x05f00000 95MB cache 0x00000dac0000-0x0000139c0000 0x00020000
mtd5: 0x0c440000 196.24MB userdata 0x0000139c0000-0x00001fe00000 0x00020000

Table 3: Google’s Nexus One NAND Partition Layout.

physical loading address, product name, kernel command
line options (512bytes), timestamp, sha1 hash. 0x800:4K
page aligned kernel zimage with zero trailing paddings after
that is the ram-disk which also 4K page aligned and zero
padded. The last part is a second optional kernel for testing
and do not normally appear in device. We use such knowl-
edge to repack the boot.img file which includes malicious
code.

Google maintains regular release and updates for Android
system, and all the boot.img files are publicly available as
well as other system files. The user may update the boot.img
on it’s own and we can not assume it has the same boot.img
as Google’s released standard ones. For a particular vic-
tim device, we do not have the prior knowledge about this
boundary information between the kernel and the ram-disk.
Since the magic string of gzip file is 0x1F8B, we use 0x000000001F8B
which is the trailing padding zeroes plus the gzip magic
string as the identification of the start ram-disk content, and
rewrite them to separate files. After we get the ram-disk file,
we unpack it and get direct access to init.rc file. This file
is parsed by init program which is also the first process of
the system. It sets up the basic environment for the system
and then launches critical system daemon processes and ser-
vices. The init binary and init.rc include Android specific
system features (e.g some global system properties are de-
fined and parsed here) and are critical to the entire system.
Until now, we assumed direct access to all the resources to
insert our malicious logic into the system. Initially, we bind
the adbd daemon process with root permission by changing
the adbd parameters init.rc file. This will provide root shell
access to the whole system when we launch adb connection
from our desktop system as a attack vector. Afterwards, we
use the command in init.rc to remount system partition as
read-only or we can run“(mount yaffs2 mtd@system /system
ro remount,mount rootfs rootfs / ro remount)” to achive full
filesystem privileges regardless of the system settings. Then,
we add new command in init.rc file to launch the malicious
program as a system service which will be pushed into the
system as a separate step so that it is persistent and still
running after phone reboot or battery outage. It is worth
mentioning that this makes the malicious program persis-
tent at bootup and is agnostic to the malware code itself.
If the malicious binary is removed, such automated initial-
ization will fail. The path need to match the corresponding
path of the binary.

After performing the aforementioned modifications, we
repack the boot.img from the modified sources and flash it
back to boot partition on the device. The repack process
is straightforward: we compress the modified ram-disk files
and directory structures into a single ramdisk.cpio.gz file.
We then combine it with the kernel and kernel command line

options by mkbootimg program which is available in Android
repository. The flashing process merely takes 2 seconds for
a 2560KB boot.img file by issuing command fastboot flash
boot boot.img where fastboot is a program having the min-
imal functionality of maintaining the device in boot-loader
mode (e.g. updating partitions of the device). This pro-
gram is available for Windows, Linux, and Mac OSX. After
all the above steps, we have gained full control of the vic-
tim device and prepared automated launching of the mali-
cious code. We reboot the phone back to normal mode from
boot-loader mode and push our malicious binary to the sys-
tem partition by adb push evilprog /system/xbin and change
the permission for execution. The detailed malicious action
that this evil binary can do is beyond the scope of this pa-
per. For proof-of-concept demonstration purposes, we wrote
a program for collecting the device information and send
them to a pre-configured internal collection server stealthily
over TCP/IP via cellular data network or wireless network
whichever available. This program is cross-compiled against
Android’s bionic C libraries with arm-eabi toolchains. Some
more developed and foreseen real attacks are discussed in
Section 4. Note that this program is written in C and ex-
ecuted as the ARM ELF binary at the system utility level
which is lower than Davik Java virtual machine and bypass
all Android’s permission checks for application at JVM [14].
Our server successfully collected the device information sent
by the program, which includes the serial number of the de-
vice, the kernel version and a list of installed applications.

As we mentioned earlier in this section, all the above logic
and operation sequences are programmed as a malicious dae-
mon running on the desktop system. The complete process
takes 300 seconds, which corresponds to the sum of every
steps.

3.4 Phone-to-Phone Attacks
The inherent mobility and programmability of the third-

generation smart phones gave rise to a new type of insider
attack. The phone is fully capable of assuming the role of
a computer host by setting its USB port to be a USB Hub.
This type of attack is similar to the attacks described in
Section 3.3. For phone-to-phone attacks, a malicious user
connects a subverted device to a victim device and then
take over it stealthily. This can happen, for instance, when
the victim device is left unattended. In this section, we
show how to perform a phone-to-phone attack via a single
USB interface as the infection vector. The key capability
is to enable the USB host mode on one device, a Motorola
Droid in our case, which first time provides the ability of
controlling a Android device from another Android device.
The rest of the attack is similar to the one described in
Section 3.3. When the manipulated Motorola Droid device

362

USB Host Mode USB Peripheral/Gadget

Install malware

High mobility take over

Figure 4: The Phone-to-Phone Attacks over the USB Connection.

Figure 5: The Micro B USB Connector Dongle. Figure 6: The Crafted USB Cable for Phone-to-Phone
Attacks.

connected to another device, the malicious daemon will send
pre-programmed command and the victim device will treat
it as from a normal desktop system.

For our purposes, we leverage the advanced USB chip in
recent released Google Nexus One by HTC and Motorola
Droid devices and enable the device’s USB host mode ca-
pabilities. In regular operation, the phone devices only act
as peripheral devices at the USB protocol level. The desk-
top system will send the first USB packet and initiate the
USB connection link. We instead enable the USB OTG
(On-the-Go) driver in the device with such hardware sup-
port, and flip a normal smart phone device as the USB
host. To be more specific, both Nexus One’s Qualcomm
QSX8250 chipset and Motorola Droid’s Texas Instruments
OMAP3430 chipset support USB OTG specification [9]. Our
experiment on Google Nexus One device failed due to limited
SoC depended kernel code support for Qualcomm QSX8250
chipset. However, the OMAP series chipset integrated with
the Philips ISP1301 USB OTG transceiver has more mature
code in the kernel source. By checking the following kernel
compilation options, we can enable the OTG software.

CONFIG_ARCH_OMAP_OTG=y

CONFIG_USB_OTG=y

CONFIG_USB_MUSB_OTG=y

CONFIG_USB_OTG_UTILS=y

After we activate the kernel driver, we need the specially
crafted USB connectors and cable to trigger the USB host
mode of the USB OTG device and connect other periph-
eral devices. By soldering the 4th pin and 5pin of the micro
USB connector from a car charger, we changed a micro B
connector to a micro A connector, to identify itself as a host
side connector. Unfortunately, most off- the-shelf product
do not specify it is a A connector or a B connector. Figure 5

shows the micro B dongle we had to solder to achieve our
goal. To place the device in the USB hub mode, we have
to perform a hard reboot while the micro B connector is
inserted in the Droid USB interface. Moreover, we have to
unplug the micro-dongle as soon as the Motorola logo disap-
pears as the Droid logo appears. This forces the hardware
initialization process to identify the USB hardware in the
host mode. After the system boots up, we can verify that
the USB is in host mode by running the following command
“cat /sys/devices/platform/musb hdrc/mode”. If the out-
put of the command is “a host” then we are in host mode.
Notice that we need to enable the wireless connectivity and
use secure shell connection for shell access because the USB
interface is in host mode and thus traditional adb shell access
over USB is disabled.

To connect other peripheral devices, in our case a vic-
tim phone, we make the special USB cable with both end
micro USB by cutting two cables and put two micro connec-
tor in a single cable by soldering the same color together.
Our additional experiments shows the device can support
additional USB-to-Serial converter but for USB flash driver
devices, we have to use external USB power hub to supply
additional power to the Vcc line. Figure 6 depicts a snap-
shot of the cable we made with the micro USB connectors
at both ends. It is worth mentioning here that due to the
requirement that the D+ and D- must be twisted for syn-
chronization purposes, we can only break the cable within a
limited distance for soldering.

Another important aspect of the attack is that the pe-
ripheral device driver must be compiled in the host mode
device. To limit unnecessary code, most of the non-required
kernel options and device drivers are turned off by manufac-
ture configuration. We performed our experiments using a
Motorola Droid to attack a Nexus One phone. The generic

363

USB hub driver on the Droid kernel is compiled as part of
the Linux Kernel. The final step is compiling the user level
program against the Android system libraries. adb provides
the ability of controlling a Android device from another An-
droid device. The rest of the attack is similar to the one
described in Section 3.3 where the host is replaced with the
Droid device. When the malicious Motorola Droid device
connects to the victim device, the malicious daemon will
send the pre-programmed command over the USB and the
victim device will treat it similarly as it did for the host
computer.

4. DISCUSSION
Our attacks are primarily implemented on the Android

framework because of its open source nature and the ease
that we can demonstrate and detail our results making them
reproducible. However, we posit that attacks that abuse the
USB physical link and hardware programmability exist also
for other mobile phone platforms such as the Apple iPhone
OS, Microsoft Windows CE and Symbian OS. Moreover,
there are scenarios where the described classes of attacks
are easier to be accomplished on other platforms. Taking
iPhone OS as an example, an adversary can take advantage
of the default music play functionality that iTunes software
offers to craft malware media files and “synchronize” them
with the connected computer. In addition, antivirus prod-
ucts normally scan the external storage in the device which
appears as a flash drive from the operating system’s view.
However, such scans are based on well-known file formats
and none of them can scan the internal ROM or raw data
stored in the hand-held devices, to the best knowledge of
the authors. This represents a clear defense gap.

The common theme behind the USB attacks is the estab-
lished belief that physical cable connectivity can be inher-
ently trusted and that peripherals are not capable of abusing
the USB connection. To protect the end-point devices, there
is a need to shed that belief. Instead we have to focus on
how to establish trust that is not implicit but explicit and
puts the human on the loop. Therefore, a possible defense
strategy is to authenticate the USB connection establish-
ment phase and communications using similar techniques
that were developed for Bluetooth devices. This will give
a visual input to the user and will allow her to verify that
a device that attempts to connect as a peripheral is indeed
allowed to connect. Moreover, there is a need to identify
and communicate to the user the type of the USB device
that attempts to connect as a peripheral. This will prevent
attacks that pretend to be HID devices and connect without
any user interaction.

Unfortunately, attacks that exploit the USB while the vic-
tim device is in “slave” mode are more difficult to thwart
because some of the functionality is required to control the
“slave” device. However, smart phone vendors can try to fil-
ter and vet the USB communications using a USB firewall.
Similar to network firewall, this USB firewall will inspect
all USB packets coming to the device and check the content
based on platform-specific rules preventing attacks that re-
play key-strokes via the USB bypassing the user-input.

In the meantime, we can protect the smart phone system
by performing a full backup. This is an easy solution and
feasible for most mobile devices. Indeed, the internal ROM
storage is relatively limited on smart phones, 512 MB in our
case. Using a program that runs on the phone, we can eas-

ily dump the entire filesystem using prior knowledge about
the partition information to a back-end desktop systems or
even external sdcard storage. Note that such backup is the
complete filesystem, which includes boot partition and ker-
nel binaries. If the backup is performed from a clean state,
a simple revert can defeat all persistent malware even rootk-
its. However, restoring the phone to a pristine state might
lead to loss of user personalization data and thus, it can only
act as an emergency measure and not a full-proof or even
user friendly solution.

5. RELATED WORK
Platform-specific attacks and defenses: The presen-

tation “Understanding Android’s Security Framework” [14]
presents a high-level overview of the mechanisms required
to develop secure applications within the Android develop-
ment framework. The tutorial contains the basics of building
an Android application. However, the described interfaces
must be carefully secured to defend against general malfea-
sance. They showed how Android’s security model aims to
provide mechanisms for requisite protection of applications
and critical smart phone functionality and present a num-
ber of ”best practices” for secure application development
within the environment. However, authors in [21] showed
that this is not enough and that new semantically rich and
application-centric policies have to be defined and enforced
for Android. Moreover, in [19] the authors show how to
establish trust and measure the integrity of application on
mobile phone systems. At Black Hat 2009 [11] the authors
focus mainly focus on the application security on Android
platform. Unlike software, Android devices do not all come
from one place. The open nature of the platform allows for
proprietary extensions and changes. The proposed exten-
sions can help or could interfere with security. Shabtai et
al. [23, 24] assess the security mechanisms incorporated
in Google’s new Android framework. The authors provide
a list of security mechanisms which can be incorporated to
harden the security of Android. They also make some rec-
ommendations on the efficacy and priorities of various secu-
rity mechanisms. They’ve seen attacks and current threats
against mobile phones in the listed subsystems. Some of
the vulnerabilities exist already in the wild while some of
them are imminent to be wildly spread in the near future[3].
TaintDroid [13], is designed to expose how user-permitted
applications actually access and use private or sensitive data.
This includes location, phone numbers and even SIM card
identifiers, and to notify users in realtime. Their findings
suggest that Android, and other phone operating systems,
need to do more to monitor what third-party applications
are doing when running in smart phones.

Rookits on mobile devices : Cloaker [12] is a non-
persistent rootkit which does not alter any part of the host
operating system (OS) code or data, thereby achieving im-
munity to all existing rootkit detection techniques which
perform integrity, behavior and signature checks of the host
OS. Cloaker leverage the ARM architecture design to remain
hidden from currently deployed rootkit detection techniques,
so it’s architecture specific but OS independent. [10] uses
three example rootkits to show that smart phones are just as
vulnerable to rootkits as desktop operating systems. How-
ever, the ubiquity of smart phones and the unique interfaces
that they expose, such as voice, GPS and battery, make the
social consequences of rootkits particularly devastating.

364

Power Drain Attacks: In [22, 16] the authors study
malware that aims to deplete the power resources on the
mobile devices. The provided solutions involve changes in
the GSM telephony infrastructure. Their work shows that
attacks were mainly carried out through the MMS/SMS in-
terfaces on the device. In addition, in [18] the authors show
that applications can simply overuse the WiFi, Bluetooth or
display of the device and eventually cause a denial of service
attack. VirusMeter [17] modeled the power consumption
and detect the malware based on power abnormality. How-
ever the use of linear regression model with static weights
for devices’ relative rate of battery consumption is a totally
non-scalable approach [20].

Stealthy Video & Audio Surveillance: Xu et al [26]
describe a novel attack which stealthily captures video using
the on-board camera found on smart phones. Their algo-
rithm covertly records video according to the phone usage
and uses a compression algorithm to store the video on disk.
This file can later be transferred to the attacker. These at-
tacks are very realistic and go easily unnoticed to the user
of the device. However, they do not propose any solutions.

Text Messages Attacks: In addition to the research
mentioned in power drain attacks which exploits SMS/MMS
functionality [22], Traynor et al. [15], show how specially
crafted message packets could compromise a city wide GSM
infrastructure, with mitigating mechanism proposed in [25].
Researchers at McAfee Avert Labs have observed exam-
ples of SMS (short message service) phishing (also known
as SMiShing), which seems to be on the rise [6]. One ex-
ample is malware that uses the text-messaging APIs to send
fake messages to people on the contact list.

Buffer overflows: Buffer overflows also plague mobile
devices. The presentation on hacking Windows Mobile [4]
at Xcon 2005 talked shell code development advice as well
as sample code. Recent emerging threats show that such ex-
ploitations are targeting web browsers and other potentially
exploitable software like adobe pdf view application in the
mobile OSes.

6. CONCLUSIONS
In this paper, we introduced several new types of attack

vectors that attempt to take advantage of the inherent trust
that users place on the physical USB connectivity between a
smart phone and their computer. Such attacks became fea-
sible because of the newly introduced hardware and software
capabilities of the third-generation smart phones. The use
of open source operating systems and programmable USB
ports empower a sophisticated adversary to exploit the un-
protected physical USB connection between devices. Indeed,
we describe how an adversary that has under his control one
of the connected devices can subvert the other. Moreover,
we show that by crafting a USB cable capable of putting a
subverted smart phone to host mode, we are able to exploit
other phone devices.

Although we performed our experiments and USB attacks
on Android platforms, which by itself includes devices from
many manufacturers, we explain how these attacks can be
generalized to other third-generation smart phone devices
including Apple’s iPhone. Finally, we discuss the underlying
reasons why USB attacks are a successful avenue of exploita-
tion and propagation of malware and we propose potential
defense mechanisms that would limit or even prevent such
attacks from taking place in the future.

7. ACKNOWLEDGEMENTS
We would like to thank Nelson Nazzica, Quan Jia, Meix-

ing Le and Jiang Wang from the Center for Secure Informa-
tion Systems at George Mason University for their comments
on our early draft. We also thank the anonymous ACSAC
reviewers for their constructive comments. This work was
supported in part by US National Science Foundation (NSF)
grant CNS-TC 0915291 and a research fund from Google Inc.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the NSF.

8. REFERENCES
[1] Android. http://developer.android.com/.

[2] Autoplay in windows xp: Automatically detect and
react to new devices on a system. http://msdn.
microsoft.com/en-us/magazine/cc301341.aspx.

[3] Dark side arises for phone apps.
http://online.wsj.com/article/

SB10001424052748703340904575284532175834088.

html?mod=WSJ_newsreel_technology.

[4] Hacking windows ce. http:
//www.phrack.org/issues.html?issue=63&id=6.

[5] Nexus one features and specifications.
http://www.google.com/phone/static/en_

US-nexusone_tech_specs.html.

[6] Sms phishing, records system and method.
http://www.f-secure.com/weblog/archives/

archive-042007.html.

[7] Usb 2.0 specification. http://www.usb.org.

[8] Usb gadget api for linux.
http://www.kernel.org/doc/htmldocs/gadget.html.

[9] Usb on-the-go.
http://www.usb.org/developers/onthego/.

[10] Bickford, J., O’Hare, R., Baliga, A.,
Ganapathy, V., and Iftode, L. Rootkits on smart
phones: attacks, implications and opportunities. In
HotMobile ’10: Proceedings of the Eleventh Workshop
on Mobile Computing Systems & Applications
(New York, NY, USA, 2010), ACM, pp. 49–54.

[11] Burns, J. Mobile application security on android. In
Black Hat ’09 (2009), Black Hat USA.

[12] David, F. M., Chan, E. M., Carlyle, J. C., and
Campbell, R. H. Cloaker: Hardware supported
rootkit concealment. In SP ’08: Proceedings of the
2008 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2008), IEEE Computer
Society, pp. 296–310.

[13] Enck, W., Gilbert, P., gon Chun, B., Jung, L. P.
C. J., McDaniel, P., and Sheth, A. N. Taintdroid:
An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI ’10:
Proceedings of the 9th symposium on Operating
systems design and implementation (New York, NY,
USA, 2010), ACM, pp. 255–270.

[14] Enck, W., and McDaniel, P. Understanding
android’s security framework. In CCS ’08: Proceedings
of the 15th ACM conference on Computer and
communications security (New York, NY, USA, 2008),
ACM, pp. 552–561.

[15] Enck, W., Traynor, P., McDaniel, P., and
La Porta, T. Exploiting open functionality in

365

sms-capable cellular networks. In CCS ’05:
Proceedings of the 12th ACM conference on Computer
and communications security (New York, NY, USA,
2005), ACM, pp. 393–404.

[16] Kim, H., Smith, J., and Shin, K. G. Detecting
energy-greedy anomalies and mobile malware variants.
In MobiSys ’08: Proceeding of the 6th international
conference on Mobile systems, applications, and
services (New York, NY, USA, 2008), ACM,
pp. 239–252.

[17] Liu, L., Yan, G., Zhang, X., and Chen, S.
Virusmeter: Preventing your cellphone from spies. In
RAID ’09: Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection
(Berlin, Heidelberg, 2009), Springer-Verlag,
pp. 244–264.

[18] Moyers, B. R., Dunning, J. P., Marchany, R. C.,
and Tront, J. G. Effects of wi-fi and bluetooth
battery exhaustion attacks on mobile devices. In
HICSS ’10: Proceedings of the 2010 43rd Hawaii
International Conference on System Sciences
(Washington, DC, USA, 2010), IEEE Computer
Society, pp. 1–9.

[19] Muthukumaran, D., Sawani, A., Schiffman, J.,
Jung, B. M., and Jaeger, T. Measuring integrity
on mobile phone systems. In SACMAT ’08:
Proceedings of the 13th ACM symposium on Access
control models and technologies (New York, NY, USA,
2008), ACM, pp. 155–164.

[20] Nash, D. C., Martin, T. L., Ha, D. S., and Hsiao,
M. S. Towards an intrusion detection system for
battery exhaustion attacks on mobile computing
devices. In PERCOMW ’05: Proceedings of the Third
IEEE International Conference on Pervasive
Computing and Communications Workshops
(Washington, DC, USA, 2005), IEEE Computer
Society, pp. 141–145.

[21] Ongtang, M., Mclaughlin, S., Enck, W., and
Mcdaniel, P. Semantically rich application-centric
security in android. In In ACSAC ’09: Annual
Computer Security Applications Conference (2009).

[22] Radmilo Racic, D. M., and Chen, H. Exploiting
mms vulnerabilities to stealthily exhaust mobile
phoneŠs battery. In In SecureComm 06 (2006),
SECURECOMM, pp. 1–10.

[23] Shabtai, A., Fledel, Y., Kanonov, U., Elovici,
Y., and Dolev, S. Google android: A state-of-the-art
review of security mechanisms. CoRR abs/0912.5101
(2009).

[24] Shabtai, A., Fledel, Y., Kanonov, U., Elovici,
Y., Dolev, S., and Glezer, C. Google android: A
comprehensive security assessment. IEEE Security and
Privacy 8 (2010), 35–44.

[25] Traynor, P., Enck, W., McDaniel, P., and
Porta, T. L. Mitigating attacks on open
functionality in sms-capable cellular networks.
IEEE/ACM Trans. Netw. 17, 1 (2009), 40–53.

[26] Xu, N., Zhang, F., Luo, Y., Jia, W., Xuan, D.,
and Teng, J. Stealthy video capturer: a new
video-based spyware in 3g smartphones. In WiSec ’09:
Proceedings of the second ACM conference on Wireless
network security (New York, NY, USA, 2009), ACM,

pp. 69–78.

366

Defending DSSS-based Broadcast Communication against
Insider Jammers via Delayed Seed-Disclosure∗

An Liu, Peng Ning, Huaiyu Dai, Yao Liu
North Carolina State University

{aliu3, pning, huaiyu_dai, yliu20}@ncsu.edu

Cliff Wang
U.S. Army Research Office

cliff.wang@us.army.mil

ABSTRACT
Spread spectrum techniques such as Direct Sequence Spread Spec-
trum (DSSS) and Frequency Hopping (FH) have been commonly
used for anti-jamming wireless communication. However, tradi-
tional spread spectrum techniques require that sender and receivers
share a common secret in order to agree upon, for example, a com-
mon hopping sequence (in FH) or a common spreading code se-
quence (in DSSS). Such a requirement prevents these techniques
from being effective for anti-jamming broadcast communication,
where a jammer may learn the key from a compromised receiver
and then disrupt the wireless communication. In this paper, we de-
velop a novel Delayed Seed-Disclosure DSSS (DSD-DSSS) scheme
for efficient anti-jamming broadcast communication. DSD-DSSS
achieves its anti-jamming capability through randomly generating
the spreading code sequence for each message using a random
seed and delaying the disclosure of the seed at the end of the mes-
sage. We also develop an effective protection mechanism for seed
disclosure using content-based code subset selection. DSD-DSSS
is superior to all previous attempts for anti-jamming spread spec-
trum broadcast communication without shared keys. In particular,
even if a jammer possesses real-time online analysis capability to
launch reactive jamming attacks, DSD-DSSS can still defeat the
jamming attacks with a very high probability. We evaluate DSD-
DSSS through both theoretical analysis and a prototype implemen-
tation based on GNU Radio; our evaluation results demonstrate that
DSD-DSSS is practical and have superior security properties.

1. INTRODUCTION
Spread spectrum wireless communication techniques, including

Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping
(FH), have been commonly used for anti-jamming wireless com-
munication [6]. However, with traditional spread spectrum tech-
niques, it is necessary for senders and receivers to share a secret key

∗This work is supported by the National Science Foundation un-
der grants CNS-1016260 and CAREER-0447761, and by the Army
Research Office under staff research grant W911NF-04-D-0003.
The contents of this paper do not necessarily reflect the position
or the policies of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

to determine, for example, the frequency hopping patterns in FH
and the Pseudo-Noise (PN) codes in DSSS. Otherwise, sender and
receivers cannot establish anti-jamming communication. More-
over, if a jammer knows the secret key, she can replicate the secret
hopping pattern or PN codes and jam the wireless communication.

The above limitations of traditional anti-jamming techniques have
motivated a series of recent research. To remove the dependency
on pre-shared keys, an Uncoordinated Frequency Hopping (UFH)
technique was recently developed to allow two nodes to establish
a common secret for future FH communication in presence of a
jammer [19]. This approach was latter enhanced in [7, 18, 20] with
various coding techniques to provide more efficiency and robust-
ness during key establishment.

Besides UFH and its variations [7, 18–20], two other approaches
were recently investigated to enable jamming-resistant broadcast
communication without shared keys [2, 15]. BBC was proposed to
achieve broadcast communication by encoding data into “indelible
marks” (e.g., short pulses) placed in “locations” (e.g., time slots),
which can be decoded by any receiver [2, 3]. However, the decod-
ing process in BBC is inherently sequential (i.e., the decoding of
the next bit depends on the decoded values of the previous bits).
Though it works with short pulses in the time domain, the method
cannot be extended to DSSS or FH without significantly increasing
the decoding cost.

An Uncoordinated DSSS (UDSSS) approach was recently de-
veloped [15], which avoids jamming by randomly selecting the
spreading code sequence for each message from a public pool of
code sequences. UDSSS allows a receiver to quickly identify the
right code sequence by having each code sequence uniquely iden-
tified by the first few codes. However, if the jammer has enough
computational power, using the same property, she can find the cor-
rect sequence before the sender finishes the transmission and jam
the remaining transmission. Thus, UDSSS is vulnerable to reac-
tive jamming attacks, where the jammer can analyze the first part
of transmitted signal and jam the rest accordingly. To mitigate such
attacks, a solution similar to ours was proposed in [14]. The ba-
sic idea is to spread each message using a key and transmit the key
later using UDSSS. To mitigate the reactive jamming attack against
the key transmission, UDSSS can trade the resilience for efficiency
by setting a larger spreading code sequence set size. On the con-
trary, our paper tries to provide an alternative solution achieving
both resilience and efficiency.

In this paper, we develop Delayed Seed-Disclosure DSSS (DSD-
DSSS), which provides efficient and robust anti-jamming broadcast
communication without suffering from reactive jamming attacks.
The basic idea is two-fold: First, the code sequence used to spread
each message is randomly generated based on a random seed only
known to the sender. Second, the sender discloses the random seed

367

at the end of the message, after the message body has been trans-
mitted. A receiver buffers the received message; it can decode the
random seed and regenerate the spreading code using the seed to
despread the buffered message. A jammer may certainly try the
same. However, when the jammer recovers the random seed and
spreading code sequence, all reachable receivers have already re-
ceived the message; it is too late for the jammer to do any damage.

We also develop a content-based code subset selection scheme to
protect the random seed disclosure. We use the content of the seed
to give some advantage to normal receivers over reactive jammers.
This scheme allows a normal receiver, who starts decoding a mes-
sage after fully receiving the message, to quickly decode the ran-
dom seed. In contrast, a jammer, who needs to disrupt the message
while it is being transmitted, has to consider many more choices.

Our contribution in this paper is as follows. First, we develop the
novel DSD-DSSS scheme to provide efficient anti-jamming broad-
cast communication without shared keys. Our approach is superior
to all previous solutions. Second, we develop a content-based code
subset selection method to provide effective protection of seed dis-
closure in DSD-DSSS. Third, we give in-depth performance and
security analysis for these techniques in presence of various forms
of jammers, including reactive jammers that possess real-time on-
line analysis capabilities. Our analysis demonstrates that our ap-
proach provides effective defense against jamming attacks. Finally,
we implement a prototype of DSD-DSSS using USRPs and GNU
Radio to demonstrate its feasibility.

The remainder of the paper is organized as follows. Section 2
describes background information about DSSS. Section 3 presents
our assumptions and the threat model. Section 4 proposes DSD-
DSSS and analyzes its anti-jamming capability and performance
overheads. Section 5 gives the content-based code subset selection
scheme and analyzes its effectiveness. Section 6 shows the imple-
mentation and experimental evaluation of DSD-DSSS. Section 7
describes related work, and Section 8 concludes this paper.

