
Automated Format String Attack Prevention for Win32/X86 Binaries

Wei Li Tzi-cker Chiueh

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400

Abstract

A format string attack exploits the fact that variadic func-
tions determine the exact number of input arguments based
on the format string argument, and compromises the vic-
tim application’s address space by accessing data areas be-
yond the original input argument list the caller prepares.
This paper describes the design, implementation and evalu-
ation of a Win32 binary transformation tool called Lisbon,
which transparently inserts into Win32 binaries additional
checks that protect them from format string vulnerabilities.
Lisbon casts the format string attack prevention problem as
an input argument list bound checking problem. To reduce
the run-time checking overhead, Lisbon exploits the debug
register hardware, which is available in most mainstream
CPUs including Intel’s X86 architecture, to detect if a callee
accesses data outside the input argument list. Moreover,
Lisbon is able to detect format string attacks without inter-
preting their format strings and is thus potentially appli-
cable to similar attacks against other functions that access
input arguments in the same way as printf(). The run-
time throughput penalty of the first Lisbon prototype is un-
der 2% for a set of test network applications that are known
to be vulnerable to format string attacks.

1. Introduction

A format string attack exploits the fact that functions
such as printf() can accept a variable number of input argu-
ments and the exact number of input arguments is implicitly
specified in the first argument, the format string argument.
These functions are often referred to as variadic functions.
Given a call to a variadic function, the callee has no way of
determining if the input format string specifies more input
arguments than is set up by the caller; only the caller can
check if the number of arguments it prepares is consistent
with that specified in the format string. If an attacker can
control the format string argument of a variadic function in
a victim application, it is possible for the attacker to read

or write the application’s address space. If the caller of a
variadic function can explicitly specify the number of input
arguments it prepares as another input argument, it would
have made format string attack much more difficult, if not
impossible. Unfortunately the interface to existing variadic
functions such as printf() does not permit this extension.

Although there have been several attempts to solve the
format string attack problem, all of them share two defi-
ciencies. First, they did not stop all known variants of for-
mat string attacks, for example, vulnerable vprintf functions
that are encapsulated by multiple layers of wrapper func-
tions. Second, they could not be directly applied to com-
mercially distributed Win32 binaries because some infor-
mation they need is inherently lost in binary programs, for
example, the number of arguments of a printf call as speci-
fied in the source code.

This paper presents the design, implementation and eval-
uation of a format string attack prevention system called
Lisbon, which to the best of our knowledge is the first tool
that can protect legacy Win32 binaries. There are two key
challenges in adding format string attack prevention logic
to Win32 binaries. First, state-of-the-art disassemblers such
as IDAPro cannot achieve 100% accuracy and coverage for
commercially distributed Win32 binaries. Lisbon solves
this problem by leveraging a novel binary analysis and in-
strumentation infrastructure called BIRD [17].

Second, unlike source code, an executable binary gener-
ally does not contain enough information to determine the
number of input arguments in each function call. There-
fore, it is not always possible to determine each variadic
function call’s exact list of input arguments in a binary pro-
gram, let alone compare its format string with its actual in-
put arguments. Lisbon solves this problem by ensuring that
when a variadic function accesses its input argument list,
it never steps beyond the list’s bound. More specifically,
because it is more important to protect the local variables
of a caller of a variadic function than to stop the variadic
function from stepping outside its input argument list, Lis-
bon actually checks a variadic function’s accesses against
the lower bound of its caller’s local variable region, rather



than the upper bound of its input argument list. By cast-
ing format string attack prevention into a bounds checking
problem, Lisbon does not need to determine the exact input
arguments of every variadic function call, and thus can suc-
cessfully apply this technique directly to binary programs.

Another advantage of casting the format string attack
prevention problem as an input argument list bound check-
ing problem is that the resulting solution is potentially ap-
plicable to all variadic functions, not just printf() and its
variants. More concretely, unlike other solutions, Lisbon
does not require interpretation of the format string argu-
ment. However, this generality comes with an implementa-
tion challenge: given an input argument list associated with
a function call, how to detect any overflow attempts by the
callee or its descendants in the call chain. Lisbon solves
this problem through a novel application of the debug regis-
ter facility supported in most modern processors including
X86, SPARC, MIPS, ARM, etc. By setting the bound to
be checked into a debug register, Lisbon is able to perform
list bound checking without requiring any software checks,
thus reducing the associated performance overhead to the
minimum.

Section 2 reviews previous work on format string attack
prevention. Section 3 describes the format string attack
problem in more detail, and the solution used in Lisbon.
The implementation issues of the first Lisbon prototype on
the Windows platform are discussed in Section 4. In Sec-
tion 5 we present the evaluation results of the effectiveness
of the Lisbon prototype and its performance overhead. The
limitations of Lisbon are discussed in Section 6. Section 7
concludes this paper with a summary of research contribu-
tions and an outline of future work.

2. Related Work and Comparison

Successfully launching a format string attack requires
multiple conditions to be present, and previous efforts on
preventing/detecting format string attacks focused on elim-
ination of one or multiple of these conditions.

