
Extensible Pre-Authentication in Kerberos ∗

Phillip L. Hellewell, Timothy W. van der Horst, and Kent E. Seamons
Internet Security Research Lab

Brigham Young University
Provo, UT, USA

{sshock, timv, seamons}@cs.byu.edu

Abstract

Kerberos is a well-established authentication system. As
new authentication methods arise, incorporating them into
Kerberos is desirable. However, extending Kerberos poses
challenges due to a lack of source code availability for some
implementations and a lengthy standardization process.

This paper presents Extensible Pre-Authentication in
Kerberos (EPAK), a Kerberos extension that enables many
authentication methods to be loosely coupled with Ker-
beros, without further modification to Kerberos. To demon-
strate the utility of the framework, two authentication meth-
ods for open systems are presented that have been imple-
mented as Kerberos extensions using EPAK. These exten-
sions illustrate the flexibility EPAK brings to Kerberos while
maintaining backwards compatibility.

1 Introduction

Kerberos [7] is a distributed, identity-based authentica-
tion system that allows a user to authenticate once and then
connect to application servers within the Kerberos realm
without authenticating again for a period of time. Kerberos
is time-tested and widely used. Version 5 was standardized
over a decade ago, and is used in business, government, mil-
itary, and educational institutions.

Adopting new authentication methods to replace Ker-
beros is prohibitive because access control systems and ap-
plications are often built up around the Kerberos infras-
tructure. For example, Microsoft Active Directory is a
well-established, enterprise-level authorization system built
around Kerberos. Extending Kerberos provides an attractive
solution that allows systems like Active Directory to remain
intact. However, adding extensions poses challenges due to
a lack of source code availability for some implementations
and a lengthy standardization process.

∗This research was supported by funding from the National Science
Foundation under grant no. CCR-0325951, prime cooperative agreement
no. IIS-0331707, and The Regents of the University of California.

One trend that has sparked the development of new au-
thentication methods is the increasing need for organiza-
tions to provide services to those outside their local security
domain. It can be expensive to provision each outside user
into a local security domain. Open systems allow the au-
thentication of users who are outside the local security do-
main and do not have a direct pre-existing relationship with
the authentication server [12, 1]. Kerberos was not origi-
nally designed to support open systems.

This paper presents Extensible Pre-Authentication in
Kerberos (EPAK), a Kerberos extension that enables many
authentication methods to be loosely coupled with Ker-
beros, without further modification to Kerberos. Two au-
thentication methods for open systems have been integrated
into Kerberos using EPAK to demonstrate the power and
flexibility of the framework design.

As a motivating example, suppose Company A creates
a collaborative file-sharing service to be fully accessible to
the employees of Company B, but provide read-only access
to employees at Company C. Rather than manage accounts
for each partner’s employees, Company A would like to
group them into local users employeeB and employeeC.
Company A would also like to leverage its existing security
infrastructure to manage users.

Suppose employees from Company B and C could be
authenticated to Company A’s domain merely by proving
ownership of their email address. Company A could grant
and remove access to outsiders simply by mapping an email
address to a local user name without having to establish
a shared secret. For scalability, the mapping could allow
wildcards (e.g.,*@companyB.com) to map a group of out-
siders to a single local name.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a background of Kerberos. Then Sections 3
to 5 describe the design and implementation of EPAK and
two EPAK-based protocols that enable Kerberos to operate
as an open system. Section 6 contains a threat analysis of
EPAK and Sections 7 and 8 give related work, conclusions,
and future work.

KDC

AS TGS

1a 1b
2a

3a

3b

2b

Cl ien t A p p l i c a t i o n S e r v e r

Figure 1. The three-phase Kerberos protocol

2 Kerberos

The Kerberos server consists of an Authentication Server
(AS) and a Ticket-Granting Server (TGS). The AS and TGS
are responsible for creating and issuing tickets to the clients
upon request. The AS and TGS usually run on the same
computer, and are collectively known as the Key Distribu-
tion Center (KDC).

The Kerberos authentication process consists of three
phases (see Figure 1). In the first phase, the client makes
a request for a ticket-granting ticket (TGT) from the AS.
The AS responds with a TGT, and an encrypted session key
needed for the next phase. The session key can be decrypted
only by a client that possesses the user’s password, which is
never communicated over the network. In the second phase,
the client presents the TGT to the TGS, which responds
with a service-granting ticket (SGT) and a second session
key encrypted with the first session key. In the final phase,
the SGT is presented to the application server, which then
grants access to the service.

Kerberos is stateless [2], which increases scalability.
Session keys are not maintained by Kerberos servers, but
are included in the TGT and SGT so that the client can com-
municate securely with the TGS and application servers.

Single sign-on (SSO) is an important feature of Ker-
beros. With SSO, a user’s password must only be entered
once per session. The TGT and session key obtained in
phase 1 are saved, so each time the user wants to gain ac-
cess to a service, only phases 2 and 3 are performed. The
tickets contain start/end times indicating a valid time period
when they can be used. SSO provides convenience, effi-
ciency, and added security.

