
Fifteen Years After TX: A Look Back at High
Assurance Multi-Level Secure Windowing

Jeremy Epstein
webMethods, Inc.

jepstein@webMethods.com

Abstract1

Research in the late 1980s and early 1990s produced a
prototype high assurance multi-level secure windowing
system that allowed users to see information of multiple
classifications on the same screen, performing cut &
paste from low to high windows. This retrospective
discusses the motivations for the project, reviews the
architecture and implementation of the prototype,
discusses developments in the intervening years, and
concludes with lessons learned.

1. Introduction

The 1980s brought wide-spread availability of
relatively inexpensive workstations2 with bitmapped
graphics displays, mostly running the UNIX3 operating
system and the MIT-developed X Window System (X).
The expectation in the early 1990s was that this would be
followed by widespread usage of multilevel secure (MLS)
versions of these workstations, which would require MLS
windowing systems.

Compartmented Mode Workstations (CMW4) showed
that a windowing system can provide functionality and

1 This paper is an updated and expanded version of A High Assurance
Window System Prototype, Journal of Computer Security, Vol. 2, No
2&3, 1993. The work described in this paper was performed while the
author was employed by TRW, Inc., and was sponsored by the Defense
Advanced Research Projects Agency under Contract No. MDA 972-89-
C0029. The updates and historical perspective presented in this paper
were not sponsored by DARPA or performed while the author was
affiliated with TRW.
2 Low end Sun 3 workstations were priced around $10,000.
3 Trademarks: UNIX and Motif are registered trademarks of The Open
Group. X Window System is a trademark of the Massachusetts Institute
of Technology.
4 A CMW is a workstation which meets the requirements defined in
[CMWREQS87] or [CMWEC91]. The CMW functionality
requirements include an operating system and windowing system with
TCSEC [TCSEC85] B1 features, plus some additional features from B2
and B3 such as access control lists and trusted path. For the purposes of
this paper, we will consider only the windowing system aspect of the
system, just as we will generally ignore the operating system which
underlies our Trusted X prototype.

assurance which meet the class B15 requirements of the
Trusted Computer System Evaluation Criteria [TCSEC].
For some applications, assurance beyond B1 is necessary.
These applications might include system administration or
security officer functions on a high assurance Multilevel
Secure (MLS) system as well as general operations in
non-benign environments (i.e., not a compartmented
mode environment where all users are clearable for all
information on the system). The guidelines in [Yellow85]
require a B36 level of assurance for such applications.

Our goal was to design and build a prototype system,
which we call Trusted X (TX). We did not attempt to
build a system which is B3 certifiable per se, but rather
focused our attention on those issues that must be
resolved if a product development of TX targeted at B3 is
to succeed. These include the development of a formal
security policy, an architecture that satisfies the B3
structuring and minimization criteria and a way to secure
the X protocol that avoids covert channels with minimal
impact on X applications. This approach allows us to
tackle the difficult, high risk technical problems first to
demonstrate that the problem is solvable. The prototype
effort ignored some of the B3 evaluation requirements
that would be needed in a product, such as configuration
management and extensive security testing and
documentation.

TX is a trusted application, not a complete computing
system. As such TX needs a B3 or better operating
system as its host. We used the TMach 2.5 [TMach90]
prototype from Trusted Information Systems as our base.
For the prototyping effort, we ignored the issue of a B3
network.

The paper continues with a description of the
assumptions and the environment of the time when the
TX prototype was built, provides a brief introduction to
the X architecture, then describes the TX security policy,
system architecture, operation, and architectural
limitations. We then describe how our system is similar
to and different from other approaches to building MLS

5 TCSEC assurance levels included both specific feature requirements as
well as assurances. B1 was the lowest level of assurance that also
included MLS features. The assurances in B1 are roughly comparable to
Common Criteria EAL4.
6 The assurances in B3 are roughly comparable to Common Criteria
EAL6.

windowing systems, including both those available at the
time and research since then.

2. Background & Requirements

For most users then (and even today) who need to
access data of multiple classifications, the common
practice is to have multiple computer systems each
operating at a single level7, each with an independent
keyboard, mouse, and display. This causes a number of
problems: desk real estate, hardware cost, heat
dissipation, noise, and usability (especially the inability to
cut & paste text or graphics between machines). As a
result, the mid 1980s saw the first experiments with MLS
windowing.

The target audience for MLS windowing was analysts
working with data of multiple classifications, typically to
synthesize reports. While workstation users had graphic
display screens, most usage was text. Because data of
multiple classifications was expected to be on the screen,
proper visible labeling was critical to avoid accidental
misclassification, just as classified paper documents are
labeled with page and paragraph markings. While
graphics displays were physically large (19” was
common), they had fewer pixels than today’s laptops
(1024 x 952 was a common resolution), so users
frequently resized windows. Hence, the ability to
dynamically change window size and position was
considered a requirement.

It was widely accepted that X was a flexible platform
for windowing, but one built without security as a primary
driver. An extensive discussion of trust issues in X can be
found in [Epstein91].

The state of the art for MLS windowing in 1989, when
the TX project started, was CMWs. The facilities of the
commercial CMWs from DEC, IBM, Sun, and others
influenced the research – we felt that in order for a high
assurance solution to be considered a reasonable
alternative, it must offer comparable features. Thus, we
quickly ruled out options that did not allow for windows
of different classifications to be displayed on the screen at
the same time. Such “screen switching” technology was
(and is) cost effective, but prevents the user from seeing
information from multiple classifications at the same
time, hence eliminating much of the value of the
windowing system.

Graphics hardware, as provided in workstations, was
relatively primitive compared to today. In particular,
most workstations had simple framebuffers8 without

7 For purposes of this discussion, we do not differentiate between
information of different classifications (e.g., Secret vs. Unclassified) and
information in different categories (e.g., NOFORN vs. RELNATO).
This distinction is only relevant for TX in the context of cut and paste.
8 A framebuffer is an area of memory shared between the CPU and the
graphics card where each bit (in the case of the simplest black & white

hardware accelerators. Operating systems had not yet
fully integrated the concept of graphics hardware, and
“root” permission was typically required to access the
framebuffer or the graphics hardware. Additionally, the
graphics hardware was not virtualized by MLS operating
systems (unlike memory and other resources), so it could
not be shared among untrusted software operating at
different levels without risk of information leakage.

MLS operating systems were being developed by
several companies; our DARPA contract required use of
TMach so we did not consider any alternatives. Building
custom hardware was out of scope for the project.

In developing our architecture for TX we had several
goals dictated by concerns for both B3 certifiable security
and acceptable X functionality and performance. From
the standpoint of secure functionality the primary
requirement of TX is that it displays correctly labeled data
to the user in an unspoofable fashion and allows the user
to run untrusted applications without any potential for
violation of the operating system’s security policy. With
the exception of the functionality required to assure
correct labeling and trusted path interactions, we had no
claims about the veracity of data displayed by clients. As
we frequently described it, from a trust standpoint, we
didn’t care if circles were drawn as squares or vice versa.

The goal of the TX project, then, was to build a highly
assurable MLS windowing system that would run on
standard hardware, on the TMach operating system.

3. The X Window System

The following description is of the X Window System
as it existed in the early 1990s. There have been
numerous modifications since that time, including to
improve security, but this section is largely as originally
published, as it reflects the state of the world at the time
of the prototype.

The X architecture is based on the client/server model
of distributed computing. The X server manages the
screen(s), keyboard, and pointing device (typically a)
mouse), as well as graphical resources such as windows
and properties on behalf of the X clients. The X server
also manages global resources (such as the search path for
fonts and the keyboard and pointer characteristics) that
clients may change but not destroy.

X clients and the X server communicate via the X
protocol [Protocol88]. Clients send requests to the server
over a bi-directional communications channel using any

displays) represents the contents of a single pixel on the screen. (For
more sophisticated graphics hardware, such as grayscale or color
displays, one or more bytes is needed per pixel.) Modifying the display
is as simple as modifying the bits in memory. The graphics card causes
the display to render appropriate images based on the contents of each
bit in the framebuffer. More modern graphics chips have framebuffers,
but most drawing uses dedicated graphics hardware.

reliable byte-stream protocol (e.g., TCP/IP), and receive
events and responses.

Protocol requests include administrative requests,
requests to create and destroy resources, and drawing
requests.

Applications can be written at a number of levels of
abstraction, but all of these reduce to X protocol requests
to the X server. Consequently, use of libraries and
toolkits such as Motif [Motif90] are invisible to the
server.

X has no concept of privilege, and a minimal notion of
protection. Protection is provided at connection time
only. The X server maintains a host access list which
identifies those computers from which connections will be
accepted. In addition, an optional authentication
mechanism allows the server to demand some form of
authentication from the client (e.g., an MIT magic cookie
or a Kerberos [Kerberos88] authentication ticket). Once a
client has connected to the server, it may perform any
request, including a request to turn off authentication for
clients that attempt to connect in the future. Clients can
also directly impact other clients (e.g., by killing them),
although such behavior is considered undesirable (see
[ICCCM89]).

Management of windows on the screen is performed
by a window manager. There are many existing window
managers, each of which provides a different look-and-
feel. Because there is no notion of privilege in X, the
window manager is simply another client. The
conventions described in the X Inter-Client
Communication Conventions Manual [ICCCM89] are
used to define an environment where “well-behaved”
(ICCCM compliant) clients can interact cooperatively.

4. Concepts & Architecture

This section presents the TX architecture. We first
provide a high level view, introducing each of the trusted
and untrusted components of the system. Next, we
describe the size and internal structure of each
component. The remainder of the section describes the
facilities provided by each component and the component
interactions.

The target hardware platform for TX was the Sun 3
line of workstations, because those were the primary
TMach platform. The Sun 3/50 and 3/150 were both
based on the Motorola 68020 processor, operating at
about 16MHz9 (the 3/50 was slightly slower), and were
typically equipped with 4MB of memory. Later versions
of TMach and TX ran on Gateway desktops with 33MHz
Intel 486 processors. The hardware limitations compared
to today’s systems were not foremost in our minds, but
impacted the resulting system.