One proposal to thwart format string attacks is to force
all format strings to be constant. This is not an unreason-
able approach because many format string vulnerabilities
arise because of inadvertent missing of simple format string
such as “%s”. Pscan [9] is a simple lexical analysis tool
that searches for all calls to printf-like functions, and raises
a warning whenever their format string is the last argument
and is not a constant. The GCC compiler [12] incorporates
a similar feature. When the flag “-Wformat=2” is enabled,
a compiler warning is issued whenever a non-constant for-
mat string is found. Libformat [19] is a customized li-
brary wrapping around printf-like functions for Linux ap-
plications. It intercepts every call to a variadic function
and flags an error whenever its format string is modifiable

and contains the “%n” specifier. Unfortunately, disallowing
non-constant format string may break some applications;
for example, those applications that use the GNU interna-
tionalization library tend to generate format strings dynam-
ically [6] and thus trigger false alarms under these tools.

Instead of forcing all format strings to be constant, some
systems enforce this constraint only for “tainted” format
strings. Shankar et al. [24] implemented such a tainted
format string analysis system. By introducing a new type
qualifier called “tainted” into the C language, they are able
to track the data usage and propagate the type information
associated with the data. When a format string is derived
from an external input, it would be marked as “tainted” and
triggers a check upon its use. This approach is superior be-
cause of reduced false alarms. However, it still generates
false positives. Moreover, it imposes additional work on de-
velopers in the form of extra annotation and re-compilation
of the source code.

FormatGuard [6] modifies the Gnu C Preprocessor [11]
to count the number of input arguments of variadic function
calls statically, and checks this count against the conver-
sion specifiers in the format string dynamically through a
wrapper. If they don’t match, it generates a warning. There
are several limitations to FormatGuard. First, FormatGuard
assumes the number of input arguments in variadic func-
tion calls is known statically, and therefore cannot prevent
format string attacks through vprintf-like functions or their
wrapper functions. Unfortunately, many well-known for-
mat string vulnerabilities in software such as Wu-Ftpd [28]
and Proftpd [26] are indeed due to vprintf-like functions.

Libsafe [27] is a general approach to thwarting local
buffer overflow attacks by ensuring that local variable ac-
cesses within a function, including accesses to input argu-
ments, should never exceed its stack frame. As in libformat,
libsafe is implemented as a wrapper library that intercepts
each variadic function call and checks the format string.
Libsafe can protect binary programs that make calls to vari-
adic functions it intercepts and checks. The major limitation
of libsafe is its dependence on the usage of frame point-
ers. As a result, it simply cannot handle programs that are
compiled without frame pointer such as the “-fomit-frame-
pointer” flag in GCC or the “/Oy (frame-pointer omission)”
option in VC++. Unfortunately, many Win32 binaries are
indeed distributed without using frame pointer.

Most known format string attacks [20] rely on the con-
version specifier “%n” in printf-like functions to modify the
victim application’s address space. Accordingly, several
systems attempt to stop format string attacks by prevent-
ing attackers from abusing the “%n” specifier. Libsafe [27]
checks if the target of a “%n” specifier points to a return ad-
dress or a frame pointer on the stack to prevent them from
being tampered. But it does not prevent other critical data
such as function pointers and sensitive data variables from



Table 1. Comparison between Lisbon and other dynamic checking approaches to preventing format
string attacks

Feature Techniques
Libformat FormatGuard Libsafe White-listing Lisbon

Source code not required Y Y Y
Applicable to Win32 binaries Y
No false positives Y Y Y Y
Handle vprintf-like functions Y Y Y Y
Handle wrapper functions Y∗ Y Y
Stop read attacks Y Y Y
Not format string-specific Y Y∗∗ Y
Protect current stack frame Y Y Y Y

∗: only for direct call case ∗∗: when frame bound checking is turned on

being altered. Ringenburg and Grossman proposed a white-
listing method [18] that constructs a list of addresses that
are passed into a variadic function as integer-pointer-type
arguments, and applies sanity checks only on addresses in
this list. The white-list method requires interpretation of
conversion specifiers and doesn’t stop format string attacks
that allow attackers to read memory locations in victim ap-
plications.

Compared with previous works, Lisbon is the first tool
that can effectively protect commercially distributed Win32
binaries without breaking legitimate applications or inter-
preting the format strings. Table 1 shows a detailed compar-
ison between Lisbon and other solutions to the format string
attack problem that take the dynamic checking approach.

3. Bound Checking for Input Argument List

3.1. Format String Vulnerabilities and At-
tacks

Format string vulnerability mainly stems from a pro-
gramming error that leads the format string of a variadic
function such as printf to be directly controllable by an ex-
ternal input. Consider the following two calls to printf: (1)
printf (“%s”, user string) and (2) printf (user string), where
user string is derived from an external input. The results
of these two calls are exactly the same if user string is just
a simple character string. However, if user string contains
conversion specifiers, each of which corresponds to a sepa-
rate input argument and represents a command that controls
how printf operates on its corresponding argument, the sec-
ond call could trick printf into believing there are more than
one input argument in this call. As a result, even though
printf (user string) contains only one argument, the fact that
user string contains K conversion specifiers is enough to
convince printf to access additional memory locations on
the stack that are beyond user string. If each of these K
conversion specifiers in user string denotes an integer, then

the attacker can trick printf into displaying the next K inte-
gers on the stack.