A Kerberos server (KDC) maintains several secret keys.
A single key, Ktgs, is used to encrypt the TGT returned
in step 1b (see Figure 1). Several keys, Kcx , one for each
client, are used to encrypt the session key, also returned in
step 1b. Finally, several keys, Kvx

, one for each server, are

used to encrypt the SGT returned in step 2b.
A credential cache on a client machine stores tickets ob-

tained by a user, such as the TGT and SGTs. Each creden-
tial includes a client principal, server principal, encrypted
ticket (opaque to the user) and a session key that matches
the session key hidden inside the ticket. The credential
cache must be secured to prevent impersonation. Heim-
dal Kerberos secures credentials by storing them in a tem-
porary file, /tmp/krb5cc $UID, which has read/write
permissions only for the user who obtained the credential.
Other implementations, e.g., Microsoft’s, store credentials
in memory for greater security.

Users and servers have names called principals [10].
Server principals are composed of a primary name, in-
stance, and realm (name/instance@REALM), while client
principals do not have an instance (name@REALM).

Pre-authentication, introduced in Kerberos version 5, al-
lows a client to prove its authenticity before being issued a
TGT. A pre-authentication data (padata) field in the AS
request proves the client’s authenticity, such as a timestamp
encrypted with the user’s password-based key or the user’s
private key in PKINIT [13]. Pre-authentication prevents an
attacker from impersonating a user by obtaining an AS re-
ply and performing an offline dictionary attack against the
encrypted data.

Kerberos provides a mechanism whereby authorization
information can be embedded into a Kerberos ticket in an
authorization-data field [7], but not all implementations
support this field. Since this data is server specific, a lack of
interoperability may arise between Kerberos authentication
servers and application servers that do not understand the
same authorization data. The Windows 2000 implementa-
tion of Kerberos suffers from this incompatibility [5]. Our
goal is to pursue a design that will not obligate changes to
authorization mechanisms.

Kerberos provides a mechanism for cross-realm authen-
tication that enables an authenticated user in one realm to
obtain services in another realm, but it does not scale well
because each realm must establish a shared key with every
other realm it trusts. Public key extensions to Kerberos im-
prove scalability by eliminating the need to establish shared
secrets [2]. In practice, however, a user in one realm is usu-
ally provisioned explicitly in another realm.

2.1 Limitations

Conventional Kerberos does not operate as an open sys-
tem because every user must be known a priori. A shared
secret between the AS and the user (a password-derived
key) must be maintained by the AS, and each user has a
1-to-1 mapping with a principal name.

Most Kerberos extensions are not designed to make Ker-
beros operate as an open system. PKINIT [13] and other
public-key extensions (see Chapter 7) extend credential

management to third parties (trusted CAs), but the third par-
ties usually cooperate directly with the Kerberos adminis-
trator in creating certificates with principal names that exist
in the database.

Our goal is to extend Kerberos to be an open authentica-
tion system, but modifying Kerberos for each new authen-
tication type is burdensome. New authentication types are
subject to approval by a standards committee. Once defined,
extensions are often rigid and cannot be updated without be-
ing re-approved and assigned new pre-auth type numbers.
PKINIT has undergone this process.

One might wish to incorporate a proprietary extension
into Kerberos without involving the standardization pro-
cess, but this can be difficult or even impossible when the
source code is not available (e.g., Microsoft’s implementa-
tion). Even when the source code is available, continual
resources must be expended to maintain a patch against the
latest version of the source code.

3 EPAK Design
Extensible Pre-Authentication in Kerberos (EPAK) is

designed to extend Kerberos to support a variety of authen-
tication methods. If large security providers such as Mi-
crosoft were to adopt EPAK, many businesses would ben-
efit by having the ability to plug in different authentication
protocols, including those that would enable Kerberos to
operate as an open system.

Similar to previous Kerberos extensions, EPAK extends
just the initial authentication phase to allow the security in-
frastructure built up around Kerberos to remain unchanged.
Unlike existing Kerberos extensions, EPAK enables the in-
tegration of many authentication methods without further
modification to Kerberos implementations.

The design goals for EPAK are to:

• Allow extensible integration of authentication systems
• Enable attribute-based authentication in Kerberos
• Preserve the existing security properties of Kerberos
• Improve efficiency and usability
• Provide scalable account provisioning for outsiders
• Maintain backwards compatibility with Kerberos

3.1 Architecture
EPAK naturally extends Kerberos by adding a single

phase similar to the existing phases (see Figure 2). The
EPAK framework enables phase 1 of Kerberos to succeed
after a Pre-Authentication Client (PAC) authenticates to a
Pre-Authentication Server (PAS) using the desired authen-
tication mechanism. The PAS determines which users can
authenticate to which principals. If authentication succeeds,
the PAS returns an authentication-granting ticket (AGT) to
be used as padata in the AS request, and a randomly-
generated session key for decrypting the AS reply.

KDC

AS TGS

1a 1b
2a

3a

3b

2b

Cl ien t A p p l i c a t i o n S e r v e r

0a

0b

PAS

Figure 2. EPAK adds phase 0 to Kerberos

PAS Realms Kepak is a randomly-generated key known
only to the PAS and AS. By encrypting the AGT with Kepak

the PAS ensures that only the AS can decrypt it. To pro-
vide load balancing and fault tolerance, the PAS may be
distributed among multiple machines.