2. BACKGROUND
Spread spectrum techniques, including DSSS and FH, use a much

larger bandwidth than necessary for communications [6, 16]. Such
bandwidth expansion is realized through a spreading code inde-
pendent of the data sequence. In DSSS, each data bit is spread
(multiplied) by a wide-band code sequence (i.e., the chipping se-
quence). The spreading code is typically pseudo-random, com-
monly referred to as Pseudo-Noise (PN) code, rendering the trans-
mitted signal noise-like to all except for the intended receivers,
which possess the code to despread the signal and recover the in-
formation.

Figure 1 shows the typical steps in DSSS communication. Given
a message to be transmitted, typically encoded with Error Correc-
tion Code (ECC), the sender first spreads the message by multi-
plying it with a spreading code. Each bit in the message is then
converted to a sequence of chips1 according to the spreading code.
The result is modulated, up-converted to the carrier frequency, and
launched on the channel. At the receiver, the distorted signal is
first down-converted to baseband, demodulated through a matched
filter, and then despread by a synchronized copy of the spreading
code. The synchronization includes both bit time synchronization
and chip time synchronization, guaranteeing that receivers know
when to apply which spreading code in order to get the original
data. Alternatively, a DSSS system may modulate the signal be-

1To distinguish between bits in the original message and those in
the spread result, following the convention of spread spectrum com-
munication, we call the “shorter bits” in the spread result as chips.

receiversender

message

channel

message

Spreading Code

Modulator Demodulator

Spreading Code

Synchronization

Carrier

Frequency

Carrier

Frequency

Figure 1: DSSS communication system

fore the spreading step at sender, and despread and demodulate the
received signal at receiver.

The performance of DSSS communication depends on the de-
sign of spreading codes. A spreading code c(t) typically consists of
a sequence of l chips c1, c2, ..., cl, each with value 1 or −1 and du-
ration of Tc, where l is the code length and Tc is chip duration. As-
sume the bit duration is Tb. The number of chips per bit l = Tb/Tc

approximates the bandwidth expansion factor and the processing
gain. Two functions characterize spread code: auto-correlation
and cross-correlation. Auto-correlation describes the similarity be-
tween a code and its shifted value. Good auto-correlation property
means the similarity between a code and its shifted value is low;
it is desired for multi-path rejection and synchronization. Cross-
correlation of two spreading codes describes the similarity between
these two codes; low cross-correlation is desired for multiuser com-
munications.

3. ASSUMPTIONS AND THREAT MODEL
In this paper, we consider the protection of DSSS-based wireless

broadcast communication against jamming attacks (i.e., one sender
and multiple receivers). We adopt the same DSSS communication
framework as illustrated in Figure 1. However, the sender and re-
ceivers use different strategies to decide what spreading codes to
use during broadcast communication. That is, our approach cus-
tomizes the generation and selection of spreading codes during
DSSS communication to defend against insider jamming attacks.

We assume that the jammers’ transmission power is bounded.
In other words, a jammer cannot jam the transmission of a mes-
sage unless she knows the spreading codes used for sending the
message. For simplicity, we assume the length of each broadcast
message is fixed. Such an assumption can be easily removed, for
example, by using a message length field.

Threat Model: We assume that the attacker may compromise
some receivers, and as a result, can exploit any secret they possess
to jam the communication from the sender to the other receivers.
We assume intelligent jammers that are aware of our schemes. In
addition to injecting random noises, the jammer may also modify
or inject meaningful messages to disrupt the broadcast communi-
cation.

The jammers may possess high computational capability to per-
form real-time online analysis of intercepted signal. However, due
to the nature of DSSS communication (i.e., each bit data is trans-
mitted through a sequence of pseudo-random chips), it takes time
for a jammer to parse the chips for any 1-bit data to determine
the spreading code. When the jammer receives enough chips for a
given bit to guess the spreading code with a high probability, most
of the chips have already been transmitted. Jamming the remaining
chips will not have high impact on the reception of this bit. Thus,
we assume that if a jammer does not know the spreading code for
any 1-bit data, she cannot jam its transmission based on real-time

368

sender

receiver

buffer:

random seed si

pseudo-random

generator

code sequence csm for mi:

Cp[mid1]||Cp[mid2]||…||Cp[midlm]

S(csm,mi) S(cse,si)

random indexes:

sid1||sid2||…||sidls

S S

message mi

S(csm,mi) S(cse,si)

sliding window

with Ce

sliding window

with Ce

Ce

D
pseudo-random

generator
si

synchronized

D

check error detection code

random indexes:

mid1||mid2||…||midlm

draw codes from Cp

code sequence cse for si:

Ce[sid1]||Ce[sid2]||…||Ce[sidls]

draw codes from Ce

code sequence csm for mi:

Cp[mid1]||Cp[mid2]||…||Cp[midm]

mid1||mid2||…||midlm

draw codes from Cp

message mi

send to upper layer

Fail

Fail

Fail

s
h

if
t

s
lid

in
g
 w

in
d
o

w

1
 c

h
ip

 r
ig

h
t

Figure 2: Delayed seed-disclosure DSSS (DSD-DSSS)

analysis of the signal.

4. BASIC DSD-DSSS
The basic idea of DSD-DSSS is two-fold. First, the code se-

quence used to spread a broadcast message is randomly generated
based on a random seed only known to the sender. Thus, nobody
except for the sender knows the right spreading code sequence be-
fore the sender discloses it. Second, the sender discloses the ran-
dom seed at the end of the broadcast message, after the main mes-
sage body has been transmitted. A receiver buffers received sig-
nal (or more precisely, received chips); it can decode the random
seed and regenerate the spreading code sequence accordingly to
despread the buffered chips. A jammer may certainly attempt the
same thing. However, when the jammer recovers the seed and the
spreading code sequence, all reachable receivers have already re-
ceived the message. It is too late for the jammer to do any damage.
Figure 2 illustrates the sending and receiving processes in DSD-
DSSS. In the following, we describe this new scheme in detail.

4.1 Spreading Code Sets
Similar to traditional DSSS communication, DSD-DSSS uses

spreading codes with good auto-correlation and low cross-correlation
properties (e.g., PN codes).

DSD-DSSS keeps two sets of publicly known spreading codes:
Cp and Ce. Codes in Cp are used to spread the message body mi,
while codes in Ce are used to spread the random seed at the end
of each message. We require that Cp and Ce have no overlap (i.e.,
Cp∩Ce = ∅). For convenience, we give each code in Cp (or Ce) a
unique index. For a given index i for Cp (or Ce), we use Cp[i] (or
Ce[i]) to refer to the i-th code in Cp (or Ce).

We use individual bits in the message as the basic units of spread-
ing. That is, each bit is spread with a different spreading code. As
a result, even if an intelligent jammer can infer the spreading code
for the current bit through real-time analysis, she cannot use this
code to jam the following bit.

4.2 Sender
Given a lm-bit message mi, the sender encodes mi in two parts:

message body and random seed.
Spreading Message Body: The sender first generates a random

seed si, and then uses a pseudo-random generator with seed si to
generate a sequence of lm random indexes mid1‖mid2‖...‖midlm ,
where 1 ≤ midi ≤ |Cp|. The sender then generates a sequence of
spreading codes csm for mi by drawing codes from Cp using these
indexes. That is, csm = Cp[mid1]‖Cp[mid2]‖...‖Cp[midlm].
The sender then uses csm to spread mi (i.e., each code Cp[midk]
is used to spread the k-th bit of mi). For convenience, we de-
note the spread message body (more precisely, the spread chips) as
S(csm, mi).

Spreading Seed: A naive method is to disclose the seed si right
after the spread message body S(csm, mi) so that receivers can re-
cover si from the end of the message, generate csm using si, and
despread the message. However, such a method is highly vulner-
able to jamming attacks. Indeed, a jammer can simply disrupt the
seed transmission to prevent the message from being received.

To prevent jamming attacks against the disclosed seed, the sender
spreads the seed si using codes randomly selected from Ce, one of
the public code sets. Assume the seed has ls bits. The sender ran-
domly draws ls codes independently from Ce to form a sequence of
ls spreading codes, denoted css = Ce[sid1]‖...‖Ce [sidls], where
sid1, ..., sidls are random integers between 1 and ls. The sender
then spreads the k-th bit in the seed si with the corresponding code
Ce[sidk], where 1 ≤ k ≤ ls. The spreading results are then modu-
lated, up-converted to the carrier frequency, and transmitted in the
communication channel.

4.3 Receiver
As shown in Figure 2, each receiver keeps sampling the chan-

nel through down-conversion and demodulation, and saves the re-
ceived chips in a cyclic buffer. Each receiver continuously pro-
cesses the buffered chips to recover possibly received messages. To
recover a meaningful message, a receiver has to first synchronize
the buffered chips (i.e., align the buffered chips with appropriate
spreading code) and then despread them.

Synchronization and Recovery of Seed: The goal of synchro-
nization is to identify the positions of the chips of a complete mes-
sage in the buffer before despreading them. The key for synchro-
nization is to locate the seed, which occupies the last l × ls chips
in a message.

As shown in Figure 2, a receiver uses a sliding window with
window size ls × l to scan and locate the seed in the buffer, where
ls is the number of bits in a seed and l is the number of chips in
a spreading code. The sliding window is shifted to the right by 1
chip each time.

In each scan, the receiver first uses the public code set Ce to
despread the chips in the sliding window to synchronize with the
sender. Conceptually, the receiver partitions the ls × l chips into
ls groups, and tries each code in Ce to despread each group in the
window. Note that using a set of codes with good auto-correlation
and low cross-correlation properties, we can get high correlation
and despread a bit successfully only when the same code (as the
one used for spreading) is used to despread the encoded chips in
the right position. If the despreading is successful for every group,
the content in the window is a seed, which has been successfully
recovered. At the same time, the position of the message body in
the buffer is determined, i.e., the lm × l chips to the left of the
window in the buffer belong to the message body. Otherwise, the
receiver shifts the window to the right by 1 chip and repeats the
same process. This process can be further optimized. We omit the

369

details, since it is not critical for the presentation of our approach.
Despreading Message Body: Once a receiver recovers a seed si

and determines the position of a received message in the buffer, it
follows the same procedure as the sender to generate the sequence
of spreading codes csm = Cp[mid1]‖Cp[mid2]‖...‖Cp[midlm].
The receiver then despreads the message body using csm. Specif-
ically, the receiver partitions the chips buffered for the message
body into lm groups, each of which has l chips, and uses code
Cp[midk] to despread the k-th group of chips (1 ≤ k ≤ lm).

At the end of this process, the receiver will recover the message
body mi and forward it to upper-layer protocols for further pro-
cessing (e.g., error detection, signature verification).

4.4 Security Analysis
To show the effectiveness of DSD-DSSS against jamming at-

tacks, we analyze the jamming probability in DSD-DSSS under
different jamming attacks. Following the classification in [13],
we consider two kinds of jamming attacks: non-reactive jamming
and reactive jamming attacks. A non-reactive jammer continuously
jams the communication channel without knowledge about actual
transmissions, while a reactive jammer detects the transmission be-
fore jamming the channel. The jammer can apply three strategies
to each attack: static, sweep, and random strategies. In the static
strategy, the jammer uses the same code to jam the channel all the
time. In the sweep strategy, the jammer periodically changes the
code for jamming and does not reuse a code until all other codes
have been used. In the random strategy, the jammer periodically
changes the jamming code to a random code.

We also consider Denial of Service (DoS) attacks targeting at
seed disclosure at receivers, in which the jammer attempts to force
receivers to deal with a large number of candidate seeds.

4.4.1 Jamming Attacks
DSD-DSSS provides strong resistance against jamming attacks.

Because each message is spread with a pseudo-random code se-
quence decided by a random seed, no one except for the sender can
predict the spreading code sequence and jam the communication.
The random seed is disclosed at the end of each message. Thus,
when a jammer learns the seed, it is already too late to jam the
transmitted message with it. A jammer may certainly try to jam
the transmission of the random seed. However, each bit of the seed
is spread with a code randomly selected from a code set (i.e., Ce),
making it hard for a jammer to predict.

In the following, we provide a quantitative analysis of the jam-
ming probabilities in various jamming scenarios. A jammer has
two targets in each message: message body and seed. The jammer
may jam the message body directly, or the seed so that receivers
cannot recover the seed and then the spreading code sequence for
the message body. To successfully jam even one bit of the message
body, the jammer has to know the spreading code for that bit and
synchronize her chips with those of the transmitted message.

Non-reactive Jamming Attacks: Non-reactive jammers do not
rely on any information about the transmitted messages. Thus, they
have to guess the spreading code and synchronization. We consider
all three jamming strategies (i.e., static, sweep, and random) [13]
and provide the jamming probabilities in the following two Theo-
rems. The proofs are trivial and omitted due to space limit.

THEOREM 1. When DSD-DSSS is used, the jamming proba-
bility of a non-reactive jammer with the static strategy is at most

1−
“
1− 1

l|Cp|

”lm

if the jammer targets the message body, and is

at most 1−
“
1− 1

l|Ce|

”ls

if the jammer targets the seed.

�������

�������

�������

�������

�������

�������

����� ����� ����� ����� 	����
���� �����

��
�
�
��
�
�	

�
�
�
�
�
��
�

����

����������������

����������������

�������������������

����������������

����������������

�������������������

����� �

����� ��

���������!�������

Figure 3: Maximum jamming probability for non-reactive and
reactive jamming attacks (lm = 1024; ls = 64; |Ce| = |Cp|; l =
100 or 200)

THEOREM 2. When DSD-DSSS is used, the jamming probabil-
ity of a non-reactive jammer with the random (or sweep) strategy

is at most 1−
“
1− 1

l(|Cp|+|Ce|)

”lm+ls

.

Reactive Jamming Attacks: A reactive jammer can detect the
sender’s transmission and perform real-time analysis of the trans-
mitted signal. It can further synchronize with the sender so that she
knows the precise chip layout of the transmitted message. How-
ever, as mentioned in Section 3, if a reactive jammer does not
know the spreading code for any given bit data, she cannot jam the
transmission based on real-time analysis. Nevertheless, the reactive
jammer only needs to guess the sender’s spreading code to jam the
communication. This increases the jamming probability compared
with simple non-reactive jamming attacks. Similar to non-reactive
jammer, the reactive jammer can also use static, random, or sweep
jamming strategies to jam the channel. We give the jamming prob-
ability for all three strategies in Theorem 3 below. (The proof is
omitted due to space limit.) Note that the jamming strategy no
longer has direct impact on the maximum jamming probability.

THEOREM 3. When DSD-DSSS is used, the jamming proba-

bility of reactive jamming attacks is at most 1 −
“
1− 1

|Cp|

”lm

·
“
1− 1

|Ce|

”ls

.

Figure 3 shows the jamming probabilities of both non-reactive
and reactive jamming attacks, in which |Cp| = |Ce|, both ranging
from 1,000 to 7,000, the sizes of message body and random seed are
lm = 1, 024 bits and ls = 64 bits, respectively, and the length l of
each code is set to 100 or 200. Figure 3 shows that the reactive jam-
ming attacks have much more impact than non-reactive jamming
attacks due to the jammer’s ability to synchronize with the sender.
In all non-reactive jamming attacks, the jamming probabilities are
no more than 0.01. However, even when |Cp| = |Ce| = 7, 000,
the reactive jammer’s jamming probability is still 0.14. Figure 3
also shows that using Error Correction Code (ECC) can reduce the
jamming probability dramatically. Simply using an ECC that can
tolerate 1 bit error can lower the reactive jammer’s jamming prob-
ability from 0.14 to 0.009.

The above results demonstrate that DSD-DSSS is effective in de-
fending against jamming attacks, even when the jammer launches
sophisticated reactive jamming attacks.

4.4.2 DoS Attacks against Seed Disclosure
DSD-DSSS has good resistance against various jamming attacks.

However, an attacker may also inject bogus seeds or bogus mes-
sages, faking message transmissions from the sender. Indeed, this

370

is a problem common to all wireless communication systems. As
long as a communication channel is accessible to an attacker, she
can always inject fake messages. An authentication mechanism
(e.g., digital signature) is necessary to filter out such fake messages.

An attacker may go one step further to launch DoS attacks tar-
geting the seed disclosed at the end of each message. Specifically,
the attacker may inject bogus seeds by continuously drawing a code
from Ce, spreading a random bit, and transmitting it to receivers.
A receiver will see a continuous stream of possible seeds being
disclosed. Without any further protection, the receiver will have
to attempt the decoding of a message with all possible seeds. An
attacker may use multiple transmitters to inject multiple transmis-
sions of each bit in a seed. As a result, the receiver may have to
try the combinations of these options when decoding the messages.
In Section 5, we will present an enhanced scheme to better protect
seed disclosure against such DoS attacks in DSD-DSSS.

4.5 Performance Overheads
Computation Overhead and Delay: In terms of computation,

the sender needs to generate a random seed, generate a spreading
code sequence using a pseudo-random generator, and spread both
the seed and the message body. All these operations can be per-
formed efficiently and lead to negligible delay.

A receiver needs to synchronize with the sender’s chips, de-
spread and decode the seed, regenerate the spreading code sequence
for the message body, and despread the message body. With the ex-
ception of synchronization and recovery of the seed, all other oper-
ations can be efficiently performed. Synchronization and recovery
of seed are computationally expensive. A receiver should use all
codes in Ce to despread every l chips in the buffer. Compared with
traditional DSSS, this process is at least |Ce| times more expensive.

DSD-DSSS introduces more receiver side delay than traditional
DSSS, particularly because a receiver cannot start decoding a re-
ceived message until the seed is recovered. Assume a straightfor-
ward implementation on the receiver side. For a received message,
the time delay for the receiver to find the seed is l(lm+1)|Ce|t, and
the time delay to further recover the seed is (ls − 1)|Ce|t, where
t is the time required to despread l chips. The sum of these two
delays constitute the majority of the receiver side delay. Note that
this process can be parallelized to reduce the receiver side delay.

Storage Overhead: DSD-DSSS requires a buffer to store the
chips of a potential incoming message. When a message is being
processed, a receiver has to buffer another message potentially be-
ing transmitted. Moreover, when there are multiple senders broad-
casting at the same time, a receiver needs to buffer for decoded
messages from all of them. Thus, in DSD-DSSS, a receiver needs
storage that is possibly tens of times of that required by traditional
DSSS. Nevertheless, considering the typical message size (e.g., a
few hundred bytes) and the low cost of memory today, such a stor-
age overhead is certainly affordable on a communication device.

Communication Overhead: DSD-DSSS adds a random seed at
the end of each broadcast message, resulting in more communica-
tion overhead than traditional DSSS. Nevertheless, compared with
the size of a typical message body (e.g., a few hundred bytes), the
size of a random seed (e.g., 8 bytes) is negligible. Thus, DSD-
DSSS introduces very light communication overhead.

5. EFFICIENT AND JAMMING-RESISTANT
SEED DISCLOSURE

In this section, we enhance the basic DSD-DSSS scheme by
developing a more effective protection of seed disclosure for the
DoS threat discussed in Section 4.4.2. This approach gives normal

receivers more advantages over jammers. It is based on the ob-
servation that a normal receiver can wait until a message is fully
received to decode its content, while a jammer, to be effective in
jamming, has to determine the jamming code when the message is
being transmitted.

We propose content-based code subset selection for spreading
and despreading the seed. The basic idea is to use the content of
the seed to give some advantage to normal receivers. Specifically,
the sender spreads the seed bit-by-bit from the end to the begin-
ning. For each bit (except for the last one), the sender uses both
the value and the spreading code of the later bit to determine its
candidate spreading codes, which are a small subset of all possi-
ble codes. Note that when a receiver starts decoding a message, it
already has the entire message buffered. Thus, a receiver can fol-
low the same procedure as the sender to recover the small subset
of candidate codes for each bit of the seed. However, without the
complete message, a jammer has to consider many more spreading
codes. Any code not in the right subset will be ignored by normal
receivers. Moreover, even if some codes chosen by jammers are
accepted by chance, the receivers do not need to consider the com-
binations of all accepted codes in different bit positions in the seed,
avoiding the most serious DoS attack.

The basic DSD-DSSS scheme employs two public code sets Cp

and Ce, where only Ce is used to spread the seed. In the new
approach, we enhance the protection of the seed by using both code
sets. The codes in Ce are only used to spread the last bit of the seed,
marking the end of the seed. We generate multiple subsets of Cp.
Each earlier bit of the seed is spread with one of these subsets,
selected based on the value and spreading code of the later bit.

A reactive jammer may attempt to infer the code used to spread
the next bit based on her current observation (i.e., the code used
for the current bit). It is critical not to give the jammer such an
opportunity. Thus, we require that each code appear in multiple
subsets of Cp. As a result, knowing the code for the current and
past bits does not give any jammer enough information to make
inference for future bits.

5.1 Generation of Subsets of Cp

To meet the requirement for the subsets of Cp, as a convenient
starting point, we choose finite projective plane, which is a symmet-
ric Balanced Incomplete Block Design (BIBD) [8], to organize the
spreading codes in Cp. It is certainly possible to use other combi-
natorial design methods to get better properties. We consider these
as possible future work, but do not investigate them in this paper.

A finite projective plane has n2 + n + 1 points, where n is an
integer called the order of the projective plane [8]. It has n2+n+1
lines, with n + 1 points on every line, n + 1 lines passing through
every point, and every two points appearing together on exactly 1
line. It is shown in [8] that when n is a power of a prime number,
there always exists a finite projective plane of order n.

In this paper, we consider the points on a finite projective plane
as spreading codes in Cp and lines as subsets of Cp. For a finite pro-
jective plane with order n, we associate each point with a spread-
ing code and each line with a subset. We construct Cp by selecting
n2 + n + 1 spreading codes with good auto-correlation and low
cross-correlation properties (e.g., PN codes [6]). As a result, we
also have n2 + n + 1 subsets, where each subset has n + 1 codes,
each code appears in n+1 subsets, and every two codes co-exist in
exactly 1 subsets. We give a unique index to each subset of Cp to
facilitate the selection of subsets during spreading and despreading.

5.2 Spreading the Seed
Figure 4(a) shows how the sender spreads the seed. We represent

371

b1 bls-1 bls

random index

sidls in [1,|Ce|]

Ce[sidls]S

F

Bls

idls-1

subset(idls-1, Cp)

Cp[sidls-1]S

randomly draw

Bls-1

Fid1

subset(id1, Cp)

Cp[sid1]S

randomly draw

sidls-1

B1

(a) Spreading the seed

b1 bls-1 bls

sidls

Try all

codes in Ce

to despread

D

F

Bls

idls-1

subset(idls-1, Cp)

Each code

in subset
D

Bls-1

Fid1

subset(id1, Cp)

Each code

in subset
D

sidls-1

B1

(b) Despreading the seed

Figure 4: Content-based code subset selection

each bit of the seed as bi, where 1 ≤ i ≤ ls and ls is the number of
bits in the seed. As mentioned earlier, the sender spreads the seed
from the end to the beginning.

For bit bls , the sender randomly chooses a code from Ce and
spreads bls with this code to get a sequence of chips Bls . Assume
the index of the chosen code is sidls , where 1 ≤ sidls ≤ |Ce|.

We use a function F to determine which subset of Cp is used
for the next (earlier) bit. Function F has two inputs: the index of
a code in Cp or Ce, and a bit value (1 or 0). The output of F is
the index of a subset of Cp. F can be any function that reaches the
indexes of the subsets of Cp evenly with evenly distributed inputs.
To guarantee that any subset of Cp be used for bls−1, we must have

|Ce| ≥

l
|Cp|

2

m
. For simplicity, we set |Ce| =

l
|Cp|

2

m
. Specif-

ically, for bit bi, where 1 ≤ i ≤ ls − 1, the sender uses sidi+1

and bi+1 as the input of F to get idi, the index of subset for bit bi.
The sender then randomly draws a code from the subset of Cp with
index idi to spread bit bi and get the sequence of chips Bi. Assume
that the code’s index is sidi. The sender continues this process to
spread the earlier bits.

5.3 Despreading the Seed
Figure 4(b) shows how a receiver despreads the seed. The re-

ceiver continuously tries to find the end of a message in the buffer
using a sliding window method as discussed in Section 4.

In the sliding window, the receiver sequentially tries every code
in Ce to despread the last l chips in the window. If no code in
Ce can successfully despread the last l chips, the sliding window
shifts 1 chip to the right in the buffer. If the code with index sidls

can successfully despread the last l chips to get a bit value bls , the
sliding window potentially covers a seed.

The receiver despreads the seed bit-by-bit from the end to the
beginning. After getting bls , the receiver uses sidls and bls as the
input to function F to get idls−1, the index of the subset of Cp used
for bit bls−1. The receiver then sequentially tries each code in this
subset to despread the l chips for bit bls−1, until it finds the correct
code. Assume the index of this code is sidls−1 and the decoded
bit value is bls−1. The sender then repeats this process to decode
the earlier bits bls−2, ..., b1, and eventually reconstructs the seed
b1||b2||...||bls .

During this process, if any despreading failure occurs, the re-
ceiver gives up the current decoding process and shifts the sliding

B2B1

despread

B1

Cp

jam

(a) Real-time jammer

B1 B3B2

despread B1 jam

Cp

(b) One-bit-delay jammer

B1 B3B2 B4

despread B1

Cp

jam

(c) Two-or-more-bit-delay jammer

B2B1

jamjam

Bls

jam

Cp Cp Cp

(d) Non-despreading jammer

Figure 5: Reactive jamming with different capabilities

window by 1 chip to the right to look for the next seed candidate.
Once the receiver gets the seed b1||b2||...||bls , it uses this seed to
generate the spreading code sequence for the message body and
despreads the message body as discussed in Section 4.

5.4 Analysis
The objective of our analysis is to understand (1) the effective-

ness of content-based code subset selection in enhancing DSD-
DSSS’s anti-jamming capability, and (2) the capability of this mech-
anism against DoS attacks discussed in Section 4.4.

5.4.1 Effectiveness against Jamming Attacks
We analyze the probability of an attacker jamming the seed to

show the effectiveness of content-based code subset selection. More-
over, this scheme also increases the difficulty for a jammer to iden-
tify the right spreading code compared with a normal receiver. We
thus analyze the search space (i.e., the set of candidate spreading
codes) for both a receiver and a jammer to demonstrate the advan-
tage of a normal receiver over a jammer.

We consider jammers with four levels of computation capabili-
ties: (1) real-time, (2) one-bit-delay, (3) two-or-more-bit-delay, and
(4) non-despreading jammers. All jammers are reactive jammers
that can synchronize with the sender. The first three types of jam-
mers perform despreading and online analysis to assist jamming,
which improves the jamming probability by reducing the number of
candidate spreading codes (i.e., possible codes used by the sender).

As illustrated in Figure 5(a), a real-time jammer has intensive
computation power to finish the analysis and identify the spread-
ing code used for bit 1 (represented by chips B1), and can use
this information to jam the immediately following bit (represented
by chips B2). As shown in Figures 5(b) and 5(c), a one-bit-delay
jammer and a two-or-more-bit-delay jammer need additional time,
equivalent to the time for transmitting 1 bit and 2 or more bits, re-
spectively, to finish online analysis before applying the result for
jamming purposes. Thus, after learning the spreading code for bit
1, a one-bit-delay jammer and a two-or-more-bit-delay jammer can
only jam bit 3 (represented by chips B3) and bit 4 (represented by
chips B4) or later, respectively. These jammers may certainly per-
form the same analysis of every bit they receive and use the analysis
result to jam future bits. A non-despreading jammer simply skips
the despreading step and use Ce to jam the last bit of the seed and
use Cp to jam the remaining part of the seed, as Figure 5(d) shows.

In the following, we prove Lemma 1 to assist the analysis.

LEMMA 1. Given k distinct subsets, the number of codes that
can be used to derive these subsets by applying function F is in the
range of [k, min{2k, n2 + n + 1}].

PROOF. Since the output of function F is evenly distributed

372

Code for Bi Subsets for Bi Code for Bi+1 Subsets for Bi+1 Code for Bi+2 Subsets for Bi+2

x

1 n+1 [n+1, 2(n+1)] [(n
2
+3n+2)/2, n

2
+n+1]

x
x
x
x

x

contains F contains

x a code

a subset
x
x
x
x

x

[(n
2
+3n+2)/2, n

2
+n+1] ((n

2
+3n+2)/2, n

2
+n+1]

containsF

Figure 6: Jammers’ view of spreading codes and subsets (As-
sume the jammer just derived code x for bit bi (chips Bi))

Table 2: Search spaces
real time n2 + (ls − 1)n + (ls − 1)

1 bit delay 2(n2 + n + 1) + (ls − 4) (n+1)(n+2)

2

q bits delay (q ≥ 2) (q + 1)(n2 + n + 1) + (ls − 2(q + 1)) (n+1)(n+2)

2

when the inputs are evenly distributed, for each subset, there are
two possible codes as inputs. For each code, there are two possible
subsets as outputs. Thus, the lower bound is k and the upper bound
is min{2k, n2 + n + 1}.