To modify the victim application’s address space, format
string attacks exploit a special conversion specifier “%n”,
which counts the number of characters written so far and
writes the result into the address given by its correspond-
ing argument. By carefully crafting a format string that
prints out a pre-computed number of characters before the
“%n” specifier, the attacker can write a chosen value to
some memory location. Moreover, because the additional
arguments required by the conversion specifiers come from
the stack frame of the caller to printf (user string), as does
user string, they are likely to be controllable by the attacker
as well. With the “%n” specifier and the ability to manip-
ulate its corresponding argument, the attacker now has the
ability to write an arbitrary value to a chosen memory lo-
cation. If the memory location chosen to be overwritten is
a control-sensitive data structure that contains a return ad-
dress or function address, the attacker could hijack the con-
trol of the victim program.

3.2. Identification of Input Argument List

The format string vulnerability is rooted in the fact that
a printf-like function can be tricked by the format string ar-
gument into believing it has more arguments than the caller
supplies and accessing memory locations lying beyond the
bound of its input argument list. Therefore we propose a list
bound checking approach to eliminate the format string vul-
nerability. There are two families of printf-like functions,
each with a different function template and both suscepti-
ble to the format string attack. Table 2 lists members of
each family. From now on, we refer to the first group as
fprintf-like function, and to the second group as vprintf-like
function.

The major difference between fprintf-like functions
and vprintf-like functions lies in the way they take
the input arguments. The prototypes of fprintf and
vprintf are int fprintf(FILE *stream, const



Table 2. A list of variadic functions using a format string argument
Function Type Member Library Functions

Input arguments explicitly passed through copying printf, fprintf, sprintf, snprintf, syslog, err, warn
Input argument list implicitly passed through a pointer vprintf, vfprintf, vsprintf, vsnprintf, vsyslog, verr, vwarn

char * format, ...) and int vprintf(const
char * format, va list ap), respectively. Fig-
ure 1 shows the stack layouts of an fprintf-like function
and a vprintf-like function called by a wrapper function.
In fprintf-like functions, the input arguments are explicitly
listed in the function call. The ... notation in fprintf’s
function prototype means that it could be substituted by
an arbitrary number of arguments when fprintf() is called.
These arguments are placed on the stack right next to the
first or format string argument. When a fprintf-like func-
tion is encapsulated by layers of wrapper functions, its ar-
guments are explicitly passed through these wrapper func-
tions. Therefore, Lisbon can put list bound checking code in
any of the wrapper functions that eventually call the fprintf-
like function.

vprintf−like function

Address

Return Address 

... ...

... ...

Return Address 

Format Argument
List Bound

... ...

of vprintf

... ...
vaargs pointer

of Wrapper Func.
Return Address 

vaargs Argument0

vaargs ArgumentN

... ...

Func. Argument0

Func. Argument1

Func. ArgumentN

Local Variable1

... ...

(format string)

Local Variable1
Local Variable2

Local Variable2

of Printf

High
Address

Low

Stack
Growth

fprintf−like function

Figure 1. The stack layouts of fprintf-like and
vprintf-like function calls

In contrast, vprintf-like functions have only two argu-
ments, the first being the format string and the second be-
ing a pointer to a special data structure called va list,
which correspond to a list of user-defined data items that are
placed consecutively on the stack but may not be adjacent
to the two original input arguments. Because vprintf-like
functions use a separate pointer to refer to the input argu-
ment list, this pointer can be passed through layers of wrap-
per functions before it is actually de-referenced. As a re-
sult, the function in which a va list structure is prepared
may not directly call the function in which the arguments in
the va list structure are accessed. Accordingly, Lisbon
needs to identify the function whose stack frame actually
holds the list of input arguments, and puts bound checking

into the function it calls. Let’s use the following example to
illustrate Lisbon’s list bound checking mechanism. Assume
an application calls a function user wrapper, which
prepares a va list structure and calls another function
vprintf wrapper, which in turn calls vprintf. Lisbon
needs to identify the function in which the va list data
structure is prepared, in this example, the user wrapper
function, and puts the list bound check into the function that
user wrapper calls, in this case vprintf wrapper.

void user_wrapper(
const char *fmt, ...

)
{
va_list ap;
... ...
va_start(ap, fmt);
vprintf_wrapper(fmt, ap);
va_end (ap);
... ...

}

void vprintf_wrapper (
const char *fmt,
va_list ap

)
{
... ...
vprintf (fmt, ap);
... ...

}

To identify the function in whose stack frame the
va list data structure of a vprintf-like function call is
stored, Lisbon first constructs a function call graph of the
given binary [16], and traces backward from the vprintf-
like function being called. In this trace-back process, Lis-
bon performs a backward def-use data flow analysis starting
from the vprintf-like function’s pointer argument, to iden-
tify where its value is first created. As a heuristic, Lisbon
searches for a specific instruction sequence corresponding
to the macro ‘‘va start(ap, fmt)".

3.3. Detecting List Bound Violation

One way to detect argument list bound violation for
fprintf-like functions is to count the number of arguments at
the call site, compare that count with the number of conver-
sion specifiers in the format string, and declare a violation
if the latter is larger than the former. This method requires
one to interpret the format string in the same way as the
fprintf-like functions. Although it is conceptually simple,
there are two disadvantages. First, this approach requires
the same format string handling engine in the C runtime li-
brary. Otherwise, any discrepancies might leave a loophole
for attackers to exploit. Second and more importantly, it is
not always possible to get an accurate count of the number
of arguments for every function call in a binary program.
Therefore, this approach cannot easily be applied to binary
programs.