9 Or about 1000 times slower than the typical laptop computer of 2006.

4.1. Overlapping Windows & Visible Labeling

The goals of the visible labeling policy were that the
labels must be easily readable and clearly associated with
the window contents. We also wanted the visible labeling
mechanism to be “spoof free” – it should not be possible
for a malicious client to draw something that looked to the
user like a classification label. Additionally,
compatibility with the core X look and feel was a must.
Because there is no universally acceptable solution, we
chose a policy that balances utility with assurance.

In 2006, the notion of overlapping windows (where
one window partially obscures another) is obvious. In
1990, we considered whether they were mandatory, and
whether a windowing system that required non-
overlapping windows was acceptable. Additionally, we
considered whether a system was acceptable that provided
a simple switch to move between screens each at a single
level, much as KVMs allow switching between
computers. In order to meet our goal of compatibility
with the core X look and feel, we needed to allow
overlapping windows, and a simple screen switch was
insufficient.10

Figure 1 shows window layout in a system without
restrictions (so each window is individually labeled), with
region tiling (windows of each classification in a reserved
area of the screen), with window tiling (non-overlapping
individually labeled windows), and screen switching.

Figure 1. Window Layout Alternatives.

Once we determined the need for overlapping windows
of multiple classifications, we then considered the visible
labeling requirements11. Visible labeling marks windows
on the display so the user can clearly determine the

10 Section 7.3 discusses a windowing system without overlapping
windows.
11 Sections 7.2 and 8.1 describe systems with overlapping windows, but
without visible labeling.

(a) No restrictions (b) Region Tiling

Unclassified

Top Secret Secret

(c) Window tiling (d) Screen switching

Unclassified

(a) No restrictions (b) Region Tiling

Unclassified

Top Secret Secret

(c) Window tiling (d) Screen switching

Unclassified

maximum potential classification of data in a window12.
As overlapping windows may make it difficult to
determine the classification of data in a window, we
determined that a “point to identify” capability was
required, so the user could know the classification of any
particular area on the screen. We considered whether the
classification for a window should be displayed on the top
of each window, or around all four sides (and what to do
with non-rectangular windows). We also prototyped what
happens if windows are overlapped in such a way that
portions of the data are not continuous to any label; we
called these “orphan” areas. Our conclusion was that
labels on all four sides of a window were desirable, and
that non-rectangular windows would not be supported.
Figure 2 shows the appearance of labels on the screen.
Further details on these studies can be found in
[Epstein90] and [Epstein93a].

Figure 2. Overlapping windows and labels.

4.2. System Overview

When we initially approached the concept of a trusted
X Window system, we considered the possibility of
securing the X protocol and the server that interprets it.
After a substantial effort that included formal modeling
and covert channel analysis of some of the X protocol
requests as well as substantial study of several X server
implementations, we reached the conclusion that a high
assurance MLS X server was beyond our resources and
that problems inherent in the X protocol might preclude
such an implementation even with unlimited resources.

12 The actual information in the window may be less classified than the
label indicates, but cannot be more classified. For example, opening
your grocery list in a window marked Secret does not automatically
make the list Secret. Information Labels (ILs) in CMWs are an attempt
to indicate to the user the actual classification of information, rather than
the maximum classification.

The “server per level” or “polyinstantiated subject” idea
was an obvious alternative, which we adopted.

The TX TCB is composed of four sets of trusted
processes that mediate client access to TX and control
multilevel interactions among clients. The modular
structure of the TCB and the specialized functionality
assigned to each module simplifies analysis of the
modules and strengthens the assurance arguments.

• Input control and trusted path functions. This
functionality is provided by three trusted
modules: the Input Manager (IM) distributes
keyboard and pointer inputs and coordinates
activities of the trusted Mini Server (MS) and the
Trusted SHell (TSH) which provides the user
with operational control of TX.

• Display management and window labeling
functionality. The Display Manager (DM)
composes the physical display from the virtual
framebuffers of the single level servers and adds
the necessary visible labels to top level windows.

• Initiation of the task set for each sensitivity
level. The single level servers and their
associated supporting clients are started by two
trusted modules; the Server Initiator (SIT) for
starting the servers and the Client Initiator (CIT)
for the clients.

• Multi-level information sharing functionality.
The Property Escalator (PE) supports cut & paste
operations among single level clients.

Each of the trusted subjects has its own internal
security policy which must be shown to enforce the
underlying information flow policy inherent in the TMach
access control policy. In particular, the security policies
of MS and TSH are minimal, because they have no
interfaces to non-TCB software. DM, IM, SIT, and CIT
all implement a policy of read-equals and write-equals as
defined by Bell-LaPadula [Bell75]: a given subject is only
provided information about subjects and objects at its own
sensitivity level. PE's policy is read-down, write-equals
to allow pasting of lower level information at a higher
sensitivity level.

Each instance of an untrusted X server (SLS) is
supported by two additional untrusted clients: the
Selection Emulator (SE) and the Window Manager
(WM). An untrusted X client interacting with other
untrusted X clients at its level sees the full X functionality
and is unaware of the existence of clients at other levels.

There is no notion of a security policy other than the
MLS policy – within a single instance of the X server, the
policy is the standard X policy (i.e., no limits).

Figure 3 shows the TX subjects and their interactions.

TS/A/

TS/A/

T
S

T
S

Top
Secret
window

Unclassified

Unclassified

UU

Small windows have
abbreviated labels
on the sides of
each window.

Unclassified

Unclassified

U
n
c
l
a
s
s
i
f
i
e
d

U
n
c
l
a
s
s
i
f
i
e
d

This is text in an
unclassified window.

It shows that there
are labels on all
four sides of the
window to increase
the usability. Secret

Secret

SS
Very
small
window

TS/A/

TS/A/

T
S

T
S

Top
Secret
window

TS/A/

TS/A/

T
S

T
S

Top
Secret
window

Unclassified

Unclassified

UU

Small windows have
abbreviated labels
on the sides of
each window.

Unclassified

Unclassified

UU

Small windows have
abbreviated labels
on the sides of
each window.

Unclassified

Unclassified

U
n
c
l
a
s
s
i
f
i
e
d

U
n
c
l
a
s
s
i
f
i
e
d

This is text in an
unclassified window.

It shows that there
are labels on all
four sides of the
window to increase
the usability.

Unclassified

Unclassified

U
n
c
l
a
s
s
i
f
i
e
d

U
n
c
l
a
s
s
i
f
i
e
d

This is text in an
unclassified window.

It shows that there
are labels on all
four sides of the
window to increase
the usability. Secret

Secret

SS
Very
small
window

Secret

Secret

SS
Very
small
window

Figure 3. TX Architecture.

To allow the individual X servers to share the screen,
each X server maintains a virtual framebuffer, which is a
memory area set up exactly as a (hardware) framebuffer.
Thus, the polyinstantiated X server draws in its virtual
framebuffer in exactly the same way as it would use a
hardware framebuffer, thus minimizing changes to the
untrusted software.

4.3. TCB Minimization and Modularization

One of the key difficulties in building a high assurance
X is to minimize and modularize the TCB to conform to
the architectural requirements of the TCSEC and general
principles of minimization. While the MIT provided code
is generally well-written and well-structured, design
documents do not exist, and it is far too large (roughly a
100,000 lines of code in the server alone13) to meet high
assurance goals.

By contrast, the TX prototype contains about 30K
LOCC (or 8K statements) in its TCB. This compares
favorably with other high assurance TCBs: the SCOMP
TCB with about 21K statements14; the XTS 200 TCB
(SCOMP's successor) with about 20K statements15; and
the TMach TCB with about 100K statements16.
Comparable numbers for the GEMSOS TCB were
unavailable17.

The individual trusted subjects range from a few
hundred to a few thousand LOCC. The encapsulation and

13 By comparison, Microsoft Windows XP is about 40 million lines of
code, and current versions of Linux are millions of lines of code. Not all
of this must be trusted, but the relative size is instructive.
14 Conversation with Les Fraim, MITRE.
15 Conversation with Chuck Bonneau, HFSI.
16 A preliminary estimate by Homayoon Tajalli, TIS.
17 Conversation with Don Brinkley, GEMINI.

limited roles18 make their evaluation less difficult than
comparable portions of an operating system kernel.

Subject Trusted? LOCC Statements
M Yes 400 150
IM Yes 1,600 400
DM Yes 5,500 1,600
MS Yes 2,300 450
TSH Yes 2,700 1,000
SIT Yes 600 150
CIT Yes 200 50
PE Yes 400 100
SLS No 103,000 39,700
SE No 1,500 500
WM No 58,000 11,000

Figure 4. Approx. Lines of C Code for TX Subjects.

The total LOCC for trusted components (including the

library) is approximately 18K (5K statements), while the
untrusted portion of the system contains approximately
414K LOCC (or 130K statements)19.

The following sections describe each of the
components in turn.

4.4. Master

The Master (M) synchronizes the initialization of the
TCB components. Once the system reaches its initial
configuration, M does not take an active part in its
operation.

M does not communicate with untrusted subjects.

4.5. Input Manager

The Input Manager (IM) routes keyboard and pointer
(typically a mouse) input, checks for the secure attention
key (SAK) sequence, and for inactivity timeouts. It can
also provide information about the input hardware
configuration, information that is bound at TX
initialization time and not subsequently changed. At any
given time, there is at most one “current” TX server
which may be a SLS, the MS, or none. In normal
operation, the current server receives all input. In X,
these are low level operations representing key press and
release events, pointer motions, etc. rather than ASCII
characters and pointer coordinates.

18 The TX trusted subjects are trusted in a limited sense. Each has
limited interactions with several untrusted clients at different sensitivity
levels and must be shown not to pass information among them in
unacceptable ways. TX trusted subjects do not have unlimited access to
TMach resources and cannot, for example open arbitrary files,
manipulate the memory management, etc.
19 Including 252K LOCC (78K statements) in common libraries shared
by all clients.