A Kerberos administrator can also choose to outsource
pre-authentication by allowing trusted parties to host their
own PAS. In this setup, each PAS has its own shared key
with the AS, similar to cross-realm authentication. Each
party controlling a PAS is known as a PAS realm.

To prevent name conflicts and maintain an arms-length
trust relationship with each PAS realm, the Kerberos admin-
istrator specifies a policy for each PAS realm, indicating all
principals the PAS realm is permitted to authenticate. The
AS determines in phase 1 which PAS issued the AGT and
enforces the corresponding policy.

Outsourcing the PAS offloads principal management in
addition to computational work and network traffic. It also
allows heterogeneous PAS’s supporting different authenti-
cation mechanisms within the same Kerberos realm. This
increases flexibility, but similar to cross-realm authentica-
tion, the tight relationship and shared keys limit scalability.

Principal Mapping As mentioned earlier, the PAS is re-
sponsible for mapping users to Kerberos principals and
must implement a strategy for determining which users are
allowed to authenticate as which principals.

A straightforward strategy is a 1-1 mapping from users to
principals. For example, if users are identified by an email
address, a formula can be used to convert email addresses
into corresponding principals, e.g., john@gmail.com can
authenticate as john gmail com@REALM. The PAS may
incorporate a mapping policy for valid users, or simply rely
on the AS to reject principals that do not exist.

Although this approach is more open than traditional
Kerberos, which requires a shared secret (user password)
to be maintained by the Kerberos server, it remains a closed
system since the AS maintains a tight relationship with the

PAS in provisioning a principal for each valid user.
A rule-based approach like a 1-1 mapping is not dynamic

enough to allow Kerberos to scale to a large number of out-
siders because users are still provisioned individually. A
more scalable alternative is to map a group of users to a
Kerberos principal without requiring that each user be pro-
visioned in the local Kerberos realm in advance. Two such
strategies are described below.

The first strategy, an m-1 mapping, provides a coarse-
grained approach to map users to a single principal. For
instance, all users at partner companies can be mapped to
a guest principal, e.g., guest@REALM. This dynamic ar-
rangement provides increased scalability because the local
Kerberos administrator manages only a single principal and
is shielded from all changes to the user population at partner
companies. However, mapping users to a single principal is
not flexible because all outsiders are treated uniformly.

The second strategy, an m-n mapping, is a fine-grained
approach that provides a balance of flexibility and scala-
bility. An attribute-based policy can specify which groups
of users can authenticate as which principals. Principals
can be defined to represent large groups (e.g., compa-
nyC@REALM, partner@REALM).

Combining this m-n mapping technique with multiple
PAS realms produces an even finer-grained, adaptable so-
lution for user management. Consider the scenario pre-
sented in Section 1. Company A avoids having to man-
age accounts for each employee of Company B by group-
ing them all together (e.g., *@companyB.com). Although
dynamic and scalable, this configuration may be too coarse-
grained for Company A’s needs. To enable a more fine-
grained setup, Company A could entrust Company B to run
a PAS that authenticates users to specific principals, such
as developerB, customerB, and salesB. This does
not preclude Company A from continuing to use a coarse-
grained approach with Company C.

3.2 Protocol

The EPAK protocol makes use of four messages, de-
fined in Table 1, where the AGT is referred to as the
epakticket. The EPAK protocol is divided into two authen-
tication phases: pre-authentication and AS authentication
(see Figure 3). In EPAK, the PAC and the AC are separate
programs that communicate through the client’s credential
cache to allow phase 0 to be customized by EPAK-based
protocols without further modification to phase 1.

Pre-Authentication Phase During pre-authentication, a
valid client obtains an EPAK-REP from the PAS. The pre-
authentication protocol is shown in Figure 3, phase 0:

a) The PAC sends an EPAK-REQ to the PAS to indi-
cate the principal requesting authentication. Addi-
tional messages may be exchanged in order for the
client to complete the authentication

AS

1b 1c

AC

0a

PAS

PAC

(Credential Cache)

0c 1a

 0b

Figure 3. Pre-authentication and AS authenti-
cation

b) The PAS responds with an EPAK-REP
c) The epakticket and session key Kc,as of the EPAK-

REP are stored in the client’s credential cache under
the server name epakt/REALM@pasrealm

The epakdata identifies the client, and specifies re-
quested ticket start/end times. The times are then restricted
by the PAS in the EPAK-REP to enforce the maximum life-
time, similar to other Kerberos tickets.

The EPAK-REP must be communicated securely to pro-
tect the session key Kc,as from eavesdroppers, and to pre-
vent replay. TLS or another suitable mechanism may be
used to transmit the EPAK-REP securely.

The PAS verifies the EPAK version number and then
performs any other steps the particular authentication algo-
rithm might require. The PAS must only return an EPAK-
REP if the user proves authenticity and is allowed to au-
thenticate to the desired principal.