Lisbon takes a more general approach to checking argu-
ment list bound violation. More concretely, for each fprintf-



like or vprintf-like function call, it identifies its input ar-
gument list, reserves a canary word [7] immediately after
the list’s end, and checks if the called function accesses the
canary word at run time. Even though a format string at-
tack could use the “%n” directive to tamper with any ar-
bitrary memory location in the victim application, such an
attack needs to put the target memory location’s address in
the victim variadic function call’s input argument list first.
However, the proposed input argument list bound checking
approach could detect and stop accesses to the memory ad-
dress arguments associated with the “%n” directives, and
thus effectively prevent such tampering.

The proposed scheme enforces the following invariant:
the canary word associated with the input argument list of
an fprintf-like or vprintf-like function call should never be
accessed by the called function and its descendants in the
function call graph. Because a called fprintf-like or vprintf-
like function may access the caller’s stack frame through
a pointer passed in as an input argument, it is not safe to
mark an existing word in the caller’s stack frame as a ca-
nary word. Instead, Lisbon creates a stub wrapper function
that copies the original arguments, reserves a canary word
above the argument list, then calls the callee function, and
finally cleans up and returns after the callee returns. Fig-
ure 2 shows how the stack layout associated with a printf()
call changes as a result of the introduction of this stub wrap-
per function.

Canary

Figure 2. The stack frames before and after
Lisbon’s stub wrapper function

This stub wrapper function is introduced immediately
above the fprintf-like function in the case of an fprintf-
like function call, and immediately below the function in
which the va list data structure is created in the case of
a vprintf-like function call.

A key challenge in protecting executable binaries from
format string attacks is to infer the number of arguments
in each call to a printf-like function. Lisbon solves this
problem by shifting the focus to the protection of callers
of printf-like functions, as it is more important to protect
the local variables of a caller of a printf-like function than
to stop the printf-like function from stepping outside its in-

put argument list. So the research question becomes how
to identify the local variable region of a caller to a printf-
like function so that Lisbon can copy everything between
the end of the caller’s local variable region and the current
stack pointer to the stub wrapper function and set up the
canary word accordingly. The Visual C++ compiler on the
Windows platform follows the convention that when a func-
tion is called, it first allocates its local variable region on the
stack, and then grows the stack further when the function
actually calls other functions. This convention allows Lis-
bon to treat the stack region that is immediately allocated
after a function’s prolog to be its local variable region. Us-
ing this approach, which is applicable to both fprintf-like
and vprintf-like functions, Lisbon does not need to know the
exact number of arguments used in each printf-like function
call, and still can effectively protect the caller’s stack from
being overflowed by a format string attack.

4. Implementation

4.1. Binary Analysis and Instrumentation
Infrastructure

Because the design goal of Lisbon is to protect
Win32/X86 binaries from format string attacks, it is built
on top of a Win32/X86 binary analysis and instrumentation
infrastructure called BIRD [17], which is specifically de-
signed as a platform for developing systems that enhance
software security. BIRD supports DLLs, exception han-
dlers, and multi-thread programming. The overall system
architecture of BIRD is shown in Figure 3.

Win32 Exe. File X

Exe. Aux. File Info

Static Disassembler

Static−patched Binary

Checking
Engine

Dynamic
Disassembler

Instrumentation
Engine

BIRD Runtime Engine

Figure 3. The system architecture of BIRD

BIRD targets at Win32 binaries on the Intel X86 ar-
chitecture, which state-of-the-art disassemblers such as
IDAPro cannot achieve both 100% disassembly cover-
age and accuracy. However, to safely instrument exe-
cutable binaries requires 100% disassembly accuracy. To
achieve 100% disassembly accuracy, BIRD performs both
static and dynamic disassembly. Although BIRD may not



achieve 100% coverage, it does guarantee that every in-
struction in an executable binary will be properly exam-
ined/transformed before it is executed. That is, BIRD may
miss those instructions that never get executed in a particu-
lar run, but these instructions do not matter exactly because
they are not executed.

More concretely, BIRD first statically disassembles a bi-
nary file as much as it can, and defers the part that it can-
not disassemble statically to a dynamic disassembler at run
time. The part that can be statically disassembled is called
the known area, while the rest is the unknown area. A pro-
gram’s control starts in the known area and can only be
transferred to the unknown area through indirect branch or
call instructions. By checking if the target address of every
indirect branch and call lies in the unknown area, BIRD can
determine whether it should invoke dynamic disassembling
on the target instruction. As a program runs, its known area
grows and its unknown area shrinks.

BIRD also supports binary instrumentation when the
user specifies an instrumentation point specification (e.g.,
function prolog) and an instrumentation routine. More
specifically, BIRD adds a new section to the input program
that contains the instrumentation code, and replaces the in-
struction at each instrumentation point with a jump to the
corresponding instrumentation instruction sequence. Be-
cause static disassembling cannot achieve 100% code cov-
erage, BIRD performs both static and dynamic instrumen-
tation.

The essential functionalities of BIRD’s run-time disas-
sembling and instrumentation are implemented as a dy-
namic linked library called dyncheck.dll which is
functionally independent of the applications to be instru-
mented. The instrumented application’s import table is
modified to include dyncheck.dll so that it is always
loaded automatically at start-up time. In order to get the
control of the program when the program is executed, BIRD
also instruments the program’s entry point [3] so that any
instrumented binary program will start with BIRD’s initial-
ization and monitoring engine first.