Selection
Emulator

Selection
Emulator

Window
Manager
Window
Manager

Single Level
Server

Single Level
Server

Other
clients
Other
clientsTX

/M
aster

Client
Initiator

Property
Escalator

Selection
Emulator

Window
Manager

Other
clients

Server
Initiator

Single Level
Server

Display
Manager

Input
Manager

Mini
Server

Trusted
Shell

Legend
Process creation
Message flow
TCB

Untrusted

Selection
Emulator

Selection
Emulator

Window
Manager
Window
Manager

Single Level
Server

Single Level
Server

Other
clients
Other
clientsTX

/M
aster

Client
Initiator

Property
Escalator

Selection
Emulator

Window
Manager

Other
clients

Server
Initiator

Single Level
Server

Display
Manager

Input
Manager

Mini
Server

Trusted
Shell

Legend
Process creation
Message flow
TCB

Untrusted

The SAK sequence is not necessarily a single key press
event, but may represent a combination of events that are
watched for by the IM.

If the SAK is detected, the current server is set to be
MS, which then receives all input until it directs
otherwise. This is the trusted path.

If IM does not detect any keyboard or pointer activity
for a (configurable) period of time, it sets the current
server to none (even if the server is MS). In this mode, all
inputs except the SAK are discarded. This allows
implementation of a screen lock facility (described in
section 5.6). Once locked, the screen can only be
unlocked through the trusted path. The current server is
also set to none if the receiving server terminates.
Otherwise, IM changes its current server only when
instructed to do so by MS.

IM notifies a SLS when it becomes the current server
and when it loses this status. This notification allows the
SLS to inform the window manager (or any other client),
which might take actions such as raising all windows to
the top on activation, or clearing its focus indicator on
deactivation. This is an operational consideration, and we
believe that no covert channel is introduced because the
notification is the direct result of user action.

IM uses Mach threads (lightweight processes) to
achieve parallelism. One thread constantly monitors the
keyboard and pointer (sending the data to the current
server), a second thread responds to requests for hardware
configuration information, and a third thread watches for
inactivity timeouts.

Because TX provides a graphical interface, it might
appear logical to use a pointer click on an icon (rather
than a typed sequence of keys) for the SAK. To
implement such a facility would require the inclusion of
pointer handling code as well as substantial portions of
the graphics display code in the TCB; that is something
that we wish to avoid. In the present architecture, the
physical cursor position on the screen is not known by IM
since each SLS is free to “warp” the cursor position20 as it
sees fit and IM would be unable to determine when the
cursor is pointing to the icon.

4.6. Display Manager

The Display Manager (DM) controls the physical
display, composing the displayed image from the pieces
that are provided by the individual SLSs and the MS in
their virtual framebuffers. It also is responsible for
ensuring that the individual windows on the display have
proper visual labels. Figure 5 shows this image merging.
Windows may overlap each other regardless of level; in

20 Cursor warping is typically used when a dialog window is brought up,
and the cursor image is automatically moved to the default choice.

this example, unclassified window C overlaps top secret
window H, but H overlaps unclassified window D.

Figure 5. Display Composition from Virtual
Framebuffers.

DM also provides a service to draw “helping lines” to
aid window managers (described below).

DM maintains general hardware and configuration
information that can be queried by any SLS. As with the
IM, this information is bound at TX initialization time and
cannot be changed thereafter.

As is the case with the IM, the DM supports a notion
of a current server which is none, a SLS or MS. The
current server is set by the MS. The display is divided
into two regions, a small region for the exclusive use of
MS, and the large majority for use by all servers including
MS. The MS reserved area is used for displaying status
information such as the visual labels for the current
operating level and the high water mark level21 and for
interactions with TSH.

Within DM, certain artifacts of the display state are
polyinstantiated and maintained on a per level basis.
These include a list of installed colormaps, the position,
image, and color of the cursor, the positions, sizes,
contents, and stacking order of top level windows, and
size and location of the “helping lines.”

Each SLS has two TMach ports to DM. The
“nonhold'” port can be used by the SLS to update the
contents of currently mapped top level windows, and to
query the hardware configuration (which is read-only).
To update window contents, the SLS provides a
replacement virtual framebuffer including the new
window image, which DM clips using the boundaries of
the given window and any overlapping windows. The
“hold” port can be used to map and unmap windows,

21 The “high water mark” is the upper bound of all windows on the
screen, including both classification levels and categories.

Unclass virtual frame buffer

A

C

B

D

Secret virtual frame buffer

E

F

F
D

Physical frame buffer

Untrusted
windows

Reserved
area

Top Secret virtual frame buffer

G

H

G

H

E
A B

C

Unclass virtual frame buffer

A

C

B

D

Secret virtual frame buffer

E

F

F
D

Physical frame buffer

Untrusted
windows

Reserved
area

Top Secret virtual frame buffer

G

H

G

H

E
A B

C

change their stacking order, update the cursor position and
image, draw “helping lines” and perform various other
administrative functions. Internally, DM identifies
windows by both their SLS provided window ID and the
identity of the SLS which owns them. Each SLS can only
refer to windows which it owns.

DM processes requests from all nonhold ports as they
are received, but only processes the hold port belonging to
the current server. The distinction between the hold and
nonhold ports is to prevent another SLS from interfering
with the current server by mapping windows arbitrarily.
As is the case with input notification, this is an issue of
functionality rather than security and is a partial solution
to potential problems that could arise because single level
window managers are not aware of windows at other
levels and cannot take action to avoid obscuring them.

MS can update the contents of the “reserved area” by
providing a replacement virtual framebuffer with the
updated image, just as SLSs provide replacement images
for windows. SLSs cannot draw in or examine the
reserved area and are not aware that it exists22.

When the current server changes, DM installs the
colormap(s) belonging to it, and displays its last cursor
image in the proper position. Polyinstantiation of cursor
position and colormap values allows complete flexibility
in colormap and cursor handling without the covert
channels which would normally exist. DM also brings up
the last set of helping lines (if any) provided by the server.
DM visibly labels each mapped window using a visual
representation of the sensitivity level of the SLS which
owns the window. The labels appear on all four sides of
the window outside any window manager decorations.
They are controlled entirely by the DM and are not
accessible to any SLS. The visible labels are the only
graphics performed by DM other than copying virtual
framebuffer contents to the real framebuffer and drawing
helping lines.

Many window managers assist users in placing
windows on the screen by drawing rectangular boxes
called “helping lines” directly on the screen background23.
Unfortunately, there is no way for the X server to
distinguish between a window manager drawing helping
lines and a client performing arbitrary drawing on the
screen background. We extended the X protocol to
provide an explicit request for the drawing of helping
lines. A SLS passes this request to DM through its hold
port. DM only allows one set of helping lines on the
screen at any time, namely those belonging to the current

22 For example, as part of startup the SLS is told that the display is
1024x700 pixels rather than 1024x768, and any attempt to write to pixel
rows 701-768 is ignored as off the virtual screen.
23 Helping lines are a dashed outline of a window, used when moving or
resizing windows on the screen. They were used to avoid the
computational cost of moving the actual image around during the resize
or move operation.

server. Each request by a server to draw helping lines
cancels any previous request it has made. We do not
consider helping lines to be information requiring a
visible label. Note that helping lines cannot be detected
by clients or SLSs, so no covert channel is introduced.

DM also uses Mach threads for parallelism. One
thread processes requests from MS, plus requests for
connections from new SLSs. A second thread handles all
nonhold ports from all SLSs, and a third thread handles
the hold port from the currently selected SLS. The first
thread has highest priority, so MS requests will generally
be processed first.

The DM is the largest and most complex component of
the TX TCB. The majority of the code in this component
is to handle determination and copying of overlapping
windows. This portion could be implemented in a high
assurance hardware facility, which could increase both
performance and assurance [Epstein96].

4.7. Mini Server

The Mini Server (MS) coordinates the activities of IM,
DM, SIT, and TSH. It also provides a very limited set of
graphics facilities for use in drawing the screen during
trusted path interactions and for maintaining the visible
labels for the current operating level and high water mark
in the reserved area of the screen.

Based on its interactions with the TSH, MS directs the
IM and DM to set the current server and update the
current operating level, accompanying this with an
appropriate image (including labels) for the reserved area
of the screen. It also directs the SIT to start new single
level servers as needed.

X allows arbitrary fonts, and has primitives for
drawing lines, rectangles, polygons, circles, and other
shapes using a variety of different styles (e.g., line width,
mitering algorithms). By contrast, MS provides
primitives for TSH to clear an area, draw vertical and
horizontal lines, and draw text using a single fixed width
font. These restrictions allow the size of the MS drawing
code to be several orders of magnitude smaller than that
of an X server. MS draws in a virtual framebuffer, which
is sent to DM for actual display either in the reserved area
or on the general screen. MS also handles input in a very
restricted fashion.

Cursor movement is tracked internally, and the cursor
position is passed to TSH only when a pointer button is
pressed or released. Key press and release events are
converted into text strings for transmission to the TSH.

4.8. Trusted Shell

The Trusted Shell (TSH) provides an interface through
which the user can perform certain administrative and

security functions necessary for the operation of TX.
These functions are:

1. starting a new SLS,
2. selecting the current operating level,
3. displaying the level of a window on the screen,
4. locking the screen,
5. unlocking the screen after either a manual or

automatic lock,
6. changing the user's password24, and
7. exiting TX.
TSH uses the drawing primitives provided by MS. Its

user interface is based on a simple menu displayed in the
reserved area of the screen. Providing this functionality
via interactions with the TX display and input devices
avoids the need for a separate trusted interaction facility;
however, if one wished, all but the third item in the list
above could be accomplished through interactions with a
much less complicated device than the bitmapped X
display. We believe that there is a firm requirement for
obtaining the sensitivity level of a displayed window
through trusted path interactions, and see no way to avoid
at least some trusted display functionality.

4.9. Server Initiator/Terminator

The Server Initiator / Terminator (SIT) performs two
main tasks: SLS creation and connecting clients to the
appropriate SLS. SIT starts a SLS at the request of MS or
when a client requests a connection to TX at a sensitivity
level for which no SLS exists. This avoids a need for
preconfiguration. When SIT creates a new SLS, it also
requests CIT to create a new window manager and
selection emulator at the sensitivity level of the SLS.

SIT also connects untrusted clients to the correct SLS.
It would be preferable for each SLS to make itself known
to the TMach name server and for clients to connect to the
appropriate SLS through TMach. Since TMach does not
provide polyinstantiation of its name space, each SLS
would have to pick a unique name, and X clients would
need to know how the unique names were generated
(which would also provide a potential covert channel).
To avoid this, SIT registers as the point of contact for all
TX connection requests. When a client asks to connect,
SIT forwards the request to the appropriate SLS, starting a
new one if necessary. Once the connection is established
between the client and the SLS, SIT is no longer involved
and TX clients converse directly with their SLS.