Real-time Jammers: If a jammer can despread each bit in real-
time (e.g., by using parallel computing devices), the jammer can
know the code for despreading Bi once the transmission of Bi is
complete. As Figure 6 shows, the jammer can then identify all n+1
subsets that contain this code. By using the inverse of function F ,
the jammer can also identify all possible codes in Cp that were used
to determine these subsets, which were also used to spread bi+1

into Bi+1. The number of possible codes for Bi+1 is in the range
of [n + 1, 2(n + 1)], according to Lemma 1. Thus, the jammer can
jam the transmission of Bi+1 by randomly selecting a code from
these codes (rather than from Cp). Since the last bit of the seed is
spread using codes in Ce, the number of all possible codes for the
jammer is thus in the range of [n + 1, min{2(n + 1), |Ce|}].

In the worst case, a real-time jammer can despread all bits of the
seed except for Bls and jams all bits. The jamming probability of
the first bit is at most 1

|Cp|
, the jamming probability of the last bit

is at most Pe0 = 1
n+1

, and the jamming probability of Bi (2 ≤
i ≤ ls − 1) is at most Pp0 = Pe0 = 1

n+1
. Thus, the jamming

probability of the seed is at most

Preal-time = 1−
“
1− 1

|Cp|

”
(1− Pp0)

ls−1.

By including an ECC that can tolerate 1 bit error, we can reduce
the maximum jamming probability to

Preal-time = 1−(1−Pp0)
ls−1

−(ls−1)
“
1− 1

|Cp|

”
Pp0(1−Pp0)

ls−2.

It is easy to see that the total search space for a real-time jammer
throughout all bits of the seed is at least

SSreal-time = |Cp|+ (ls − 2)(n + 1) = n2 + (ls− 1)n + (ls− 1).

Non-real-time Jammers: The results for one-bit-delay, two-or-
more-bit-delay, and non-despreading jammers can be derived sim-
ilarly. Due to the space limit, we do not show the details but list
the final results for the jamming probabilities and search spaces in
Table 1 and Table 2, respectively.

Comparison of Jamming Probabilities: Figure 7 shows the
maximum jamming probabilities of the four types of jammers against
the random seed with reasonable parameters. Recall that the size of
Cp is determined by parameter n (i.e., Cp = n2 +n+1). Thus, we
use parameter n as the x-axis in this figure. To better see the im-
pact of ECC, we also include the maximum jamming probabilities
assuming an ECC is used in the seed to tolerate 1 bit error.

���

���

���

���

���

���

��	

��

���

���

���

� � �	 �� 	� ���

��
�
�
��
�
�	

�
�
�
�
�
��
�
��
��
��
�
��
�
�
�

�

��������

�����������

������������

��������������

���������

����������������

������������

����������������

�������������

����������������

���������������

����������������

Figure 7: Maximum jamming probability against seed (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
l

|Cp|

2

m
)

���

���

����

�����

� � �� �	 �� �	�
�
�
�
�
�
��
�
	

�

�������

����������

	����������

������

Figure 8: Advantage of receivers over jammers (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
l

|Cp|

2

m
)

Figure 7 shows that the real-time jammer has the highest jam-
ming probability among all jammers. However, we would like to
point out that the real-time jammer is a strong assumption; such a
jammer may have to use special hardware (e.g., parallel computing
devices) to obtain the despreading results. As the jammer has to tol-
erate 1 or 2 bit delays, the maximum jamming probability decreases
significantly. Not surprisingly, the non-despreading jammer has the
lowest jamming probability.

Figure 7 also shows that increasing n (and thus |Cp|) can quickly
reduce the maximum jamming probability for all types of jammers.
Moreover, the application of ECC can also reduce the jamming
probability effectively, though it introduces additional computa-
tional and communication overheads. For example, with an ECC
tolerating just 1 bit error, we can reduce the real-time jammer’s
maximum jamming probability from 0.31 to 0.05 when n = 169.
Further increasing n or the number of bit errors the ECC can tol-
erate can quickly reduce the maximum jamming probability to a
negligible level.

Comparison of Search Spaces: Now let us compare the num-
bers of candidate spreading codes that a normal receiver and a reac-
tive jammer have to consider, respectively. Such numbers represent
the computational costs they have to spend. Since a receiver buffers
the complete seed before despreading it, it can despread the last bit
of the seed first to learn sidls , and then infer the indexes of sub-
sets for previous bits of the seed. The size of total search space
for a receiver is thus (ls − 1)(n + 1) + |Ce|. To show the advan-
tage of a receiver over a jammer, we compute function Adg =

SSj

SSr

for real-time, one-bit-delay, two-or-more-bit-delay jammers, where
SSj and SSr are the sizes of the total search space for the jammer
and the receiver, respectively. The larger Adg is, the more advan-
tage the receiver has over the jammer.

373

Table 1: Jamming probabilities for jammers with different jamming capabilities (|Cp| = n2 + n + 1; Ce =
l

|Cp|

2

m
; Pp0 = 1

n+1
;

Pp1 = 2
(n+1)(n+2)

; Pe1 = Pe2 = 1
|Ce|

; Pp2 > 2
(n+1)(n+2)

)

real time 1−
“
1 − 1

|Cp|

”
(1− 1

n+1
)ls−1

1 bit delay 1−
“
1 − 1

|Cp|

”
2

(1− Pp1)
ls−3 (1− Pe1))

q bits delay (q ≥ 2) 1−
“
1 − 1

|Cp|

”q+1

(1− Pp2)ls−q−2(1− Pe2)

non-despreading 1−
“
1 − 1

|Cp|

”ls−1
“
1− 1

|Ce|

”

real time, tolerate 1 bit error 1− (1− Pp0)ls−1 − (ls − 1)
“
1− 1

|Cp|

”
Pp0(1− Pp0)ls−2

1 bit delay, tolerate 1 bit error 1−
“
1− 1

|Cp|

”
2

(1− Pp1)ls−3(1− Pe1)−
2

|Cp|

“
1− 1

|Cp|

”
(1− Pp1)

ls−3(1− Pe1)− (ls − 3)
“
1− 1

|Cp|

”
2

Pp1(1−

Pp1)
ls−4(1 − Pe1)

q bits delay (q ≥ 2), tolerate 1
bit error

1 −
“
1 − 1

|Cp|

”q+1

(1 − Pp2)
ls−q−2 − (q + 1) 1

|Cp|

“
1− 1

|Cp|

”q

(1 − Pp2)ls−q−2(1 − Pe2) − (ls − q −

2)
“
1 − 1

|Cp|

”q+1

Pp2(1− Pp2)
ls−q−3(1− Pe2)

non-despreading, tolerate 1 bit
error

1−
“
1 − 1

|Cp|

”ls−1

− (ls − 1) 1

Cp

“
1− 1

|Cp|

”ls−2
“
1− 1

|Ce|

”

BlsB1

B’lsB’1

Sender:

Attacker:

B2

B’2

Figure 9: Seed recovery in presence of bogus seed transmission

Figure 8 shows the advantage of a receiver over the jammers.
(The non-despreading jammer is not included, since she does not
despread at all.) All jammers have larger search space than the re-
ceiver, and the gap grows wider when n increases. The real-time
jammer remains the most powerful one; she can reduce the search
space for the next bit dramatically by despreading the current bit,
and thus has the smallest search space among all jammers, which
is close to the receiver’s search space. Nevertheless, Figure 8 con-
siders the lower bound of the jammers’ search space. Moreover,
there is still observable difference between the search spaces of the
real-time jammer and the receiver. The search spaces of the one-
bit-delay and two-or-more-bit-delay jammers have almost the same
size, which are significantly larger than that of the receiver.

5.4.2 Effectiveness against DoS Attacks
As discussed in Section 4.4, a jammer can transmit bogus seeds

or even entire bogus messages. As long as the communication
channel is available to attackers, they can always inject bogus mes-
sages. Thus, in general, this is an unavoidable problem in presence
of compromised receivers. When these bogus seeds are not con-
currently transmitted and do not overlap with the sender’s normal
seed transmission, a receiver can filter them out using error detec-
tion coding and broadcast authentication (e.g., digital signature).
However, when the bogus seeds do overlap with the normal seed,
the receiver will have to consider all combinations of options for
each bit of the seed, thus suffering from serious DoS attacks.

The proposed content-based code subset selection scheme can
effectively mitigate such situations by chaining the codes used to
spread different bits of the seed. To demonstrate the effectiveness
of this approach, we show the number of candidate seeds when
the jammer synchronizes with a sender and transmits a bogus seed
(B′

1||B
′

2||...||B
′

ls
) to interfere with the transmission of the actual

seed (B1||B2||...||Bls), as shown in Figure 9.
Intuition: During seed recovery, a receiver will attempt to re-

cover the seed starting with both Bls and B′

ls
. The number of seed

candidates is the number of paths starting from Bls or B′

ls
and end-

ing at B1 or B′

1. In the basic DSD-DSSS, the receiver will try all
possible paths shown in Figure 9. However, the content-based code
subset selection scheme can constrain the paths between two seeds

(dashed lines) during despreading. Intuitively, the jammer does not
know which code subset is used to spread each bit of the seed at
the time of her transmission, and thus cannot select the right code,
which will be considered valid by a receiver during despreading.
If the code for the i-th bit (1 ≤ i ≤ ls) of the bogus seed is not
in the subset for the i-th bit of the good seed, the receiver will not
consider it for despreading the i-th bit of the bogus seed. As a re-
sult, the path from the good seed to the bogus one (in black dashed
lines) will not exist. Similarly, if the code for i-bit of the good seed
is not in the subset for i-th bit of the bogus seed, the receiver will
not consider it for despreading the i-th bit of the good seed. Thus,
the path from the bogus seed to the good one (in red dashed lines)
will not exist.

During the analysis, we consider non-despreading, real-time,
one-or-more-bit-delay jammers to see the best-case scenarios for
the jammers when they can benefit from knowing a part of the seed
and spreading codes. The capability of these jammers is the same
as discussed earlier during the analysis of jamming probabilities.
However, the objective of these jammers now is to trigger the re-
ceiver to have more seed candidates during despreading by inject-
ing bogus seeds. We assume these jammers can perform despread-
ing and transmitting operations at the same time, though they can
only use the despreading results of each bit for later bits.

Non-despreading Jammers: If the jammer follows the sender’s
procedure to send the seed, the probability of having a path from
from B′

i+1 to Bi (red dashed line) and the probability of having a
path from from Bi+1 to B′

i (black dashed line) are both 1
n2+n+1

,
because any pair of codes only exist in exactly one subset. Only one
among the n2 + n + 1 subsets can despread the i-th bit of both the
bogus and the good seeds. The expected number of seed candidates
is thus 2(1 + 1

|Ce|
)(1 + 1

|Cp|
)ls−2 according to Theorem 4. The

proof of Theorem 4 is omitted due to the space limit.

THEOREM 4. When there is a non-despreading jammer launch-
ing the DoS attack against seed disclosure, the expected number of
seed candidates is 2(1 + p1)(1 + p2)

ls−2. Among them, (1 +
p1)(1 + p2)

ls−2 paths end at B1, and (1 + p1)(1 + p2)
ls−2 paths

end at B′

1, where p1 = 1
|Ce|

and p2 = 1
|Cp|

.

Real-time and one-or-more-bit-delay Jammers: Similar to the
analysis for non-despreading jammer, we analyze the expected num-
ber of seed candidates caused by real-time and one-or-more-bit-
delay jammers. Due to the space limit, we simply list results and
omit proofs. The expected number of seed candidates caused by
real-time jammer is smaller than 2(1 + 1

|Cp|
)(1 + n

(n+1)2
)ls−2,

374

�

��

���

����

�����

������

� � �� �� �� ���

�
�
�
�
��
�
�
	

�
�

�
�	
�
�	

�
�
�
�
	�
�
�
�
��
�
��
�

�

	
	��������	�

�������

��
���
�����������

Figure 10: Expected number of seed candidates for nor-
mal receiver under DoS attacks against seed disclosure (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
l

|Cp|

2

m
)

and that caused by one-or-more-bit-delay jammer is smaller than
(1 + 2p2)(1 + p2)E3 + (p4 + 2p2)(1 + p2)E

′

3, where

E3 = 1+ p4

λ1−λ2

·
(2p5−λ2)(1−λ

ls−3

1
)

1−λ1

+ p4

λ1−λ2

·
(λ1−2p5)(1−λ

ls−3

2
)

1−λ2

,

E′

3 = 2p5−λ2

λ1−λ2

· λls−3
1 + λ1−2p5

λ1−λ2

· λls−3
2 , p2 = 1

|Cp|
, p4 = 2

n+2
,

p5 = 2n(n+3)

(n+1)2(n+2)2
, λ1, λ2 =

1+p5±

√
(1+p5)2−4(1−p4)p5

2
.

Comparison: Figure 10 shows the expected numbers of seed
candidates caused by non-despreading, real-time, and one-bit-delay
jammers when they launch DoS attacks against seed disclosure.
The more seed candidates the receiver has, the more computational
cost the receiver has to spend receiving a message. Among three
of them, the real-time jammer has the highest impact. However,
it is still limited when n is reasonably large. The number of seed
candidates is below 10 for all jammers when n ≥ 49. The non-
despreading jammer and the one-bit-delay jammers do not intro-
duce much overhead to the receiver. The expected number of seed
candidates by the non-despreading jammer is below 4 when n ≥ 9.
The expected number of seed candidates by the one-bit-delay jam-
mer is below 1.5 when n ≥ 9. When n = 169, the expected
number of seed candidates of non-despreading, real-time, and one-
bit-delay jammers are only 2, 2.87, and 1.01, respectively. Note that
the lines shown in Figure 10 are conservative estimates showing the
upper bound of the expected impact these jammers can introduce.

Compared with the basic DSD-DSSS scheme, in which the jam-
mer can introduce 2ls seed candidates (e.g., 264 seed candidates
using the same parameters in Figure 10), the content-based code
subset selection scheme has significantly reduced the impact of the
DoS attacks against seed disclosure. Thus, it provides effective de-
fense against such DoS attacks.

6. EXPERIMENTAL EVALUATION
We have implemented a prototype of DSD-DSSS based on GNU

Radio [1] using Universal Software Radio Peripherals (USRPs)
with XCVR2450 daughter boards [12]. Our implementation in-
cludes both the basic DSD-DSSS scheme (named DSD-DSSS BA-
SIC) and the enhanced DSD-DSSS with content-based code sub-
set selection (named DSD-DSSS SUBSET). We have also imple-
mented DSSS [6] and UDSSS [15] as references in our experimen-
tal evaluation.

In our experiments, we used two USRPs with XCVR2450 daugh-
ter boards, one as the sender, and the other as the receiver. The
sender was connected to a laptop (Intel Core 2 Duo @ 2.6GHz),
while the receiver was connected to a desktop PC (Intel Pentium
4 @ 3.2GHz), both through 480 Mbps USB 2.0 links. Both the

laptop and the desktop ran Ubuntu 9.04 and GnuRadio 3.2. The
payload size in spreading/despreading module was configured to
be 256, 512, or 1024 bits. We measured the receiver’s average de-
spreading time of a message for 200 rounds. Since messages were
sent consecutively, the despreading of all messages after the first
message was automatically synchronized (i.e., knowing the start-
ing chip of each message). For DSD-DSSS, we set the seed size
as 64 bits and used SAS v9.1.3 [17] to generate BIBD subsets of
Cp. We used SHA-1 to as the pseudo-random number generator
for both DSD-DSSS and UDSSS schemes.

Figure 11(a) shows the average despreading time of a message
for DSD-DSSS BASIC, DSD-DSSS SUBSET, UDSSS, and DSSS
schemes when using different size of code set. For DSD-DSSS,

|Cp| = n2 + n + 1, |Ce| =
l

|Cp|

2

m
, where n ∈ [2, 20]. For

UDSSS, the number of code sequences is the same as the number
of codes in |Cp|. As Figure 11(a) shows, DSSS is the most efficient
scheme because only one code sequence is used to despread mes-
sages. UDSSS is slower than DSSS since it has to check the first
code of all code sequences.

UDSSS is more efficient than DSD-DSSS because DSD-DSSS
has to check 64 · |Ce| = 64 ·

l
|n2+n+1

2

m
codes for BASIC scheme

and 63 · (n + 1) + |Ce| = 63 · (n + 1) +
l

n2+n+1
2

m
codes for

SUBSET scheme, while UDSSS only needs to check |Cp| = n2 +
n + 1 codes. DSD-DSSS BASIC always has the largest number of
codes to check. DSD-DSSS SUBSET scheme has larger number of
codes to check than UDSSS when n < 126 (i.e., |Cp| < 16003).
When n ≥ 126, DSD-DSSS SUBSET scheme would be even more
efficient than UDSSS. However, we cannot run the evaluation for
n ≥ 126 due to the large computational power requirement.

Figure 11(b) shows the average despreading time of a message
for different code lengths (l = 24, 32, 40, 48, 56). It is obvious
that all DSD-DSSS, UDSSS, and DSSS need more time to de-
spread messages when the code length is increased. The despread-
ing time of DSD-DSSS BASIC increases much faster than that of
other schemes due to the much larger search space of codes. DSSS
is still the most efficient scheme, and UDSSS is more efficient than
DSD-DSSS. Although UDSSS is faster than DSD-DSSS in both
Figure 11(a) and Figure 11(b), UDSSS suffers from the reactive
jamming attack [15] while DSD-DSSS does not.

7. RELATED WORK
Spread spectrum wireless communication techniques, including

DSSS and FH, have been commonly used for anti-jamming com-
munication [6]. However, as discussed earlier, traditional spread
spectrum techniques all require pre-shared secret keys, and are not
suitable for broadcast communication where there may be com-
promised or malicious receivers. We have discussed most closely
related works in the introduction, including UFH and its varia-
tions [7, 18–20], UDSSS [14, 15], and BBC [2, 3]. We do not re-
peat them here. An idea similar to ours was also proposed in [7];
however, it is targeted at spread spectrum based pairwise commu-
nication, and does not provide the protection of seed as in our
scheme. RD-DSSS provides the anti-jamming capability by encod-
ing each bit of data using the correlation of unpredictable spreading
codes [11].

There are other related work, including approaches for detecting
jamming attacks [23], identifying insider jammers [4,5], mitigating
jamming of control channels [9, 21], jamming avoidance and eva-
sion [2,22,24], and mitigating jamming in sensor networks [10,22].
Our technique is complementary to these techniques.

375

0.01

0.1

1

10

0 50 100 150 200 250 300 350 400 450

T
im

e
(m

s)

Number of codes in code set (|Cp|)

BASIC (|M|=256)

BASIC (|M|=512)

BASIC (|M|=1024)

SUBSET (|M|=256)

SUBSET (|M|=512)

SUBSET (|M|=1024)

UDSSS (|M|=256)

UDSSS (|M|=512)

UDSSS (|M|=1024)

DSSS (|M|=256)

DSSS (|M|=512)

DSSS (|M=1024|)

(a) for different code set sizes (l = 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 24 32 40 48 56 64

T
im

e
(m

s)

Code length (l)

BASIC (|M|=256)

BASIC (|M|=512)

BASIC (|M|=1024)

SUBSET (|M|=256)

SUBSET (|M|=512)

SUBSET (|M|=1024)

UDSSS (|M|=256)

UDSSS (|M|=512)

UDSSS (|M|=1024)

DSSS (|M|=256)

DSSS (|M|=512)

DSSS (|M=1024|)

(b) for different code lengths (|Cp| = 111)

Figure 11: Comparison of time to despread message in DSSS, UDSSS, and DSD-DSSS

8. CONCLUSION
In this paper, we proposed DSD-DSSS, an efficient anti-jamming

broadcast communication scheme. It achieves anti-jamming capa-
bility through randomly generating the spreading code sequence
for a broadcast message through a random seed and delaying the
disclosure of the seed at the end of the message. We also devel-
oped an effective protection for the disclosure of the random seed
through content-based code subset selection. Our analysis in this
paper demonstrated that this suite of techniques can effectively de-
feat jamming attacks. Our implementation and evaluation shows
the feasibility of DSD-DSSS in real world. We measured the per-
formance of DSD-DSSS without jamming attacks due to the time
limitation. Although DSD-DSSS is slower than UDSSS without
jamming attacks, DSD-DSSS may be faster than UDSSS in pres-
ence of jammers. We will verify this in our future work.

9. REFERENCES
[1] GNU Radio - The GNU Software Radio.

http://www.gnu.org/software/gnuradio/.
[2] L. Baird, W. Bahn, and M. Collins. Jam-resistant communication

without shared secrets through the use of concurrent codes. Technical
report, US Air Force Academy, 2007.

[3] L. C. Baird, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. C.
Butler. Keyless jam resistance. In Proceedings of the IEEE
Information Assurance and Security Workshop, pages 143–150, June
2007.

[4] J. Chiang and Y. Hu. Extended abstract: Cross-layer jamming
detection and mitigation in wireless broadcast networks. In
Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’07), 2007.

[5] J. Chiang and Y. Hu. Dynamic jamming mitigation for wireless
boradcast networks. In Proceedings of IEEE International
Conference on Computer Communications (INFOCOM ’08), 2008.

[6] A. Goldsmith. Wireless Communications. Cambridge University
Press, August 2005.

[7] T. Jin, G. Noubir, and B. Thapa. Zero pre-shared secret key
establishment in the presence of jammers. In Procceedings of
MobiHoc ’09, May 2009.

[8] D. L. Kreher and D. Stinson. Combinatorial Algorithms: Generation,
Enumeration, and Search. CRC Press, 1999.

[9] L. Lazos, S. Liu, and M. Krunz. Mitigating control-channel jamming
attacks in multi-channel ad hoc networks. In Proceedings of 2nd
ACM Conference on Wireless Networking Security (WiSec ’09),
March 2009.

[10] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jamming attacks
and network defense policies in wireless sensor networks. In
Proceedings of IEEE International Conference on Computer

Communications (INFOCOM ’07), 2007.
[11] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential dsss:

Jamming-resistant wireless broadcast communication. In
Proceedings of the 2010 IEEE INFOCOM, 2010.

[12] Ettus Research LLC. The USRP product family products and
daughter boards. http://www.ettus.com/products.
Accessed in August 2010.

[13] R. Poisel. Modern Communications Jamming Principles and
Techniques. Artech House Publishers, 2006.

[14] Pöpper, M. Strasser, and S. Čapkun. Anti-jamming broadcast
communication using uncoordinated spread spectrum techniques.
IEEE Journal on Selected Areas in Communications: Special Issue
on Mission Critical Networking, 2010.

[15] C. Pöpper, M. Strasser, and S. Čapkun. Jamming-resistant broadcast
communication without shared keys. In Proceedings of the USENIX
Security Symposium, 2009.

[16] J. Proakis. Digital Communications. McGraw-Hill, August 2000.
[17] SAS. Business analytics and business intelligence software.

http://www.sas.com.
[18] D. Slater, P. Tague, R. Poovendran, and B. Matt. A coding-theoretic

approach for efficient message verification over insecure channels. In
Procceedings of the 2nd ACM Conference on Wireless Networking
Security (WiSec ’09), pages 151–160, March 2009.

[19] M. Strasser, C. Pöper, S. Čapkun, and M. Čagalj. Jamming-resistant
key establishment using uncoordinated frequency hopping. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 64–78, 2008.

[20] M. Strasser, C. Pöpper, and S. Čapkun. Efficient uncoordinated
FHSS anti-jamming communication. In Procceedings of MobiHoc
’09, May 2009.

[21] P. Tague, M. Li, and R. Poovendran. Probabilistic mitigation of
control channel jamming via random key distribution. In Proceedings
of IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’07), pages 1–5, 2007.

[22] W. Xu, W. Trappe, and Y. Zhang. Channel surfing: Defending
wireless sensor networks from jamming and interference. In
Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN ’07), 2007.

[23] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of
launching and detecting jamming attacks in wireless networks. In
Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’05), 2005.

[24] W. Xu, T. Wood, W. Trappe, and Y. Zhang. Channel surfing and
spatial retreats: Defenses against wireless denial of service. In
Proceedings of the 3rd ACM Workshop on Wireless Security (WiSe
’04), 2004.

376

Always Up-to-date – Scalable Offline Patching of VM
Images in a Compute Cloud

Wu Zhou Peng Ning
North Carolina State University

{wzhou2, pning}@ncsu.edu

Xiaolan Zhang Glenn Ammons
IBM T.J. Watson Research Center
{cxzhang, ammons}@us.ibm.com

Ruowen Wang
North Carolina State University

rwang9@ncsu.edu

Vasanth Bala
IBM T.J. Watson Research Center

vbala@us.ibm.com

ABSTRACT
Patching is a critical security service that keeps computer systems
up to date and defends against security threats. Existing patching
systems all require running systems. With the increasing adoption
of virtualization and cloud computing services, there is a growing
number of dormant virtual machine (VM) images. Such VM im-
ages cannot benefit from existing patching systems, and thus are
often left vulnerable to emerging security threats. It is possible
to bring VM images online, apply patches, and capture the VMs
back to dormant images. However, such approaches suffer from un-
predictability, performance challenges, and high operational costs,
particularly in large-scale compute clouds where there could be
thousands of dormant VM images.

This paper presents a novel tool named Nüwa that enables effi-
cient and scalable offline patching of dormant VM images. Nüwa
analyzes patches and, when possible, converts them into patches
that can be applied offline by rewriting the patching scripts. Nüwa
also leverages the VM image manipulation technologies offered
by the Mirage image library to provide an efficient and scalable
way to patch VM images in batch. Nüwa has been evaluated on
freshly built images and on real-world images from the IBM Re-
search Compute Cloud (RC2), a compute cloud used by IBM re-
searchers worldwide. When applying security patches to a fresh
installation of Ubuntu-8.04, Nüwa successfully applies 402 of 406
patches. It speeds up the patching process by more than 4 times
compared to the online approach and by another 2–10 times when
integrated with Mirage. Nüwa also successfully applies the 10 lat-
est security updates to all VM images in RC2.

1. INTRODUCTION

Patching is a basic and effective mechanism for computer sys-
tems to defend against most, although not all, security threats, such
as viruses, rootkits, and worms [13, 19, 21]. Failing to promptly
patch physical machines can subject the systems to huge risks, such
as loss of confidential data, compromise of system integrity, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

failure to provide regular system services. Unfortunately, apply-
ing security patches is a notoriously tedious task, due to the large
number of patches and the high rate at which they are released —
it is estimated that, in an average week, vendors and security orga-
nizations release about 150 vulnerabilities and associated patching
information [15]. As a result, most software runs with outdated
patches [11, 12].

The problem is exacerbated by the IT industry’s recent shift to
virtualization and cloud computing. Virtualization allows a com-
plete system state to be conveniently encapsulated in a virtual ma-
chine (VM) image, which can run on any compatible hypervisor.
Based on virtualization, cloud computing services (e.g., Amazon
Elastic Compute Cloud (EC2) [2], NCSU Virtual Computing Lab
(VCL) [20]) provide on-demand computing resources to customers’
workloads, usually encapsulated in VM images. Because VM im-
ages are normal files, they can be easily copied to create new VM
images. This has led to a new “VM image sprawl” problem, where
a large number of VM images are created by the users and left
unattended. A direct result of the VM image sprawl problem is the
significantly increased management cost of maintaining these VM
images, including regularly applying security patches to both active
VMs and dormant VM images.

���

�� �� ��

���

���

��
�	

�

���

���

�

�� ��

��

��

�

���

�

��

���

���

���

���

���

���

���

�	
������� ���������� ���������

������

���������

������

����������

������

��
����������

������

�������	
��������������������

�������	
�����������������������

�������	
�������������������������

Figure 1: Counts of EC2 and VCL images, grouped by their
time of last update or use (data collected on April 15, 2010)

A Glance at Two Compute Clouds: Figure 1 shows how re-
cently VM images in two operational compute clouds, Amazon
EC2 [2] and VCL [20], were updated; for VCL, the figure also
shows how recently images were used. 1 There are a total of 831

1The VCL data was provided by the VCL management team,
while the EC2 data was retrieved from the public Ama-
zon Machine Images (AMIs) listed at Amazon’s AMI page
(http://developer.amazonwebservices.com/connect/

377

VM images in VCL and 575 public VM images posted at EC2’s
AMI page. However, more than 91% of the VCL images and more
than 96% of the EC2 images have not been updated for at least
1.5 months. Moreover, more than 58% of the VCL images have
not been used in the last 1.5 months. Note that it is not the case
that these inactive images will not be needed in the future. Indeed,
based on the VCL log, VCL purged 776 VM images marked by the
users as “deleted” in the past; all of the remaining 831 images were
explicitly marked as needed by their owners.