Normally, only functions without explicit call sites are
left to dynamic disassembling and analysis. For format
string attack detection, most of the interesting interception
and analysis is actually done statically because callers to
printf-like functions can be recognized statically. However,
BIRD’s dynamic interception capability is still useful be-
cause it allows Lisbon to detect callers to printf-like func-
tions through indirect calls such as function pointers.

4.2. Identification of Printf-like Functions

To identify call sites to printf-like functions, Lisbon first
needs to identify the entry point of such functions. This step
is required for any systems that aim to protect Win32 bina-

ries from format string attacks, and is largely independent
of the internal working of Lisbon. There are two cases. If
a printf-like function is statically linked into an application,
its instructions are contained in the application’s binary. If a
printf-like function is dynamically linked, the application’s
binary only contains a link to its instructions, which are
stored in a separate file.

When the instruction sequence of a printf-like function
is already contained in an application’s binary file, it is not
easy to recognize its entry point because the binary file typ-
ically does not include any symbolic name associated with
the printf-like function. To solve this problem, we extract
the body of each printf-like function from the standard li-
brary. For example, in Visual C++, the C runtime library
functions come from libraries such as LIBC.LIB, which
maintains each library function’s name, body and reloca-
tion information. Therefore, one can search LIBC.LIB
with a printf-like function’s name to retrieve its function
body, derive a function signature from its body, and use this
function-specific signature to search an application binary
for the entry point of this printf-like function.

If a printf-like function is dynamically linked into an ap-
plication at load-time, the application’s binary contains a
link to the function’s body in its import table. A caller
to a dynamically linked function uses an indirect call to
transfer control to the target function, whose target address
is stored in the import table entries. Therefore, to iden-
tify callers to dynamically linked printf-like functions in
an application binary, Lisbon first locates the import ta-
ble entries corresponding to these printf-like functions, and
then searches the binary for functions that use indirect calls
whose operand matches one of these import table entries.

4.3. Bound Checking Implementation

A key innovation in Lisbon is its use of debug register in
detecting bound violation of input argument accesses. De-
bug register hardware is universally supported by most if
not all mainstream CPUs such as Intel’s 32-bit and 64-bit
X86, ARM, SPARC, MIPS, PowerPC, etc. In addition, the
interfaces these CPUs expose to the software are largely the
same. In this paper, we will focus only on the Intel X86
processor [13]. However, the technique described below is
equally applicable to other processors without much modi-
fication.

The original purpose of having debug registers is to sup-
port instruction and data breakpointing functions required
by software debuggers. In the X86 architecture, there are
totally eight debug registers (DB0 through DB7) and two
model-specific registers (MSRs). Among them, DB4 and
DB5 are reserved. DB6 keeps the debugger status while
DB7 is for control/configuration. DB0 to DB3 are used
to hold memory addresses or I/O locations that the debug-



ger wants to monitor. If being enabled, whenever a mem-
ory or instruction address matches the contents of one of
these four registers, the processor raises a debug exception.
With this support, the debugger does not need to perform
expensive intercept-and-check in software. The hardware
compares every instruction/data memory address with these
breakpoint addresses in parallel with the normal virtual to
physical address translation, thus it incurs no additional per-
formance overhead. Please refer to the IA32 architectural
manual [13] for the detailed layout of these DR registers
and their usage.

Previously, only debuggers such as GDB, KDB and em-
bedded debugger in Visual C++ take advantage of these de-
bug registers. They allow programmers to monitor the ac-
cesses to specific instruction/memory locations in the pro-
grams being debugged. Whenever these locations are ex-
ecuted, read or written to, a debug exception is generated
and the debugger is invoked to inspect the program state
and handles the exception accordingly.

Accessing debug registers requires ring0 privilege, so a
user program can manipulate them only by making a sys-
tem call. The Windows operating system does not provide
any system call that can directly modify the debug regis-
ters [15]. However, it does provide two Win32 library func-
tions, SetThreadContext and GetThreadContext,
For debuggers to set instruction/data breakpoints, which are
the only known ways to access debug registers from the user
space. The templates of these two functions are as follows:

BOOL SetThreadContext(
HANDLE hThread,
const CONTEXT* lpContext

);

BOOL GetThreadContext(
HANDLE hThread,
const CONTEXT* lpContext

);

Both functions take a thread handle and a pointer to
CONTEXT data structure as arguments. A thread handle
specifies the thread whose context is going to be set or re-
trieved. The CONTEXT data structure includes almost all
the thread’s state that is visible to user-level applications,
including those debug registers. SetThreadContext
delivers a user-specified thread context to the kernel while
GetThreadContext copies the designated thread’s con-
text from the kernel back to the user space. Although these
two functions allow Lisbon to read/write debug registers,
unfortunately they carry serious performance penalty, be-
cause whenever a debug register is enabled, the kernel will
set the application in the debug mode and the application is
slowed down significantly due to extra checking and inter-
ception whenever the kernel gets control. The same perfor-
mance problem exists in Linux as well [7].

