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Abstract1 

Research in the late 1980s and early 1990s produced a 
prototype high assurance multi-level secure windowing 
system that allowed users to see information of multiple 
classifications on the same screen, performing cut & 
paste from low to high windows.  This retrospective 
discusses the motivations for the project, reviews the 
architecture and implementation of the prototype, 
discusses developments in the intervening years, and 
concludes with lessons learned. 

1. Introduction 

The 1980s brought wide-spread availability of 
relatively inexpensive workstations2 with bitmapped 
graphics displays, mostly running the UNIX3 operating 
system and the MIT-developed X Window System (X).  
The expectation in the early 1990s was that this would be 
followed by widespread usage of multilevel secure (MLS) 
versions of these workstations, which would require MLS 
windowing systems. 

Compartmented Mode Workstations (CMW4) showed 
that a windowing system can provide functionality and 

                                                           
1 This paper is an updated and expanded version of A High Assurance 
Window System Prototype, Journal of Computer Security, Vol. 2, No 
2&3, 1993.  The work described in this paper was performed while the 
author was employed by TRW, Inc., and was sponsored by the Defense 
Advanced Research Projects Agency under Contract No. MDA 972-89-
C0029.  The updates and historical perspective presented in this paper 
were not sponsored by DARPA or performed while the author was 
affiliated with TRW. 
2 Low end Sun 3 workstations were priced around $10,000. 
3 Trademarks: UNIX and Motif are registered trademarks of The Open 
Group.  X Window System is a trademark of the Massachusetts Institute 
of Technology. 
4 A CMW is a workstation which meets the requirements defined in 
[CMWREQS87] or [CMWEC91].  The CMW functionality 
requirements include an operating system and windowing system with 
TCSEC [TCSEC85] B1 features, plus some additional features from B2 
and B3 such as access control lists and trusted path.  For the purposes of 
this paper, we will consider only the windowing system aspect of the 
system, just as we will generally ignore the operating system which 
underlies our Trusted X prototype. 

assurance which meet the class B15 requirements of the 
Trusted Computer System Evaluation Criteria [TCSEC].  
For some applications, assurance beyond B1 is necessary.  
These applications might include system administration or 
security officer functions on a high assurance Multilevel 
Secure (MLS) system as well as general operations in 
non-benign environments (i.e., not a compartmented 
mode environment where all users are clearable for all 
information on the system).  The guidelines in [Yellow85] 
require a B36 level of assurance for such applications.  

Our goal was to design and build a prototype system, 
which we call Trusted X (TX).  We did not attempt to 
build a system which is B3 certifiable per se, but rather 
focused our attention on those issues that must be 
resolved if a product development of TX targeted at B3 is 
to succeed.  These include the development of a formal 
security policy, an architecture that satisfies the B3 
structuring and minimization criteria and a way to secure 
the X protocol that avoids covert channels with minimal 
impact on X applications.  This approach allows us to 
tackle the difficult, high risk technical problems first to 
demonstrate that the problem is solvable.  The prototype 
effort ignored some of the B3 evaluation requirements 
that would be needed in a product, such as configuration 
management and extensive security testing and 
documentation. 

TX is a trusted application, not a complete computing 
system.  As such TX needs a B3 or better operating 
system as its host.  We used the TMach 2.5 [TMach90] 
prototype from Trusted Information Systems as our base.  
For the prototyping effort, we ignored the issue of a B3 
network. 

The paper continues with a description of the 
assumptions and the environment of the time when the 
TX prototype was built, provides a brief introduction to 
the X architecture, then describes the TX security policy, 
system architecture, operation, and architectural 
limitations.  We then describe how our system is similar 
to and different from other approaches to building MLS 

                                                           
5 TCSEC assurance levels included both specific feature requirements as 
well as assurances.  B1 was the lowest level of assurance that also 
included MLS features.  The assurances in B1 are roughly comparable to 
Common Criteria EAL4. 
6 The assurances in B3 are roughly comparable to Common Criteria 
EAL6. 



windowing systems, including both those available at the 
time and research since then. 