Our investigation of EC2 and VCL leads to two observations:

• Most VM images in compute clouds are not properly patched.
The longer a VM image remains unpatched, particularly af-
ter a major vulnerability is discovered, the more likely it is
to threaten other machines in the compute cloud or in the In-
ternet. Also, unpatched images owned by organizations or
companies may not be compliant with the organizations’ se-
curity policies.

• A significant portion of the VM images are mostly offline and
infrequently booted. Thus, any attempt to start these VMs
and install patches will be an extra cost to the image owners.
The cloud service providers may certainly offer patching as a
free service; however, they will have to sacrifice CPU cycles
that could potentially bring in revenues.

Inadequacy of Existing Patching Utilities: Traditional patch-
ing utilities, originally designed for running systems, require the
VM images to be online before the patch can be applied. There are
a few recent attempts to patch offline VM images using traditional
patching utilities. For example, the Microsoft Offline Virtual Ma-
chine Servicing Tool [10] brings the VM image online, applies the
patches, and captures the VM back to a dormant image. Realizing
that not all VM images are needed immediately by their users, a
lazy patching approach was developed in [27], which injects the
patch installer and patch data into the VM image in such a way
that the patch process is triggered at the next booting time. This
optimization can yield significant savings in the total time spent
in patching in the case where only a small percentage of dormant
images will ever be used. However, the tradeoff is that users will
now see delays in image startup, which can be significant for im-
ages that have accumulated a long list of yet-to-be-applied patches.
Our own experiences show that update time can be fairly long (in
the order of 10s of minutes) for stale systems (e.g., dormant for 1
month). In modern clouds where VM instances are dynamically
provisioned to meet varying demands, this delay is unacceptable.
Additionally, for enterprises systems, it is often required that all IT
assets (physical or virtual, dormant or online) be up to date with
regard to patches for security or compliance reasons. This will ap-
ply to cloud providers as enterprises embrace the cloud comput-
ing model. Finally, in a cloud environment where customers are
charged for resources used during patching, this approach imposes
costs that customers might not accept.

In general, patching approaches that require VMs to be online
are a poor fit for VM images in compute clouds. Note that it takes
on the order of minutes just to power up and shut down a VM im-
age. With the large number of dormant VM images that are infre-
quently used, these approaches add significant extra costs either for
customers or for cloud service providers. In addition to these costs,
bringing a VM image online necessarily runs code that has nothing
to do with patching, which makes patching less predictable.

kbcategory.jspa?categoryID=171). There are indeed more
public AMIs in EC2 (more than 7,000 in US East, US West, and EU West
EC2 sites in mid April 2010) than those in this list. Amazon does not
publish usage data.

Our Solution–Nüwa Offline Patching Tool: We propose an ap-
proach that is fundamentally different from the traditional online
model. We argue that the only way to make the patching process
scalable in a cloud environment, where the number of images can
potentially reach millions 2, is to do it offline. A closer look into the
patching process reveals that it can be decomposed into a sequence
of actions, not all of which require a running system. In fact, most
of the patching actions only depend on and have an impact on file
system objects, which are already encapsulated in the VM image
itself. Among the actions that do depend on or have impacts on a
running system, we find that many are unnecessary when patching
offline, and some can be safely replaced by other actions that do not
need the running system. Based on these findings, we design and
implement Nüwa 3, a scalable offline patching tool for VM images.
By patching offline, Nüwa avoids the expensive VM start and stop
time, and, for the majority of cases, ensures that, when a VM image
is ready to be started, it has the latest patches installed.

Because Nüwa is an offline patching tool, it can leverage novel
VM image manipulation technologies to further improve scalabil-
ity. In particular, Nüwa is integrated with the Mirage image li-
brary [24], which stores identical files once and treats images as
logical views on this collection of files. By exploiting Mirage,
Nüwa can patch all images that contain a file by patching that sin-
gle file and updating each image’s view, thus providing efficient
and scalable offline patching in batch.

Our implementation of Nüwa supports the Debian package man-
ager [5] and the RPM package manager [8]. We evaluated Nüwa
with 406 patches to a freshly installed Ubuntu-8.04. Our evaluation
shows that Nüwa applies 402 of the 406 patches offline and speeds
up the patching process by more than 4 times compared to the on-
line approach. This can be further improved by another 2–10 times
when the tool is integrated with Mirage, making Nüwa an order of
magnitude more efficient than the online approach. We also eval-
uated Nüwa on real-world images from the IBM Research Com-
pute Cloud (RC2) [25], a compute cloud used by IBM researchers
worldwide. Nüwa successfully applies the 10 latest security up-
dates to all VM images in RC2.

This paper is organized as follows. Section 2 gives background
information on patching and describes our design choices and tech-
nical challenges. Section 3 presents an overview of our approach.
Section 4 describes the mechanisms we use to convert an online
patch into one that can be safely applied offline. Section 5 de-
scribes how we leverage efficient image manipulation mechanisms
to further improve scalability. Section 6 presents our experimen-
tal evaluation results. Section 7 discusses related work. Section 8
concludes this paper with an outlook to the future.

2. PROBLEM STATEMENT

2.1 Background
Software patches, or simply patches, are often distributed in the

form of software update packages (e.g., .deb or .rpm files), which
are installed using a package installer, such as dpkg and rpm. In
this section, we give background information on the format of soft-
ware packages and the package installation process. We use the
Debian package management tool dpkg as an example. Most soft-
ware package management tools follow the same general style with
only slight differences.

2Amazon EC2 already contains over 7,000 public VM images as
of April 2010, without including private images that users choose
not to share with others [18].
3Named after the Chinese Goddess who patches the sky.

378

Packages are distribution units of specific software. A package
usually includes files for different purposes and associated meta-
data, such as the name, version, dependences, description and con-
crete instructions on how to install and uninstall this specific soft-
ware. Different platforms may use different package formats to dis-
tribute software to their users. But the contents are mostly the same.
A Debian package, for example, is a standard Unix ar archive,
composed of two compressed tar archives, one for the filesystem
tree data and the other for associated metadata for controlling pur-
poses. Inside the metadata, a Debian package includes a list of
configuration files, md5 sums for each file in the first archive, name
and version information, and shell scripts that the package installer
runs at specific points in the package lifecycle.

The main action in patching is to replace the old buggy filesys-
tem data with the updated counterparts. Moreover, the package
installer also needs to perform additional operations to ensure the
updated software will work well in the target environment. For ex-
ample, dependences and conflicts must be resolved, a new user or
group might have to be added, configuration modifications by the
user should be kept, other software packages dependent on this one
may need to be notified, and running instances of this software may
need to be restarted. Most of these actions are specified in scripts
provided by the package developers. Because these scripts are in-
tended to be invoked at certain points during the patching process,
they are called hook scripts. The hook scripts that are invoked be-
fore (or after) file replacement operations are called pre-installation
(or post-installation) scripts. There are also scripts intended to be
invoked when relevant packages (e.g., dependent software) are in-
stalled or removed.

More details about Debian package management tools can be
found in the Debian Policy Manual [6].

2.2 Design Choices and Technical Challenges
Our goal is to build a patching tool that can take existing patches

intended for online systems and apply them offline to a large collec-
tion of dormant VM images in a manner that is safe and scalable.
By safety we mean that applying the patch offline achieves the same
effect on the persistent file systems in the images as applying it on-
line. By scalability we mean that the tool has to scale to thousands,
if not millions of VM images. In this paper we only consider dor-
mant VM images that are completely shutdown; VM images that
contain suspended VMs are out of the scope of this paper.

We made a conscious design decision to be backward compati-
ble with an existing patch format. It is tempting to go with a “clean
slate” approach, where we define a new VM-friendly patch format
and associated tools that do not make the assumption of a running
system at the time of patch application. While this is indeed our
long-term research goal, we think its adoption will likely take a
long time, given the long history of the traditional online patching
model and the fact that it is an entrenched part of today’s IT prac-
tices, ranging from software development and distribution to sys-
tem administration. Thus, we believe that an interim solution that is
backward compatible with existing patch format, and yet works in
an offline manner and provides much improved scalability, would
be desirable.

Several technical challenges arise in developing such a scalable
offline patching tool, as discussed below:

Identifying Runtime Dependences: The current software in-
dustry is centered around running systems and so are the available
patching solutions. A running system provides a convenient en-
vironment to execute the installation scripts in the patch. The in-
stallation scripts query the configuration of the running system to
customize the patch appropriately for the system. Some scripts also

restart the patched software at the end of the patching process to en-
sure its effect takes place. Some patches require running daemons.
For example, some software stores configuration data in a database.
A patch that changes the configuration requires the database server
to be running in order to perform schema updates.

The challenge is to separate runtime dependences that can be
safely emulated (such as information discovery that only depends
on the file system state) or removed (such as restarting the patched
software) from the ones that cannot (such as starting a database
server to do schema updates). We address this challenge by a
combination of manual inspection of commands commonly used
in scripts (performed only once before any offline patching) and
static analysis of the scripts.

Removing Runtime Dependencies: Once we identify runtime
dependences that can be safely emulated or removed, the next chal-
lenge is to safely remove these dependences so that the patch can be
applied to a VM image offline and in a manner that does not break
backward compatibility. Our solution uses a script rewriting ap-
proach that preserves the patch format and allows a patch intended
for an online system to be applied safely offline in an emulated
environment.

Patching at a Massive Scale: As the adoption of virtualization
and cloud computing accelerates, it is a matter of time before a
cloud administrator is confronted with a collection of thousands,
if not millions of VM images. Just moving from online to offline
patching is not sufficient to scale to image libraries of that magni-
tude. We address this challenge by leveraging Mirage’s capabilities
in efficient storage and manipulation of VM images [24].

3. APPROACH
It seems plausible that patching VM images offline would work,

given the fact that the goal of patching is mainly to replace old
software components, represented as files in the file system, with
new ones. Indeed, to patch an offline VM image, we only care
about the changes made to the file system in the VM image; many
changes intended for a running system do not contribute to the VM
image directly.

Simple Emulation-based Patching: One straightforward ap-
proach is to perform the file replacement actions from another host,
referred to as the patching host. The patching host can mount and
access an offline VM image as a part of its own file system. Using
the chroot system call to change the root file system to the mount
point, the patching host can emulate an environment required by the
patching process on a running VM and perform the file system ac-
tions originally developed for patching a running VM. We call this
approach simple emulation-based patching and the environment set
up by the above procedure the emulated environment.

Failures and Observations: Unfortunately, our investigation
shows that the installation scripts used by the patching process pose
a great challenge to simple emulation-based patching. For example,
Figure 2 shows two segments of code from dbus.postinst,
the post-installation script in the dbus package. The first segment
(lines 1 to 7) detects possibly running dbus processes and sends a
reboot notification to the system if there exists one. The second seg-
ment (lines 9 to 16) restarts the patched dbus daemon so that the
system begins to use the updated software. Both segments depend
on a running VM to work correctly. The simple emulation-based
patching will fail when coming across this script.

We looked into the internals of patching scripts. After analyz-
ing patching scripts in more than one thousand patching instances,
we made some important observations. First, most commands used
in the patching scripts are safe to execute in the emulated envi-
ronment, in the sense that they do not generate undesirable side

379

1 if ["$1" = "configure"]; then
2 if [-e /var/run/dbus/pid] &&
3 ps -p $(cat /var/run/dbus/pid); then
4 /usr/share/update-notifier/notify-reboot-required
5 ...
6 fi
7 fi
8 ...
9 if [-x "/etc/init.d/dbus"]; then
10 update-rc.d dbus start 12 2 3 4 5 . stop 88 1 .
11 if [-x "‘which invoke-rc.d‘"]; then
12 invoke-rc.d dbus start
13 else
14 /etc/init.d/dbus start
15 fi
16 fi

Figure 2: Excerpts of the dbus.postinst script

effects on the persistent file system that would make the patched
VM image different from one patched online except for log files
and timestamps. Examples of such commands include the test
commands in lines 2, 9 and 11, cat in line 3, /usr/share/
update-notifier/notify-reboot-required in line 4,
update-rc.d in line 10, and which in line 11. Second, some
command executions have no impact on the offline patching and
thus can be skipped. For example, invoke-rc.d in line 12 of
Figure 2 is supposed to start up a running daemon, and its execu-
tion has no impact on the persistent file system. Thus, we can just
skip it. We call such code unnecessary code. Third, there are usu-
ally more than one way to achieve the same purpose. Thus, it is
possible to replace an unsafe command with a safe one to achieve
the same effect. For example, many scripts use uname -m to get
the machine architecture; unfortunately, uname -m returns the ar-
chitecture of the patching host, which is not necessarily the archi-
tecture for which the VM image is intended. We can achieve the
same purpose by looking at the file system data, for example, the
architecture information in the ELF header of a binary file.

Safety Analysis and Script Rewriting: Motivated by the above
observations, in this paper, we propose a systematic approach that
combines safety analysis and script rewriting techniques to address
the challenge posed by scripts. The safety analysis examines whether
it is safe to execute a script in the emulated environment, while the
rewriting techniques modify unsafe scripts to either eliminate un-
safe and unnecessary code, or replace unsafe code with safe one
that achieves the same purpose. Our experience in this research in-
dicates that the majority of unsafe scripts can be rewritten into safe
ones, and thus enable patches to be applied to offline VM images
in the emulated environment.

However, not all scripts can be handled successfully in this way.
We find some patching instances, after safety analysis and rewrit-
ing, still unsafe in the emulation-based environment. Some patches
have requirements that can only be handled in a running environ-
ment. For example, the post-installation script in a patch for MySQL
may need to start a transaction to update the administrative tables of
the patched server. As another example, mono, the open source im-
plementation of C# and the Common Language Runtime, depends
on a running environment to apply the update to itself.

The Nüwa Approach: To address this problem, we adopt a
hybrid approach in the development of Nüwa. When presented
with a patch, Nüwa first performs safety analysis on the patching
scripts included in the original patch. If all scripts are safe, Nüwa
uses simple emulation-based patching directly to perform offline
patching. If some scripts are unsafe, Nüwa applies various rewrit-
ing techniques, which will be discussed in detail in Section 4, to

these scripts, and performs safety analysis on the rewritten scripts.
If these rewriting techniques can successfully convert the unsafe
scripts to safe ones, Nüwa will use simple emulation-based patch-
ing with the rewritten patch to finish offline patching. However,
in the worst case, Nüwa may fail to derive safe scripts through
rewriting, and will resort to online patching. In reality, we have
found such cases to be rare – our results show that less than 1% of
the packages tested in our experiments fall into this category (Sec-
tion 6.1).

In addition to patching individual VM images, Nüwa also lever-
ages VM image manipulation technologies to further improve scal-
ability. In particular, Nüwa uses features of the Mirage image li-
brary [24] to enable scalable patching of a large number of VM
images in batch.

To distinguish between the two variations of Nüwa, we refer to
the former as standalone Nüwa, and the latter, which leverages Mi-
rage, as Mirage-based Nüwa. In the following, we describe the
novel techniques developed for offline patching in the context of
both standalone and Mirage-based Nüwa.

4. SCRIPT ANALYSIS AND REWRITING
This section explains how safe patch scripts are identified and,

when possible, unsafe scripts are transformed into safe scripts. The
analysis is based on three concepts — impact, dependence, and
command classification, which are defined in Section 4.1. Sec-
tion 4.2 presents rewriting techniques that, using information from
safety analyses, convert many unsafe scripts into safe scripts.

In our implementation, safety analysis and script-rewriting run
immediately before the package manager (i.e., dpkg and rpm) ex-
ecutes a patch script. As a result, analyses and transformations have
access to the script’s actual environment and arguments and to the
image’s filesystem state.

Patch scripts are in general shell scripts. For example, patch
scripts in Debian are SUSv3 Shell Command Language scripts [17]
with three additional features mandated by the Debian Policy Man-
ual [6]. Patch scripts are executed by an interpreter that repeatedly
reads a command line, expands it according to a number of expan-
sion and quoting rules into a command and arguments, executes the
command on the arguments, and collects the execution’s output and
exit status. The language is very dynamic (for example, command-
lines are constructed and parsed dynamically), which forces our
analyses and transformations to be conservative. Nonetheless, sim-
ple, syntax-directed analyses and rewritings suffice to convert un-
safe scripts to safe versions for 99% of the packages we considered.

4.1 Impact, Dependence, and Command Clas-
sification

The goal of command classification is to divide a script’s com-
mand lines into three categories: (1) safe to execute offline, (2) un-
safe to execute offline, and (3) unnecessary to execute offline. To
classify command lines, we divide a running system into a “mem-
ory” part and a “filesystem” part, and determine which parts may
influence or be influenced by a given command line. The intuition
is that the “filesystem” part is available offline but the “memory”
part requires a running instance of the image that is being patched.

Table 1: Commands w/ FS-only impacts
Command Type Example Commands
File attribute mod. chown, chmod, chgrp, touch
Explicit file content mod. cp, mv, mknode, mktemp
Implicit file content mod. adduser, addgrp, remove-shell

We say that a command-line execution depends on the filesys-
tem if it reads data from the filesystem or if any of its arguments
or inputs flow from executions that depend on the filesystem. An

380

execution impacts the filesystem if it writes data to the filesystem or
if its output or exit status flow to executions that impact the filesys-
tem. Table 1 lists some commands whose executions impact the
filesystem:

We say that a command-line execution depends on memory if it
inspects any of a number of volatile components of the system’s
state (perhaps by listing running processes, opening a device, con-
necting to a daemon or network service, or reading a file under
/proc that exposes kernel state) or any of its arguments or inputs
flow from executions that depend on memory. An execution im-
pacts memory if it makes a change to a volatile component of the
system’s state that outlives the execution itself, or if its output or
exit status flow to executions that impact the memory.

Note that all executions have transient effects on volatile state:
they allocate memory, create processes, cause the operating system
to buffer filesystem data, and so forth. For the purposes of classifi-
cation, we do not consider these effects to be impacts on memory;
we assume that other command-line executions do not depend on
these sorts of effects. Table 2 lists some commands that impact or
depend on memory.

Table 2: Commands w/ memory impact/dependence
Command Type Example Commands
Daemon start/stop invoke-rc.d, /etc/init.d/
Process status ps, pidof, pgrep, lsof, kill
System info. inquiry uname, lspci, laptop-detect
Kernel module lsmod, modprobe
Others Database update, mono gac-install

The definitions for command-line executions are extended to def-
initions for static command lines. A command line depends on
memory (or the filesystem) if any of its executions depend on mem-
ory (or the filesystem). A command line impacts memory (or the
filesystem) if any of its executions impact memory (or the filesys-
tem).

To seed impact and dependence analysis, we manually inspected
all commands used in patch scripts to determine their intrinsic mem-
ory and filesystem impacts and dependences. This might seem to
be an overwhelming task but, in practice, scripts use very few dis-
tinct commands; we found only about 200 distinct commands used
by more than 1,000 packages. It may be possible to derive this in-
formation by instrumenting command executions. In practice, we
expect that it would be provided by package maintainers.

Table 3: Command classification
Depend Depend Impact Impact Safety
on FS on Memory on Memory on FS

Yes/No No No Yes/No Safe
Yes/No No Yes Yes Unsafe
Yes/No Yes No Yes Unsafe
Yes/No Yes Yes Yes Unsafe
Yes/No No Yes No Unnecessary
Yes/No Yes No No Unnecessary
Yes/No Yes Yes No Unnecessary

Our analysis concludes that a static command-line depends on
memory if one of the following holds: (1) The command is un-
known; (2) the command has an intrinsic memory dependence; (3)
one or more of the arguments is a variable substitution; (4) the input
is piped from a command that depends on memory; or (5) the input
is redirected from a device, a file under /proc, or from a variable
substitution.

The rules for filesystem dependences and for impacts are simi-
lar. Note that the analysis errs on the side of finding spurious de-
pendences and impacts. That is, these analyses are simple “may-
depend/may-impact” analyses, which are both flow and context in-
sensitive.

Table 3 shows how each command line’s classification as safe,
unsafe, or unnecessary is determined from its filesystem and mem-
ory impacts and dependences. Safe command lines do not de-
pend on or impact memory. These are the commands that can and
should be executed offline. Script rewriting preserves these com-
mands. Unnecessary command lines have no impact on the filesys-
tem. There is no reason to execute them offline because they do
not change the image. In fact, if they depend on or impact memory,
then they must be removed because they might fail without a run-
ning instance. Script rewriting removes these commands. Unsafe
command lines may execute incorrectly offline because they de-
pend on or impact memory and also impact the filesystem. In some
cases, script rewriting cannot remove these command lines because
their filesystem impacts are required. If any unsafe command line
cannot be removed, then the patch cannot be executed offline.

Figure 3: Flow of script analysis and rewriting

4.2 Rewriting Techniques
Figure 3 shows the rewriting techniques that Nüwa applies be-

fore executing each patch script. Rewriting a script can change the
results of safety analysis, so Nüwa reruns safety analysis after ap-
plying these techniques. If safety analysis proves that all command
lines in the script are safe, then the rewritten script is executed of-
fline. Otherwise, Nüwa resorts to online patching.

Nüwa currently applies five rewriting techniques, which are de-
scribed below. For clarity, the presentation does not follow the
order in which the techniques are applied (that order is shown in
Figure 3). The first two techniques consider command-lines, anno-
tated by safety analysis, in isolation; the last three analyze larger
scopes.

/etc/init.d/acpid
/etc/init.d/cupsys
killall

Figure 4: Examples of command
lines that are removed by unnec-
essary command elimination

Unnecessary Com-
mand Elimination: This
technique removes un-
necessary commands, which,
by definition, have nei-
ther direct nor indirect
impact on the filesys-
tem. Figure 4 shows an
example.

uname -m
-> dpkg --print-architecture

uname -s
-> echo "Linux"

Figure 5: Memory-dependent com-
mand lines and their replacements

Command Re-
placement: Some
command lines that
depend on mem-
ory can be re-
placed with com-
mand lines that
depend only on
the filesystem. This
often happens with
commands that need
information about the system, in particular when the information is
available both in the filesystem and, if there is a running instance,
in memory.

381

For example, the uname command prints system information;
depending on its arguments, it will print the hostname, the machine
hardware name, the operating system name, or other fields. uname
gets its information from the kernel through the uname system call.
Without a running instance, information from the kernel cannot be
trusted. However, certain fields are statically known constants or
available through commands that depend only on the filesystem;
Figure 5 shows two examples.

Note that the command replacement technique not only removes
memory-dependent commands but also ensures that the offline script
uses values appropriate to the image instead of values from the host.
Nüwa’s implementation of command replacement consults a man-
ually constructed table of command lines and their known replace-
ments.

Before rewriting:

1 if [-x "‘which invoke-rc.d‘"]; then
2 invoke-rc.d dbus start
3 else
4 /etc/init.d/dbus start
5 fi

After rewriting:

All eliminated

Figure 6: Example of control structure analysis (from
dbus.postinst)

Unnecessary Control-structure Elimination: This technique,
a generalization of unnecessary command elimination, removes com-
pound commands like if and case statements.

Figure 6 shows an example. Both the true branch and the false
branch of the if-statement are unnecessary and would be elimi-
nated by unnecessary command elimination. The conditional would
not be eliminated because safety analysis conservatively assumes
that all conditionals impact both memory and the filesystem through
control-flow. By contrast, unnecessary control-structure elimina-
tion eliminates the entire if-statement because, after eliminating
both branches of the if-statement, the conditional is unnecessary:
It clearly has no filesystem impact through control-flow or any
other means.

We perform unnecessary control-structure elimination in a bottom-
up fashion (i.e., process inner control structures first). For each
control structure being processed, we first try to eliminate all state-
ments in each branch of the structure. If all statements in every
branch can be eliminated, we consider the conditional itself: If it
no longer impacts the filesystem, the entire control structure is re-
moved.

Note that Nüwa applies unnecessary control-structure analysis
to many kinds of compound commands and command lists, includ-
ing the case construct and command lists built from the short-
circuiting statements (‖ and &&).

Script Specialization: This technique removes command lines
and control structures that cannot execute, given the script’s ac-
tual environment and arguments and the VM image’s filesystem
state. Recall that this context is available because safety analysis
and script-rewriting run immediately before dpkg executes a patch
script.

Figure 7 shows an example, which was extracted from the post-
installation script for the acpid package. Except during error re-
covery, dpkg calls post-installation scripts with configure as
the first positional parameter ($1). Therefore, the case state-
ment can be replaced with the first branch. Next, since the rest
of the script changes neither /var/run/hald/hald.pid nor

/etc/init.d/hal, the conditional can be evaluated at rewrit-
ing time; in this case, the conditional is false and the false branch
is empty so the entire if statement is removed.

The current implementation of script specialization is a collec-
tion of ad hoc rewriting passes, which Nüwa applies before apply-
ing any other rewriting techniques. One pass replaces positional
parameters with actual parameters. Another evaluates condition-
als built from filesystem tests, when the tests depend only on the
initial filesystem state. A third evaluates the command line dpkg
-compare-versions, which is used frequently and whose re-
sult can be determined from the VM image’s package database.

Before rewriting:

1 HAL_NEEDS_RESTARTING=no
2 case "$1" in
3 configure)
4 if [-x /etc/init.d/hal] &&
5 [-f /var/run/hald/hald.pid]; then
6 HAL_NEEDS_RESTARTING=yes
7 invoke-rc.d hal stop
8 fi
9 ;;
10 reconfigure)
11 ...
12 esac

After rewriting:

HAL_NEEDS_RESTARTING=no

Figure 7: Example of script specialization (from
acpid.postinst)

All passes are conservative and err on the side of missing rewrit-
ing opportunities. For example, positional-parameter replacement
leaves the script unchanged if the script uses the shift statement,
which renames the positional parameters.

Dead-assignment Elimination: This technique removes assign-
ments to unused variables. Some dead assignments come from the
original scripts; others are created by script specialization, which
can convert conditionally dead assignments to dead assignments.

Figure 8 shows an example of dead assignment, extracted from
xfonts-scalable.postinst. In this script, the command
laptop-detect is intrinsically memory-dependent. If its re-
sult flows to a command line that impacts the filesystem, the script
would be unsafe. Fortunately, the LAPTOP variable is unused in
the rest of the script. Removing its assignment leaves the body
of the inner if statement empty, which makes the conditional un-
necessary, which in turn allows the entire inner if statement to
be removed. The outer if statement is then removed in a similar
fashion.

Before rewriting:

LAPTOP=""
if [-n "$(which laptop-detect)"]; then

if laptop-detect >/dev/null; then
LAPTOP=true

fi
fi

After rewriting:

All eliminated

Figure 8: Example of dead-assignment elimination

The first assignment in Figure 7, which is conditionally dead in
the original script, could be transformed into a dead assignment by
script specialization.

382

Dead-assignment elimination depends on a syntax-directed data-
flow analysis of the main body of the script. An assignment is dead
if the assigned value cannot reach a use before reaching the end of
the script or another assignment; the analysis conservatively judges
an assignment to be dead if it it does not occur in a loop and is
followed by another assignment in the same syntactic scope, with
no intervening uses in any syntactic scope, or if no uses follow at
all. Function bodies are not considered, except that any use of a
variable within a function body is considered reachable from any
assignment to that variable in the entire program.

5. SCALABLE BATCH PATCHING
A motivating assumption of this work is that, as cloud computing

becomes more widely adopted, image libraries will grow to contain
thousands or perhaps even millions of images, many of which must
be patched as new vulnerabilities are discovered. Even with the of-
fline patching techniques presented in Section 4, patching so many
images individually would take a significant amount of time.

This section explains an approach to batch patching a large num-
ber of images offline that exploits an observation and a conjecture
about patching images. The observation is that, if the same patch
is applied to two similar images, then any given patch-application
step is likely to have the same effect on both images. For exam-
ple, the same files will be extracted from the patch both times. The
conjecture is that the images that must be patched are likely to be
similar to one another; this conjecture seems particularly reason-
able for clouds (such as Amazon’s EC2 [2]) that encourage users to
derive new images from a small set of base images.