Because the exact implementation of these two func-
tions in the Windows operating system is not known, it
is not possible to modify it to eliminate this performance
problem. Consequently, we decide to implement a sep-
arate debug register management mechanism that directly

reads/writes the debug registers in a way that is independent
of SetThreadContext/GetThreadContext. This debug regis-
ter management scheme consists of two components: (1) a
low-overhead system call that sets or clears the debug regis-
ters according to user specification, and (2) a kernel routine
that is invoked at every context switch to properly maintain
the state of the debug registers across context switches. In
terms of implementation complexity, these two components
together take fewer than 200 lines of C code.

The first component is implemented as an interrupt han-
dler for a software interrupt instruction int 20. Be-
cause this interrupt handler does not invoke the usual ar-
gument check and state saving/restoration procedure asso-
ciated with system calls, it incurs a lower overhead than sys-
tem calls. In particular, Lisbon communicates the addresses
of canary words to the interrupt handler through general-
purpose registers.

Without the second component, the debug registers set
by the first component for one process will be effec-
tive for all processes. As the Windows kernel is not
aware of Lisbon’s modification of these debug registers,
it will not save/restore them across context switches. To
solve this problem, Lisbon intercepts Windows’ context
switching function, SwapContext, which is responsible
for switching the processor to a new thread. Lisbon
tricks the Windows kernel to call a Lisbon routine called
SwapDebugContext whenever it calls SwapContext.
SwapDebugContext saves the debug registers of the old
thread that is going to be switched out and restores the de-
bug registers of the new thread that is going to be switched
in. Consequently, the debug registers become an integral
part of a thread’s context, and properly get saved/restored
during context switch.

5. Evaluation

The project goal of Lisbon is to provide an effective,
transparent and efficient way to protect commercially dis-
tributed Win32 binaries from all known forms of format
string attacks. In this section, we evaluate the effectiveness
of Lisbon in protecting real Windows applications that are
known to be vulnerable to format string attack, and then the
efficiency of Lisbon in terms of run-time overheads.

5.1. Effectiveness

We used the following four Window binaries that
are known to be vulnerable to format string attack
in the effectiveness and efficiency evaluation of Lis-
bon: SHOUTcast[4] (a popular audio streaming server),
ProFTPD[26] (a free FTP daemon program), Peercast[25]
(a popular peer-to-peer streaming media server), Pfinger



client[1] (a free finger client). All of them have format
string vulnerabilities [5, 23, 21, 22].

For each of these test programs, we either used an exist-
ing exploit or wrote a new one, and then created a Lisbon
version from its binary. Then we ran each binary twice,
once with the original binary and the other with the Lisbon
version. When each test program ran, we launched the cor-
responding exploit code against it to check if it can detect
the attack.

For each test program, its Lisbon version is able to de-
tect the exploit sent to it and raise an alert successfully.
Since applications such as SHOUTcast and peercast are dis-
tributed only in binary format, approaches such as White-
listing and FormatGuard cannot protect them. In addition,
these binaries are generated in such a way that the frame
pointer is omitted. As a result, Libsafe would not work for
them, either.

In addition to the ability to deal with binaries directly,
Lisbon is also more complete than existing approaches. Un-
like white-listing, Lisbon can detect read accesses to mem-
ory locations beyond the input argument list. This could
prevent attackers from getting sensitive information embed-
ded in the victim applications. Unlike FormatGuard, Lisbon
can also protect vprintf-like functions even when they are
encapsulated by multiple layers of wrapper functions. For
example, Proftpd’s vulnerability happens within a wrapper
function that eventually calls vsnprintf.

5.2. Performance Overhead

Macro-benchmark Testing. We used two machines in
performance overhead measurements. The machine used
for micro-benchmark evaluation is used as the server for
macro-benchmark tests. This machine runs Windows XP
SP1 with PentiumIII 1.2GHz CPU and 256MB memory.
The client machine for macro-benchmarking is a 1.0GHz
Celeron machine with 128MB memory and runs RedHat
Linux 7.2.

To measure the performance overhead of Lisbon when
it is applied to real applications, we used the same set of
test programs as in the effectiveness test. We set up an iso-
lated network that connects the server and the client directly
using a 100Mbps Ethernet link. The client machine contin-
uously sends 1000 requests to the server, on which the test
applications run. The throughput of a server application is
calculated by dividing 1000 by the time interval between
when the first request is issued and when the response of the
last request is received. The latency is calculated by taking
the average of the response times of these 1000 requests.

To test the streaming and ftp servers, the client machine
continuously fetches a 1-KByte file from the server. For the
Pfinger client, it repeatedly fingers a user on the server. All
these requests were sent back-to-back. During these tests,

Table 3. The run-time performance overhead
of Lisbon for macro-benchmark programs

Application Throughput Latency
Penalty Penalty

SHOUTcast 99.8% 0.3%
ProFTPD 98.0% 1.6%
Peercast 99.6% 0.4%
Pfinger N/A 0.0%

only legitimate requests were used. For comparison, we ran
each test application twice, once with the original binary
and the other with the Lisbon version.

Table 3 shows that Lisbon’s performance overhead for
these test applications is so small that it is almost negli-
gible. This overhead includes the overhead due to BIRD.
There are several reasons why Lisbon’s overhead is so low.
First, because BIRD can statically disassemble most of the
instructions in these test applications, the performance over-
head due to dynamic disassembling is very small. Second,
printf-like functions are invoked infrequently, and Lisbon’s
transformation only takes effects when these functions are
called. As stated in [18, 6], applications using printf-like
functions heavily are rare in practice. Third, for the test ap-
plications the file system or network I/O overheads typically
dominate the CPU overhead. Finally, Lisbon exploits the
debug register hardware in the X86 architecture to minimize
the list bound checking cost. These factors together sug-
gest that the run-time overhead of Lisbon , even for printf-
intensive applications such as man2html, is unlikely to be
an issue in practice. To be fair, the performance overhead of
most other previously proposed approaches to format string
attack prevention is also quite small.