2. Background & Requirements 

For most users then (and even today) who need to 
access data of multiple classifications, the common 
practice is to have multiple computer systems each 
operating at a single level7, each with an independent 
keyboard, mouse, and display.  This causes a number of 
problems: desk real estate, hardware cost, heat 
dissipation, noise, and usability (especially the inability to 
cut & paste text or graphics between machines).  As a 
result, the mid 1980s saw the first experiments with MLS 
windowing. 

The target audience for MLS windowing was analysts 
working with data of multiple classifications, typically to 
synthesize reports.  While workstation users had graphic 
display screens, most usage was text.  Because data of 
multiple classifications was expected to be on the screen, 
proper visible labeling was critical to avoid accidental 
misclassification, just as classified paper documents are 
labeled with page and paragraph markings.  While 
graphics displays were physically large (19” was 
common), they had fewer pixels than today’s laptops 
(1024 x 952 was a common resolution), so users 
frequently resized windows.  Hence, the ability to 
dynamically change window size and position was 
considered a requirement. 

It was widely accepted that X was a flexible platform 
for windowing, but one built without security as a primary 
driver.  An extensive discussion of trust issues in X can be 
found in [Epstein91]. 

The state of the art for MLS windowing in 1989, when 
the TX project started, was CMWs.  The facilities of the 
commercial CMWs from DEC, IBM, Sun, and others 
influenced the research – we felt that in order for a high 
assurance solution to be considered a reasonable 
alternative, it must offer comparable features.  Thus, we 
quickly ruled out options that did not allow for windows 
of different classifications to be displayed on the screen at 
the same time.  Such “screen switching” technology was 
(and is) cost effective, but prevents the user from seeing 
information from multiple classifications at the same 
time, hence eliminating much of the value of the 
windowing system. 

Graphics hardware, as provided in workstations, was 
relatively primitive compared to today.  In particular, 
most workstations had simple framebuffers8 without 

                                                           
7 For purposes of this discussion, we do not differentiate between 
information of different classifications (e.g., Secret vs. Unclassified) and 
information in different categories (e.g., NOFORN vs. RELNATO).  
This distinction is only relevant for TX in the context of cut and paste. 
8 A framebuffer is an area of memory shared between the CPU and the 
graphics card where each bit (in the case of the simplest black & white 

hardware accelerators.  Operating systems had not yet 
fully integrated the concept of graphics hardware, and 
“root” permission was typically required to access the 
framebuffer or the graphics hardware.  Additionally, the 
graphics hardware was not virtualized by MLS operating 
systems (unlike memory and other resources), so it could 
not be shared among untrusted software operating at 
different levels without risk of information leakage. 

MLS operating systems were being developed by 
several companies; our DARPA contract required use of 
TMach so we did not consider any alternatives.  Building 
custom hardware was out of scope for the project. 

In developing our architecture for TX we had several 
goals dictated by concerns for both B3 certifiable security 
and acceptable X functionality and performance.  From 
the standpoint of secure functionality the primary 
requirement of TX is that it displays correctly labeled data 
to the user in an unspoofable fashion and allows the user 
to run untrusted applications without any potential for 
violation of the operating system’s security policy.  With 
the exception of the functionality required to assure 
correct labeling and trusted path interactions, we had no 
claims about the veracity of data displayed by clients.  As 
we frequently described it, from a trust standpoint, we 
didn’t care if circles were drawn as squares or vice versa. 

The goal of the TX project, then, was to build a highly 
assurable MLS windowing system that would run on 
standard hardware, on the TMach operating system. 

3. The X Window System 

The following description is of the X Window System 
as it existed in the early 1990s.  There have been 
numerous modifications since that time, including to 
improve security, but this section is largely as originally 
published, as it reflects the state of the world at the time 
of the prototype. 