AS Authentication Phase The protocol for AS authenti-
cation with EPAK pre-authentication data is shown in Fig-
ure 3, phase 1:

a) The encrypted epakticket, pasrealm, and session key
Kc,as are retrieved from the client’s credential cache

b) The client generates epakauth and sends an AS re-
quest with PA-EPAK-AS-REQ as the padata

c) The server responds with an AS response with PA-
EPAK-AS-REP as the padata. The session key
Kc,tgs is encrypted with the session key Kc,as

The epakauth included in the PA-EPAK-AS-REQ
shows that the client has recent knowledge of the session
key in the epakticket. It serves the same purpose as the
Authenticator used in phase 2 and 3 [7].

If authentication fails, the PA-EPAK-AS-REP contains
an error result value and the encrypted part of the AS reply

EPAK Messages
EPAK-REQ epakvno ‖ epakdata
EPAK-REP epakvno ‖ epakdata ‖

pasrealm ‖ Kc,as ‖
EKepak

[epakticket]
PA-EPAK-AS-REQ epakvno ‖ pasrealm ‖

EKepak
[epakticket] ‖

EKc,as [epakauth]
PA-EPAK-AS-REP epakvno ‖ result

EPAK Message Elements
epakvno EPAK version = 1

epakdata cname ‖ crealm ‖ starttime ‖ endtime
epakticket Kc,as ‖ epakdata
epakauth cname ‖ crealm ‖ cksum ‖ cusec ‖ ctime

Kc,as Random session key generated by PAS
Kepak PAS’s key for encrypting epakticket

pasrealm PAS’s realm
cname Client name (principal name)
crealm Client realm (principal realm)

starttime Starting time of epakticket
endtime Expiration time of epakticket

cksum Checksum of AS request (excl. padata)
cusec Timestamp [7] (microseconds)
ctime Timestamp [7]
result Authentication error/success code

Table 1. EPAK Message Definitions

is set to unusable random data. Alternatively, a Kerberos
error message may be returned.

The pasrealm indicates the PAS that issued the
epakticket, and is used to identify the appropriate EPAK
key needed to decrypt the ticket. It is also used to identify
the correct policy specifying principal names when multiple
PAS realms are involved.

The AS must enforce the following PA-EPAK-AS-REQ
verification rules before generating a successful AS reply.

1. epakvno must be a valid version number
2. epakauth must be valid as in RFC 4120
3. epakticket realm must match the realm of the AS
4. epakticket starttime ≤ now

5. epakticket endtime > now

6. epakticket principal must exist in Kerberos database
7. epakticket and AS request principals must match
8. epakticket principal must appear in policy

Rule 6 maintains harmony with current Kerberos imple-
mentations, and its absence would necessitate dynamic cre-
ation of principals, or modifications to later phases to handle
unknown principals. Such changes would have far-reaching

effects into the systems built around Kerberos.
The lifetime of the TGT is limited so as not to extend

beyond the lifetime of the epakticket.

3.3 Advantages and Disadvantages

EPAK benefits both Kerberos and the systems it inte-
grates with Kerberos.

Incorporating attribute-based authentication methods
into Kerberos enables an open system that allows services
built on Kerberos to scale to larger communities. Also, the
need for shared keys between clients and the AS is elim-
inated, along with the risk to the client of a compromised
central repository.

Complex authentication systems with slow performance
may benefit from Kerberos’ SSO capabilities. EPAK’s low
integration barrier may accelerate the adoption of newer or
lesser-known systems.

EPAK supports backward compatibility. A Kerberos
server with EPAK still supports normal Kerberos password-
based authentication. A Kerberos server without EPAK sup-
port fails gracefully with a “pre-auth type not supported”
error whenever it receives an EPAK authentication request.

One drawback to EPAK is that it requires at least one ex-
tra round of communication. The PAC must communicate
with the PAS to obtain the epakticket. Other extensions,
such as PKINIT [13], provide pre-authentication data in the
AS request without an additional phase.

4 Open Systems in EPAK
To demonstrate the generality and flexibility of EPAK,

two authentication systems were integrated into Kerberos:
Simple Authentication for the Web and trust negotiation.

4.1 SAW

Simple Authentication for the Web (SAW) [11] lever-
ages email (or other personal messages, e.g., text and in-
stant messages) to authenticate users. SAW significantly
improves upon the basic technique employed by the “For-
got your password?” link common to many web sites.

In SAW, users must demonstrate their ability to retrieve
two short-lived, single-use Authentication Tokens (see Fig-
ure 4). If a user-supplied email address is authorized, a ran-
dom secret, AuthTokencomplete, is generated and split into
two shares as follows:

AuthTokencomplete ⊕AuthTokenemail = AuthTokenuser

where AuthTokenemail is a randomly generated value.
AuthTokenuser is returned directly to the user over the se-
cure link used to initiate the authentication process (e.g.,
HTTPS) while AuthTokenemail is emailed. If the user re-
turns both tokens then the authentication is successful.

Since AuthTokenuser is returned over a secure link,
passively observing AuthTokenemail is worthless.

Figure 4. The SAW protocol

Vulnerability to Active Impersonation By submitting a
victim’s email address to a site an attacker obtains a valid
AuthTokenuser. Consequently, by observing the victim’s
incoming email messages, the attacker acquires the corre-
sponding AuthTokenemail and is able to authenticate as
the victim. This is called an active impersonation attack.