4.10. Client Initiator/Terminator

The Client Initiator / Terminator (CIT) starts window
managers and selection emulators as requested by SIT.

24 This function is provided so the user need not exit TX and use the
TMach TSH. It adds about 100 LOCC (50 statements) to the TCB.

CIT and SIT could be folded into one task. The reason
for their separation is to maintain the distinction between
clients (managed by CIT) and servers (managed by SIT).
This distinction allows CIT and clients to run on a
different machine from the server tasks, which are usually
on the same machine as the physical hardware.

4.11. Property Escalator

TX supports multilevel cut and paste in accordance
with the ICCCM selection based protocol. The operation
requires interactions between untrusted clients called
Selection Emulators (see 4.13) and the Property Escalator
(PE), which can be seen as a primitive MLS database
allowing read-down. The Property Escalator (PE)
provides primitives to SEs to write data (write-equals) and
to read data provided by other SEs (read-down). Read
requests always provide the most recent request which
meets the format criteria. The SE which wrote the data is
not informed that the data has been read, nor can it
discern that a read took place. This avoids the covert
channel inherent in the handshakes that are a part of the X
protocol operations used in the ICCCM protocol. This
assurance comes at the price of support for limited
conversion formats and multiple conversions. We feel
that this is a reasonable price to pay for a high assurance
system, but we realize that there is only limited
experience in this area.

Because the PE is the only trusted subject whose
purpose is to support interclient communications between
sensitivity levels, its internal security policy deserves
discussion. The subjects of the PE security policy are the
untrusted SE clients with which it communicates. The
objects of the PE security policy are the cuttings. The
access modes are cut and paste. The objects are
polyinstantiated at all sensitivity levels at which the PE
may operate. Under the policy, all SE's have cut access to
the selections at their sensitivity level. This gives them
the ability to ask the PE to replace the previous value of
the cutting with a new one. In addition, SEs have paste
access to those cuttings whose sensitivity level they
dominate. Under the policy, a paster can have paste
access to numerous cuttings. From a security standpoint,
it does not matter which one is pasted; from a
functionality standpoint, it does and we choose the most
recent cutting as satisfying the usual model of cut and
paste interactions. This policy provides the information
flow protection desired and is consistent with the TMach
access control policy.

A side effect of this policy is that an instance of SE can
perform a Denial of Service (DoS) attack against other
instances of SE by periodically sending data to be pasted
(perhaps once a second). This would prevent the user
from pasting any information other than that provided by
the malicious SE, unless they are operating at a level such

that they cannot read the data from the malicious SE
instance25.

4.12. Single Level Server

The Single Level Servers (SLS) are modified versions
of the MIT X server. Whenever possible, we have
avoided modifying the MIT code to avoid introducing
bugs or incompatibilities between TX and X. Our
changes involve device handling code which initializes
input and output devices, input and output specific code to
replace device specific code, replacing UNIX operating
system dependent code with TMach code (for receiving
connections from clients and reading andwriting X
protocol to and from clients using TMach ports rather
than UNIX sockets), and disabling requests to change
global settings such as the keyboard mapping.

Because the SLS does not have control of the physical
input and output devices, device initialization code is not
necessary and these functions have been transferred to the
IM and DM. The SLS receives its input from IM via a
TMach port. This change has minimal impact on the X
server. For output, the SLS allocates a virtual framebuffer
of the same size as the physical framebuffer (without the
reserved area, which is unknown to the SLS). All
drawing is performed using this virtual framebuffer,
which is then sent to DM as TMach messages. Mach and
TMach send messages copy-on-write, so the virtual
framebuffer is not actually copied. Rather, the SLS and
DM share the same framebuffer, except when it is being
updated by the SLS. This minimizes the additional
memory required, and the overhead of copying.

Window mapping and unmapping requests result in
messages to DM. Rather than adding “move window”
and “resize window” primitives to DM, the SLS unmaps a
window and remaps it in its new size and position.
Cursor and colormap modifications are similarly modified
to send messages to DM. Note that the SLS is unaware of
labels placed on windows by DM.

All interpretation of input (i.e., determining which
client(s) receive the keystrokes and/or pointer events) is
performed by the SLS.

Each SLS could map the keyboard differently (e.g., the
secret SLS could use a QWERTY keyboard mapping,
while the confidential SLS could use a Dvorak keyboard
mapping). This is a side-effect of the polyinstantiation of
the SLSs that may appear at first to be a flaw in the
system: why would one want to have different keyboard
mappings for different sensitivity levels? Consider,
however, a system which provides specialized function

25 For example, if the malicious SE is running at Secret/A/, then any
paste operations at Top Secret/A/, Top Secret/A,B/, or Secret/A,B/ will
use the data from the malicious instance. Paste operations at
Unclassified or Secret/B/ or Top Secret/B/ will not see the data from the
malicious SE, since they cannot read down to Secret/A/.

keys, some of which may only apply to interactions with
data at one sensitivity level. Under TX, these keys would
automatically be mapped appropriately to the sensitivity
level of the interaction window because each SLS
performs its own mapping from the physical keys to the
logical values. We feel that any benefit of allowing this
flexibility are outweighed by potential problems for the
user. Thus, our SLS ignores requests to remap the
keyboard (along with certain other administrative
requests) not as part of our security policy, but simply to
avoid confusion.

4.13. Selection Emulator

Cut and paste in X is performed according to the
selection based conventions described in the ICCCM
[ICCCM89]. Summarized, the cutting client announces
(by asserting ownership of an X entity called a selection)
that it has data available and provides (upon request) a list
of formats in which it can present the data. The pasting
client requests the data in one or more of the advertised
formats which the cutting client then makes available.
This mechanism allows the cutting and pasting clients to
negotiate an acceptable format (e.g., text, formatted
graphics, Postscript). Because it uses “lazy” evaluation,
this mechanism avoids using CPU cycles for conversion
until the data (and format) is to be pasted.

The disadvantage to this mechanism is that the
communication between the cutting and pasting clients is
bidirectional. Because the bidirectional communication is
required by the protocol, we hesitate to call it a covert
channel. In any event the potential capacity of the
channel is so large that it cannot be constrained without
severely limiting functionality.

In our approach, an untrusted client called the
Selection Emulator (SE) listens for announcements by
cutting clients. When one is received, it immediately asks
for the data in all of the advertised formats. SE then
passes the data to the Property Escalator (PE) which
retains a database of available data. SE also listens for
requests by pasting clients. When one is received, it
queries PE for the most recently cut data available in the
specified format. PE passes the data to SE, which then
makes it available to the client. Thus, an SE is paired
with each SLS. A cut and paste operation involves two
SEs: one at the sensitivity level of the cutting client, and
one at the sensitivity level of the pasting client.

Figure 6 shows the interaction of the different
components in a cut and paste cycle. The slightly
simplified26 steps are as follows:

0. User requests a cut operation via keyboard or
mouse actions.

26 Omitted steps include negotiation at both the high and low level as to
available and preferred formats for the cut/paste operation.

1. Cutting client informs SLS it has something
available by asserting selection ownership.

2. SLS notifies SE (which had previously had
selection ownership) that a client has cut available.

3. SE asks SLS to get cut data in all possible formats.
4. SLS passes SE request to cutting client.
5. Cutting client passes data in all formats to SLS.
6. SLS passes data in all formats to SE.
7. SE passes data in all formats to PE.
8. User switches to the higher level and requests a

paste operation via keyboard or mouse actions.
9. Pasting client asks for data to be pasted.
10. SLS notifies SE that a request for a paste has

occurred.
11. SE asks for most recent data in all formats from

PE.
12. PE sends cut data to SE.
13. SE sends data to SLS.
14. SLS sends data to Pasting client, which performs

the paste operation and updates the screen (if
appropriate).

Figure 6. Cut and Paste Sequence.

Through this mechanism, compatibility with the
ICCCM is maintained without covert channels or loss of
flexibility. The price paid is lower performance, as we
use “energetic” evaluation (i.e., the opposite of “lazy”
evaluation).

4.14. Window Managers

Any X window manager can be modified to be a
Window Manager (WM). The only change required is in
the drawing of “helping lines” to assist the user in placing
windows on the screen. For the reasons discussed in
section 4.6, this must be done via the X protocol helping-
lines extension. Each WM manages windows only at its
own sensitivity level. Thus, the secret window manager
could not be used to move a confidential window, as the
secret WM would not have any knowledge of the
confidential window. An interesting side effect of this
architecture is that different window managers can be
used at different sensitivity levels (i.e., run Motif at secret

and OPEN LOOK at confidential), although the probable
user confusion makes this undesirable27. The prototype
supports three window managers: mwm (the Motif
window manager), olwm (the OPEN LOOK window
manager), and twm (the MIT provided window manager).

5. TX Operation

This section describes some of the more interesting
aspects of the TX operations. The discussions that follow
emphasize the advantages that both the TMach base and
the architectural structure of the system provide in
meeting trust and assurance requirements.

A fundamental aspect of TX operation is that there is
at most one current server. In normal operation, all input
is routed to the current server, a SLS at the current
operating level, and certain output operations can only be
performed by the current SLS. For example, if the current
sensitivity level is secret then all input is routed to the
secret SLS, and only the secret SLS can map and unmap
windows from the screen. Each SLS can update windows
that it has mapped, no matter what the currently selected
server is. The operating level will not refer to a SLS if the
active SLS dies, the system is locked, or the user has
invoked the trusted path. In these cases, no input crosses
the TCB boundary and we claim that the notion of an
operating level is inappropriate.

5.1. TX Startup

TX is started from the TMach Trusted Shell. M starts
all of the trusted tasks (IM, DM, CIT, SIT, PE, MS, and
TSH). Initially, IM and DM have no current level
because they have no SLS with which to communicate.
Any input is discarded by IM, and DM has no hold or
nonhold ports to read from. When it starts, TSH makes
drawing requests to MS to display the current operating
level (which is none) in the reserved area.