Micro-benchmark Testing. We also use the micro-
benchmark programs in [18] to evaluate the absolute perfor-
mance cost of Lisbon. These programs print a six-character
string without any specifier, with two %d specifiers, or with
two %n specifiers. The first three use the sprintf func-
tion, which is the lightest-weight among printf-like func-
tions. The latter three use the vsprintf function. The
latency measurements for these six programs under Format-
Guard, White-listing and Lisbon are also shown in Table 4.
The numbers for FormatGuard and White-listing are taken
from their respective papers.

Because Lisbon needs to make a system call to set up the
debug registers, the user/kernel mode transition is very ex-
pensive when compared with the overhead associated with
the sprintf and vsprintf function. That is why Lis-
bon’s overhead is much higher than the other two. Be-
cause Lisbon does not require interpretation of the format
string, its absolute performance overhead is independent of
the length of and the number of conversion specifiers in
the format string. On the other hand, for the absolute per-



formance overhead of both FormatGuard and White-listing
grows proportionally with the length of and the number of
conversion specifiers in the format string because they need
to interpret the format string. This is why the percentage
overhead of the “sprintf with no specifiers” case is lower
than that of the “sprintf with 2 %d specifiers” case for both
FormatGuard and White-listing, but is actually much higher
for Lisbon.

Table 4. Latency penalty comparison for
FormatGuard, White-listing and Lisbon on
micro-benchmarks

Benchmark Format- White- Lisbon
Guard listing

sprintf with no specifiers 7.5% 10.2% 217.7%
sprintf with 2 %d specifiers 20.9% 28.6% 67.9%
sprintf with 2 %n specifiers 38.1% 60.0% 142.3%
vsprintf with no specifiers cannot handle 26.4% 223.4%

vsprintf with 2 %d specifiers cannot handle 39.8% 63.2%
vsprintf with 2 %n specifiers cannot handle 74.7% 154.7%

Because Lisbon’s absolute performance overhead is
fixed, its percentage overhead decreases as the baseline
overhead increases. Since sprintf itself takes less time
than printf and fprintf, the relative overhead of Lis-
bon should be smaller for other printf-like functions. To
evaluate the relative overhead of Lisbon when different
printf-like functions are used, we try different printf-like
functions using the same input: a ten-character string with
two %d specifiers as the format string. The latency re-
sults are shown in Table 5. As expected, the relative over-
head of Lisbon decreases with the increase in the inherent
amount of processing inside the printf-like function it pro-
tects. Among these printf-like functions, printf and vprintf
is the most time-consuming because they both need to make
system calls to interact with the video hardware.

Table 5. Latency measurements for differ-
ent variadic functions with the same format
string and input arguments.

Benchmark Lisbon
Overhead

printf with 10 chars and 2 %d specifiers 2.0%
sprintf with 10 chars and 2 %d specifiers 52.5%
fprintf with 10 chars and 2 %d specifiers 34.3%
vprintf with 10 chars and 2 %d specifiers 2.1%
vsprintf with 10 chars and 2 %d specifiers 57.3%
vfprintf with 10 chars and 2 %d specifiers 44.0%

Although micro-benchmarking results provide a better
understanding of the source of performance overhead, they
do not reflect the real performance impacts of Lisbon, which
should be measured by macro-benchmarking results from
real network applications.

6. Limitations

One major restriction of Lisbon is that it assumes that
the protected variadic function never skips any of its input
arguments. This assumption holds for all known printf-like
functions on the Windows platform because they follow the
C99 standard [10]. However, for arbitrary variadic func-
tions, there is no guarantee that they will not skip any of the
input arguments. In addition, Lisbon assumes the va list
structure used in a vprintf-like function resides in the stack
frame of some upstream caller function. This assumption is
true for all known vprintf-like functions that are vulnerable
to format string attack. However, in general, a va list
structure could also reside in the heap. In that case, Lis-
bon needs to traverse the va list to identify its bound,
and therefore may become application-specific. Finally,
the current BIRD prototype cannot instrument Windows bi-
naries employing self-modifying code, for example, those
protected by such packers as UPX or ASprotect. There-
fore, Lisbon cannot protect them either. Despite the above
limitations, we believe Lisbon still represents a significant
advance in protecting Win32/X86 binaries from published
format string attacks.

7. Conclusion

Format string attack is possible because the attacker
tricks a printf-like function into accessing more arguments
than is prepared by its caller, and eventually is able to read
or modify the victim application’s address space. This paper
describes the design, implementation and evaluation of the
first known tool that can protect Win32 binaries from for-
mat string vulnerabilities that have been discovered in real
programs so far. This tool, called Lisbon, features a novel
input argument list bound checking mechanism to detect
format string attacks. Experiments on the first Lisbon pro-
totype, which is built for the Windows XP/2000 platform,
show that Lisbon can indeed stop known format string at-
tacks, and its run-time performance overhead is negligible,
less than 2%. Compared with previous format string attack
prevention systems, Lisbon is novel in the following ways:

• By casting format string attack prevention into an argu-
ment list bound checking problem, Lisbon does not re-
quire interpretation of format string argument and thus
can potentially be applied to similar attacks against
functions that access input arguments in the same way
as printf.