SAW’s threat analysis argues that SAW provides an ac-
ceptable level of risk, even in light of this attack, because
sites that employ email-based password resets (EBPR) are
also susceptible to a similar attack in which an attacker re-
quests a password reset for the victim and then observes the
resulting email message sent by the site. The prolific adop-
tion of EBPR indicates that these risks are manageable.

One-Round SAW Step 3 of SAW is eliminated in one-
round SAW by setting AuthTokencomplete, normally a
random value, to the item requested by the user. Since only
authentic users can reconstruct AuthTokencomplete, only
those users will be able to obtain the item. As the token
splitting used by SAW creates two shares of equal size to
the secret it splits, it is advised for a large item to encrypt
the item, split the encryption key, and then deliver the en-
crypted item with one of the encryption key shares.

Group-Based SAW SAW is often used in closed sys-
tems, i.e., an ACL specifies all authorized email addresses.
This works well for sites (e.g., forums or photo-sharing)
willing to provision accounts for each user.

Unfortunately, this one-to-one specification of users to
permissions is insufficient for open systems. For example,
this approach requires Business A, from the scenario de-
scribed in Section 1, to maintain an ACL containing some
or all of the employee emails of its affiliate, Company B.

For more flexibility, SAW can be modified to use ACLs
that contain wildcards or regular expressions. This is known
as group-based SAW. With this enhancement, Business A
can specify that anyone with a Company B email address
(e.g., *@companyB.com) is allowed access.

4.1.1 SAWK Naı̈ve Approach
A naı̈ve approach to integrating SAW into Kerberos

is to send an email address in the AS request, inside
padata, of type PA-SAW-AS-REQ. The AS replies with
the AuthTokenuser and the session key Kc,tgs encrypted
with AuthTokencomplete, and emails AuthTokenemail.

 0c

0c

E m a i l P r o v i d e r

1b 1c0a

(Credential Cache)

0d 1a

 0b

AS

AC

SAWK-S

SAWK-C

Figure 5. The SAWK protocol

After retrieving AuthTokenemail, the user reconstructs
AuthTokencomplete and unlocks the session key.

As with most Kerberos extensions, the adoption of SAW
with this naı̈ve approach would be impeded until it was
approved and integrated into popular Kerberos implemen-
tations. Before integration, a patch file would have to be
maintained, and Kerberos would have to be built manually
to enable this functionality.

This approach also provides no mechanism for securing
AuthTokenuser, making it susceptible to eavesdropping.

4.1.2 SAWK Protocol
Simple Authentication for the Web in Kerberos (SAWK)

is an EPAK-based protocol that enables flexible, email-
based authentication in Kerberos, and avoids the limitations
of the naı̈ve approach.

Pre-Authentication Phase The protocol for SAWK pre-
authentication is shown in Figure 5, phase 0:

a) The SAWK-C sends an EPAK-REQ and email address
to the SAWK-S

b) If the address is allowed to authenticate as the prin-
cipal specified in the EPAK-REQ, the SAWK-S re-
sponds with AuthTokenuser and an EPAK-REP en-
crypted with the random AuthTokencomplete

c) AuthTokenemail is emailed to the specified address
and is used to reproduce AuthTokencomplete and de-
crypt the EPAK-REP

d) The epakticket and session key Kc,as of the EPAK-
REP are stored in the client’s credential cache

The communication between SAWK-C and SAWK-S
(steps 0a and 0b) is secured (e.g., TLS) to thwart eaves-
dropping and impersonations of the SAWK-S.

SAWK uses group-based SAW for a flexible mapping of
email addresses to principals. The addresses are specified
as regular expressions, which provide an m-n mapping with
a high level of scalability.

0a 0b 0c

AS

1b 1c

AC

TNK-S

TNK-C

(Credential Cache)

0d 1a

Figure 6. The TNK protocol

AS Authentication Phase The protocol for AS authenti-
cation following SAWK pre-authentication is shown in Fig-
ure 5, phase 1. This phase is identical to phase 1 of EPAK.
As previously mentioned, EPAK-based authentication pro-
tocols can be integrated into Kerberos without further mod-
ification to the Kerberos client and server programs.

4.2 Trust Negotiation

Trust negotiation [12, 1] is a protocol for establishing
trust between strangers with no preexisting relationship.
Automated trust negotiation works by exchanging digital
credentials until enough trust has been established to gain
access to a service or resource. If each party has the required
credentials, and their policies allow them to be shown to
each other, then trust negotiation will succeed.

An access control policy defines what credentials must
be supplied before access to a resource is granted. Poli-
cies can also be used to protect sensitive credentials. For
instance, a credit card credential won’t be disclosed unless
the other party has a Better Business Bureau credential.

4.2.1 TNK Protocol
Trust Negotiation in Kerberos (TNK) is an EPAK-based

protocol that uses trust negotiation to authenticate clients.

Pre-Authentication Phase The protocol for TNK pre-
authentication is shown in Figure 6, phase 0:

a) The TNK-C sends an EPAK-REQ to the TNK-S
b) Trust negotiation is performed until the policy has been

satisfied, or trust negotiation fails
c) If the policy is satisfied, an EPAK-REP is returned
d) The epakticket and session key Kc,as of the EPAK-

REP are stored in the client’s credential cache

The principal name in the EPAK-REQ serves as the role
the user must satisfy before the EPAK-REP is disclosed.
By its very nature, trust negotiation provides a scalable,
attribute-based mapping of users to principals.