When initialization is complete, the internal
communications paths shown in Figure 3 have been
established by giving the trusted subjects the appropriate
rights to TMach ports. Because further propagation of
these rights can be controlled, this pattern of
communication cannot be changed, even if one of the
subjects wished to do so. The SIT registers its connection
request port with the TMach name server which then

27 At the time of this research, the “UNIX wars” were in full swing, with
one camp (primarily HP, IBM, and DEC) supporting the Open Software
Foundation (OSF) which put out Motif (among many other
technologies), and the second camp (primarily AT&T and Sun)
supporting their unified effort which included Open Look. The ability to
support both options was considered a significant advantage over
CMWs, which heavily relied on the window managers to provide visible
window labeling and to enforce other MLS policies, and hence were tied
to one of the two camps.

Property
Escalator

Single Level
Server

Selection
Emulator

Cutting
Client

Unclassified

1

4

5

2

3

6

7

Single Level
Server

Selection
Emulator

Pasting
Client

Secret

9

13

0

8

10

11

12

14

Property
Escalator

Single Level
Server

Selection
Emulator

Cutting
Client

Unclassified

11

44

55

22

33

66

77

Single Level
Server

Selection
Emulator

Pasting
Client

Secret

99

1313

00

88

1010

1111

1212

1414

mediates requests for connections to TX in accordance
with the TMach MAC and DAC policies. At this point,
clients wishing to connect to TX must pass their requests
through the TMach name server to SIT.

5.2. Single Level Server Startup

SLSs are normally started by the user through the
TSH. They are also automatically started if a client sends
a connection request to SIT and there is no SLS at the
sensitivity level of the client. To start a single level
server, SIT creates a new untrusted SLS task at the
requested sensitivity level and notifies CIT that a new
SLS has been created. CIT creates new WM and SE
clients at the same sensitivity level as the new SLS. The
WM and SE clients send requests to SIT to be connected
to the new SLS. SIT holds the requests.

The new SLS sends messages to IM and DM asking
for connections and for the hardware configuration data.
IM replies to the SLS by providing information about the
keyboard and pointer and DM replies to the SLS by
providing information about the display (e.g., the screen
size, and whether it is color or black and white). This
information is considered to be system low allowing the
request to be honored identically at all sensitivity levels.
IM and DM inform MS that the new SLS has connected.
MS in turn informs TSH.

The new SLS sends a message to SIT that it is ready to
accept connections. SIT forwards the client connection
requests it is holding to the new SLS giving it the send
rights to the reply port provided by the client. The new
SLS replies directly to the clients (e.g., WM and SE) and
they are then connected.

At this point, the SIT is effectively out of the loop. It
does not retain the ability to communicate with the
untrusted clients of the SLS and is not in a position to
compromise them. It has send rights to the SLS
connection request port, but that is all.

5.3. Client Connection

Clients are typically started by the window manager or
an existing client. The client sends a connection request
to SIT having obtained send rights to its request port from
the TMach name server. If a SLS at the client's sensitivity
level is not already running, one is started as described in
the previous section. In this case, the client's request is
passed to the new SLS along with the requests from the
SE and WM. Otherwise, SIT forwards the request to the
appropriate SLS and the SLS responds directly to the
client. As noted above, the SIT retains no connection to
the client.

5.4. Normal Operation

Once clients are connected to the SLS, the system is in
normal operation. Figure 8 shows the connections used in
this state, while Figure 7 shows the appearance of the
screen. This section describes a few common operations.

Figure 8. TX Normal Operational State.

The DM operates on top level windows (children of
root in the X vernacular). Within such a window, all
operations are performed by the SLS which is required to
make its entire contents (bitmap) available to the DM
unless it is obscured by another top level window of the
same SLS. When a client requests mapping of a top level
window, the SLS sends a message to DM using its “hold”
port. If the SLS is the current server, DM will
immediately process the request and send back an
acknowledgment to the SLS.

If the SLS is not the current server, then the message
will remain queued until the user selects its sensitivity
level, at which point it will be processed. Once DM
acknowledges the request, the SLS may provide contents
for the window in the form of a bitmap.

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Input level:
High water:

Secret

Secret

SS

Secret

Secret

SS

Unclass

Unclass

UU Mail

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

Unclassified

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Input level:
High water:

Secret

Secret

SS

Secret

Secret

SS

Secret

Secret

SS

Secret

Secret

SS

Unclass

Unclass

UU Mail

Unclass

Unclass

UU Mail

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

Unclassified

Figure 7. Screen in Normal Operation.

Selection
Emulator

Selection
Emulator

Window
Manager
Window
Manager

Single Level
Server

Single Level
Server

Other
clients
Other
clients

Property
Escalator

Selection
Emulator

Window
Manager

Other
clients

Single Level
Server

Display
Manager

Input
Manager

Legend
Process creation
Message flow
TCB

Untrusted

Selection
Emulator

Selection
Emulator

Window
Manager
Window
Manager

Single Level
Server

Single Level
Server

Other
clients
Other
clients

Property
Escalator

Selection
Emulator

Window
Manager

Other
clients

Single Level
Server

Display
Manager

Input
Manager

Legend
Process creation
Message flow
TCB

Untrusted

When the DM maps a window for a SLS, it creates a
suitable labeled border around the window. This happens
for all windows including those claimed to be transient by
the client.

Moving, resizing, and unmapping top level windows is
handled similarly. Note that mapping, unmapping,
moving, and resizing of non-top level windows is entirely
internal to the SLS, except that this may cause the
contents of a top level window to change.

Reparenting a window (an operation performed by
window managers to add “decorations” to the window) is
simply unmapping the old top level window, followed by
mapping the new top level window in its place.

When a client draws in a window, the SLS performs
the drawing in its virtual framebuffer. When the drawing
is complete, the SLS sends its virtual framebuffer to DM
along with a list of windows and areas changed. DM
receives the contents update request on its nonhold port
from the SLS. After clipping the new window contents
relative to other windows on the screen DM updates the
visual display. The clipping confines the updating to the
unobscured interiors of windows belonging to the SLS in
question. This prevents the untrusted SLS from being
able to affect the display outside of areas surrounded by
proper visible labels.

When the user moves the pointer, clicks buttons, or
types on the keyboard during normal operation, IM sends
the input to the SLS that is the current server. The SLS
performs the ordinary X rules for routing input to its
clients and is oblivious to other SLSs which might exist.

5.5. Trusted Path

Trusted path operations are initiated by the user when
the secure attention key sequence is invoked. If the
current server is a SLS, then IM notifies it that it is now
deactivated and notifies MS that trusted path was invoked.
IM begins sending input to MS. MS notifies DM and
TSH that trusted path has been invoked. DM sets its
current server to none, blocking processing of “hold” port
requests. TSH sends commands to MS to draw the menu
of commands, and to change the current operating label
displayed in the reserved area to “Trusted Computing
Base”. MS performs the drawing operations in its virtual
framebuffer, and forwards the framebuffer to DM for
display.

TSH then waits for the user to click in one of the menu
boxes. Note that all pointer motion is interpreted by MS,
and TSH is only notified (and given pointer coordinates)
when a click occurs.

The details of TSH command processing are too
lengthy to describe here. As an example, consider the
case where the user has asked to change the current
sensitivity level to another one for which a SLS exists.
TSH updates the current label in the reserved area to be

the newly selected sensitivity level by sending drawing
requests to MS. Again, MS performs the drawing in its
virtual framebuffer and forwards the virtual framebuffer
to DM for display.

TSH notifies MS of the new value for the current
operating level. MS notifies IM and DM of the new value
for the current level. IM notifies the newly selected SLS
that it has been selected as the current server and begins
sending it pointer and keyboard input. DM begins
processing requests from the “hold” port belonging to the
newly selected SLS.

Figure 9 shows the screen while the trusted path is in
use. Additional information can be found in
[Epstein93b].

ZZZZ

5.6. Screen Lock

Automatic screen locking occurs when IM detects that
a period of time has elapsed without any input. The goal
of automatic locking is to cover the working area (that
portion of the screen which is not the reserved area) with
an opaque pattern, and not to remove the cover until the
user unlocks the screen. Manual screen locking is
invoked through the trusted path. It is initiated when the
user clicks on the “lock” menu entry in the reserved area,
and is otherwise identical to automatic locking.

If IM detects a timeout without any input, it notifies
MS. If the current server is an SLS, then IM notifies it
that it is now deactivated. MS notifies DM to change its
current sensitivity level to none, thus causing it to stop
processing its current “hold” port (if any).

MS notifies TSH of the timeout. TSH notifies MS to
map a window over the entire user portion of the screen.
TSH then draws a pattern on this window using MS
drawing primitives. TSH also sends messages to MS to
set the current operating label displayed in the reserved
area to none, and to display a message directing the user

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Input level:
High water:

Resume
Create
Select

Display
Lock
PasswordExit

Secret

Secret

SS

Secret

Secret

SS

Unclass

Unclass

UU Mail

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

(TCB)

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Between subtle shading and the absence
of light lies the nuance of illusion.
It was totally invisible how's that possible?
They used the earths magnetic field.
The information was gathered and
transmitted underground to an unknown
location. Does Langley know about this?
They should its buried out there somewhe
Who knows the exact location ? Only ww
This was his last message x thirty eight
degrees fifty seven minutes six point five

Unclassified

Unclassified

UU

Input level:
High water:

Resume
Create
Select

Display
Lock
PasswordExit

Resume
Create
Select

Display
Lock
PasswordExit

Secret

Secret

SS

Secret

Secret

SS

Secret

Secret

SS

Secret

Secret

SS

Unclass

Unclass

UU Mail

Unclass

Unclass

UU Mail

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

This is not a
classified
message

Top Secret

Top Secret

T
S

T
S

(TCB)

Figure 9. Screen in Trusted Shell Mode.

to invoke the secure attention key to unlock the screen.
After drawing the pattern, MS sends the virtual
framebuffer to DM for display.

TSH notifies MS to change the current operating level
to none. MS notifies IM and DM to change the current
operating level to none28. IM discards input, and DM
ceases to process its “hold” port until the user unlocks the
screen through the trusted path.