Nüwa’s batch patching harnesses Mirage, a scalable VM image
storage solution that exploits the similarity between images [24].
We first give a brief overview of Mirage before describing the batch
patching solution.

5.1 Overview of Mirage
The Mirage image library maintains a collection of VM images

and provides an image-management interface to users: users can
import images into the library, list existing images in the library,
check out a particular image, and check in updates of the image
to create either a new image or a new version of the original im-
age. A separate interface allows system administrators to perform
system-wide operations, such as backup, virus scan, and integrity
verification of all image content.

A design goal of Mirage is to support operations on images as
structured data. To this end, Mirage does not store images as simple
disk images. Instead, when an image is imported into the library,
Mirage iterates over the image’s files, storing each file’s contents
as a separate item in a content-addressable store (CAS); the image
as a whole is represented by a manifest that refers to file-content
items and serves as a recipe for rebuilding the image when it is
checked out. An earlier paper [24] described this format and ex-
plained how it allows certain operations on images to be expressed
as fast operations on the image’s manifest. For example, creating
a file, assuming that the desired contents are already in the CAS,
reduces to adding a few hundred bytes to the manifest.

Mirage’s new vmount feature, which was not described in the
earlier paper, allows users to mount library images without rebuild-
ing them. Vmount is implemented as a FUSE [26] daemon and
fetches data from the CAS as it is demanded; by contrast, check-
ing out an image requires fetching every file’s contents from the
CAS. Vmount also implements a new extended filesystem attribute
that allows direct manipulation of the manifest. For each regular
file, the value of this attribute is a short, unique identifier of the
file’s contents. Setting the attribute atomically replaces the file’s

contents with new contents.
After modifying an image through Vmount, the user can check

in the changes as a new image or as a new version of the original
image. The original image is not disturbed, and the time to check
in is proportional to the amount of new data instead of to the size
of the image.

Vmount has three benefits for batch patching. First, there is no
need to rebuild each image. Arguably, this is merely a workaround
for a problem created by the decision to store images as manifests.
Second, if two images share data in the CAS and are patched se-
quentially through Vmount, then reading the shared data the sec-
ond time is likely to be fast, because the data will be in the host’s
buffer cache. By contrast, if two disk images are patched sequen-
tially, then the fact that they share data is effectively hidden from
the host’s operating system. The largest benefit is that Vmount
allows batch patching to operate on manifests without major mod-
ifications of system tools like dpkg. Time-critical patching steps
can be changed to use the new filesystem attribute, without creat-
ing a dependence on the manifest format, while less profitable steps
continue to use the normal filesystem interface.

5.2 Batch Patching via Mirage
A straightforward way to patch a batch of images is to iterate

the patching process for individual images. For images in Mirage,
each iteration mounts an image with Vmount, applies the patch 4,
and checks in the modified image.

Our approach optimizes this straightforward approach by mov-
ing invariant operations out of the loop that visits each image. Cur-
rently, Nüwa optimizes one source of invariant operations: unpack-
ing the patch, which copies the patch’s files to the image and, ul-
timately, adds their contents to the Mirage CAS. These copies and
CAS additions are good operations to move out of the loop because
they consume most of the time of applying most patches; in future
work, we plan to hoist more invariants out of the loop.

Figure 9: Batch patching VM images via Mirage

Figure 9 shows the two phases of batch patching via Mirage.
Phase 1 performs the loop-invariant operation: Nüwa extracts the
patch’s files and imports them into Mirage. The result is a list of
content identifiers, one for each file. In phase 2, Nüwa iterates
over the images. For each image, Nüwa mounts the image with
Vmount, rewrites and executes the pre-installation scripts, emulates
the “unpack” step of the package manager (e.g., dpkg), using the
Mirage filesystem attribute to set the contents of the patch’s files,
rewrites and executes the post-installation scripts, and checks in the
modified VM image. If script rewriting ever fails to produce a safe
script, then Nüwa resorts to online patching.

6. EXPERIMENTAL EVALUATION
We have implemented both standalone Nüwa and Mirage-based

Nüwa by extending the Debian Almquist Shell (i.e., dash) [4].
(Our script rewriting was performed based on the syntax tree gen-
erated by dash.) Our implementations assume a Linux host sys-

4If the patch must be applied online, then the image must be rebuilt.

383

tem. We have tested the standalone Nüwa on patching hosts run-
ning CentOS 5.2, Ubuntu 9.0.4 and OpenSuSE 11.1. Our imple-
mentations currently support VM images of any Linux distributions
based on Debian package management tools (e.g., Debian, Ubuntu,
Knoppix) or RPM package manager (e.g., RHEL, CentOS). How-
ever, Mirage-based Nüwa currently only works on the Debian pack-
age manager, as the optimizations have not been completely ported
to RPM yet.

We performed three sets of experiments to evaluate Nüwa, in-
cluding (1) patching individual VM images offline, (2) Mirage-
based offline patching in batch, and (3) patching VM images in
a real-world compute cloud RC2. The first two sets of experiments
were performed on a DELL OptiPlex 960 PC, with a 3GHz Intel
Core 2 Duo CPU and 4GB DDR2 memory. The third set of exper-
iments were performed in RC2. Unless otherwise noted, we used
the x86-64 version of OpenSuSE 11.1 version as the patching host
OS in all experiments. For compatibility reasons, we updated its
kernel to version 2.6.31.11-0.0.0.2.9c60380-default.

6.1 Patching Individual VM Images
The objective of this set of experiments is two-fold: First, we

would like to evaluate the correctness of the offline patching ap-
proach used in Nüwa (i.e., whether the offline patching approach
has the same effect on the VM images as online patching). Second,
we would like to see the efficiency of our offline patching approach
in Nüwa compared with the online patching approach.

In this set of experiments, we used the Linux Kernel-based Vir-
tual Machine (KVM) [7] to start instances of VM images for online
patching. For offline patching, we used the VMware disk library to
mount the VM images in the host environment. Our tool can be log-
ically decomposed into two parts: the script rewriter and the patch
applier. We copied both components into the mounted VM image,
with the patch applier replacing the original package installer inside
the target VM image.

To perform the evaluation, we first created an empty disk image
in the flat VMDK disk format with the kvm-img image creation
tool, then brought this disk image online through KVM, and in-
stalled a default configured 64-bit Ubuntu-8.04 inside. This was
used as the base VM image for both offline and online patching.

We gathered all 406 patches available for the base VM image
(64-bit Ubuntu-8.04) on October 26, 2009. The correctness of
offline patching is verified by a file-by-file comparison of the re-
sults of online and offline: If two VM images, which are obtained
through patching the base VM image online and offline, respec-
tively, differ only in log files and timestamps, we consider the of-
fline patching to be correct. To further evaluate the effectiveness
of the rewriting techniques, we used the simple emulation-based
patching mentioned in Section 3 as a reference.

Table 4: Comparison of offline patching methods
successes # failures success ratio

Simple emulation 369 37 90.9%
Nüwa 402 4 99.0%

Table 4 shows the experimental results for evaluating the correct-
ness of our techniques. Nüwa can successfully apply 402 out of the
406 patches offline, achieving a 99.0% success ratio. The results
also show that the rewriting techniques contributed significantly to
the success; they helped improve the success ratio by about 10%.
Note that the failure cases are failures of offline patching, not of
Nüwa; Nüwa automatically detects all of these failures and can
cope with them through automatic online patching, as discussed
in Section 3.

The four failure cases are the mono-gac package5 and three
other packages that depend on mono-gac. Through further anal-
ysis, we found that mono-gac failed because the installer needed
to access some kernel information (e.g., /proc/self/map and
/proc/cpuinfo) in order to work correctly. This information
cannot be retrieved in the emulated environment.

To compare the efficiency of Nüwa’s offline patching techniques
with that of online patching, we performed another set of experi-
ments. We assumed the most efficient form of online patch, auto-
mated online patching. Specifically, we insert the patch data into
the VM image through the emulated environment and then sched-
ule a patching process at boot time by modifying the booting script
in the VM image. We then boot the VM, perform online patching,
and shut down the VM automatically once the patching is complete.

We collected two sets of data from these experiments. The first
is the time (in seconds) required to apply each applicable patch to
the base VM image through the offline patching approach in Nüwa,
and the second is the time needed to apply the same set of patches
through automated online patching.

16.5 14.9 18.6 17.8 16.6
26.2 26.8 23.1 21.3

70.2 72.6 75.1 75.4
80.2

97.3
101.9

88.2 89.0

0

20

40

60

80

100

120

bash dbus libfreetype6 libpng12-0 libxml2 perl samba-
common

udev Average

T
im

e
(in

 s
ec

o
n

d
s)

Offline Online

Figure 10: Time used by offline and online patching (“Average”
is computed over 402 applicable packages)

Figure 10 shows the time (in seconds) required to apply some
applicable patches to the base VM image through the Nüwa offline
patching and the automated online patching, respectively. Due to
the limited space, we only show the timing results for eight selected
patches and the average for all 402 applicable patches. On average,
the Nüwa offline approach takes only 23.9% of the time required by
automated online patching (a factor of 4 speedup). This improve-
ment, combined with the fact that Nüwa needs much less human
intervention and physical resources, shows that it brings significant
benefits to patching VM images.

This set of experiments demonstrates that Nüwa’s offline patch-
ing techniques, particularly the rewriting techniques, are effective
and that offline patching using Nüwa can significantly reduce the
overhead involved in patching.

6.2 Batch Patching via Mirage
The primary objective of this set of experiments is to measure

the scalability offered by Mirage-based Nüwa by comparing the
performance of Mirage-based batch patching with that of one-by-
one patching.

We generated 100 VM images using 32-bit Ubuntu 8.04 as the
base operating system for this set of experiments. The Ubuntu in-
staller can install a support for a number of basic, predefined tasks;
some of these tasks are for running specific servers, while others are
for desktop use. We generated test VM images from 100 randomly
selected subsets of 12 of these tasks (listed in Table 5).

5mono-gac is a utility to maintain the global assembly cache of
mono, an open source implementation of C# and the CLR.

384

Table 5: Basic Ubuntu tasks
Task Name # Task Name
1 lamp-server 2 mail-server
3 dns-server 4 openssh-server
5 print-server 6 samba-server
7 postgresql-server 8 ubuntustudio-audio
9 ubuntustudio-audio-plugins 10 ubuntustudio-graphics
11 ubuntustudio-video 12 ubuntu-desktop

We retrieved 154 security updates (i.e., security patches) for 32-
bit Ubuntu 8.04 from Ubuntu Security Notices [28]. We also re-
trieved the ranking of Ubuntu packages given by Ubuntu’s popular-
ity contest [9], and sorted the 154 security patches accordingly. For
our performance evalution, we selected the security updates cor-
responding to the eight most popular packages (as of January 18,
2010), including dash, libdbus, libglib-2.0, libfreetype,
udev, libpng, libxml2, and dbus.

For each of the eight patches, we measured the time to apply
the patch to the test VM images one-by-one and the time to ap-
ply the patch to the test VM images as batches of increasing sizes.
Figure 11 shows that for all eight security patches, Mirage-Nüwa
achieves considerable speedup over individual patching. Moreover,
the speedup also increases as the number of images patched in a
batch increases, and plateaus between 80 and 100 images.

For seven of the eight security patches (udev is the exception),
the average speedup over one-by-one patching increases from 5.1
times to 8.5 times as the number of images in a batch increases
from 10 to 100. Note that this speedup is on top of the factor of
4 speedup achieved over traditional online patching, thus bringing
the total speedup over traditional online patching to about 30 when
patching 100 images in a batch.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

S
p

ee
d

up

Number of images patched

Speedup of Mirage-based batch patching
over one-by-one patching

dbus

dash

libdbus

libfreetype6

Libpng12-0

libglib2.0-0

libxml2

udev

Figure 11: Scalability of Mirage-based Nüwa

However, the speedup for udev is much smaller, compared with
the other seven patches. In fact, the speedup for udev is only
around 2. Further investigation showed that the udev patch spends
more time in pre-installation and post-installation scripts than the
others; thus, the file replacement operations constitute a smaller
portion of the entire patching process.

This set of experiments demonstrates that Mirage-based Nüwa is
scalable and can improve the performance of offline patching sig-
nificantly. Overall, Nüwa offline patching is an order of magnitude
more efficient than online patching.

6.3 Patching a Real Cloud
In this experiment we assess the performance of Nüwa in a real

production cloud. We patch the entire repository with the latest se-
curity updates published in the OS distributor’s website. We set out
to answer two questions: 1) how many of the images can be suc-

cessfully patched offline using Nüwa, and 2) whether it is feasible
to patch the entire image repository on a daily basis.

Our experiments are based on RC2 [25], a compute cloud very
similar to Amazon’s EC2, that is used by IBM researchers world-
wide. Although small compared to EC2, RC2 is a production cloud
that is used daily by IBM researchers. We created a replica of the
RC2 image repository in our own testbed, so as to have a controlled
experimental environment. The replica contains a total of 278 im-
ages, to which we apply the security patches from Red Hat’s secu-
rity advisories website [23]. All 278 images are running Red Hat
5.3 with the exception of one that is running CentOS 5.3. We used
the RPM-based implementation of Nüwa since all Red Hat distri-
butions use RPM for package installation. For this experiment we
did not use the Mirage batch optimization because this feature has
not yet been implemented in the RPM-based Nüwa.

We set up a dedicated host to run the patch process. The host
is a blade with 4 Xeon 3.16GHz processors and 8GB RAM, run-
ning OpenSuse 11.1. The image repository is on a different, sim-
ilar blade and the host accesses the repository via an NFS mount
through a SAN network.

Table 6: Latest applicable security updates from RedHat rated
“important” and higher

Update Severity Advisory
1 krb5 critical RHSA-2010:0029
2 nspr/nss critical RHSA-2009:1186
3 openssl important RHSA-2010:0162
4 sudo important RHSA-2010:0122
5 acpid important RHSA-2009:1642
6 elinks important RHSA-2009:1471
7 dnsmasq important RHSA-2009:1238
8 bind important RHSA-2009:1179
9 cups important RHSA-2009:1082
10 freetype important RHSA-2009:1061

Patching the entire repository of 278 available images with the
latest critical security update (krb5 [22]) takes about 45 seconds
per image, totaling about 3.5 hours. All images were patched suc-
cessfully, completely offline. Note that the patching time includes
all time to set up the image for patching, download the update
from a remote Red Hat Network server, and install the downloaded
packages. We believe this number can be reduced 10-fold with
an optimized storage configuration (e.g., a repository on a local
disk or on direct-attached SAN storage), a local package server,
and the Mirage batch-patching optimization, thus potentially al-
lowing an average compute node (which can itself be a VM in the
compute cloud) to apply a single security patch to about 19,200
(24*3600S/(45S/10)) images on a daily basis.

To test the robustness of Nüwa, we took the latest applicable
security updates (shown in Table 6) from Red Hat’s security advi-
sories [23] that are rated “important” or “critical” and applied them
across the entire repository. There are 10 updates which consist of
24 individual packages. All updates were successful on all 278 im-
ages, suggesting that Nüwa is robust enough to be offered as a real
service in a production cloud.

7. RELATED WORK
Several available commercial tools [10,27,29] can apply patches

to dormant VM images. But that does not mean the patches are
applied in an offline manner. As a matter of fact, all of them require
the image to be running when the patches are actually installed.
Microsoft’s Offline VM Servicing Tool [10] first “wakes” up the
virtual machine (deploys it to a host and starts it), then triggers the
appropriate software update cycle to apply the patches, and finally
shuts down the updated virtual machine and returns it to the image

385

library. In the cases of VMware Update Manager [29] and Shavlik
NetChk Protect [27], patches are first inserted into image at some
specified locations, then applied when the image is powered up. We
resort to this approach when Nüwa identifies patches that contain
unsafe commands.

In some cases, it is preferable to apply patches online. In general,
systems that tend to stay online for a long period of time, such as
highly available servers, fall into this category. In those cases, “dy-
namic update” techniques [1, 3, 14, 16] are used to apply patches to
the target software without shutting them down. In contrast, Nüwa
targets VM images that have already been shut down and may stay
in dormant state for an extended period of time. Thus, these ap-
proaches are complimentary to Nüwa.

8. CONCLUSION
In this paper, we developed a novel tool named Nüwa to enable

efficient patching of offline VM images. Nüwa uses safety analysis
and script rewriting techniques to convert patches, or more specifi-
cally the installation scripts contained in patches, which were origi-
nally developed for online updating, into a form that can be applied
to VM images offline. Nüwa also leverages the VM image manip-
ulation technologies offered by the Mirage image library [24] to
provide an efficient and scalable way to patch VM images in batch.
We implemented a standalone Nüwa and a Mirage-based Nüwa;
standalone Nüwa supports two popular package managers, the De-
bian package manager [5] and the RPM package manager [8], while
Mirage-based Nüwa supports only the former. In addition to evalu-
ating Nüwa with security patches and VM images configured with
popular packages according to Ubuntu popularity contest, we also
applied Nüwa to a real cloud RC2. Our experimental results demon-
strate that 1) Nüwa’s safety analysis and script rewriting techniques
are effective – Nüwa is able to convert more than 99% of the patches
to safe versions that can then be applied offline to VM images; 2)
the combination of offline patching with additional optimization
made possible through Mirage allows Nüwa to be an order of mag-
nitude more efficient than online patching; and 3) Nüwa success-
fully patched 278 images in a real compute cloud.

A limitation of Nüwa is that it currently does not support offline
patching of a suspended VM image, which includes a snapshot of
the system memory state in addition to the file system. In our future
research, we will investigate techniques to patch suspended VM
images and how to perform offline patching on Windows platforms.

Acknowledgement

This work is supported by the U.S. National Science Foundation
(NSF) under grant 0910767, and by an IBM Open Collaboration
Faculty Award. The contents of this paper do not necessarily reflect
the position or the policies of the U.S. Government or IBM.

9. REFERENCES
[1] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz.

Opus: online patches and updates for security. In SSYM’05:
Proceedings of the 14th conference on USENIX Security Symposium,
pages 19–19, Berkeley, CA, USA, 2005. USENIX Association.

[2] Amazon. Amazon elastic compute cloud (EC2).
http://aws.amazon.com/ec2/.

[3] Jeff Arnold and M. Frans Kaashoek. Ksplice: automatic rebootless
kernel updates. In EuroSys ’09: Proceedings of the 4th ACM
European conference on Computer systems, pages 187–198, New
York, NY, USA, 2009. ACM.

[4] Debian community. Debian Almquist shell. http:
//en.wikipedia.org/wiki/Debian_Almquist_shell.

[5] Debian community. Debian package manager.
http://www.debian.org/dpkg.

[6] Debian Community. Debian policy manual.
http://www.debian.org/doc/debian-policy/, 2009.

[7] KVM community. Linux kernel-based virtual machine.
http://www.linux-kvm.org/.

[8] RPM community. RPM package manager.
http://www.rpm.org/.

[9] Ubuntu Community. Ubuntu popularity contest.
http://popcon.ubuntu.com/.

[10] Microsoft Corporation. Offline virtual machine servicing tool 2.1.
http://technet.microsoft.com/en-us/library/
cc501231.aspx.

[11] Forbes. Cybersecurity’s patching problem.
http://www.forbes.com/2009/09/14/
sans-institute-software-technology-security-
cybersecurity.html. Visited on 2009-11-06.

[12] Stefan Frei, Thomas Duebendorfer, Gunter Ollmann, and Martin
May. Understanding the Web browser threat. Technical Report 288,
TIK, ETH Zurich, June 2008. Presented at DefCon 16, Aug 2008,
Las Vegas, USA.
http://www.techzoom.net/insecurity-iceberg.

[13] Thomas Gerace and Huseyin Cavusoglu. The critical elements of the
patch management process. Commun. ACM, 52(8):117–121, 2009.

[14] Deepak Gupta and Pankaj Jalote. On line software version change
using state transfer between processes. Softw. Pract. Exper.,
23(9):949–964, 1993.

[15] Huseyin Cavusoglu Hasan, Hasan Cavusoglu, and Jun Zhang.
Economics of security patch management. In The Fifth Workshop on
the Economics of Information Security (WEIS 2006), June 2006.

[16] Michael Hicks and Scott M. Nettles. Dynamic software updating.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(6):1049–1096, November 2005.

[17] The IEEE and The Open Group. The single UNIX specification,
version 3.
http://www.unix.org/version3/online.html, 2004.

[18] Cloud Market. The cloud market: EC2 statistics.
http://thecloudmarket.com/stats.

[19] Microsoft. The microsoft security update release cycle.
http://www.microsoft.com/security/msrc/
whatwedo/updatecycle.aspx.

[20] NC State University. NC State University virtual computing lab
(VCL). http://vcl.ncsu.edu/.

[21] United States General Accounting Office. Effective patch
management is critical to mitigating software vulnerabilities.
gao-03-1138t, September 2003.

[22] RedHat. Critical: krb5 security update.
[23] RedHat. RedHat Security Advisories. http://rhn.redhat.

com/errata/rhel-server-errata-security.html.
[24] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and

V. Bala. Opening black boxes: using semantic information to combat
virtual machine image sprawl. In VEE ’08: Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 111–120, 2008.

[25] Kyung Dong Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala,
Stefan Berger, Dilma M. Da Silva, Jim Doran, Frank Franco, Alexei
Karve, Herb Lee, James A. Lindeman, Ajay Mohindra, Bob
Oesterlin, Giovanni Pacifici, Dimitrios Pendarakis, Darrell Reimer,
and Mariusz Sabath. RC2 – A Living Lab for Cloud Computing. In
Lisa ’10: Proceedings of the 24th Large Installation System
Administration, 2010. Earlier version available as an IBM technical
report at http://domino.watson.ibm.com/library/
CyberDig.nsf/Home.

[26] Miklos Szeredi. Fuse: Filesystem in userspace.
http://fuse.sourceforge.net/, 2010.

[27] Shavlik Technologies. Offline virtual machine image quick start
guide. http://www.shavlik.com/documents/
qsg-prt-6-1-offline_vm.pdf.

[28] Ubuntu. Ubuntu security notices.
http://www.ubuntu.com/usn/.

[29] VMware. VMware vcenter update manager. http:
//www.vmware.com/products/update-manager/.

386

A Framework for Testing Hardware-Software
Security Architectures∗

Jeffrey S. Dwoskin
Princeton University

Princeton, NJ, 08540 USA
jdwoskin@princeton.edu

Mahadevan
Gomathisankaran

†

University of North Texas
Denton, TX, 76203 USA
mgomathi@unt.edu

Yu-Yuan Chen
Princeton University

Princeton, NJ, 08540 USA
yctwo@princeton.edu

Ruby B. Lee
Princeton University

Princeton, NJ, 08540 USA
rblee@princeton.edu

ABSTRACT
New security architectures are difficult to prototype and test
at the design stage. Fine-grained monitoring of the interac-
tions between hardware, the operating system and applica-
tions is required. We have designed and prototyped a testing
framework, using virtualization, that can emulate the behav-
ior of new hardware mechanisms in the virtual CPU and can
perform a wide range of hardware and software attacks on
the system under test.

Our testing framework provides APIs for monitoring hard-
ware and software events in the system under test, launching
attacks, and observing their effects. We demonstrate its use
by testing the security properties of the Secret Protection
(SP) architecture using a suite of attacks. We show two
important lessons learned from the testing of the SP ar-
chitecture that affect the design and implementation of the
architecture. Our framework enables extensive testing of
hardware-software security architectures, in a realistic and
flexible environment, with good performance provided by
virtualization.

1. INTRODUCTION
Designers of security architectures face the challenge of

testing new designs to validate the required security proper-
ties. To provide strong guarantees of protection, it is often
necessary and desirable to place low-level security mecha-
nisms in the hardware or the operating system kernel, which
the higher-level software layers can rely upon for a wide-

∗This work was supported in part by NSF CCF-0917134
and NSF CNS-0430487 (co-sponsored by DARPA). Access
to VMware was provided through the VMAP program.
†M. Gomathisankaran was a postdoc at Princeton for this
work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

range of applications. The resulting architecture is a com-
bination of hardware, kernel, and application software com-
ponents which are difficult to test together. The security
of the system as a whole relies on the combination of the
correct design and implementation of the low-level security
features, the correct and secure use of those features by the
software layers, and the security of the software components
themselves. Therefore, we need a framework that can com-
prehensively model the architecture and study the interac-
tions between hardware and software components, running
a realistic software stack with a full OS and applications,
during normal operation and under attack.

We propose a testing framework that can emulate the
hardware components of a security architecture and can pro-
vide a controlled environment with a full software stack,
with which coordinated security attacks can be performed
and observed. We have designed our testing framework with
the initial goal of verifying the SP (Secret Protection) archi-
tecture [13, 24], while being generalizable to other security
architectures. SP places roots of trust in the hardware which
are used to protect security-critical software at the applica-
tion layer, skipping over the operating system layer in the
trust chain. The threat model includes attacks on software
components as well as physical attacks, with only the pro-
cessor chip itself trusted. The operating system remains
untrusted and essentially unmodified. The ”layer-skipping”
feature of SP’s minimalist trust chain is in contrast to tra-
ditional hierarchical trust chains, and testing with a com-
modity OS is necessary to verify that security-critical appli-
cations can be built on this type of architecture.

The testing environment — including the hardware imple-
mentation, software stack, threat models, and attack mecha-
nisms — must be as realistic as possible. As far as we know,
no existing testing methods provide a fast and convenient
way to test both hardware and software security mechanisms
simultaneously, running an unmodified commodity OS with
a full microprocessor and hardware system, with full observ-
ability and controllability of coordinated hardware, software
and network attacks.

Furthermore, our framework allows testing to be done dur-
ing the design time; this gives confidence in the architecture
before the complete system is built, at which point it is costly
to make fundamental changes in response to security flaws.

387

For example, we show two important lessons learned while
testing the implementation of the SP architecture. Although
this paper focuses on testing integrated hardware-software
security architectures like SP, it is also useful for debugging
and testing software-only architectures.

The primary contributions of this work are:

• a new flexible framework for design-time testing of the
security properties of hardware-software architectures;

• enabling testing with a realistic software stack, using
commodity operating systems, and different applica-
tions using the new security mechanisms;

• a flexible, fast, and low-cost method for emulating
hardware security features, using virtualization, for
the purpose of design validation — without costly and
time-consuming fabrication of hardware prototypes;

• an improved architecture for SP’s secure memory mech-
anism and its implementation; and

• the application of our framework toward the valida-
tion of the security properties of the SP architecture,
by providing a suite of attacks on SP’s security mech-
anisms, as well as general attacks on the system.

2. THREAT MODEL AND ASSUMPTIONS
We focus on hardware-software architectures where new

hardware security mechanisms are added to a general-purpose
computing platform to protect security-critical software and
its critical data. The hardware in the architecture provides
strong non-circumventable security protection, and the soft-
ware provides flexibility to implement different security poli-
cies for specific applications and usage scenarios.

We assume a system with security-critical software appli-
cations running on a platform with new hardware security
mechanisms added to the CPU (e.g., new instructions, reg-
isters, exceptions, and crypto engines). Sometimes the OS
cannot be trusted, especially if it is a large monolithic OS
like Windows or Linux. Other times, an architecture might
trust parts of the operating system kernel (e.g., a microker-
nel [1]), but not the entire OS.

We consider three classes of attacks in our testing frame-
work. First, malware or exploitable software vulnerabilities
that can allow adversaries to take full control of the oper-
ating system to perform software attacks. They can access
and modify all OS-level abstractions such as processes, vir-
tual memory translations, file systems, system calls, kernel
data structures, interrupt behavior and I/O.

Second, hardware attacks, which can be performed by ad-
versaries with physical possession of a device, such as di-
rectly accessing data on the hard disk, probing physical
memory, and intercepting data on the display and I/O buses.
We can also model some software attacks as having the same
impact as these physical attacks.

Third, network attacks that can be performed with either
software or hardware access to the device, or with access to
the network itself. Some network attack mechanisms act like
software attacks (e.g., remote exploits on software), while
others attack the network itself (e.g., eavesdropping attacks)
or application-specific network protocols (e.g., modification
attacks and man-in-the-middle attacks).

In order to adequately test a new security architecture, all
of these attack mechanisms must be considered and tested,
according to the threat model of the particular system. Our
testing framework provides hooks into each relevant system

component, and allows information and events at each level
to be correlated to emulate the most knowledgeable attacker.

Overall, we consider the functional correctness of the new
hardware security mechanisms and the security-critical soft-
ware components, as well as the interaction between these
hardware and software components. We do not consider
timing or other side-channel attacks.