The communication between the TNK-C and TNK-S is
performed over a secure TLS connection to protect poten-
tially sensitive credentials (step 0b), provide server authen-
tication, and to prevent an eavesdropper from viewing the
session key Kc,as in the EPAK-REP (step 0c).

AS Authentication Phase The protocol for AS authenti-
cation after TNK pre-authentication is shown in Figure 6,
phase 1. This phase is identical to phase 1 of EPAK.

4.2.2 TNK vs PKINIT

PKINIT [13] is a Kerberos extension that uses public-
key cryptography for initial authentication. Similar to TNK,
only phase 1 of the protocol changes. But unlike TNK,
PKINIT authentication does not require additional rounds.

In PKINIT, the user sends a certificate to the AS. After
verifying its validity (signed by a trusted CA and not re-
voked or expired), the AS responds with the TGT and ses-
sion key. The session key is encrypted with the user’s public
key extracted from the certificate, instead of a password-
derived key. PKINIT also allows a key generated through a
Diffie-Hellman key exchange to be used for this encryption.

PKINIT relies on trusted CAs to issue certificates for
users. The principal names are usually specified directly
in the certificates, creating a one-to-one mapping between
certificates and principals. This limits PKINIT’s ability to
operate as an open system, since the CAs must work directly
with the Kerberos administrator in managing principals.

PKINIT can function as an open system if the AS is mod-
ified to use a different binding mechanism from certificate
properties to Kerberos principals [13]. One way to achieve
this is to map large groups to principal names. For exam-
ple, the subject name of the certificate maps to a principal
name via regular expression mapping, similar to the SAWK
mapping policy. Other certificate properties could also be
involved in the mapping to provide an even more flexible,
attribute-based solution, similar to TNK.

5 EPAK Implementation
The EPAK implementation is shown in Figure 7. EPAK

is implemented as a patch to Heimdal Kerberos [3], and this
section is geared towards those familiar with Kerberos im-
plementations. Additional details are available in [4].

Changes to the client include modifying kinit and
adding helper programs genpatrequest and savepat.
Changes to the server include modifying kdc and adding
the genpatreply helper program.

genpatrequest A PAC utility for generating an EPAK-
REQ. The principal name is specified (if different from the
user’s name), as well as the ticket lifetime and start time.

genpatreply A PAS utility for generating an EPAK-
REP from a valid EPAK-REQ. It must be run by a priv-
ileged user with access to the EPAK key (Kepak) stored

k d c

1

kin i t - -epak

PAS

PAC
g e n p a t r e q u e s t

s a v e p a t

g e n p a t r e p l y

(Credential Cache)

2

3

4

5

6

7

8

9 10

7

Figure 7. EPAK Implementation

in the krb5.keytab file. Kepak is used to encrypt the
epakticket in the EPAK-REP. The verification rules speci-
fied in Section 3.2 are enforced. The existence of the client
principal is not enforced because:

1. The PAS may not have access to the Kerberos
database, especially if the PAS is running on a different
machine.

2. The principal name will be verified later, by the kdc
when it receives the AS request.

savepat A PAC utility for saving an EPAK-REP to the
client credential cache. The epakticket, session key Kc,as,
and pasrealm from the EPAK-REP are formatted into a
krb5 credswhich is then stored into the credential cache
with krb5 cc store cred(). The credential can be
viewed using klist.
kinit A Kerberos program extended to support a new op-
tion, --epak for performing EPAK instead of password-
based authentication. The epakt/REALM service creden-
tial, which holds an epakticket and session key Kc,as, is
read from the credential cache. If it does not exist or is
expired, kinit aborts with an error. An epakauth is cre-
ated and encrypted with Kc,as, and is sent along with the
epakticket in a padata of type PA-EPAK-AS-REQ to the
AS. If the AS reply includes a PA-EPAK-AS-REP indicat-
ing success, kinit uses Kc,as to decrypt part of the reply.
kdc A Kerberos program that performs the function of the
AS. It supports EPAK by recognizing and responding ap-
propriately to PA-EPAK-AS-REQ padata. Kepak is used
to decrypt the epakticket, and the rules specified in Sec-
tion 3.2 are enforced, including verification of epakauth,
principal name, and ticket times. The AS reply includes the
TGT and session key Kc,tgs like normal, but Kc,tgs is en-
crypted with Kc,as instead of a Kc. A PA-EPAK-AS-REP
is also included in the reply.

k d c

kin i t - -epak

s a w k s

s a w k c

g e n p a t r e q u e s t s a v e p a t

g e n p a t r e p l y

(Credential Cache)

3

4

5

6

8

9

10

7a

E m a i l P r o v i d e r

f e t c h t o k e n

s a w k i n i t
1

2

11 12

7b

7b

9

Figure 8. SAWK Implementation

A new option, epak ticket lifetime, added to
krb5.conf indicates the maximum lifetime of an EPAK
ticket. The default value is eight hours.