The X architecture is based on the client/server model 
of distributed computing.  The X server manages the 
screen(s), keyboard, and pointing device (typically a) 
mouse), as well as graphical resources such as windows 
and properties on behalf of the X clients.  The X server 
also manages global resources (such as the search path for 
fonts and the keyboard and pointer characteristics) that 
clients may change but not destroy. 

X clients and the X server communicate via the X 
protocol [Protocol88].  Clients send requests to the server 
over a bi-directional communications channel using any 

                                                                                              
displays) represents the contents of a single pixel on the screen.  (For 
more sophisticated graphics hardware, such as grayscale or color 
displays, one or more bytes is needed per pixel.)  Modifying the display 
is as simple as modifying the bits in memory.  The graphics card causes 
the display to render appropriate images based on the contents of each 
bit in the framebuffer.  More modern graphics chips have framebuffers, 
but most drawing uses dedicated graphics hardware. 



reliable byte-stream protocol (e.g., TCP/IP), and receive 
events and responses. 

Protocol requests include administrative requests, 
requests to create and destroy resources, and drawing 
requests. 

Applications can be written at a number of levels of 
abstraction, but all of these reduce to X protocol requests 
to the X server.  Consequently, use of libraries and 
toolkits such as Motif [Motif90] are invisible to the 
server. 

X has no concept of privilege, and a minimal notion of 
protection.  Protection is provided at connection time 
only.  The X server maintains a host access list which 
identifies those computers from which connections will be 
accepted.  In addition, an optional authentication 
mechanism allows the server to demand some form of 
authentication from the client (e.g., an MIT magic cookie 
or a Kerberos [Kerberos88] authentication ticket).  Once a 
client has connected to the server, it may perform any 
request, including a request to turn off authentication for 
clients that attempt to connect in the future.  Clients can 
also directly impact other clients (e.g., by killing them), 
although such behavior is considered undesirable (see 
[ICCCM89]). 

Management of windows on the screen is performed 
by a window manager.  There are many existing window 
managers, each of which provides a different look-and-
feel.  Because there is no notion of privilege in X, the 
window manager is simply another client.  The 
conventions described in the X Inter-Client 
Communication Conventions Manual [ICCCM89] are 
used to define an environment where “well-behaved” 
(ICCCM compliant) clients can interact cooperatively. 

4. Concepts & Architecture 

This section presents the TX architecture.  We first 
provide a high level view, introducing each of the trusted 
and untrusted components of the system.  Next, we 
describe the size and internal structure of each 
component.  The remainder of the section describes the 
facilities provided by each component and the component 
interactions. 

The target hardware platform for TX was the Sun 3 
line of workstations, because those were the primary 
TMach platform.  The Sun 3/50 and 3/150 were both 
based on the Motorola 68020 processor, operating at 
about 16MHz9 (the 3/50 was slightly slower), and were 
typically equipped with 4MB of memory.  Later versions 
of TMach and TX ran on Gateway desktops with 33MHz 
Intel 486 processors.  The hardware limitations compared 
to today’s systems were not foremost in our minds, but 
impacted the resulting system. 

                                                           
9 Or about 1000 times slower than the typical laptop computer of 2006. 

4.1. Overlapping Windows & Visible Labeling 

The goals of the visible labeling policy were that the 
labels must be easily readable and clearly associated with 
the window contents.  We also wanted the visible labeling 
mechanism to be “spoof free” – it should not be possible 
for a malicious client to draw something that looked to the 
user like a classification label.  Additionally, 
compatibility with the core X look and feel was a must.  
Because there is no universally acceptable solution, we 
chose a policy that balances utility with assurance. 