Buggy or malicious hardware is considered an orthogonal
problem within the manufacturing process – and not part of
our threat model. However, to the extent that the emulated
system corresponds functionally to the real microarchitec-
ture, our framework can be used to generate data for test
cases to run against manufactured devices, or to provide
inputs to other verification schemes.

3. TESTING FRAMEWORK
We first describe the overall architecture of our testing

framework, followed by the technical details of the frame-
work components. We then show the range of attacks and
events we can model, and finally present our prototype im-
plementation.

3.1 Architecture
We build our testing framework on top of existing vir-

tualization technology, which allows us to run a full set of
commodity software efficiently. A virtual machine moni-
tor (VMM) is the software that creates and isolates Virtual
Machines (VMs), efficiently providing an execution environ-
ment in each VM which is almost identical to the original
machine [33, 35]. By modifying an existing VMM’s hard-
ware virtualization, we can augment the virtual machine to
have the additional hardware features of a new security ar-
chitecture. Using virtualization allows the unmodified hard-
ware and software components to run at near-native speed,
while permitting our framework to intercept events and sys-
tem state as needed.

Our Testing Framework is divided into two systems, as
shown in Figure 1: the System Under Test (SUT) and the
Testing System (TS), each running as a virtual machine on
our modified VMM. The SUT is meant to behave as closely
as possible to a real system which has the new security ar-
chitecture. It can invoke the new hardware security primi-
tives, along with the associated protected software for that
architecture. In our current system, the SUT runs a full
commodity operating system (Linux) as its guest OS, which
is vulnerable to attack and is untrusted.

The TS machine simulates the attacker, who is trying to
violate the security properties of the SUT. It is kept as a
separate virtual machine so that the TS Controller can be
outside of the SUT to launch hardware attacks. The vir-
tualization isolates all testing activity and networking from
the host machine.

The testing framework itself is independent of the threat
model of the system being tested, and hence enables full
controllability and observability of the SUT in both hard-
ware and software. This makes it suitable for many pur-
poses during the design phase of a new architecture. During
the initial design and implementation of the system, the TS
can act as a debugger, able to see the low-level behavior in
hardware, all code behavior, and data in the software stack.
When testing the supposedly correct system, the TS is the
attacker, constrained by a threat model to certain attack
vectors.

388

Testing System

(TS)

Linux

Security

Hardware

Emulator

VMM
(hooks added)Hardware

Events/Attacks

Testing Framework

Components

Security Architecture

Components

Application-specific

Software

Virtualization & System

Software

Event & Attack

Module

Event & Attack

Module

System Under Test

(SUT)

TS Proxy

Kernel

Application

Protected

Software

Linux
TS Controller

Kernel

TS Proxy

Application
TS Controller

Application
Attack

Scripts

Software Events/Attacks

Figure 1: Testing Framework Design

A particular point of elegance of our framework is that
the threat model can be easily changed, and the set of at-
tack tools given to the attacker adjusted for each test. The
framework can be used for arbitrary combinations of mecha-
nisms: access to internal CPU state of the virtual processor,
physical attacks on the virtual machine hardware (e.g. hard-
ware probes on the buses, memory, or disk), software attacks
on the operating system (e.g. a rootkit installed in the OS
kernel), and network attacks (e.g. interception and modi-
fication of network packets and abuse of network protocols
and application data). For example, in some cases, it might
be desirable to perform black-box testing of a new design
using only the network to gain access to the SUT, while in
other cases, white-box testing will allow the attacker knowl-
edge about the system’s activities, such as precise timing of
attacks with hardware interrupts or breakpoints into the ap-
plication code, or observation of data structures in memory.

3.2 Testing Framework Components
The main components of our Testing Framework are shown

in Figure 1. The framework detects events in the SUT and
provides the TS with access to the full system state using
both hardware and software channels. The TS Controller,
running in the TS, is the aggregation point that receives
events from both hardware and software. It receives OS and
Application level (software) events from the SUT via a net-
work channel and receives hardware events from the VMM.
It provides APIs to the Attack Scripts which can monitor or
wait for specific events and adaptively mount a coordinated
attack on the SUT.

The TS Proxy is added to the SUT to communicate with
the TS Controller to receive commands and send events
back. It simulates the effect of a compromised operating
system for launching software attacks, allowing the OS to
be fully controllable by the TS. It controls the application
to be tested, and uses its corresponding kernel-level compo-
nent to control and monitor OS behavior and the OS-level
abstractions used by the application, including system calls,
virtual memory, file systems, sockets, etc.

The TS Controller and TS Proxy are each divided into
user-level and kernel-level components. Additional trusted
entities of the security architecture that are not under test,
such as network servers, may be hosted in the TS and report
their activity directly to the TS Controller.

The modified VMM captures events and accesses system

state in the SUT. It monitors and controls the hardware
with the Event & Attack Module providing hooks into the
virtual CPU and virtual devices, as well as into the new
Security Hardware Emulator for new hardware not present
in the base CPU. The TS Proxy monitors and controls the
applications and OS. Communication of events and data be-
tween the SUT and TS occurs asynchronously through a net-
work channel for software events/attacks and through a cus-
tom channel within the VMM1 for hardware events/attacks.
When synchronization is necessary, either the application
or the entire SUT machine can be frozen to preserve state,
while the TS and attack scripts continue to execute. Within
the virtual machines, the components communicate through
a combination of new system calls (to kernel components),
hyper-calls (direct to the VMM), signals, and virtual hard-
ware interrupts.

Table 1 lists various events and attacks exposed by the
framework for each layer of the system. The lower two layers
show the hardware classified into the base hardware (x86
architecture in our work) and the new emulated security
architecture.

Hardware events are monitored through the VMM hooks
during execution and are as fine-grained as the execution of
a single instruction or hardware operation in the SUT. The
VMM freezes the SUT as it communicates each event over
the inter-VM channel, allowing the TS to possibly change
the result of that operation before it completes. Software
events and attacks rely on hooks from the TS Proxy into
the OS kernel through its kernel module, and to the testing
application using its user-mode component. The TS Proxy
can also function as a debugger tool reading the application’s
memory and accessing its symbol table to map variable and
function names to virtual addresses. The application can
optionally be instrumented to access its state and events.

3.3 Attack Scripts
Attack Scripts reside on the TS and specify how particular

attacks are executed on the SUT. They provide step-by-step
instructions for monitoring events and dynamically respond-
ing to them in order to successfully launch attacks, or detect
that an attack was prevented by the security architecture.
The scripts act like a state-machine, acting on hardware and
software events which are aggregated by the TS. Scripts can
be written to form a library of generic attacks, that can be
used to attack any application. Alternatively they can be
specific to the behavior of the application being tested, writ-
ten by the user of the framework. The TS Controller reads
and executes these scripts and implements the communica-
tion mechanisms and control of the SUT as needed.

Table 2 lists the API which the TS Controller exports to
the attack scripts. The first group are commands used to
launch and control the execution of the application under
test on the SUT. The second group of commands control
event handling2, and the last group provides access to SUT
state.

The security properties and attacks considered in the threat
model do not need to detail the exact method of penetra-
tion, but can just focus on the impact of the attacks on the

1The hardware channel is implemented over shared memory
between each VM’s Event & Attack Module.
2The watch list can wait for any of the event types in Ta-
ble 1. Event parameters and data are either passed to the
TS directly or are accessible via pointers with ACCESS_MEM.

389

Table 1: Example Events and Attacks

Layer Events Monitored Impact of Attack

Protected Application API function entry/exit, Library calls, User
authentication, Network messages, Other
application-specific events.

Read/write application data structures, Trigger ap-
plication API calls, Intercept/modify network mes-
sages, Other application-specific attacks.

OS Memory access watchpoints, Virtual memory
paging, File system access, System calls, Pro-
cess scheduling, Instruction breakpoints, Device
driver access, Network socket access, Interrupt
handler invocation, etc.

Read/write virtual memory, Read/write kernel data
structures, Read/write file system, Intercept/modify
syscall parameters or return values, Read/write sus-
pended process state, Modify process scheduling, In-
tercept/modify network data, Modify virtual mem-
ory translations.

Base Hardware (x86) Privileged instruction execution, Triggering of
page faults and other interrupts, Execution of an
instruction pointer.

Read/write general registers, Read/write physical
memory, Trigger interrupts, Intercept device I/O
(e.g. raw network & disk accesses).

Secure Hardware Execution of new instructions, Triggering of new
faults, Accesses to new registers.

Read/write new registers & state, Read/write pro-
tected memory plaintext.

Table 2: TS Controller API for Attack Scripts

Function Description

h ← INIT() Initialize the Controller and return a handle h to access resources.

EXECUTE(h,app,params) Execute the application app on SUT with the given parameters params.

INTERRUPT(h,num) Trigger an immediate virtual hardware interrupt number num on the SUT.

BREAKPOINT(h,addr) Setup a breakpoint to interrupt the SUT at an address (addr).

EVENTADD(h,eventType) Add the eventType to watch-list.

EVENTDEL(h,eventType) Delete the eventType from the watch-list.

event ← WAIT(h) Blocking call that waits for any event in the watch-list to occur in the SUT. Once an
event is triggered, the SUT is paused and the TS continues running the attack script. An
application exit in the SUT always causes a return from WAIT().

event ← WAITFOR(h,eventType) Similar to WAIT() but waits for the specified event (or application exit), regardless of
the watch-list.

CONT(h) Execution of the SUT is resumed, after an event or interrupt.

ACCESS_GENREG(h,r/w,buf)
ACCESS_SPREG(h,r/w,buf)

Reads/writes (r/w) the general registers or SP registers of the SUT to/from buf.

ACCESS_MEM(h,v/p,r/w,addr,sz,buf)
ACCESS_SPMEM(...)

Reads/writes (r/w) sz bytes from virtual or physical memory (v/p) of the SUT at address
addr to/from the buffer buf. Can access memory regularly or as an SP secure region
(accessing the plaintext of encrypted memory).

SUT’s state. This is preferred since (1) new attack pen-
etration methods are frequently discovered after a system
is deployed and often are not foreseen by the designer, (2)
most real attacks result in or can be modeled by the impact
of attacks which we provide in Table 1, and (3) the attack
scripts themselves can be restricted to model specific pene-
tration methods when testing for a more limited attacker. A
detailed example using this TS Controller API in an attack
script is given in Section 5 and Figure 3.

3.4 Implementation
We implemented our testing framework on VMware’s vir-

tualization platform [2], including all of the components in
Figure 1, and events and attacks at each system layer. The
Security HW Emulator, VMM Event & Attack Module, and
inter-VM communication channel required modifying the
source code of the VMware VMM. The kernel components of
the TS Proxy and TS Controller are implemented as Linux
kernel modules. The TS Proxy application is implemented
as a Linux user process and controls the execution of the
Application under test. The TS Controller application is

implemented as a static library which is called by the At-
tack Scripts.

As a sample security architecture, we implement the SP
architecture, described in Section 4. The Security Hardware
Emulator emulates the SP architecture including its hard-
ware roots of trust, secure memory, and interrupt protection.
We have also implemented a library of protected software for
SP, which is used for a remote key-management application
as described in Section 5. Our Application under test uses
this library to exercise the software, and in turn, the SP
hardware.

Our framework, by using existing virtualization technol-
ogy, enables reasonable performance while allowing our SUT
to provide a realistic software stack and emulate new hard-
ware. Other virtualization environments, like Xen [4], can
also be used. Other simulation and emulation environments
available, such as Bochs [28] and Qemu [5], could be used
in place of virtualization to implement our framework as
designed and described in this paper. We choose a virtual-
ization environment for performance reasons, because only
parts of the hardware and protected software need to be em-

390

ulated, while the OS and other non-protected software can
run virtualized. VMware provided an excellent development
environment, under the VMAP program.

4. SP ARCHITECTURE AND EMULATION
We use the Secret Protection (SP) architecture [13, 24] to

demonstrate the effectiveness of our framework. SP skips
software layers in the conventional trust chain by using hard-
ware to directly protect an application without trusting the
underlying operating system. SP protects the confidentiality
and integrity of cryptographic keys in its persistent storage
which in turn protect sensitive user data through encryption
and hashing. These security properties provided by SP need
to be validated. Furthermore, it is important to write and
test many secure software applications for SP in a realistic
environment, where a compromised OS can be a powerful
source of attacks.

Our testing framework emulates SP’s hardware features
using modifications to the VMM. While SP hardware prim-
itives have already undergone a detailed security analysis on
paper, the framework can test the robustness of the design
and its implementation, as well as discover any potential
flaws. Additionally, we modify SP’s secure memory mech-
anisms and then show how our framework can be used to
demonstrate that these new hardware features are also re-
silient to attack.

4.1 Secret Protection (SP) Architecture
In the Secret Protection (SP) architecture (See Figure 2),

the hardware primarily protects a Trusted Software Mod-
ule (TSM), which protects the sensitive or confidential data
of an application. Hence, a TSM plus hardware SP mech-
anisms form a minimalist trust chain for the application.
Rather than protecting an entire application, only the security-
critical parts are made into a TSM, while the rest of the
application can remain untrusted. Furthermore the operat-
ing system is not trusted; the hardware directly protects the
TSM’s execution and data.

Protecting the TSM’s execution requires ensuring the in-
tegrity of its code and the confidentiality and integrity of its
intermediate data. Code must be protected from the time
it is stored on disk until execution in the processor. Data
must be protected any time when the operating system or
other software can access it. This includes storage on disk,
in main memory, and in general registers when the TSM is
interrupted. To provide this protection, SP provides new
hardware mechanisms:

Roots of Trust: SP maintains its state using new processor
registers; the threat model of SP assumes the processor chip
to be the security boundary, safe from physical attacks which
are very costly to mount on modern processors. As shown
in Figure 2, SP uses two on-chip roots of trust: the Device
Root Key and the Storage Root Hash.

Code Integrity: The Device Root Key is used to sign a
MAC (a keyed cryptographic hash) of each block of TSM
code on disk. When a TSM is executing, the processor enters
a protected mode called Concealed Execution Mode (CEM).
As the code is loaded into the processor for execution in the
protected mode, the processor hardware verifies the MAC
before executing each instruction.

Data Protection: For the TSM’s intermediate data, while
in protected mode, the TSM can designate certain mem-
ory accesses as “secure”, which will cause the data to be en-

crypted and hashed before being evicted from on-chip caches
to main memory. This secure data is verified and decrypted
when it is loaded back into the processor from secure mem-
ory. Secure data and code are tracked with tag bits added
to the on-chip caches.

Interrupt Protection: Additionally, the SP hardware in-
tercepts all faults and interrupts that occur while in the
protected mode before the OS gets control of the processor.
SP encrypts the contents of the general registers in place,
and keeps a hash of the registers on-chip; When the TSM is
resumed, the hash is verified before decryption of the regis-
ters.

Operating System

Processor Chip

Device Root Key

Storage Root Hash

Sensitive

Application

Disk

Trusted

Hardware

Trusted

Software

SP Protected

Secrets

Application-specific

Software

Not

Trusted

SP Instructions

Encryption/

Hashing

Engine

Instruction

& Data

Caches

Ta
g

 b
its

Concealed

Execution

Mode

Interrupt

Registers

CEM Mode

User I/O

a

b

Main

Memory

Trusted

Software

Module

User

Application

1

User

Application

2

Keys

K
e

y
s

K
e

y
s

K
e

y
s

Figure 2: Secret Protection (SP) Architecture. En-
largements show (a) the Concealed Execution Mode
(CEM) hardware, and (b) the application secrets
protected by the TSM.

The TSM protects secret data belonging to the application
in persistent storage. SP allows a TSM (and no other soft-
ware) to derive new keys from the Device Root Key using a
new hardware instruction, DRK DeriveKey. These derived
keys are used by the TSM to protect the confidentiality of its
persistent data. Furthermore, the TSM is the only software
that can read and write the Storage Root Hash register, us-
ing it as the root of a hash tree to protect the integrity of
this persistent secure data.

Hence, to emulate SP hardware we require the follow-
ing components: new processor registers (including the pro-
tected mode and roots of trust); new instructions; hardware
mechanisms for code integrity checking, secure memory and
interrupt protection; and new hardware faults which these
mechanisms generate.

4.2 Emulation of the SP Architecture
Most of the time, code in a VM runs directly on the

physical hardware, and the VMM only emulates components
that are virtualized. It traps on privileged instructions, but
ignores hardware effects that are transparent to software,
such as cache memory. In order to implement and emu-
late new hardware architecture features, we take advantage

391

of the VMM’s virtualization methods. For example, the
VMM maintains data structures for the virtual CPU state,
which we expand to store new security registers. The VMM
then emulates accesses that are made to those new regis-
ters. Other useful VMM behaviors include: interception of
all hardware interrupts, dynamic binary translation of code,
mapping of virtual memory translations, and virtualization
of hardware devices.

To emulate the SP architecture, the Security Hardware
Emulator Module implements the following:

Protected Mode: SP requires new registers to be added
to the virtual CPU. This includes SP’s two Roots of Trust
and the new interrupt handling registers and mode bits for
its Concealed Execution Mode [24]. New SP instructions
are modeled as hypercalls, where the TSM running in the
SUT is able to directly invoke the emulation module without
going through the guest OS.

Interrupts and SP Faults: The SP architecture changes
the hardware interrupt behavior when in protected mode.
Since the VMM already emulates interrupt behavior, we
simply detect that an interrupt has occurred during the pro-
tected mode and emulate the effect on the CPU, which in-
cludes suspending the protected mode and encrypting and
hashing the general registers. To detect returning from an
interrupt, the VMM inserts a breakpoint at the current in-
struction pointer where the interrupt occurs, so that it is in-
voked to emulate the return-from-interrupt behavior of SP.
Additionally, when the emulated hardware generates a new
fault, it first reports to the TS Controller and then translates
the fault into a real x86 fault, such as a general protection
fault, which is raised in the SUT causing the OS to detect
the failure of the TSM.

Secure Memory: We change the SP abstraction of secure
memory, as described in Section 4.3. Further, we use block
sizes of virtual memory pages rather than individual cache
lines, since the VMM does not intercept cache memory ac-
cesses. While this limits the ability to model a few low-level
attacks on SP (such as the behavior of cache tags), the ma-
jority of the security properties of the hardware and all those
of the software can still be tested.

Code Integrity: The TSM’s code is signed with a keyed
hash over each cache-line of code and the virtual address of
that line, and is checked as each cache line is loaded into
the processor during execution. We model this using the
VMM’s binary translator to execute the TSM code. Veri-
fied instructions are tagged as secure code fragments in the
dynamic binary translator cache.

4.3 Lesson Learned from SP Emulation: Se-
cure Memory

The original SP architecture uses two new instructions for
a TSM to access secure memory: Secure Load and Secure
Store. With these, any virtual address can be accessed as
secure memory, where cache lines are tagged as secure (ac-
cessible only to a TSM) and are encrypted and MACed upon
eviction from cache. We introduce a new secure memory
model, called Secure Areas, to replace Secure Load/Store.

There are a few drawbacks to the Secure Load/Store ap-
proach. First, while most new SP instructions can be used as
inline-assembly, the compiler must be modified to emit the
secure memory instructions whenever accessing protected
data structures or the TSM’s stack. This further requires
programmers to annotate their code to indicate which data

structures and variables to protect, and which code and
functions are part of a TSM. Second, while a RISC archi-
tecture need only supplement a few Load and Store instruc-
tions with their secure counterparts, a CISC architecture has
many more instructions which access memory rather than
general registers and need to support secure memory access.
Third, while SP provides confidentiality and integrity for its
secure memory, replay protection is also required to prevent
manipulation of the TSM’s behavior, but was not explicitly
described. Rather, SP assumes a memory integrity tree [38,
14, 9] spanning the entire memory space, requiring signifi-
cant overhead in on-chip storage and performance when only
small amounts of memory need protection.

Secure Areas address these concerns by allowing the TSM
to define certain regions of memory which are always treated
as secure when accessed by a TSM. The programmer spec-
ifies the address range to protect explicitly, allowing the
compiler to use regular memory instructions without mod-
ification. This is especially useful for our framework since
the new architectural features can be tested during design-
time without modifying the existing compilation toolchain.
It also no longer requires duplicating all instructions in the
instruction set which touch memory, a benefit for imple-
menting SP on x86. Finally, it confines the secure memory
to a few small regions which are more easily protected from
memory replay attacks with less overhead.

Table 3 shows the new instructions added to SP to support
Secure Areas, replacing the Secure Load and Secure Store
instructions. The SP hardware offers a limited number of
Secure Area regions, which the TSM can define using these
instructions. Each region specifies an address range which
is always treated as secure memory when accessed by the
TSM, and is encrypted when accessed by any other software
or hardware devices.

The on-chip secure cache tag bits (shown in Figure 2) are
no longer needed; instead k ∗ 2 registers are added for defin-
ing the start-address and size of k Secure Areas. On-chip
storage is also needed to store hashes for each block within
the region. The block size for hashing can range from one
cache line to one virtual memory page, and is determined
by the hardware implementation. Upon defining a new re-
gion, the corresponding on-chip hashes are cleared. As se-
cure data is written, it is tagged as secure in cache; when
it is evicted from cache, the contents are encrypted and a
hash is computed and stored in the on-chip storage for that
block. It must be verified when the data is read back in
from off-chip memory. Since the regions can be small rel-
ative to total memory (only tens to hundreds of kilobytes
are needed for our prototype TSMs), only small amounts of
on-chip storage are required. Alternatively, other memory
integrity tree methods [14, 20, 38] can be integrated to store
some hashes off-chip to permit replay protection of larger
regions of secure memory.

While both the original SP Secure Load and Secure Store
instructions and the currently proposed Secure Areas have
their advantages and disadvantages, the latter is easier to
emulate and validate, and requires simpler application soft-
ware changes.

4.4 Other Architectures
While this paper focused on testing the hardware and soft-

ware mechanisms of the SP architecture, our testing frame-
work is by no means limited to this architecture. Although

392

Table 3: New SP Instructions for Secure Areas (only available to TSM)

Instruction Description

SecureArea_Add Rs1,Rs2,num
Rs1 = start addr
Rs2 = size
(must be aligned to block size)

Initialize the specified Secure Area (region num). On-chip hashes for the region are
cleared. All TSM memory accesses for addr will be treated as secure if: (start addr)
≤ addr < (start addr + size).

SecureArea_Relocate Rs1,num
Rs1 = start addr

Change the starting address of the specified Secure Area region. The size remains
unchanged. When TSM code in multiple process contexts share memory containing
a Secure Area, each may access it at a different address in their virtual address space;
this is used to relocate the region.

SecureArea_Remove num Disables and clears the specified Secure Area region. On-chip hashes for the region are
cleared and secure-tagged cache entries in its address range are invalidated, making
any data in the region permanently inaccessible in plaintext.

SecureArea_CheckAddr Rd,num
SecureArea_CheckSize Rd,num

Retrieves the parameters of the specified Secure Area region. Used to verify whether
or not a region is setup for secure memory and where it is located.

other hardware security architectures such as XOM [25],
AEGIS [39] and Arc3D [18] have somewhat different goals
and assumptions from SP, they combine hardware and soft-
ware in ways that also make them suitable for validation
in our framework. Similarly, TPM [40] adds hardware to
protect all software layers and provide cryptographic ser-
vices. Rather than utilizing changes to the processor itself,
TPM adds a separate hardware chip that integrates with
the system board. This is still compatible with our testing
framework, simply requiring a different set of modifications
to the VMM to implement a virtual TPM device. In partic-
ular, the ability to observe and control the SUT by use of
our components in the framework (TS controller, TS proxy
and VMM modifications) can be applied to testing security
architectures. Furthermore, software-only security architec-
tures can benefit from analysis under attack in our frame-
work, both during development and for security validation.
Access to existing hardware state provides insight into at-
tack impacts and possible flaws, and provides an additional
vector for injecting attacks.

5. TESTING OF SP
We now illustrate how we use the Testing Framework to

validate a hardware-software architecture like SP, by testing
the system’s security properties while it is under attack. We
also validate that the emulation of the SP mechanisms is
correct and secure according to the design, as it forms the
basis for the other tests.

Table 4 lists various attacks on the system’s security prop-
erties. Data confidentiality is the primary purpose of the
SP architecture. The attack generally checks to see if any
sensitive data that should be protected by a TSM is ever
leaked. We eavesdrop on the unprotected memory and check
whether any known keys generated by the TSM, in addition
to the Device Root Key (DRK) and any DRK-derived keys,
are found. This is similar to the cold boot attack [19] which
looks for sensitive keys left in physical memory. If the TSM
properly uses secure memory for its intermediate data, and
protects its persistent data, then no keys should ever leak.

The second section in Table 4 sets up a series of attacks
on the basic mechanisms of SP, such as controlling access to
the master secrets (e.g., Device Root Key), code integrity
checking, and encryption of secure data in protected mode.
These tests verify that the emulation is correct and also val-
idate the original security analysis. For example, we attack

SP’s Concealed Execution Mode by attempting to modify
registers during an interrupt. A non-TSM application’s reg-
isters can be modified by a corrupted OS without detection,
causing changes in the application’s behavior. However, a
TSM will have its registers encrypted and hashed by the
SP hardware upon any interrupt, such that SP detects the
modification when resuming the TSM.

The next section in Table 4 shows generic attacks on a
TSM, which test security properties common to many TSMs
(e.g., control flow, entry points). These attacks consider
that a basic goal of many TSMs (and indeed of the SP ar-
chitecture) is to provide confidentiality and integrity to any
sensitive information and enforce access control.

We develop tests of the robustness of the TSM against
future unknown vulnerabilities that might arise in the hard-
ware or TSM code. Since the penetration mechanism is
unknown, we instead model the effects of the attack. For
example, the control flow of the TSM could be attacked in
many different ways. When the TSM makes branching de-
cisions, the jump targets and the input data for the branch
conditions should be protected. If either is not stored in se-
cure memory, or if secure data can be modified or replayed,
then arbitrary changes to the TSM’s control flow would be
possible. We verify that a TSM only bases control flow de-
cisions on data in its secure memory, and test how control
flow violations could cause data to leak.

As another example, we consider control flow attacks that
allow arbitrary entry points into a TSM. Since instructions
to enter protected mode (Begin TSM) are not signed, Be-
gin TSM could be injected into the TSM to create an entry
point. We implement this as an attack script, crafting a case
where the Testing System overwrites instructions and tries
to enter in the middle of a TSM function without detection,
bypassing access control checks.3 To prevent this, we add
a new security requirement to SP that it must distinguish
entry points in TSM code from blocks of code that are not
entry points. This can be achieved by adding an extra bit to
the calculation of the signature of each block of TSM code,
indicating whether or not it is an entry point.

The attack on TSM page mappings demonstrates a system-

3In some cases, this attack would be detected by SP — if
the injected instruction is not correctly aligned to the start
of a block of signed code, or if later in execution the TSM
jumps back to code before the injection site. A carefully
crafted attack succeeds.

393

Table 4: Example Attacks on the SP Architecture Using the Testing Framework

Security Property Attack

Data Confidentiality Scan physical memory for leaks of Device Root Key, DRK-derived keys, and TSM’s other sensitive
information.

Securing General Registers
on Interrupts

Attack the general registers during an interrupt of a TSM through eavesdropping, spoofing, splicing,
and replay.

Code Integrity Attack TSM code during execution through spoofing and splicing; attack TSM code on disk.

Secure Memory Attack intermediate data of TSM through eavesdropping, spoofing, splicing and replay; attack the use
of secure memory for TSM’s data structures or stack.

Secure Storage Attack the TSM’s secure storage for persistent data (splicing, spoofing & replay).

Control Flow Integrity Attack TSM’s indirect jump targets that are derived from unprotected memory. Arbitrarily modify
jump targets within the TSM.

Attack the input data for branch conditions in the TSM from unprotected memory. Replay secure
data to cause incorrect branch decisions.

Attack TSM entry points by entering CEM at arbitrary points in the code, skipping access control
checks or initialization of secure memory.

TSM Page Mappings Remap TSM code pages and data pages, as a means to attack secure memory or control flow.

Key-chain management Spoof key add/delete message; replay key-add message after it is deleted; corrupt a key-management
message in transit.

Access control on keys Exceed usage limits/expiration of keys; attempt to use a key that was deleted; attempt to perform a
disallowed operation with a key.

level attack. Rather than attacking the TSM directly, the
OS manipulates the system behavior to indirectly affect how
the TSM executes. The OS can manipulate process schedul-
ing, intercept all I/O operations, and in this case, modify
how virtual addresses map to physical addresses.