5.1 SAWK Implementation

The SAWK implementation is shown in Figure 8.

sawk A script that runs sawkinit followed by kinit
--epak, to perform pre-authentication and AS authentica-
tion in one command.

sawkinit A script that runs genpatrequest, sawkc,
and savepat. The sawkinit.conf configuration file
specifies the location of the these programs and the host-
name and port of the SAWK-S machine. The ticket times,
if specified, are forwarded to genpatrequest, and the
credential cache name is forwarded to savepat.

sawkc and sawks Java programs that perform one-
round, group-based SAW authentication. They commu-
nicate over TLS to protect the AuthTokenuser returned
in step 7a. sawksc sends an email address, speci-
fied in sawkc.properties, and EPAK-REQ in step
4. sawks checks if the email address is valid and maps
it to a principal name according to the sawks.policy
file, which uses regular expressions to group email ad-
dresses. In step 7a, sawks responds with three items:
AuthTokenuser, an EPAK-REP encrypted with Auth-
Tokencomplete, and a transaction ID that helps identify
the email of step 7b. To prevent leaking valid/invalid ad-
dresses, an authentication failure returns a random value in
place of the EPAK-REP. In step 7b fetchtoken retrieves
AuthTokenemail, which is XOR-ed with AuthTokenuser

to produce AuthTokencomplete for decrypting EPAK-REP.

fetchtoken A helper C program that polls the email
provider to obtain the AuthTokenemail. The email to

k d c

kin i t - -epak

t n k s

t n k c

g e n p a t r e q u e s t s a v e p a t

g e n p a t r e p l y

(Credential Cache)

3

4

5

6

8

9

11

t nk in i t
1

2

12 13

10

7

10

Figure 9. TNK Implementation

retrieve is identified by a transaction ID and the SAWK-
S hostname (to help prevent phishing attacks). The
email subject line contains the transaction ID, hostname,
and AuthTokenemail to facilitate quick retrieval. The
AuthTokenemail is saved to a specified token file to be
read by sawkc. Account properties for email retrieval
are specified in the configuration file fetchtoken.conf
and include username, email protocol, mail server, and
timeout. Valid email protocols include POP3 and IMAP,
optionally over TLS.

5.2 TNK Implementation
The TNK implementation is shown in Figure 9.

tnk A script that runs tnkinit followed by kinit
--epak, to perform pre-authentication and AS authenti-
cation in one command.
tnkinit A script that launches the genpatrequest,
tnkc, and savepat programs. A configuration file,
tnkinit.conf, specifies the location of the three pro-
grams and the hostname and port of the machine running
the TNK-S. The ticket times, if specified, are forwarded to
genpatrequest, and the credential cache name is for-
warded to savepat.
tnkc and tnks Java programs that perform trust negotia-
tion to obtain the resource “Authenticated as principal X”.
Policy files dictate what credentials must be released to ob-
tain this resource. The tnkc and tnks communicate over
TLS to protect potentially sensitive credentials. The EPAK-
REQ is sent in step 4, trust negotiation is performed in step
7, and the EPAK-REP is returned in step 8 if trust negotia-
tion succeeds.

6 Threat Analysis
Kerberos has several security properties that make it re-

sistant to attacks (see Section 2): mutual authentication,

message integrity, and confidentiality. EPAK aims to retain
these properties and reduce opportunities for new flaws by
extending phase 1 with the standard padata mechanism,
and leaving phases 2 and 3 unchanged.

Phase 0 (pre-authentication) adopts the proven Kerberos
approach for tickets and session keys. An epakticket is
confidential and integrity protected. Only the PAS and AS
can access it, and any modifications can be detected. The
epakauth, created by the client, is encrypted with the ses-
sion key Kc,as so that it can be viewed only by the AS. It is
short-lived and provides assurance that the client presenting
the ticket is the one who was issued the ticket.

If EPAK-REQ is not communicated securely, an eaves-
dropper can replay it. However, an attacker must either
prove his authenticity before he obtains an EPAK-REP or
the PAS encrypts the EPAK-REP in a manner that only an
authentic client can obtain the decryption key.

The PAS must safeguard the session key returned in
EPAK-REP in order to prevent an eavesdropper from gain-
ing access. It needs to be encrypted, and the implemen-
tations of SAWK and TNK encrypt the entire EPAK-REP
using TLS.

TLS communication between the PAC and PAS provides
server authentication and DNS spoofing protection. TNK
supports additional server authentication during negotia-
tion.

Access to a client’s credential cache enables imperson-
ation. Kerberos tickets can be used multiple times and
therefore require persistent storage. Both system admin-
istrators and those with physical access to a client’s ma-
chine can impersonate a user holding a valid ticket. An
epakticket is non-renewable, so it presents less risk than
other tickets. This risk is also mitigated by implementations
that store credentials in memory instead of on disk.

The padata of phase 1 (PA-EPAK-AS-REQ) may be
replayed by an attacker, but is ineffective for two reasons.
First, the epakauth is short-lived, providing a small win-
dow of vulnerability. Second, even within that window the
AS reply is useless to an attacker who does not possess the
session key Kc,as.