6. Architecture Limitations and Issues

The architecture described here takes a very complex
problem and makes it relatively simple. Tradeoffs have
been made to achieve trust and simplicity. This section
describes some of the positive and negative aspects of
these tradeoffs.

6.1. The Price of Polyinstantiation

Polyinstantiation of servers has a price. For example,
while the TMach security policy allows write-up and
read-down, the TX policy does not allow either of these
operations for X resources. That is, if a low client sends
an untrusted high client an X resource ID (using TMach
mechanisms, not TX), that ID will not be useful to the
high client, because the high client has no means of using
the resource ID in its low context. Similarly, the X
operation to get a list of windows in the system,
XQueryTree will only return those windows at the label
of the caller, and none of the windows dominated by the
caller. Existing CMW implementations do not
polyinstantiate servers, so they can allow general read-
down (and some also allowing write-up).

Our architecture could be extended by adding an
additional trusted server which would pass information
between SLSs in accordance with the TMach security
policy. Each SLS could pass its resources (windows,
colormaps, etc.) to that server, which would pass the
resources to all servers which dominate the sensitivity
level of the resources. Because resource IDs are
polyinstantiated (as part of the server polyinstantiation)
the X protocol would need to be extended so clients
would be able to include a level as well as resource ID, or
there would need to be some form of mapping between
the actual and virtual resource IDs.

Other effects of polyinstantiation include problems
with managing screen real estate. A tiling window
manager29 could successfully tile the windows at each
level, but windows at different levels would overlap,
because the window manager at one level has no way of

28 If an automatic lock occurs, IM is already in the none state. This extra
notification is required when the user manually locks the screen.
29 A window manager that arranges windows automatically so they do
not overlap each other, but rather form a tiled pattern on the screen.

knowing about operations at other levels. Each window
would be correctly labeled, but the effect might not be
what the user anticipated.

6.2. DAC and Information Labels

Many people who work with trusted X systems believe
that some form of discretionary access control over X
resources is desirable [Epstein91]. Without making the
SLSs and window managers trusted (which would vastly
increase our TCB size), DAC at the X resource level
cannot be added to this architecture. Restricting a TX
server to clients belonging to a single X user (or to users
that the X user is willing to trust) at one time is a tradeoff
to minimize the TCB.

While this project is clearly not aimed at replacing
CMWs, we rejected adding information labels30. Once
again, the SLSs and window managers would have to be
trusted to provide useful information labels. Whether
clients that use DAC or information labels also require a
degree of trust remains an open question.

Hybrid solutions are possible. TX as a B3 windowing
system could have less trusted single level servers and
window managers to provide DAC or somewhat more
trusted SLSs and WMs to provide information labels (but
less trusted than the overall system). This allows a high
degree of assurance that the system is trusted and enforces
the overall system security policy, with lesser assurance
that information labels are properly maintained and that
the DAC policy is properly enforced.

6.3. Trusted Graphics

A major difference between the TX architecture and
commercial CMW implementations is the question of
what is trusted. CMWs provide trusted graphics: the
CMW evaluation should provide assurance that the
graphics drawing is correct. In our architecture, we
provide no assurance that the SLS drawing code is
correct, though we have no particular reason to suspect it
either. For example, if an application asks to draw a
circle, existing CMWs guarantee that the circle will be
drawn in the correct location with the correct attributes.
In TX, we guarantee that if the SLS draws a circle
correctly in its framebuffer and correctly passes the
framebuffer to DM, DM will properly display it in an
appropriately labeled window. Thus, we have traded the
functionality of trusted graphics for a much smaller TCB.

A close analogy can be drawn to an untrusted file
server encapsulated within a trusted system. In this case,

30 An information label represents the sensitivity of the information
contained in a subject or object. Information labels are required in
CMWs, and used for labeling information which is believed to be of a
lower sensitivity than the object (or subject) from which it came.
Information labels are advisory and are not used for access control.

the overall trusted system makes no guarantee that the
data will be stored or retrieved faithfully, only that it will
be labeled correctly.

6.4. Graphics Hardware Usage

Our architecture presumes a “dumb” framebuffer (i.e.,
one where the graphics hardware simply maps bits in
memory to the screen). Intelligent graphics hardware now
perform many functions, such as drawing polygons,
filling regions, and 3-dimensional operations using
hardware, rather than using software in the X server.
However, without special provisions our architecture is
unable to take advantage of intelligent graphics hardware.
The problem is that the SLSs cannot be allowed to use the
graphics hardware directly, and DM only performs simple
region copying operations. If graphics hardware can be
encapsulated so that SLSs can use it with their virtual
framebuffers, then it could be used in this architecture.
Unless the encapsulation is reentrant, this probably means
bringing graphics hardware into the TCB, a questionable
undertaking. An approach to using polyinstantiated
graphics hardware is described in [Epstein96].

6.5. Performance

Performance of the prototype TX server was not
studied in detail. Some of the standard benchmarks
provided with X were run, with a typical result that TX is
half the speed of ordinary X, when the underlying
hardware and software base were kept constant.
Interactive usage was much slower; one user compared it
to typing on a 300baud dialup terminal. Performance
measurement showed that TMach message passing and
context switching times dominate the system throughput.

6.6. User Interface

The TX user interface requires the user to invoke the
trusted path to change the current operating level. This
contrasts with switching between windows at the same
sensitivity level, where the user typically just moves the
pointer to place the cursor in the new window, or moves
the pointer to place the cursor in the new window and
clicks. While unsure how users will react to this
requirement, we were unable to devise any other
mechanism which would be both unspoofable and not
require large amounts of trusted code.

As noted above, colormaps are polyinstantiated, and
are reinstalled whenever the user changes the current
level. One of the side effects of this change can be
“colormap flicker”: because individual pixels in the
framebuffer reference a colormap entry, not a particular

color, switching colormaps may cause the windows
associated with other levels to change colors.

For example, consider running two instances of SLS,
with the colormaps as shown in Figure 10. Assume the
foreground of an Unclassified window uses colormap
entry 2 (i.e., a pixel value of 2) and the background uses
entry 4, while the foreground of a Secret window uses
colormap entry 3 and the background uses entries 4 and 5.
If the current input level is Unclassified, then the first
window will be a red foreground on a purple background
and the Secret window will be a green foreground on a
purple and orange background. Switching the current
input level to the Trusted Shell will cause the windows to
become black, while switching the input level to Secret
will cause the Secret window to appear in its natural
pastel colors (lavender foreground with orchid and sky
blue background) while the Unclassified window will
appear with a pink foreground and orchid background.

While this may be a bit shocking to users, we believe
the color shifts are more desirable than allowing a covert
channel, as would exist if there were a shared colormap
among the SLS instances.

Colormap
Entry #

Mini
Server

Unclass
SLS

Secret SLS

0 (reserved) Black Black Black
1 (reserved) White White White
2 Black Red Pink
3 Black Green Lavender
4 Black Purple Orchid
5 Black Orange Sky blue

Figure 10. Sample Colormap Entries.

More subtle compromises were made with respect to
cursors and the screen background. Cursors were limited
to 32x32 pixels (a limitation permitted by the X protocol)
to eliminate any chance of the cursor spoofing a window.
The screen background (the area not inside any window)
is only writeable by the SLS with the lowest classification
(i.e., system low), and is limited to a tiled image no more
than 32x64 pixels, again to preclude use of the screen
background as a window spoof.

6.7. Non-X Implementations

While the purpose of the TX project was a platform to
build trusted X, there is no fundamental reason why the
SLS could not implement a window protocol other than
X. For example, a SLS could provide the graphical
portion of a Microsoft Windows system, rather than an X
server. This is a convenient mechanism to allow running
different windowing systems simultaneously on the same
display, with minimal modifications to the windowing

systems. Such an approach might have utility even in an
environment where trust is not required [Pascale92]. As
an example, the Sun version of the prototype supported
both X and MGR [Uhler88], a freely available windowing
system from Bellcore. No changes to the TX TCB were
required to support MGR, which indicates that our basic
architecture is flexible enough to support a variety of
windowing systems.

6.8. Extensions

Various extensions have been developed for X,
including 3-dimensional graphics (PEX) and video
(VEX). In the TX architecture, many extensions can be
added without requiring any trusted code, and hence
without consideration to the security implications. For
example, we expect that PEX could be implemented as
part of the SLS without any change to the TCB, providing
it does not use the graphics hardware directly. This
ability to extend the SLS (or replace it entirely) without
changing the TCB is a major advantage of our
architecture over other architectures.

7. Contemporaneous Related Work

Two other contemporaneous approaches for high
assurance windowing system are a paper design for a
system without any trusted code by Mayer and Padilla,
and a patented architecture using hardware for high
assurance by Sherman, Dinolt, and Hubbard. This section
describes some of the advantages and disadvantages of
each approach relative to the revised TX architecture, as
well as a comparison to existing CMW implementations.

7.1. Compartmented Mode Workstations

All existing CMW implementations have very similar
architectures, including a monolithic trusted server, a
trusted window manager, and a few trusted clients to
assist with visual labeling and cut and paste operations.
However, there is no reason why other architectures
(including the one described here) could not be adapted to
the CMW requirements. The descriptions of CMWs are
based on numerous conversations with CMW designers
and developers.

The TX TCB is much smaller than that of the existing
CMWs. We expect our TCB to be less than 10 percent of
the size of existing CMW X TCBs. As previously noted,
CMWs provide trusted graphics, DAC, and information
labels which we do not. While we do not feel these are
major limitations, the hybrid approach described in
section 6.2 is a possible solution. That approach provides
a high level of assurance on the overall system, with

assurance equal to that of the CMWs for graphics, DAC,
and information labels.

Compatibility with untrusted X is a major goal for both
TX and CMWs. Because of our architecture, we are able
to offer a much higher degree of compatibility with X.
For example, we are able to run untrusted window
managers, which is impossible with CMWs. We require
no special privilege mechanisms, unlike CMWs. While
we constrain what clients can do, our system imposes
fewer limits than CMWs, which is a counter-intuitive
result.

Finally, our architecture allows addition of extensions
to the X server, or even replacement of the X server (e.g.,
with a new release) without modifying the TCB. This
allows TX to keep up with developments in the broader X
marketplace more easily than CMWs.