The last section in Table 4 shows application-specific at-
tacks for a particular TSM — in this case our Remote Key-
management TSM. For remote key-management, we con-
sider a trusted authority which owns multiple SP devices
and wants to distribute sensitive data to them. The author-
ity installs its remote key-management TSM on each device
as well as the protected sensitive data, consisting of secrets
and the cryptographic keys that protect those secrets. It
also stores policies for each key which dictate how it may
be used by the local user. During operation, the TSM will
accept signed and encrypted messages from the authority to
manage its stored keys, policies, and data. It also provides
an interface to the application through which the local user
can request access to data according to the policies attached
to the keys. The TSM must authenticate the user, check the
policy, and then decrypt and display the data as necessary.
This TSM stores cryptographic keys, security policies, and
secure data in its persistent secure storage, which it protects
using SP’s underlying hardware mechanisms. We test the
confidentiality and integrity of the storage itself, the TSM’s
use of the storage to protect keys and key-chains, and its
enforcement of the policies on accesses to data that the keys
protect. We also test the protocols the TSM uses to com-
municate with a remote authority, managing the keychains.

Our system implements the SP hardware mechanisms, a
full TSM providing an API to the application being tested,
and a suite of attacks that test both the software and hard-
ware components using our new testing framework. This is a
major step towards the complete validation of the design of
the SP architecture together with its applications. Further-
more, we demonstrate that TSMs must be carefully written
to avoid serious security flaws, and that a security architec-

ture can benefit from testing with many different applica-
tions. Our framework provides a platform for this necessary
testing, significantly enhancing our ability to reason about
the security provided.

Testing Example
Figure 3 shows a sample TSM on the left, and a correspond-
ing attack script using the TS Controller API (Table 2) on
the right. This demonstrates the interactions between the
TS and SUT for event detection and modification of SUT
state. The TSM derives a new key from a nonce it gen-
erates and SP’s Device Root Key (DRK). It then encrypts
a chunk of memory with this new key before sending the
encrypted chunk to the network or to storage. The simple
attack shown here verifies that secure data (here the derived
AES key), placed on the stack by the TSM as a function pa-
rameter, is not leaked in physical memory where the OS
could read it. This attack is very efficient, assuming a very
knowledgeable attacker who is specifically looking for SP de-
rived keys. It demonstrates precise coordination of software
events (injected breakpoints) with access to the hardware
(physical memory state), while the SUT is frozen to prevent
clearing or overwriting of any data in memory. The script
also requires access to the internal state of the SP hardware
from the TS to verify the results of the attack. Less specific
attacks can be constructed, by waiting for any event consid-
ered suspicious, then analyzing the event and examining the
hardware and software state of the frozen SUT.

Attack scripts are typically longer and can involve many
additional steps and interactions, along with a complete
TSM and its corresponding application. The full range of
events and attack mechanisms in Table 1 are available to
the attack scripts, with the TS in full control over the ap-
plications, OS, and hardware running in the SUT.

5.1 Lesson Learned: Leaking Data Through
the Stack

394

Application with TSM (TSMapp)

BEGIN CEM

· · ·

nonce ← Hash(C ENC, KeyID)
Reg1 ← DRK DeriveKey(nonce)
SecureMem.AESkey ← Reg1

// Attack script injects a breakpoint at start of Encrypt
function
Ciphertext ← Encrypt(SecureMem.AESkey,
&SecureMem.data, sz)
END CEM

// Send encrypted file on network or store on disk
Network Send(TTP, Ciphertext, sz)

· · ·

Attack Script (pseudocode)

EXECUTE(TSMapp, params)

// Wait for key generation
EVENTADD(DRK DeriveKey)
EVT ← WAIT()
// Read the generated key
ACCESS SPREG(r, SPRegs)
SPKey ← SPRegs.CEMBuffer

// Inject breakpoint for Encrypt()
BREAKPOINT(“&Encrypt”); CONT()
// Wait for interrupt due to breakpoint
EVT ← WAITFOR(Interrupt)

// Scan phys. memory for leaked key
for addr = 0 to 256M − 1 do

ACCESS MEM(PHYS, r, addr, 4096, buf)
if strstr (buf, SPKey) then

return “Derived Key Leaked in Memory”
return “Derived Key Not Found in Memory”

Figure 3: Example Application and Attack Script for Detecting Leaked Keys

In the process of testing how TSMs use SP mechanisms
to protect intermediate and persistent data, we found that
our new secure memory implementation failed to adequately
protect the intermediate data on the stack for a TSM com-
piled with GCC. Our example TSM in Figure 3 derives a
new key from the Device Root Key and uses it for encryp-
tion. The attack script freezes the SUT shortly after the key
is derived and scans physical memory. It finds that the key
has been leaked via parameter passing on the stack, violat-
ing data confidentiality. As a result, we have instrumented
a new software mechanism to swap the TSM’s stack to use
memory in a designated Secure Area. The same attack script
then verifies that this modified TSM correctly protects the
confidentiality of the key when passed as a parameter. This
demonstrates how a secure hardware mechanism (e.g., for
secure memory) can be used incorrectly by a TSM, often
inadvertently, leading to vulnerabilities.

The framework helped significantly in the debugging pro-
cess, in particular for relocating the TSM’s stack to a Secure
Area. Even a very simple TSM, which only generates a de-
rived key and saves that key in a secured data structure,
manages to leak the key via the stack when using wrapper
functions to access new SP instructions. The framework lets
us interrupt after critical hardware operations to detect data
leaked in plaintext in memory. When we find errors in the
way our implementation reassigns stack pointers to use a
Secure Area, we can correct the TSM code and the Secure
Area setup accordingly, to ensure that all stack operations
in a TSM access a valid Secure Area.

Using the framework, we also found a complication when
relocating the stack to a Secure Area on an x86 platform.
When an interrupt occurs in x86, the processor hardware
pushes an exception frame onto the stack, using the stack
pointer register; the operating system reads this frame to
handle the interrupt. If an interrupt occurs while in CEM,
with the stack pointer relocated to a Secure Area, the frame
data will be written in the Secure Area region. If still in
CEM at the time, this data will be protected as secure mem-

ory where the OS will not be able to read it. If CEM has
already been suspended before the frame is written, the data
will be written in plaintext and will overwrite part of the en-
crypted and hashed Secure Area data. When CEM is later
resumed, the hash check of this region will fail. Therefore,
we have developed a new mechanism to make the SP hard-
ware aware of the stack swapping. The hardware saves the
original stack pointer in an on-chip register when the stack
is relocated. It will automatically restore this original stack
pointer before the exception frame is written, saving the se-
cure stack pointer on-chip. The secure stack pointer is then
swapped back when CEM is resumed.

The lessons learned are that care must be taken in im-
plementing new trusted software while attempting to use
existing software conventions (e.g., for parameter passing
through the stack). Also, our testing framework can be used
effectively to expose and debug subtle interactions between
the trusted and untrusted software and hardware in an im-
plementation.

6. RELATED WORK
One related area of research is the formal verification of

both hardware and software, in which mathematical spec-
ifications for computer hardware or software are written,
and proof techniques are used to determine the validity of
such specifications. The complexity of formal verification
problems range from NP-hard to undecidable [22, 34, 23,
21]. The complexity of these formal verification mecha-
nisms led to the use of hybrid techniques [7] which use some
formal as well as informal methods. Some formal meth-
ods of verification include theorem provers (e.g., ACL2 [29],
Isabelle/HOL [30]), model checkers [27], and satisfiability
solvers [41, 12]. Some informal techniques used in practice
are control circuit exploration, directed functional test gen-
eration [15], automatic test program generation [11], fuzz
testing [17], and heuristic-based traversal [8]. The formal
and hybrid techniques try to verify the hardware and soft-
ware separately, unlike our holistic verification of a software-

395

hardware system.
The limitation of the formal verification techniques is that

they must verify each component piece by piece. This is nec-
essary since the complexity of both specification and veri-
fication explodes exponentially with the addition of more
pieces to be tested. In our approach, we verify the system
in an informal but systematic and efficient way, and con-
sequently we can model both the security critical hardware
and software together; we are thus better able to determine
the security impacts of the interactions of the various com-
ponents.

Virtual machine introspection [16, 31, 26] techniques, de-
scribed previously, provide access to VM-state in similar
ways to our framework. However, they focus mostly on ob-
servability of software configurations or low-level operating
system and hardware behavior. Examples include intrusion
detection and virus-scanning from non-vulnerable host sys-
tems, preventing execution of malware, and tracing memory
or disk accesses. Instead, we strive to combine observability
of the full-system state with controllability of those same
components, actively during operation, to attack software
thought to be secure. In the past work, the focus is on
techniques for security monitoring of production machines,
rather than design-time testing of new architectures or of
new software systems to evaluate their potential vulnera-
bilities and flaws. Where some of these techniques provide
improved hooks into the virtual machine monitor [32], the
hooks could be integrated into our framework to make our
attack scripts more robust and more flexible.

Chow et al. [10] use system emulation to passively trace
data leaks in applications. However, our framework also per-
forms active attacks and looks for violation of security prop-
erties. Chow’s work also does not consider violations other
than data leaks, while we consider more security properties,
such as data integrity, policy enforcement, and control flow.
Furthermore, we are looking for flaws in trusted code and
hardware mechanisms that are specifically designed to pro-
tect security, unlike Chow where the applications are tested
for properties they were not designed for, therefore leading
to unexpected results.

Micro-architectural simulators like Simplescalar [3] are cycle-
accurate and hence can be very useful in estimating perfor-
mance metrics, but they cannot simulate a realistic software
system with a full commodity OS. Thus it is impossible to
test the security-critical interactions of a software-hardware
security solution with such a simulator.

The efforts by IBM [6], Intel [36] and others [37] provide
the functionality of a virtual TPM device to software, even
when the physical device is not present. In contrast, we
not only emulate the new hardware but also hook into the
virtual device to observe and control its behavior for testing
purposes, and study the interaction with other hardware and
software components.

7. CONCLUSION
We have designed and implemented a virtualization-based

framework for validation of new security architectures. This
framework can realistically model and test a new system
during the design phase, and draw useful conclusions about
the operation of the new architecture and its software inter-
actions. It also enables testing of various software applica-
tions using new security primitives in the hardware or in the
OS kernel.

Our framework serves as a rapid functional prototyping
vehicle for black-box or white-box testing of security prop-
erties. It can utilize and integrate multiple event sources and
attack mechanisms from the hardware and software layers of
the system under test. These mechanisms can test both low-
level components and high-level application behavior. As a
result, a comprehensive set of attacks are realizable on the
hardware, operating system, and applications.

We implement the SP architecture in our framework and
test its security mechanisms thoroughly, studying the in-
teractions of trusted software with the hardware protection
mechanisms. We also improve the design and implementa-
tion of SP’s architecture of both the secure memory and the
way SP handles dynamic data on the stack. Using a suite
of attacks on each layer of the architecture, we thoroughly
test each component of SP’s trust chain to show the effec-
tiveness of our proposed framework for debugging software,
for exposing subtle interactions between existing and new
mechanisms and conventions in an implementation, and for
reasoning about system security properties.

8. REFERENCES
[1] OKL4 Microkernel. Open Kernel Labs,

http://www.ok-labs.com.

[2] VMware Workstation. VMware Inc.,
http://www.vmware.com.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling.
Computer, 35(2):59–67, February 2002.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proc. of the nineteenth ACM symposium on Operating
systems principles, pages 164–177, 2003.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[6] S. Berger, R. Caceres, K. A. Goldman, R. Perez,
R. Sailer, and L. van Doorn. vTPM: Virtualizing the
Trusted Platform Module. In 15th USENIX Security
Symposium, July 2006.

[7] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray. A
Survey of Hybrid Techniques for Functional
Verification. IEEE Design & Test of Computers,
24(2):112–122, 2007.

[8] G. Cabodi, S. Nocco, and S. Quer. Improving
SAT-Based Bounded Model Checking by Means of
BDD-Based Approximate Traversals. In Proc. of the
conference on Design, Automation and Test in
Europe, pages 10898–10905, 2003.

[9] D. Champagne, R. Elbaz, and R. B. Lee. The Reduced
Address Space (RAS) for Application Memory
Authentication. In Proc. of the 11th International
Conference on Information Security, pages 47–63,
2008.

[10] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via
Whole System Simulation. In USENIX Security
Symposium, pages 321–336, 2004.

[11] F. Corno, E. Sánchez, M. S. Reorda, and G. Squillero.
Automatic Test Program Generation: A Case Study.
IEEE Design and Test of Computers, 21:102–109,

396

2004.

[12] G. Dennis, F. S.-H. Chang, and D. Jackson. Modular
verification of code with sat. In Proc. of the
ACM/SIGSOFT International Symposium on
Software Testing and Analysis, pages 109–120, 2006.

[13] J. S. Dwoskin and R. B. Lee. Hardware-rooted Trust
for Secure Key Management and Transient Trust. In
Proc. of the 14th ACM Conference on Computer and
Communications Security, pages 389–400, October
2007.

[14] R. Elbaz, D. Champagne, R. B. Lee, L. Torres,
G. Sassatelli, and P. Guillemin. TEC-Tree: A
Low-Cost, Parallelizable Tree for Efficient Defense
Against Memory Replay Attacks. In Proc. of the 9th
Cnternational Workshop on Cryptographic Hardware
and Embedded Systems (CHES), pages 289–302, 2007.

[15] S. Fine and A. Ziv. Coverage directed test generation
for functional verification using bayesian networks. In
Proc. of the 40th annual Design Automation
Conference, pages 286–291, 2003.

[16] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proc. Network and Distributed Systems
Security Symposium, pages 191–206, 2003.

[17] P. Godefroid, M. Levin, D. Molnar, et al. Automated
whitebox fuzz testing. In Proc. of the Network and
Distributed System Security Symposium, 2008.

[18] M. Gomathisankaran and A. Tyagi. Architecture
Support for 3D Obfuscation. IEEE Trans. Computers,
55(5):497–507, 2006.

[19] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest We
Remember: Cold Boot Attacks on Encryption Keys.
In USENIX Security Symposium, pages 45–60, 2008.

[20] W. E. Hall and C. S. Jutla. Parallelizable
Authentication Trees. In Selected Areas in
Cryptography, pages 95–109, 2005.

[21] R. C. Ho, C. H. Yang, M. Horowitz, and D. L. Dill.
Architecture Validation for Processors. In Proc. of the
22nd annual international symposium on Computer
architecture, pages 404–413, 1995.

[22] W. A. Hunt. Mechanical Mathematical Methods for
Microprocessor Verification. In Intl. Conference on
Computer Aided Verification, pages 523–533, 2004.

[23] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose.
Automatic test program generation for pipelined
processors. In Proc. of the 1994 IEEE/ACM
International Conference on Computer-aided design,
pages 580–583, 1994.

[24] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. S.
Dwoskin, and Z. Wang. Architecture for Protecting
Critical Secrets in Microprocessors. In Proc. of the
32nd Annual International Symposium on Computer
Architecture, pages 2–13, 2005.

[25] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. C. Mitchell, and M. Horowitz.
Architectural Support for Copy and Tamper Resistant
Software. In Proc. of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 168–177,
2000.

[26] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
support for identifying covertly executing binaries. In
the 17th USENIX Security symposium, pages 243–258,
2008.

[27] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
Model Checker for the Verification of Multi-Agent
Systems. In Computer Aided Verification, 21st
International Conference, pages 682–688, 2009.

[28] D. Mihocka and S. Shwartsman. Virtualization
Without Direct Execution or Jitting: Designing a
Portable Virtual Machine Infrastructure. In 1st

Workshop on Architectural and Microarchitectural
Support for Binary Translation in ISCA-35, June
2008.

[29] S. S. Moore. Symbolic Simulation: An ACL2
Approach. In Formal Methods in Computer-Aided
Design, pages 334–350, 1998.

[30] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle’s
Logics: HOL, 2008.

[31] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:
An Architecture for Secure Active Monitoring Using
Virtualization. In IEEE Symposium on Security and
Privacy, pages 233–247, May 2008.

[32] B. Payne, M. de Carbone, and W. Lee. Secure and
Flexible Monitoring of Virtual Machines. In Proc. of
the 23rd Annual Computer Security Applications
Conference (ACSAC 2007), pages 385–397, Dec. 2007.

[33] G. Popek and R. P. Goldberg. Formal Requirements
for Virtualizable 3rd Generation Architectures.
Communications of the A.C.M., 17(7):412–421, 1974.

[34] S. Ray and W. A. Hunt. Deductive Verification of
Pipelined Machines Using First-Order Quantification.
In Intl. Conference on Computer Aided Verification,
pages 31–43, 2004.

[35] M. Rosenblum and T. Garfinkel. Virtual machine
monitors: current technology and future trends. IEEE
Computer, 38(5):39–47, 2005.

[36] V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock, and
C. Vishik. Trusted Computing, chapter : TPM
Virtualization: Building a General Framework, pages
43–56. 2008.

[37] M. Strasser, H. Stamer, and J. Molina. Software-based
TPM Emulator. http://tpm-emulator.berlios.de.

[38] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and
S. Devadas. Efficient Memory Integrity Verification
and Encryption for Secure Processors. In MICRO 36,
page 339, 2003.

[39] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for Tamper-evident
and Tamper-resistant Processing. In Intl. Conference
on Supercomputing, pages 160–171, 2003.

[40] Truscted Computing Group. Trusted Platform Module
Specification Version 1.2 Revision 103, July 2007.

[41] M. N. Velev and R. E. Bryant. Effective Use of
Boolean Satisfiability Procedures in the Formal
Verification of Superscalar and VLIW
Microprocessors. In Proc. of the 38th annual Design
Automation Conference, pages 226–231, 2001.

397

Two methodologies for physical penetration testing using
social engineering

Trajce Dimkov, Wolter Pieters, Pieter Hartel
Distributed and Embedded Security Group

University of Twente, The Netherlands
{trajce.dimkov, wolter.pieters, pieter.hartel}@utwente.nl

ABSTRACT
Penetration tests on IT systems are sometimes coupled with
physical penetration tests and social engineering. In phys-
ical penetration tests where social engineering is allowed,
the penetration tester directly interacts with the employ-
ees. These interactions are usually based on deception and
if not done properly can upset the employees, violate their
privacy or damage their trust toward the organization and
might lead to law suits and loss of productivity. We propose
two methodologies for performing a physical penetration test
where the goal is to gain an asset using social engineering.
These methodologies aim to reduce the impact of the pene-
tration test on the employees. The methodologies have been
validated by a set of penetration tests performed over a pe-
riod of two years.

Keywords: penetration testing, physical security, method-
ology, social engineering, research ethics

1. INTRODUCTION
A penetration test can assess both the IT security and the

security of the facility where the IT systems are located. If
the penetration tester assesses the IT security, the goal is to
obtain or modify marked data located deep in the organiza-
tions network. Similarly, in testing the physical security of
the location where the IT system is located, the goal of the
penetration test is to obtain a specific asset, such as a laptop
or a document. Physical and digital penetration tests can
be complemented with social engineering techniques, where
the tester is allowed to use knowledge and help from the
employees to mount the attack.
In digital penetration tests the resilience of an employee

is measured indirectly, by making phone queries or sending
fake mail that lure the employee to disclose secret informa-
tion. These tests can be designed in an ethical manner [1]

This research is supported by the Sentinels program of
the Technology Foundation STW, applied science division
of NWO and the technology programme of the Ministry of
Economic Affairs under projects number TIT.7628.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

and within the legal boundaries [2]. However, measuring
the resilience of an employee against social engineering in a
physical penetration test is direct and personal. When the
tester enters the facility of the organization and directly in-
teracts with the employees, she either deceives the employee,
trying to obtain more information about the goal, or urges
the employee to help her, by letting the tester inside a secure
area or giving the tester a credential. The absence of any
digital medium in the communication with the employees
makes the interaction between the penetration tester and
the employee intense, especially if the employee is asked to
break company policies.

There are three main consequences from personal inter-
action between the tester and the employee. First, the em-
ployee might be stressed by having to choose between help-
ing a colleague and breaking the company policies. Second,
the tester might not treat the employee respectfully. Fi-
nally, when helping the penetration tester to enter a secure
location, the employee loses the trust from the people who
reside in the secure location. For example, employees might
stop trusting the secretary when they find out she let an
intruder into their office. To avoid ethical and legal implica-
tions, organizations may avoid physical penetration testing
with social engineering, leaving themselves unaware of at-
tacks where the attacker uses non-digital means to attack
the system.

This paper tackles the problem how to perform a physical
penetration test using social engineering in the most respect-
ful manner, while still getting results that lead to improving
the security of the organization. The contribution of this
paper is two methodologies for physical penetration tests
using social engineering where the goal is to gain possession
of a physical asset from the premises of the organization.
Both methodologies are designed to reduce the impact of
the test on the employees. The methodologies have been
validated by performing 14 live penetration tests over the
last two years, where students tried to gain possession of
marked laptops placed in buildings of two universities in
The Netherlands.

The rest of the paper is structured as follows. In section
2 we present related work and in section 3 we set the re-
quirements for the methodologies. Sections 4 and 5 outline
the methodologies, section 6 provides an evaluation of the
structure of the methodologies and section 7 concludes the
paper.

399

{trajce dimkov a vankleeff wolter pieters pieter hartel}@utwente nl

{trajce.dimkov, a.vancleeff, wolter.pieters, pieter.hartel}@utwente.nl

Trajce Dimkov, André van Cleeff, Wolter Pieters, Pieter Hartel

2. RELATED WORK
In the computer science literature, there are isolated re-

ports of physical penetration tests using social engineering
[3, 4]. However, these approaches focus completely on the
actions of the penetration tester and do not consider the
impact of the test on the employees.
There are a few methodologies for penetration testing.

The Open-Source Security Testing Methodology Manual (OS-
STMM) [5] provides an extensive list of what needs to be
checked during a physical penetration test. However, the
methodology does not state how the testing should be car-
ried out. OSSTMM also does not consider direct interaction
between the penetration tester and the employees. Barret [6]
provides an audit-based methodology for social engineering
using direct interaction between the penetration tester and
an employee. Since this is an audit-based methodology, the
goal is to test all employees. Our methodologies are goal-
based and focus on the security of a specific physical as-
set. Employees are considered as an additional mechanism
which can be circumvented to achieve the goal, instead of
being the goal. Türpe and Eichler [7] focus on safety pre-
cautions while testing production systems. Since a test can
harm the production system, it can cause unforseeable dam-
ages to the organization. In our work the penetration test
of the premises of an organization can be seen as a test of a
production system.
In the crime science community, Cornish [8] provides mech-

anisms how to structure the prosecution of a crime into uni-
versal crime scripts and reasons about mechanisms how to
prevent the crime. We adopt a similar reporting format to
present the results from a penetration test. However, in-
stead of using the crime script to structure multiple attacks,
we use the script to identify security mechanisms that con-
tinuously fail or succeed in stopping an attack.
In social science research, the Bellman report [9] defines

the ethical guidelines for the protection of humans in testing.
The first guideline in the report states that all participants
should be treated with respect during the test. Finn [10]
provides four justifications that need to be satisfied to use
deception in research. We use the same justifications to show
that our methodology is ethically sound.

3. REQUIREMENTS
A penetration test should satisfy five requirements to be

useful for the organization. First, the penetration test needs
to be realistic, since it simulates an attack performed by a
real adversary. Second, during the test all employees need
to be treated with respect [9]. The employees should not be
stressed, feel uncomfortable nor be at risk during the pene-
tration test, because they might get disappointed with the
organization, become disgruntled or even start legal action.
Finally, the penetration test should be repeatable, reliable
and reportable [6]. We call these the R* requirements:
Realistic - employees should act normally, as they would

in everyday life.
Respectful - the test is done ethically, by respecting the

employees and the mutual trust between employees.
Reliable - the penetration test does not cause productivity

loss of employees.
Repeatable - the same test can be performed several times

and if the environment does not change, the results should
be the same.

Reportable - all actions during the test should be logged
and the outcome of the test should be in a form that permits
a meaningful and actionable documentation of findings and
recommendations.

These are conflicting requirements. For example:

1. In a realistic penetration test, it might be necessary to
deceive an employee, which is not respectful.

2. In a realistic test, arbitrary employees might be social
engineered to achieve the goal, which is unreliable.

3. In a reportable test, all actions of the penetration tester
need to be logged, which is unrealistic.

Orchestrating a penetration test is striking the best bal-
ance between the conflicting requirements. If the balance
is not achieved, the test might either not fully assess the
security of the organization or might harm the employees.

We propose two methodologies for conducting a penetra-
tion test using social engineering. Both methodologies strike
a different balance between the R* requirements, and their
usage is for different scenarios. Both methodologies assess
the security of an organization by testing how difficult it is
to gain possession of a pre-defined asset.

The methodologies can be used to assess the security of
the organization, by revealing two types of security weak-
nesses: errors in implementation of procedural and physical
policies by employees and lack of defined security policies
from the management. In the first case, the tests should
focus on how well the employees follow the security policies
of the organization and how effective the existing physical
security controls are. In the second case, the primary goal of
the tests is to find and exploit gaps in the existing policies
rather than in their implementation. For example, a test
can focus on how well the credential sharing policy is en-
forced by employees or can focus on exploiting the absence
of a credential sharing policy to obtain the target asset.

In this paper we present the two methodologies which re-
duce the impact of these tests. The environment-focused
(EF) methodology, measures the security of the environment
where the asset is located. The methodology is suitable for
tests where the custodian (person who controls the asset)
is not subject of social engineering and is aware of the ex-
ecution of the test. One example of such test is evaluating
the security of the assets residing in the office of the CEO,
but not the awareness of the CEO herself. The custodian-
focused (CF) methodology is more general, and includes the
asset owner in the scope of the test. In this methodology,
the owner is not aware of the test. The CF methodology
is more realistic, but it is less reliable and respectful to the
employees.

4. ENVIRONMENT-FOCUSED METHOD
First, we define the actors in the environment-focused

methodology. Then, we introduce all events that take place
during the setup, execution and aftermath of the penetra-
tion test. Finally, we validate the methodology by conduct-
ing three penetration tests and present some insights from
the experience.

400

Figure 2: Sequence of events in the environment-focused methodology. Each box represents an event which
happens in sequence or parallel with other events. For example, event 3 happens after event 2 and in parallel
with events 1 and 4.

Figure 1: Actors in the EF methodology

4.1 Actors
The penetration test involves four different actors.
Security officer - an employee responsible for the security

of the organization. The security officer orchestrates the
penetration test.
Custodian - an employee in possession of the assets, sets

up and monitors the penetration test.
Penetration tester - an employee or a contractor trying to

gain possession of the asset without being caught.
Employee - person in the organization who has none of

the roles above.
The actors and the relations between them are shown in

Figure 1. The majority of actors treat each other with re-
spect. No respect relation between two actors means either
the actors do not interact during the penetration test (for
example between the tester and the custodian) or do not
have a working relationship (between the penetration tester
and the employee). In this methodology, the tester deceives
the employee during the penetration test, presented in the
figure with a dashed line.

4.2 Setup
Figure 2 provides the sequence of events that take place

during the setup, execution and closure of the penetration
test. During all three stages of the penetration test, employ-

ees should behave normally (1 in Figure 2).
As in other penetration testing methodologies, before the

start of the test, the security officer sets the scope, the rules
of engagement and the goal (2 in Figure 2). The goal is
gaining physical possession of a marked asset. The scope of
the testing provides the penetration tester with a set of lo-
cations she is allowed to enter, as well as business processes
in the organization she can abuse, such as processes for is-
suing a new password, or processes for adding/removing an
employee. The rules of engagement restrict the penetration
tester to the tools and means she is allowed to use to reach
the target. These rules, for example, define if the tester is
allowed to force doors, to break windows or to use social
engineering.

The custodian first signs an informed consent form and
then sets up the environment, by marking an asset in her
possession and installing monitoring equipment.

The asset should not be critical for the daily tasks of the
custodian or anyone else, including the organization. Thus,
when the penetration tester gains possession of the asset,
the productivity of the custodian using the asset and the
process flow of the company will not be affected. The custo-
dian leaves the asset in her office or an area without people
(storage area, closet). If the custodian shares an office with
other employees, the monitoring equipment should be po-
sitioned in such a way that it records only the asset and
not the nearby employees. The custodian knows when the
test takes place, and has sufficient time to remove/obscure
all sensitive and private assets in her room and around the
marked asset (3 in Figure 2).

Meanwhile, the penetration tester needs to sign the rules
of engagement (4 in Figure 2). The OSSTMM methodol-
ogy [5] provides a comprehensive list of rules of engagement.