An epakticket for one principal cannot be used to au-
thenticate to a different principal; an expired epakticket
will also be rejected. A client should not be allowed to ob-
tain a ticket with an arbitrary lifetime. The PAS restricts the
ticket lifetime by enforcing the rules specified in Section
3.2. Likewise, the AS only accepts valid tickets meeting the
conditions delineated in Section 3.2.

Each EPAK authentication method must undergo a thor-
ough security analysis. SAWK and TNK inherit the security
risks of SAW and trust negotiation, respectively, as well as
the security of TLS. The design and use of the EPAK-REQ
and EPAK-REP messages in phase 0 must also be analyzed.

7 Related Work
Public key based Kerberos for Distributed Authentica-

tion (PKDA [9]) relieves the load on a Kerberos KDC server
by off-loading authentication to the application servers.
Clients have no contact with the KDC using this protocol.
PKDA is essentially a replacement for SSL, but the authors
themselves admit that SSL is a ”formidable” solution.

PKINIT [13] is a Kerberos extension that moves Ker-
beros beyond password-based authentication to public-key
cryptography, which provides greater scalability. EPAK
builds on ideas from PKINIT and other public-key exten-
sions to enhance Kerberos in similar ways.

Role-based Access Control (RBAC) [8] maps user iden-
tities to roles within an organization. Users authenticate to
known subjects, and then subjects are assigned a role(s). All
access control policies are specified in terms of roles. This
indirection provides scalability. As users enter and leave
the system, the role assignment rules change, but all access
control policies remain the same. EPAK leverages this same
idea to map users to Kerberos principals.

GSSAPI [6] is a generic API for client/server authen-
tication. Since most Kerberos distributions include a GSS-
API implementation, applications that support GSSAPI also
support Kerberos. Extending Kerberos with EPAK allows
these applications to support many other authentication sys-
tems. Alternatively, an authentication system could just im-
plement the GSSAPI interface, but that would not afford it
the benefits of Kerberos (like SSO), and it could not be used
with Kerberized services that do not support GSSAPI.

8 Conclusions and Future Work
EPAK is a powerful framework for incorporating diverse

authentication mechanisms into Kerberos. EPAK cleanly
separates pre-authentication and AS authentication so that
a variety of authentication systems can be loosely coupled
with Kerberos, while maintaining backwards compatibility.
Two concrete examples, SAWK and TNK, have been de-
signed and implemented to demonstrate the extensibility of
EPAK.

SAWK and TNK provide grouping techniques that in-
crease Kerberos’ ability to scale to larger numbers of people
since services can be provided to outsiders without manag-
ing individual user accounts. Large Kerberos deployments
(e.g., Microsoft Active Directory) could adopt EPAK to pro-
vide businesses with a deployment path to more open sys-
tems.

New authentication systems can now be integrated more
easily into Kerberos to increase their usability and perfor-
mance without changing existing Kerberos-based security
frameworks. Complex authentication systems with slow
performance can leverage Kerberos’ SSO capability.

EPAK extensibility makes it possible for individuals and
organizations to independently extend Kerberos without the

overhead of the standards process. However, the thorough
peer review that the standards process provides must re-
main, but can occur in a more decentralized manner.

In the future, additional authentication protocols can be
incorporated into Kerberos using EPAK to test its extensi-
bility and guide further enhancements. EPAK standardiza-
tion is a worthy goal. The types PA-EPAK-AS-REQ and
PA-EPAK-AS-REP need to be assigned reserved values to
avoid conflicts. An EPAK RFC is a natural next step for it
to become an IETF standard.

The software for EPAK, SAWK, and TNK is available at
http://isrl.cs.byu.edu.

References
[1] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-X:

A Peer-to-Peer Framework for Trust Establishment. IEEE
Transactions on Knowledge and Data Engineering, 2004.

[2] A. Harbitter and D. A. Menascé. Performance of Public
Key-Enabled Kerberos Authentication in Large Networks.
In IEEE Conference on Security and Privacy, Oakland, CA,
May 2001.

[3] Heimdal Kerberos 5 Impl. http://www.pdc.kth.se/heimdal/.
[4] P. Hellewell. Extensible Pre-Authentication in Kerberos.

Master’s thesis, Computer Science Department, Brigham
Young University, Aug 2007.

[5] D. Kearns. Kerberos and Windows 2000. Network World
Fusion, Mar 2000.

[6] J. Linn. RFC: 2743: Generic Security Service Application
Program Interface Version 2, Jan 2000.

[7] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC
4120: The Kerberos Network Authentication Service (V5),
Jul 2005.

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE Com-
puter, 29(2):38–47, Feb 1996.

[9] M. A. Sirbu and J. C.-I. Chuang. Distributed Authentication
in Kerberos Using Public Key Cryptography. In Network
and Distributed System Security, Feb 1997.

[10] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In USENIX
Technical Conference, 1988.

[11] T. W. van der Horst and K. E. Seamons. Simple Authentica-
tion for the Web. In 3rd International Conference on Secu-
rity and Privacy in Communication Networks, Sep 2007.

[12] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Auto-
mated Trust Negotiation. In Information Survivability Con-
ference and Exposition, Jan 2000.

[13] L. Zhu and B. Tung. RFC: 4556: Public Key Cryptography
for Initial Authentication in Kerberos (PKINIT), Jun 2006.