7.2. Mayer/Padilla Design

A paper design for a high assurance windowing system
is proposed in [Mayer92]. Their MLS windowing system
(henceforth referred to as MP) does not include any
trusted code. M argue that the TX architecture is not
minimal, as their strawman architecture is clearly smaller.

In the MP architecture, the IM functions of detecting
trusted path and routing input are presumed to be handled
by the operating system. They have a DM equivalent
which runs at system high, accepting requests from
window system servers (such as X servers) but never
acknowledging the operations.

While this architecture avoids trusted code, the cost is
usability:

• Windows are not labeled with sensitivity labels,
since the Display Manager equivalent is not
trusted. We that visible labeling is essential to
usability of multi-level windowing systems.

• The trusted path is non-graphical, meaning the
user's windowing environment is destroyed and
the user is dumped into terminal mode. We feel
that users want graphical interfaces as much as
possible. CMW implementations have carried
this to an extreme, providing highly stylized color
interfaces.

• The trusted path provides no capability to point to
a window and determine its sensitivity label. If
visible labels are not to be provided, we feel that
this is a minimal function. However, the MP
architecture cannot support this functionality.

• MP assumes that the operating system trusted
path facilities are sufficient to start new servers
and change input levels. Since this is not typical
of operating systems, at a minimum it would
require changing the existing trusted path.

As Mayer and Padilla have not implemented their
proposed system, we are unconvinced whether it is
possible to build a system which works as they describe.

The issue at the heart of the difference between TX
and the MP architecture is the definition of the security
policy. Because windowing systems exist to provide
human interfaces, we consider that the security policy
includes not only the information flows, but also the
human interface.

The TX architecture uses trusted code to provide what
we consider to be those functions which need to be
trustworthy: input routing, trusted path detection, trusted
path features, and visible labeling. As such, we feel that
TX is minimal when both trust and usability are
considered. A trusted windowing system without at least
trusted visible labeling is a “secure brick.”

TX is a balance between the high functionality and
large TCB of the CMW approach, and the low
functionality and completely untrusted system of the MP
architecture.

7.3. Sherman/Dinolt/Hubbard Design

In [Loral91] Richard Sherman, George Dinolt, and
Frank Hubbard describe a very high assurance (beyond
A1) multilevel windowing system using hardware,
henceforth referred to as SDH.

The SDH architecture (which predates TX, but was
unknown to us during our design phase due to the patent
process) is not predicated around any particular window
system. SDH dedicates an untrusted processor to each
imaging generator, which are analogous to TX single
level server processes isolated using a high assurance
operating system. The SDH display generator uses
hardware to merge the results of imaging generators
together and place them on the screen, performing a
subset of the functions provided by the TX Display
Manager.

Because of its reliance on hardware separation, SDH
provides high assurance and high performance. However,
in order to keep the hardware simple, SDH does not allow
for overlapping windows of varying sensitivity labels.
Rather, it partitions the screen into horizontal bands, each
of which has a unique sensitivity label. Within each band,
windows can overlap.

Use of hardware as an isolation mechanism gives
higher performance than TX, but requires adding
additional hardware for each new sensitivity label to be
used. Additionally, the set of sensitivity labels to be used
must be predefined in SDH. This special purpose
hardware with fixed labels is in contrast to the general
purpose hardware with a trusted operating system used in
TX, where servers can be dynamically created and
destroyed as necessary.

Because the SDH uses non-overlapping bands, the
input management and trusted path concepts are much
simpler than in TX [Dinolt92]. Applications in SDH can
cause the position of the pointer to move, but only within
the current band. When the user moves the pointer to
another band, the user's input is then labeled at the new
band's sensitivity label by the RMMI which serves a
function similar to the TX Input Manager. That is, the
RMMI switches the input level by moving the pointer,
rather than by invoking trusted path as in TX. The ability
to switch by a pointer movement was a goal in TX, but
one was not realized because of the massive covert
channels present due to overlapping windows and the X
protocol.

The size of the window bands can also be adjusted
using the pointer. Since bands cannot overlap, spoofing is
not a concern as it is in TX. Other trusted path facilities
necessary in TX, such as creating new window system
servers, are not necessary, since the set of sensitivity
labels in use is fixed.

A concern with using the mouse position for
determining input classification is human engineering: if
the user accidentally knocks the mouse so that it points
into a different window, the input classification may be
changed without the user noticing.

One feature present in SDH but not in TX is that SDH
is designed to allow trusted input (such as video) to be
routed directly to the screen in a trusted manner.

In summary, SDH trades off functionality in the areas
of overlapped windows, the ability to create windows
which cover the whole screen, and dynamically created
untrusted window system servers for a high performance
special-purpose hardware solution which has a simple
input paradigm.

8. Later Related Work

This section describes several projects which were
influenced by or built on the TX research.

8.1. Starlight

Starlight Interactive Link [Anderson96] was built to
solve many of the same problems as TX, namely to
provide high assurance windowing. The relative
complexity of TX (as seen by the number of servers and
interactions, plus the requirement for an MLS operating
system) steered the designers towards a hardware-based
solution31.

Starlight’s concept is multiple untrusted X servers,
each on a physically separate computer system. The X
clients can run anywhere so long as they can connect to

31 Private communication with Mark Anderson.

the appropriate X server32. The “low” servers are
replaced by proxy servers that run on the low systems,
each of which feeds the protocol requests via a one-way
communication link to a “high” proxy client which
receives input from all low proxy servers. The proxy
servers each maintain sufficient state that they can
provide responses to the clients at their level, since they
do not receive any feedback from the high server. The
proxy client on the high system simply passes requests to
the high server, discarding any responses. The high
server handles overlapping windows, but does not provide
any visible window labeling.

Input is handled by connecting the keyboard and
mouse to a high assurance n-way switch, with the output
of the switch physically connected to all of the servers.
The user selects the input level using a knob on the
switch, which causes the input to be redirected to the
appropriate X server.

As with TX, a separate window manager is used at
each level.

The trusted portions of the Starlight architecture are
the one-way transfer used for low to high transfers, and
the input switch.

The advantages of Starlight include:
• No trusted software, and simple trusted hardware.
• Allows overlapping windows (unlike [Loral91]).
• No requirement for an MLS operating system.
• No modification to the X server, even to use a

virtual framebuffer.
The disadvantages of Starlight include:
• No visible window labeling.
• Requires one hardware system for each level of

data to be processed (i.e., no MLS).
• There must be one “high” system to which all the

others can send their data.
The Starlight system is now marketed in the U.S. by

Tenix America33 as the Interactive Link Data Diode (IL-
DD) Keyboard Switch (IL-KBS), and has been evaluated
as meeting Common Criteria EAL7 requirements.

8.2. Eros Window System

The Eros Window System (EWS) [Shapiro04] takes a
“clean sheet” approach to designing a trusted windowing
system, without respect to compatibility with existing
systems such as X. Their paradigm is one of isolation by
default, rather than sharing by default as in X, and which
much of the TX design is focused on controlling. The
focus on isolation also solves a limitation of TX, namely
that within a given level, TX clients can interfere with
each other.

32 There is no presumption of separate networks for each level, although
that is the most common usage.
33 http://www.tenixamerica.com/images/white_papers/TenixIL_KBS.pdf

Using the fresh approach, EWS moves all of the
drawing logic into the window system clients (rather than
requiring an X server to do so), and uses shared memory
to provide the image for rendering (similar to TX’s use of
Mach messaging to share the virtual frame buffer). EWS
uses a cut & paste paradigm far simpler than that in X that
avoids the downgrade problems described above, without
requiring the “energetic” evaluation described in section
4.13.

EWS is designed to allow for multi-level windowing
support, although this is not part of the prototype
described in [Shapiro04]. Their design does not provide
for visible window labeling, which we considered
important. Regardless, their ability to reduce the trusted
portion of the system to only 4500 lines of code is
impressive.

Finally, the published work on Eros includes an
original artwork by a precocious artist using the EWS.
The author is pleased to offer this first independent
citation of Wesley Vanderburgh’s artwork.

8.3. Nitpicker

Nitpicker [Feske05] is an effort to address many of the
same issues as TX, although their focus is on preventing
theft of input by malicious clients, rather than an MLS
protection architecture. Their prototype does not provide
window labeling, but does provide limited trusted path
capabilities. The Nitpicker TCB is 1500 lines of code,
significantly smaller than that of TX.

There are many similarities between Nitpicker and TX,
including the use of virtual frame buffers, the effort to
exclude as much code as possible from the TCB, and
input processing.

8.4. IBM cut & paste patent

Carson et al [IBM96] address the cut and paste issues
in a Compartmented Mode Workstation, in an effort to
provide mediation for cross-level operations, including
limited downgrade actions. Their focus is on using the
existing X protocol operations, and to have the user
decide via pop-up windows whether to allow the
operation.

8.5. Other efforts

An effort to build an MLS version of X for SELinux
[Kilpatrick03] rejects the concept of server
polyinstantiation, and focuses on defining permissions
necessary for each type of object managed by the X
server, and how to tie those into the SELinux policy
model.

Ganapathy et al [Ganapathy05] used semi-automated
tools to identify where authorization decisions should be
made in legacy code. Their test case was the X server,
and they compare their results to the manual results of
[Kilpatrick03].

Both of these approaches are roughly equivalent to that
of the CMW vendors, in that they do not address
assurance or TCB minimization. Neither addresses
visible window labeling.

Sun’s Solaris 10 Trusted Extension will include MLS
extensions to X based on Sun’s CMW effort34. This is the
first instance of an MLS windowing system in a general-
purpose commercial product.

9. Lessons Learned

Looking back after 15 years, the primary lesson
learned is that the architectural tradeoffs change with
time, some of which have made this architecture more
desirable, and others have made it less feasible.

Among those that are more feasible:
• Faster CPUs with significantly more memory

have made the penalty exacted by
polyinstantiation less onerous.

• The availability of virtual machine monitors such
as VMWare have made MLS itself less important
than it was. The TX architecture could be
implemented in a VMWare environment, with
the trusted servers running in one VMWare
partition and other VMWare partitions each
supporting a single SLS, SE, and clients.

Among those that have made this approach less
desirable:

• The lack of desktop MLS operating systems
means that the approach is currently infeasible,
other than using a virtual machine monitor.