4.3 Execution
The security officer should choose a trustworthy penetra-

tion tester and monitor her actions during the execution
stage.

401

Generic Script Attack trace Circumvented
mechanisms

Recommendations

Prepare for the attack Buy a bolt cutter and hide it in a bag.
Scout the building and the office during
working hours.
Obtain an after working hours access
card.

Access control of the build-
ing entrances during working
hours.
Credential sharing policy.

Keep entrance doors to the build-
ing locked at all time.
Provide an awareness training
concerning credential sharing.

Enter the building Enter the building at 7:30 AM, before
working hours.
Hide the face from CCTV at the entrance
using a hat.

CCTV pre-theft surveil-
lance.

Increase the awareness of
the security guards during
non-working hours.

Enter the office Wait for the cleaning lady. Pretend you
are an employee who forgot the office key
and ask the cleaning lady to open the of-
fice for you.

Challenge unknown people
to provide ID.
Credential sharing policy.

Reward employees for discover-
ing intruders.

Identify and get the as-
set

Search for the specific laptop. Get the
bolt cutter from the bag and cut the
Kensington lock. Put the laptop and the
bolt cutter in the bag.

Kensington lock. Get stronger Kensington locks.
Use alternative mechanism for
protecting the laptop.

Leave the building with
the laptop

Leave the building at 8:00, when external
doors automatically unlock for employ-
ees.

CCTV surveillance.
Access control of the build-
ing entrances during working
hours.

The motion detection of the
CCTV cameras needs to be more
sensitive .

Figure 3: Reporting a successful attempt. The figure shows an example of a generic script instantiated
with an attack trace. First we define the generic script, which encompasses the stages of all attacks. In the
example, they are: enter the building, enter the office, identify and get the asset, and exit the building. For
each step in a trace, we identify both the mechanisms (if any) that were circumvented and mechanisms that
stopped an attack. For failed attacks, the table shows which mechanisms were circumvented up to the failed
action, and the mechanism that successfully stopped the attempt.

1. Social engineer night pass from an employee.
2. Enter the building early in the morning.
3. Social engineer the cleaning lady to access the office.
4. Cut any protection on the laptop using a bolt cutter.
5. Leave the building during office hours.

Figure 4: Example of an attack scenario

When the penetration test starts, the tester first scouts
the area and proposes a set of attack scenarios (5 in Figure
2). An example of an attack scenario is presented in Figure
4. The proposed attack scenarios need to be approved first
by the custodian (6 in Figure 2) and then by the security
officer (7 in Figure 2). The custodian is directly involved in
the test and can correctly judge the effect of the scenario on
her daily tasks and the tasks of her colleagues. The security
officer needs to approve the scenarios because she is aware
of the general security of the organization and can better
predict the far-reaching consequences of the actions of the
tester.
If the custodian or the security officer disapprove an attack

scenario, they need to evaluate the scenario and estimate the
success. The tester puts in the report that the scenario was
proposed, the reasons why the scenario was turned down
and the opinion of all three roles on the success of the sce-
nario. In this way the scenario although not executed, it
is documented including the judgment on the effectiveness
of the attack by the security officer, the custodian and the
tester.
After approval from the custodian and the security officer,

the tester starts with the execution of the attack scenarios (8
in Figure 2). The custodian and the security officer remotely
monitor the execution (9 in Figure 2) through CCTV and
the monitoring equipment installed by the custodian.

The penetration tester needs to install wearable monitor-
ing equipment to log her actions. The logs serve three pur-
poses. First, they ensure that if an employee is treated with
disrespect there is objective evidence. Second, the logs prove
that the penetration tester has followed the attack scenar-
ios, and finally, the logs provide information how the mech-
anisms were circumvented, helping the organization repeat
the scenario if needed.

4.4 Closure
After the end of the test, the penetration tester prepares

a report containing a list of attack traces. Each attack trace
contains information of successful or unsuccessful attacks
(10 in Figure 2). Based on the report, the security officer
debriefs both the custodians and any deceived employees
during the test (11 in Figure 2).

Reporting. The attack traces are structured in a report
that emphasizes the weak and the strong security mecha-
nisms encountered during the penetration test, structured
following 25 techniques for situational crime prevention [11].
For different domains there are extensive lists of security
mechanisms to enforce the 25 techniques (for example, [12]).
The combination of the attack traces together with the situ-
ational crime prevention techniques gives an overview of the
circumvented mechanisms [13] (Figure 3)

Debriefing the employees and the custodian. After finding
they were deceived by the same organization they work for,
the employees might get disappointed or disgruntled. At
the end of the test the security officer fully debriefs the cus-
todian and the employees. The debriefing should be done
carefully, to maintain or restore the trust between custodian
and the employees who helped the tester to gain the asset.

402

4.5 Validation
To test the usability of the physical penetration tests using

social engineering on the employees, we executed a series
of penetration tests following the EF methodology. These
pilots allowed us to gain a clear, first-hand picture of each
execution stage of the methodology, and draw observations
from the experience.
To avoid bias in the execution of the tests, we did not

perform the tests ourselves, but recruited three teams of
students who were in their first year of master studies to
steal three laptops from the custodian (the first author).
We locked the laptops with Kensington locks and hid the
keys in an office desk. To monitor the laptops, we installed
motion detection web cameras which streamed live feeds to
an Internet server. Since the custodian shares the office with
four other colleagues, the cameras were positioned in such
a way to preserve the privacy of the colleagues. We told
the colleagues we are doing an experiment, but we did not
reveal the nature nor the goal of the experiment.
Since we knew about the penetration test, we did not

allow the students to gain possession of the laptops in our
presence. During the experiment, we carried on the normal
work, thus the students were forced to carry on the attacks
after working hours or during the lunch break.
The three teams scouted the building and wrote a list of

attack scenarios they want to execute. Eventually, all three
teams successfully obtained the target laptop and wrote the
successful and unsuccessful attempts in the format shown
in Figure 3. After the penetration test, we individually de-
briefed the security officer, the security guard, the secretary
and the colleagues.

4.6 Lessons learned from the penetration tests
The observations are result of our experience with the

penetration tests using qualitative social research and might
not generalize to other social environments. However, the
observations provide an insight of the issues that arose while
using the methodology in practice.
The attack scenarios should be flexible. Although the stu-

dents provided scenarios prior to all attacks, in all cases
they were forced to deviate from them, because the target
employee was either not present or was not behaving as ex-
pected. Attack scenarios assure the custodian and the secu-
rity officer that the actions of the penetration tester are in
the scope of the test, but at the same time there should be
some freedom in adapting the script to the circumstances.
The methodology does not respect the trust relationship

between the custodian and the employees. After the pene-
tration test, the custodian knows which employees were de-
ceived, and the trust relationship between them is disturbed.
For example, if the secretary lets the penetration tester into
the office of the custodian, the custodian might not be able
to trust her again.
During the penetration test, separating the custodian from

the employees is hard. Whenever the students approached a
colleague from the office, the first reaction of the colleague
was to call the custodian and ask for guidance. This led to
uncomfortable situations where we were forced to shut down
our phones and ignore e-mails while outside the office.
Debriefing proved to be difficult. After the test, we fully

disclosed the test to all involved employees. Debriefing the
security guard who opened the office for the penetration
testers three times was the hardest. During the debriefing

we focused on the benefits of the penetration test to the
university and their help setting up the test. After the de-
briefing, we concluded that we caused more stress to the
guard during the debriefing than the students had caused
during the penetration test.

5. CUSTODIAN-FOCUSED METHOD
In the EF methodology, the custodian is aware of the pen-

etration test. The knowledge of the penetration test changes
her normal behavior and thus influences the results of the
test. Since the asset belongs to the custodian, and the as-
set is in the office of the custodian, in many environments
it is desirable to include the custodian’s resistance to social
engineering as part of the test.

After performing the first series of penetration tests, we
revisited and expanded the environment-focused methodol-
ogy. The CF methodology can be seen as a refinement of the
EF methodology, based on the experience from the first set
of penetration tests. In the CF methodology the custodian
is not aware of the test, making the methodology suitable
for penetration tests where the goal is to check the overall
security of an area including the level of security awareness
of the custodian.

5.1 Actors
There are six actors in the CF methodology.
Security officer - an employee responsible for the security

of the organization.
Coordinator - an employee or contractor responsible for

the experiment and the behavior of the penetration tester.
The coordinator orchestrates the whole penetration test.

Penetration tester - an employee or contractor who at-
tempts to gain possession of the asset without being caught.

Contact person - an employee who provides logistic sup-
port in the organization and a person to be contacted in case
of an emergency.

Custodian - an employee at whose office the asset resides.
The custodian should not be aware of the penetration test
(1 in Figure 5).

Employee - person in the organization who has none of
the roles above. The employee should not be aware of the
penetration test (2 in Figure 5).

Figure 6: Actors in the CF methodology

Figure 6 shows the actors and the relations between them.
In this methodology, the penetration tester deceives both,
the employees and the custodian. Moreover, the contact
person also needs to deceive the custodian. These relations

403

Figure 5: Sequence of events in the custodian-focused methodology

are discussed in greater depth in section 6.

5.2 Setup
At the beginning, similar to the EF methodology, the se-

curity officer initializes the test by defining the target, scope
and the rules of engagement. The security officer at this
point assigns a coordinator for the penetration test and pro-
vides the coordinator with marked assets and equipment for
monitoring the assets (3 in Figure 5). The marked assets
should be similar to the asset of interest for which the se-
curity is measured. The monitoring equipment should be
non-intrusive and its purpose is to have additional informa-
tion on the activities of the penetration tester.
The penetration tester should sign the rules of engage-

ment (Appendix A) before the start of the execution stage
(4 in Figure 5). The coordinator selects a number of con-
tact people and provides them with the marked assets and
the monitoring equipment (5 in Figure 5). Furthermore, the
coordinator provides a cover story which explains why the
custodian is given the asset. The contact person selects a
number of custodians based on the requirements from the
security officer (random, specific roles, specific characteris-
tics) and distributes the marked assets and the monitoring
equipment to the custodians. After giving the monitoring
equipment, the contact person should get a signed informed
consent (Appendix B) from the custodians (6 in Figure 5).
If the asset can store data, the document must clearly state
that the custodian should not store any sensitive nor pri-
vate data in the asset. Before the penetration test starts,
the coordinator distributes a list of penetration testers to
the security officer, and a list of asset locations to the pen-
etration tester (7 in Figure 5).

5.3 Execution
The first steps of the execution stage are similar to the

previous methodology. The penetration tester scouts the

area and proposes attack scenarios (8 in Figure 5). The
coordinator and later the security officer should agree with
these scenarios before the tester starts executing them (9
and 10 in Figure 5). After approval from both actors, the
tester starts executing the attack scenarios. If a penetration
tester is caught or a termination condition is reached, the
penetration tester immediately informs the contact person.
Thus, if the custodian stored sensitive data in the asset, the
data is not exposed.

When the tester gains possession of the target asset, she
informs the contact person and the coordinator and returns
the asset to the contact person (11 in Figure 5). The contact
person collects the monitoring equipment and informs the
security officer (12 in Figure 5). If the tester gains posses-
sion of the asset without the knowledge of the custodian, the
contact person needs to reach the custodian before the cus-
todian reaches the office and explain to the custodian that
the test is terminated. The security officer obtains surveil-
lance videos from the CCTV and access logs and gives them
to the coordinator (13 in Figure 5).

5.4 Closure
After the execution stage, the penetration tester writes

a report of all attempts, both failed and successful, in the
form of attack traces and gives them to the coordinator (14
in Figure 5). The coordinator has two tasks. First, she
collects the marked assets and monitoring equipment from
the contact person (15 in Figure 5) and returns them to the
security officer. Second, the coordinator debriefs the security
officer and the custodians and provides the custodian a form
of reward for helping in the assessment (16 in Figure 5).

Not all employees that were social engineered should be
debriefed. Employees who were treated with respect and
to whom the penetration tester did not cause discomfort
during the interaction should not be debriefed, because the
debriefing can cause more stress than the interaction with

404

the penetration tester. The decision which employees need
to be debriefed lies with the security officer, and is based
on the logs from the penetration tester and the monitoring
equipment. The criteria on which employees need to be
debriefed are presented in greater detail in Section 6.
Debriefing the custodians. All custodians should be de-

briefed, because they sign an informed consent at the be-
ginning of the test. However, to preserve the trust between
the custodian and the employees, the custodian should not
know which employee contributed to the attack.
Three elements should be considered before the debrief-

ing. First, the custodians were deceived by the organization
they work for (more specifically, by the contact person). Sec-
ond, in case of direct interaction, their privacy might be
violated by the logging equipment from the tester. Third,
they might be stressed from the penetration test either di-
rectly, through interaction with the penetration tester, or
indirectly, by finding their asset is gone before the contact
person reaches them.
The debriefing should focus on the contribution of the

custodian in finding the security vulnerabilities in the or-
ganization, and the custodian should be rewarded for the
participation.

5.5 Validation
We orchestrated eleven penetration tests with the custodian-

focused methodology. As targets we used eleven marked lap-
tops that just came out on the market. We selected three
PhD students as contact persons, who chose eleven friends
as custodians (snowball sampling [14]). The custodians were
ten PhD students and one professor spread across two uni-
versities, in nine different buildings.
We gave the laptops to the custodians for two weeks us-

age. The cover story was that the universities are interested
in the usability of the new generation of laptops. Thus, we
needed to monitor the behavior of the custodian and mea-
sure their satisfaction level. The contact persons explained
that they cannot tell the custodians exactly which behavior
we measure, since it might change the results of the exper-
iment. We instructed the custodians to lock the laptops
with a Kensington lock and to keep them in the office. To
reduce the risk of data leakage and loss of productivity, we
asked the custodians not to store any private or work data
on the laptops. Later, thirty-three master students in com-
puter security, divided in eleven teams of three, tried to gain
possession of the laptops by using physical and social means.

Figure 7: Recording from the validation of the EF method-

ology. The student provided to the janitor a fake email stat-

ing he needs to collect a laptop from the custodian office. The

janitor let the student into the office and helped him find the

key from the Kensington lock.

Figure 8: Recording from the validation of the CF method-

ology. The student went to the office early in the morning,

disguised as an employee who forgot his key. The cleaning

lady let the student in. The student used a bolt cutter to

remove the Kensington lock.

The students took roles as service desk employees, stu-
dents that urgently needed a laptop for a few hours or co-
ordinator representatives. The students used mobile phones
and pocket video cameras to record the conversation with
the employees. In one case they took a professional camera
and a cameraman, and told the custodian the recording is
part of a study to measure the service quality of the service
desk.

The resistance of the employees varied. In five cases, the
employees gave the laptop easily after being showed a fake
email and being promised they will get the laptop back in
a few hours. In two cases the custodian wanted a confir-
mation from a supervisor or the coordinator. In one case a
colleague of the custodian got suspicious and sent an email
to the campus security. Since only the main security officer
knew about the penetration test, in few hours the security
guards were all alerted and started searching for suspicious
students.

However, in two cases the students were not able to social
engineer the custodian directly and were forced to look for
alternative approaches. For example, in one of the cases
the students entered the building before working hours. At
this time the cleaning lady cleans the offices, and under the
assumption it is their office let the students inside. After
entering the office, the students cut the Kensington lock and
left the building before the custodian arrived.

We debriefed only the custodians through a group pre-
sentation, where we explained the penetration test and its
goal.

5.6 Lessons learned from the validation
It should be specified in advance which information the

penetration tester is allowed to use. For example, the pen-
etration tester should not use knowledge about the cover
story used by the contact person. During the validation,
six penetration testers used knowledge of the cover story to
convince the custodian to hand in the laptop. Thus, these
tests were less realistic.

Panic situations need to be taken into consideration in the
termination conditions. Several times the custodian or an
employee got suspicious and raised an alarm. Since only the
security officer knew about the experiment, and the other se-
curity personnel was excluded, news of people stealing lap-
tops spread in a matter of hours. In these situations the
coordinator should react quickly and explain to the employ-
ees that the suspicious activity is a test.

405

The penetration test cannot be repeated many times. If
a custodian participated in the penetration test once, she
knows what will happen. The same holds for the employees
she told about the experiments and the employees that were
socially engineered.

6. EVALUATION
In this section we compare both methodologies against the

R* requirements. The satisfaction of the requirements is de-
fined by the rules of engagement, which attack scenarios are
approved for execution, and the structure of the method-
ologies. Less restrictive rules of engagement and approving
more invasive attack scenarios make the penetration test
more realistic, but make the test less reliable and respectful
to the employees. The evaluation below assumes these two
elements are tuned to the risk appetite of the organization
and focuses only on the structure of the methodologies.
Reliable: In the EF methodology, the penetration tester

gains possession of a non-critical asset which the custodian
is prepared to lose. Thus, the result of the penetration test
will not affect the productivity of the custodian. In the
CF methodology, the productivity of the custodian may be
affected, since the custodian does not know the asset will
be stolen. The informed consent is a mechanism to avoid
productivity loss, since it explicitly states not to use the
marked asset for daily tasks nor store sensitive information
on the asset. In both methodologies, the productivity of
other employees is not affected, since the penetration tester
does not gain possession of any of their belongings without
their approval.
Repeatable: The repeatability of any penetration test us-

ing social engineering is questionable, since human behavior
is unpredictable. Checking if a penetration test is repeatable
would require a larger set of tests on a single participant, and
a larger number of participants in the test.
Reportable: The approach used in reporting the results

of the penetration test completely covers all information
needed to perform the attack in a real-life situation and
provides an overview of what should be improved to thwart
such attempts. The logs from the tester and the monitoring
equipment installed by the custodians provide detailed infor-
mation on all actions taken by the penetration tester, giving
a clear overview of how the mechanisms are circumvented.

EF methodology CF methodology

Reliable +++ ++

Repeatable - -

Reportable +++ +++

Respectful: actors ++ +

Respectful: trust relations - ++

Realistic + +++

Figure 9: Evaluation of both methodologies

Respectful: Both methodologies should respect all the em-
ployees and the trust relationships between them.
In physical penetration testing, the social engineering el-

ement is more intense than in digital penetration testing
because the interaction between the penetration tester and
the employee is direct, without using any digital medium.
Baumrind [15] considers deception of subjects in testing as
unethical. The National Commission for the Protection of
Human Subjects of Biomedical and Behavioral Research,

also clearly states this in their first rule of ethical princi-
ples: ”Respect for persons” [9].

However, some tests cannot be executed without decep-
tion. Finn [10] defines four justifications that need to be met
do make deception acceptable: (1) The assessment cannot
be performed without the use of deception. (2) The knowl-
edge obtained from the assessment has important value. (3)
The test involves no more than minimal risk and does not
violate the rights and the welfare of the individual. Min-
imal risk is defined as: ”the probability and magnitude of
physical or psychological harm that is normally encountered
in the daily lives” [16]. (4) Where appropriate, the subjects
are provided with relevant information about the assessment
after participating in the test. Physical penetration testing
using social engineering can never be completely respectful
because it is based on deception. However, the deception in
both methodologies presented in this paper is justifiable.

The first two justifications are general for penetration test-
ing and its benefits, and have been discussed earlier in the
literature (for example, Barrett [6]). The third justification
states that the risk induced by the test should be no greater
than the risks we face in daily lives. In the EF methodology,
the only actor at risk is the employee. The penetration tester
cannot physically harm the employee because of the rules of
engagement, thus only psychological harm is possible. If the
employees help the penetration tester voluntarily, the risk
of psychological harm is minimal. The logging equipment
assures the interaction can be audited in a case of dispute.
In the CF methodology, an additional actor at risk is the
custodian. The only case when the risk is above minimal
for the custodian is if the tester gains possession of the asset
without custodian’s knowledge. When the custodian finds
the asset missing, her stress level might increase. Therefore
it is crucial for the contact person to reach the custodian
before custodian learns about the theft.

The fourth justification states that all actors should be de-
briefed after the exercise. In both methodologies, all actors
except the employees are either fully aware of the exercise, or
have signed an informed consent and are debriefed after the
exercise. Similarly to Finn and Jakobsson [1], we argue that
there should be selective debriefing of the employees. De-
briefing can make the employee upset and disgruntled and is
the only event where the risk is higher then minimal. Thus,
an employee should be debriefed only if the security officer
constitutes the tester did more than minimal harm.

Besides being respectful toward all the participants, the
methodology needs to maintain the trust relations between
the employees. The EF methodology affects the trust be-
tween the custodian and the employees and the employees
and the organization. This is a consequence of the decision
to fully debrief all participants in the test. The CF method-
ology looks at reducing these impacts. First, the custodians
are not told who contributed to the attack. Only the coordi-
nator and the security officer have this information, and they
are not related to the custodian. Second, the employees are
not informed about the penetration test unless it deemed
necessary. However, the trust between the custodian and
the contact person is shaken. Therefore, the contact person
and the custodian should not know each other prior to the
test.

In conclusion, the CF methodology is less respectful to
the custodian than the EF methodology, because the custo-
dian is deceived and might get stressed when she finds out

406

the asset is gone. The EF methodology does not preserve
any trust between the employees, the organization and the
custodian. The CF methodology preserves the trust bond
between the custodian and the employees and between the
employees and the organization. However, the trust bond
between the custodian and the contact person may be af-
fected.
Realistic: The EF methodology allows testing the resilience

to social engineering of employees in the organization. Since
the custodian knows about the penetration test, she is not
directly involved during the execution of the test, making
this methodology implementable in limited number of situ-
ations. In the CF methodology, neither the custodian nor
any of the other employees know about the penetration test,
making the test realistic.
One might argue that if the asset is not critical for the em-

ployee, the tests are not realistic. On the other hand, taking
away ”real” assets in the penetration tests will clearly cause
loss of production. In the EF methodology, this issue does
not exist, as the employees who may be social-engineered
are not aware of the importance of the target asset. There-
fore, they have no reason to behave differently toward the
experimental asset than to a ”real” asset. However, in the
CF methodology, the value of the asset as perceived by the
custodian might influence the result of the tests, as the em-
ployee may be more likely to give the asset away if she knows
it is not critical. As future work, we plan to investigate the
effect of the perceived importance of the asset on the results
of such tests.

7. CONCLUSION
Securing an organization requires penetration testing on

the IT security, the physical security of the location where
the IT systems are situated, as well as evaluating the secu-
rity awareness of the employees who work with these sys-
tems. We presented two methodologies for penetration test-
ing using social engineering. The custodian-focused method-
ology improves on the environment-focused methodology in
many aspects. However, the environment-focused method-
ology is more reliable, does not deceive the custodian and
fully debriefs all actors in the test. We provide criteria to
help organizations decide which methodology is more appro-
priate for their environment. We evaluated both method-
ologies through analysis of their structure against a set of
requirements and through qualitative research methods by
performing a number of penetration tests ourselves. This
paper shows that physical penetration tests using social en-
gineering can reduce the impact on employees in the orga-
nization, and provide meaningful and useful information on
the security posture of the organization.
In the future, we will focus on two topics. First, we want

to investigate the effect of the perceived importance of the
asset on the results of the test. We plan to separate the
custodians in two groups and inform one of the groups that
the laptop contains information critical for the organization.
Second, we want to investigate the aspect of safety for both
the employees and the testers. This research will help pen-
etration testers perform tests in potentially hazardous envi-
ronment, such as chemical or nuclear laboratories.

References
[1] P. Finn and M. Jakobsson. Designing ethical phishing

experiments. Technology and Society Magazine, IEEE,

26(1):46–58, Spring 2007.

[2] C. Soghoian. Legal risks for phishing researchers. In
eCrime Researchers Summit, 2008, pages 1–11. IEEE,
2008.

[3] C. Greenlees. An intruder’s tale-[it security]. Engineer-
ing & Technology, 4(13):55–57, 2009.

[4] Wil Allsopp. Unauthorised Access: Physical Penetra-
tion Testing For IT Security Teams, chapter Planning
your physical penetration test, pages 11–28. Wiley,
2009.

[5] P. Herzog. OSSTMM 2.2–Open Source Security Test-
ing Methodology Manual. Open source document,
www.isecom.org/osstmm, 2006.

[6] N. Barrett. Penetration testing and social engineering
hacking the weakest link. Information Security Techni-
cal Report, 8(4):56–64, 2003.

[7] S. Türpe and J. Eichler. Testing production systems
safely: Common precautions in penetration testing.
In Proceedings of Testing: Academic and Industrial
Conference (TAIC PART 2009), pages 205–209. IEEE
Computer Society, 2009.

[8] D. B. Cornish. The procedural analysis of offending and
its relevance for situational prevention. In R. V. Clarke,
editor, Crime Prevention Studies, volume 3, pages 151–
196. Criminal Justice Press, Monsey, NY, 1994.

[9] National Commission for the Protection of Human Sub-
jects of Biomedical and Behavioral Research. The Bel-
mont report: Ethical principles and guidelines for the
protection of human subjects of research. pages 1–18,
1978.

[10] P.R. Finn. Research Ethics: Cases and Materials, chap-
ter The ethics of deception in research, pages 87–118.
Indiana University Press, 1995.

[11] D.B. Cornish and R.V. Clarke. Opportunities, precipi-
tators and criminal decisions: A reply to Wortley’s cri-
tique of situational crime prevention. Crime Prevention
Studies, 16:41–96, 2003.

[12] G. Kitteringham. Lost laptops = lost data: Measuring
costs, managing threats. Crisp report, ASIS Interna-
tional Foundation, 2008.

[13] R. Willison and M. Siponen. Overcoming the in-
sider: reducing employee computer crime through situ-
ational crime prevention. Communications of the ACM,
52(9):133–137, 2009.

[14] B.L.A. Goodman. Snowball sampling. The Annals of
Mathematical Statistics, 32(1):148–170, 1961.

[15] D. Baumrind. Research using intentional deception.
Ethical issues revisited. The American psychologist,
40(2):165–174, 1985.

[16] Code of Federal Regulations. Title 45: Public welfare
department of health and human services. part 46: Pro-
tection of human subjects. pages 1–12. 2005.

407

Appendix A:

Rules of engagement

I, (name of student) agree to perform pen-
etration tests for (name of researcher)

I understand that the participation of is completely vol-
untary. At any time, I can stop my participation.
I fully oblige to the following rules of engagement:

1. I will only execute attacks that are pre-approved by
the researcher and only to an assigned target.

2. I am not allowed to cause any physical damage to uni-
versity property, except for Kensington locks.

3. I am not allowed to physically harm any person as part
of the test.

4. I will video or audio record all my activities while in-
teracting with people during the penetration test as
a proof that no excessive stress or panic is caused to
anyone.

5. If I am caught by a guard of a police officer, I will not
show any physical resistance.

Signature of researcher: Date:

Signature of student: Date:

Appendix B:

Informed consent

I, (name of employee) agree to participate in
the study performed by (name of the research
group).

I understand that the participation of the study is com-
pletely voluntary. At any time, I can stop my participation
and obtain the data gathered from the study, have it re-
moved from the database or have it destroyed.

The following points have been explained to me:

1. The goal of this study is to gather information of lap-
top usage. Participation in this study will yield more
information concerning the habits people have in using
mobile devices.

2. I shall be asked to work for 5 min every day on a
laptop for one month. The laptop will be monitored
and recorded using a keynoter and a web-camera. At
the end of the study, the researcher will explain the
purpose of the study.

3. No stress or discomfort should result from participa-
tion in this study.

4. The data obtains from this study will be processed
anonymously and can therefore not be made public in
an individually identifiable manner.

5. The researcher will answer all further questions on this
study, now or during the cause of the study.

Signature of researcher: Date:

Signature of employee: Date:

408

	2010-acsac-frontmatter
	2010-acsac-papers
	p1-stringhini
	p10
	p11-xu
	p21-chu
	p31-rieck
	p40
	p41-portokalidis
	p49-onarlioglu
	p59-yang
	p69-fang
	p79-stobert
	p89-rodes
	p97-cui
	p107-mclaughlin
	p117-vigna
	p127-longstaff
	p130
	p131-coskun
	p141-calvet
	p151-shin
	p161-west
	p171-li
	p181-li
	p191-gallo
	p199-valamehr
	p211-tillich
	p221-ongtang
	p231-butler
	p241-popper
	p251-clark
	p261-heusser
	p270
	p271-liakh
	p281-cheswick
	p287-polychronakis
	p297-zhang
	p307-chan
	p317-han
	p327-ding
	p337-gu
	p347-portokalidis
	p357-wang
	p367-liu
	p377-zhou
	p387-dwoskin
	p398
	p399-dimkov