• By exploiting the debug register hardware in modern
processors, Lisbon reduces the run-time performance
overhead associated with list bound checking to the
minimum.



• Lisbon leverages the BIRD infrastructure for binary
analysis and transformation and is the first known sys-
tem that can directly protect Windows binaries from
format string attacks without accessing their source
code.

Although there are already numerous approaches to
thwarting memory corruption attacks, perhaps the most ef-
fective approach is to stop the attacker from tampering the
victim application’s address space in the first place. Ar-
ray bound checking stops buffer overflow attacks, argu-
ment list bound checking stops format string attacks, and
arithmetic overflow checking stops integer overflow attacks.
Our long-term goal is to develop a comprehensive security-
enhancing compiler that can immunize network applica-
tions from memory corruption attacks by transparently in-
serting these checks to their source code and/or binary
code. This overflow-preventing compiler will be built on the
CASH compiler [2] and the Lisbon technology presented in
this paper.

References

[1] M. Baumer. The pfinger server and client. http://www.
xelia.ch/unix/pfinger/about.

[2] L. chung Lam and T. cker Chiueh. Checking array bound vi-
olation using segmentation hardware. In International Con-
ference on Dependable Systems and Networks (DSN’05),
pages 388–397, 2005.

[3] M. Corporation. Microsoft portable executable
and common object file format specification.
http://www.microsoft.com/whdc/system/
platform/firmware/PECOFF.mspx.

[4] N. Corporation. Shoutcast: Free internet radio. http://
www.shoutcast.com.

[5] S. Corporation. Shoutcast remote format string vulner-
ability. http://www.symantec.com/avcenter/
attack_sigs/s21253.html.

[6] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman,
M. Frantzen, and J. Lokier. Formatguard: Automatic pro-
tection from printf format string vulnerabilities. In Proc. of
the 10th Usenix Security Symposium, Aug 2001.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. In 7th USENIX Security Conference, pages 63–77,
San Antonio, TX, January 1998.

[8] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacks and defenses for the vulnerability
of the decade. In DARPA Information Survivability Confer-
ence and Exposition (DISCEX), pages 119–129, Jan 2000.

[9] A. DeKok. Pscan: A limited problem scanner for c
source files. http://www.striker.ottawa.on.
ca/aland/pscan/, July 2000.

[10] I. O. for Standardization. Iso/iec 9899: Programming lan-
guages - c (c99 standard). http://www.open-std.
org/JTC1/SC22/WG14/www/standards.

[11] F. S. Foundation. The c preprocessor. http:
//www.cs.utah.edu/dept/old/texinfo/
cpp/cpp_toc.html.

[12] F. S. Foundation. Gcc: the gnu compiler collection. http:
//gcc.gnu.org/.

[13] Intel. Intel architecture software developer’s man-
ual. http://developer.intel.com/design/
pentium/manuals/.

[14] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in c programs. In
Automated and Algorithmic Debugging, pages 13–26, 1997.

[15] B. W. Kernighan and D. M. Ritchie. The C Programming
Language, 2nd edition. Prentice-Hall, 1988.

[16] MSDN. Microsoft msdn library. http://msdn.
microsoft.com/library/.

[17] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[18] S. Nanda, W. Li, L. chung Lam, and T. cker Chiueh. Bird:
Binary interpretation using runtime disassembly. In Pro-
ceedings of the 4th IEEE/ACM Conference on Code Gen-
eration and Optimization (CGO’06), March 2006.

[19] M. F. Ringenburg and D. Grossman. Preventing format-
string attacks via automatic and efficient dynamic checking.
In Proceedings of the 12th ACM conference on Computer
and communication security. ACM Press, 2005.

[20] T. Robbins. Libformat: A linux library that prevents format
string attacks. http://www.securityfocus.com/
tools/1818, November 2001.

[21] Scut and T. Teso. Exploiting format string vulnerabilities.
http://julianor.tripod.com/teso-fs1-1.
pdf, March 2001.

[22] SecuriTeam. Peercast format string vulnerability.
http://www.securiteam.com/securitynews/
5KP0U0AFQA.html.

[23] SecuriTeam. Pfinger format string vulnerability.
http://www.securiteam.com/unixfocus/
6K00N1P3FQ.html.

[24] SecurityFocus. Proftpd shutdown message format string
vulnerability. http://www.securityfocus.com/
bid/14381/info.

[25] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detect-
ing format string vulnerabilities with type qualifiers. In In
Proccedings of the 10th USENIX Security Symposium, pages
201–220, Aug 2001.

[26] T. P. P. Team. Peercast p2p radio. http://www.
peercast.org.

[27] T. P. P. Team. Proftpd: Highly configurable gpl-licensed ftp
server software. http://www.proftpd.org.

[28] T. Tsai and N. Singh. Libsafe 2.0: Detection
of format string vulnerability exploits. http:
//www.research.avayalabs.com/project/
libsafe/doc/whitepaper-20.pdf%, Feb 2001.

[29] US-CERT. Format string input validation error in wu-
ftpd site exec() function. http://www.kb.cert.org/
vuls/id/29823.


