Protection of Data Privacy from the Power of the Administrator

Barbara Banks, Sr. Staff Engineer
Adaptive Server Enterprise
December 12, 2007
Sybase, Inc.

- Sybase is a leading provider of enterprise infrastructure and mobile software
- Adaptive Server Enterprise (ASE)
 - Sybase’s award-winning data manager
 - High-performance, mission critical database management system
- Customer base
 - ASE manages some of the world’s most critical data, especially in the vertical markets of financial services, government, telecommunications, healthcare and defense.
 - Powers over 50% of Wall Street trades
 - 20,000 enterprise customers worldwide
Agenda

- Sybase Encrypted Columns project
 - Objectives of ASE Encrypted Columns
 - Feature architecture and implementation
 - Protection of data privacy from power of administrator
- Customer response
- Ongoing work
Protection of Data Privacy

- Generic data privacy is the main objective
- Why is it important?
 - Compliance with legislative mandates, recommendations and expectations
 - Affects all businesses storing personally identifying information
 - Public trust in e-business
 - Customer often bears the risk of fraud
 - Employee trust in employer
Since the late 1990’s Sybase provided column level encryption through the use of a third party software encryption product
 – Solution didn’t scale to large numbers of customers

2003 - Decided to write our own solution based on column encryption as an intrinsic data property
 – 2005 - First release of product with basic encryption functionality
 – 2007 – Extended functionality, to protect data privacy from power of the administrator

Wide scale adoption by Sybase customers
 – Licensed feature; revenue generating
Encrypted Columns - Objectives

- Protect data “at rest”
 - in the database
 - in backup tapes
 - in replication queues

- Provide data privacy through encryption as a column-level attribute

- Deployable with no application changes

- Optimize performance
 - Minimize the number of decryption operations through efficient searches and joins
Encrypted Columns - Objectives

- Robust key management
- Ease of use
 - Functionality usable through new SQL commands and extensions to existing SQL
- Provide Disaster Recovery
 - Ability to securely migrate/replicate keys and data
- Protection of privacy from power of administrator
 - Separation of roles for administration of data and keys
 - Provide key copies for end users, encrypted by a password unknown to the administrator
Encryption in Adaptive Server

Insert or update SSN

Encryption Key

Encryption

Decryption

Select SSN

Adaptive Server

Encrypted Data
Encrypted Columns user interface

- Create Encryption Key(s)
 - Stored encrypted in system catalog
- Alter table to encrypt data column(s) with named key(s)
- Grant decryption authorization to users or roles
 - New SQL permission
 - Separates roles of those allowed to see data in the clear and those who can only see it in ciphertext form
- Continue using same old SQL
 - ASE automatically encrypts and decrypts column data on INSERT, UPDATE, SELECT; in WHERE clauses
Encrypted Columns Schema

Key custodian creates k1

System Password

Encrypted by Static Key

Joining columns

authors

DBO

end_user1

decrypt permission

state

zip

au_id

... city

Title authors

au_id

...
When application user lacks decrypt permission, what is the correct behavior?

- Issue an error?
- Return ciphertext data?
- Return a null?

Solution

- Return a default value
Optimization

- ASE matches encrypted data based on the ciphertext value, where possible.
 - Reduces the number of decryption operations per query
 - Allows the user of indexes on encrypted columns

select * from emp where ssn = ‘100-99-1234’

<table>
<thead>
<tr>
<th>ssn</th>
<th>empname</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x3b46798301</td>
<td>rajnish</td>
</tr>
<tr>
<td>0x9a0ff4658c32</td>
<td>barbara</td>
</tr>
<tr>
<td>0x4277cb02107</td>
<td>tad</td>
</tr>
</tbody>
</table>
Optimization (cont’d)

- Joins across tables are optimized the same way
 - Providing the same key is used on joining columns

```
select * from emp e, dept d where e.ssn = d.ssn and dname = 'sales'
```

<table>
<thead>
<tr>
<th>ssn</th>
<th>dname</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x53b46798301</td>
<td>eng</td>
</tr>
<tr>
<td>0x9a0ff4658c32</td>
<td>eng</td>
</tr>
<tr>
<td>0x4277cb02107</td>
<td>sales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ssn</th>
<th>empname</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x53b46798301</td>
<td>rajnish</td>
</tr>
<tr>
<td>0x9a0ff4658c32</td>
<td>barbara</td>
</tr>
<tr>
<td>0x4277cb02107</td>
<td>tad</td>
</tr>
</tbody>
</table>
Protection of Privacy from Power of Administrator

- Core issue
 - Authorize administration without data access
- Example - Service Provider
 - Provides service for out-sourcing data processing applications
 - System administrators are employed by service provider
 - Customers -- as end users -- must have confidence that sensitive data retains privacy.
- Example - In-house application
 - DBO has inherent power to see all data
 - Schema owner is often DBO for convenience
Limits on power of administrator

- Auditing
 - Good, but only after the fact
- Trust the administrator
 - Requirement, but not sufficient to satisfy auditors
- Limit need for System Administrator by creating less powerful administrator roles
 - Vest security in specialized roles
ASE solution for protection of privacy

- New keycustodian_role, a system role
 - Sole responsibility is key management

- Protection of keys using private passwords
 - Passwords do not need to be shared with administrators
 - Private password can be user’s login password – allows applications to run without change

- Key copies allow multiple users access to the same key through their own password

- Keys can be recovered from lost passwords
Separation of Roles

- DBO creates Schema
- DBO grants access to Users
- Key custodian creates Keys
- Keys shares password
- Keys access Data

17
Encryption with private password

Encryption key

Key custodian → creates → k2

protected by

User Specified Password

Joining columns

authors

Index

au_id

…

city

state

zip

DBO

Decrypt permission

end_user1

provides

password

Index

titleauthors

au_id

…
Encryption key copies

- Key custodian creates k2. k2 is protected by User Password.
- Adds copy of k2 protected by User Password for userA.
- Adds copy of k2 protected by User Login Password for userB.
- Adds copy of k2 protected by User Password for recovery key copy.
One customer profile

- Business provides outsourced administration of employee benefits
- Approx 5 million self-serve users across clients. Need to handle as many as 10,000 users simultaneously
- Each client company has 30 – 40 tables. Number of rows ranges from 500,000 to 10 million
- Encryption and indexing of primary key columns (user SS#)
- Performance was equivalent to pre-encryption performance, even during peak times
Ongoing work

- Dual control and split knowledge of key protection
 - Payment Card Industry (Data Security Standard) requirement
 - Requires 2 passwords to access key
- Centralized external key store
 - Enterprise-wide key management and distribution
- Efficient range searching of encrypted data
 - Avoid table scans and decryption of every row when searching on a range of data or on case insensitive data.
More Information

- Corporate website
 - http://www.sybase.com
- Presenter contact email:
 - bbanks@sybase.com
- ASE 15.0.2 user manual: Using Encrypted Columns in Adaptive Server®
 - http://sybooks.sybase.com
 - Select “Adaptive Server Enterprise” product set
 - Select Adaptive Server Enterprise 15.0.2
 - Select Core Documentation Set
 - Select New Features Adaptive Server Enterprise 15.0.2, and go to Chapter 2.