• The reduced cost, size, power, and heat of
desktops have made multiple hardware
approaches, such as those in Starlight, more
feasible (although the management of multiple
computer systems is no easier than it was).

• The lack of direct access to graphics hardware in
the TX architecture is much more limiting than it
was at the time.

• Inexpensive KVMs can be used to address the
requirement in some environments, where there
is no requirement for simultaneously viewing
windows of different classifications.

Another major class of lessons learned is not to focus
exclusively on the MLS aspects of the system, to the
extent of ignoring attacks on the X clients. For example
flaws in the xterm terminal emulator client [CERT93]
provide a local user the ability to obtain “root” privilege,

34 Christoph Schuba, personal communication.

and [CERT97] describes local vulnerabilities in the libXt
library used by nearly all X clients that can allow a user to
gain “root” access if the client program is setuid-root. In
our architecture, these attacks would be limited to a single
level and a single SLS, and perhaps further constrained by
TMach. However, overlooking this type of flaw missed a
key aspect of X security.

The lesson from Eros is that starting with a clean
design can yield a much simpler system than we achieved
with our goal of compatibility with X. In particular, the
cut & paste mechanism in Eros is far simpler than ours,
yet maintains the desirable properties of allowing cross-
level cut and paste without covert channels. Of course,
this lesson is true for all types of software – considering
security from the start is far simpler than bolting it on
afterwards, as we attempted to do with TX.

A final lesson relates to the selection of TMach: while
our contract required use of TMach, both TMach and the
Mach system underneath were quite immature.
Significant effort went into overcoming the limitations of
the port model. Additionally, the lack of shared memory
forced us to pass virtual frame buffers from SLSs as very
large messages to the DM, which contributed
substantially to the performance limitations of the
prototype. While our colleagues at TIS who were
building TMach were quite helpful, building a prototype
(TX) on top of a prototype (TMach) on top of a prototype
(Mach) substantially increases risk.

No research project is complete without a catchy
acronym. While we considered several names (e.g.,
TRIX – TRusted Interactive X35), we never settled on one,
and the project became known just as “Trusted X”. As
this is also a generic term, citations of this research
frequently use the term “TRW Trusted X”. Had we
anticipated the emergence of Google, perhaps we would
have put more energy into selecting a better name, to
make the project easier to find for future generations of
researchers.

10. Conclusions

When this research started in 1989, the general
reaction in the security community was that a high
assurance MLS windowing system (especially X) was
impossible, and we occasionally had doubts as well. Our
design and development has shown that the early
pessimism was unfounded. Our minimal, modular TCB
implementation, combined with a simple security policy
show that high assurance MLS X is feasible.

35 Perhaps the “fruity flavors – raspberry red, lemony lemon, orangey
orange, wildberry blue, grapity purple and watermelon” in the breakfast
cereal could have been used to represent different classifications, a
welcome change from the steady diet of “Secret/NOFORN/” and similar
labels used in most MLS papers.

11. Acknowledgements

The TX project involved contributors from TRW,
Trusted Information Systems, and the University of North
Carolina, Chapel Hill. The author acknowledges the
many contributions of Rita Pascale36, Marvin
Shugerman37, Bonnie Danner38, and Ann Marmor-
Squires39 (all from TRW), Marty Branstad40, Hilarie
Orman41, Homayoon Tajalli42, Doug Rothnie43, Steve
Padilla44, and Glenn Benson45 (all from Trusted
Information Systems), and John McHugh46 and Charlie
Martin47 from the University of North Carolina, Chapel
Hill.

Many of the ideas that went into the TX project grew
out of discussions in the Trusted Systems Interoperability
Group (TSIG), a working group of vendors working on
CMWs and related systems. The author particularly
appreciates his interactions with Jeff Picciotto from The
MITRE Corporation and Glenn Faden from Sun
Microsystems.

Finally, the author thanks Dan Thomsen for starting
the “Classic Papers” session at ACSAC, and to Tom
Haigh for the opportunity to present this paper.

12. References

[Anderson96] Mark Anderson, “Starlight: Interactive
Link”, Proceedings of the 12th Annual
Computer Security Applications
Conference, December 1996.

[Bell75] Secure Computer Systems: Unified
Exposition and Multics Interpretation,
MTR 2997, The MITRE Corporation,
D. E. Bell, L. J. La Padula, July 1985.

[CERT93] CERT advisory CA-1993-17 xterm
Logging Vulnerability, www.cert.org/
advisories/CA-1993-17.html

[CERT97] CERT Advisory CA-1997-11 Vuln-
erability in libXt, www.cert.org/
advisories/CA-1997-11.html

36 Now a Montgomery County (MD) math teacher.
37 Deceased.
38 Now with Northrup Grumman.
39 Now with Northrup Grumman.
40 Retired.
41 Now with Purple Streak, Inc.
42 Now with Symantec, Inc.
43 Now a freelance videographer.
44 Now with Washington DC Temple of the Church of Jesus Christ of
Latter-Day Saints.
45 Now with JP Morgan Chase.
46 Now with Dalhousie University.
47 Now with Sun Microsystems.

[CMWEC91] R.D. Graubart, J.L. Berger, J.P.L.,
Woodward, Compartmented Mode
Workstation Evaluation Criteria,
Version 1, MTR 10953, The MITRE
Corporation, Bedford, MA, June 1991
(also published by the Defense
Intelligence Agency as document
DDS-2600-6243-91) [Not in the public
domain].

[CMWREQS87] Security Requirements for System High
and Compartmented Mode
Workstations, DIA Document Number
DDS-2600-5502-87, John P. L.
Woodward (MITRE), November 1987.

[Dinolt92] Private conversation with George
Dinolt, October 2, 1992.

[Epstein90] Jeremy Epstein, “A Prototype for
Trusted X Labeling Policies” in
Proceedings of the Sixth Annual
Computer Security Applications
Conference, December 1990.

[Epstein91] Jeremy Epstein and Jeffrey Picciotto,
“Trusting X: Issues in Building Trusted
X Window Systems -or- What's not
Trusted About X?”, in Proceedings of
the 14th National Computer Security
Conference, October 1991.

[Epstein93a] Jeremy Epstein, et al, “A High
Assurance Window System Prototype,
in Journal of Computer Security, Vol.
2, No 2&3, 1993

[Epstein93b] Jeremy Epstein and Rita Pascale, “User
Interface for a High Assurance
Windowing System” in Proceedings of
the Ninth Annual Security Applications
Conference, December 1993.

[Epstein96] Jeremy Epstein, “A High-Assurance
Hardware-Based High-Performance
Trusted Windowing System, in
Proceedings of the 19th Annual
National Information System Security
Conference, October 1996.

[Feske05] N. Feske and C. Helmuth. “A
Nitpicker’s guide to a minimal
complexity secure GUI”, in
Proceedings of the 21st Annual
Computer Security Applications
Conference, December 2005

[Ganapathy05] Vinod Ganapathy, Trent Jaeger, and
Somesh Jha, “Retrofitting Legacy
Code for Authorization Policy
Enforcement”, in Proceedings of the
2005 IEEE Symposium on Security and
Privacy, May 2005.

[IBM96] Mark Carson, Mudumbai Ranganathan,
Janet Cugini, and Khalid Asad,
Integrity Mechanism for Data Transfer
in a Windowing System, U.S. Patent
5,590,266, issued December 31 1996.

[ICCCM89] Inter-Client Communication
Conventions Manual, Version 1.0, MIT
X Consortium Standard, 1989.

[Kerberos88] Jennifer Steiner, Clifford Newman, and
Jeffrey Schiller, “Kerberos: An
Authentication Service for Open
Network Systems” in Proceedings of
the Winter USENIX 1988 Conference.

[Kilpatrick03] Doug Kilpatrick, Wayne Salamon, and
Chris Vance, “Securing the X Window
System with SELinux”, Technical
Report 03-006, NAI Labs, March
2003. www.nsa.gov/selinux/papers/
x11/t1.html

[Loral91] Richard Sherman, George Dinolt, and
Frank Hubbard, Multilevel Secure
Workstation, U.S. Patent 5,075,884,
issued December 24, 1991.

[Mayer92] Frank Mayer and Steve Padilla, “A
Straw Man Design for an MLS
Window System: An Example
Complex Application for High
Assurance Systems”, in Proceedings of
the 15th Annual National Computer
Security Conference, October 1992.

[Motif90] OSF/Motif Programmer's Reference,
Open Software Foundation, Prentice-
Hall, 1990.

[Pascale92] Rita Pascale and Jeremy Epstein
“Virtual Window Systems: A New
Approach to Supporting Concurrent
Heterogeneous Windowing Systems”
in Proceedings of the 1992 USENIX
Summer Conference, July 1992.

[Protocol88] X Window System Protocol, MIT X
Consortium Standard, X Version 11,
Release 4, Robert Scheifler, 1988.

[Shapiro04] J. S. Shapiro, J. Vanderburgh, E.
Northup, and D. Chizmadia, “Design
of the EROS trusted window system”,
in Proceedings of the 13th USENIX
Security Symposium, August 2004

[TCSEC85] National Computer Security Center,
Fort Meade, MD, Trusted Computer
Systems Evaluation Criteria, DoD
5200.28--STD, December 1985.

[Uhler88] Stephen Uhler, MGR - C Language
Application Interface, Bell
Communications Research, 1988.

[Yellow85] National Computer Security Center,
Fort Meade, MD, Computer Security
Requirements - Guidance for Applying
the Department of Defense Trusted
Computer System Evaluation Criteria
in Specific Environments, CSC-STD-
003-85, June 1985.

13. Glossary

CIT (TX) Client Initiator Terminator
CMW Compartmented Mode Workstation
DM (TX) Display Manager
ICCCM Inter-Client Communications Conventions

Manual
IM (TX) Input Manager
KVM Keyboard Video Mouse (switch)
MLS Multi Level Secure
MS (TX) Mini Server
PE (TX) Property Escalator
SAK Secure Attention Key
SE (TX) Selection Emulator
SIT (TX) Server Initiator Terminator
SLS (TX) Single Level Server
TCSEC Trusted Computer System Evaluation Criteria
TSH (TX) Trusted Shell
WM (TX) Window Manager