In 2006, the notion of overlapping windows (where 
one window partially obscures another) is obvious.  In 
1990, we considered whether they were mandatory, and 
whether a windowing system that required non-
overlapping windows was acceptable.  Additionally, we 
considered whether a system was acceptable that provided 
a simple switch to move between screens each at a single 
level, much as KVMs allow switching between 
computers.  In order to meet our goal of compatibility 
with the core X look and feel, we needed to allow 
overlapping windows, and a simple screen switch was 
insufficient.10 

Figure 1 shows window layout in a system without 
restrictions (so each window is individually labeled), with 
region tiling (windows of each classification in a reserved 
area of the screen), with window tiling (non-overlapping 
individually labeled windows), and screen switching. 

 

Figure 1.  Window Layout Alternatives. 

Once we determined the need for overlapping windows 
of multiple classifications, we then considered the visible 
labeling requirements11.  Visible labeling marks windows 
on the display so the user can clearly determine the 

                                                           
10 Section 7.3 discusses a windowing system without overlapping 
windows. 
11 Sections 7.2 and 8.1 describe systems with overlapping windows, but 
without visible labeling. 
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maximum potential classification of data in a window12.  
As overlapping windows may make it difficult to 
determine the classification of data in a window, we 
determined that a “point to identify” capability was 
required, so the user could know the classification of any 
particular area on the screen.  We considered whether the 
classification for a window should be displayed on the top 
of each window, or around all four sides (and what to do 
with non-rectangular windows).  We also prototyped what 
happens if windows are overlapped in such a way that 
portions of the data are not continuous to any label; we 
called these “orphan” areas.  Our conclusion was that 
labels on all four sides of a window were desirable, and 
that non-rectangular windows would not be supported.  
Figure 2 shows the appearance of labels on the screen.  
Further details on these studies can be found in 
[Epstein90] and [Epstein93a]. 

 

Figure 2.  Overlapping windows and labels. 

4.2. System Overview 

When we initially approached the concept of a trusted 
X Window system, we considered the possibility of 
securing the X protocol and the server that interprets it.  
After a substantial effort that included formal modeling 
and covert channel analysis of some of the X protocol 
requests as well as substantial study of several X server 
implementations, we reached the conclusion that a high 
assurance MLS X server was beyond our resources and 
that problems inherent in the X protocol might preclude 
such an implementation even with unlimited resources.  

                                                           
12 The actual information in the window may be less classified than the 
label indicates, but cannot be more classified.  For example, opening 
your grocery list in a window marked Secret does not automatically 
make the list Secret.  Information Labels (ILs) in CMWs are an attempt 
to indicate to the user the actual classification of information, rather than 
the maximum classification. 

The “server per level” or “polyinstantiated subject” idea 
was an obvious alternative, which we adopted. 

The TX TCB is composed of four sets of trusted 
processes that mediate client access to TX and control 
multilevel interactions among clients.  The modular 
structure of the TCB and the specialized functionality 
assigned to each module simplifies analysis of the 
modules and strengthens the assurance arguments. 

• Input control and trusted path functions.  This 
functionality is provided by three trusted 
modules: the Input Manager (IM) distributes 
keyboard and pointer inputs and coordinates 
activities of the trusted Mini Server (MS) and the 
Trusted SHell (TSH) which provides the user 
with operational control of TX. 

• Display management and window labeling 
functionality.  The Display Manager (DM) 
composes the physical display from the virtual 
framebuffers of the single level servers and adds 
the necessary visible labels to top level windows. 

• Initiation of the task set for each sensitivity 
level.  The single level servers and their 
associated supporting clients are started by two 
trusted modules; the Server Initiator (SIT) for 
starting the servers and the Client Initiator (CIT) 
for the clients. 

• Multi-level information sharing functionality.  
The Property Escalator (PE) supports cut & paste 
operations among single level clients. 

Each of the trusted subjects has its own internal 
security policy which must be shown to enforce the 
underlying information flow policy inherent in the TMach 
access control policy.  In particular, the security policies 
of MS and TSH are minimal, because they have no 
interfaces to non-TCB software.  DM, IM, SIT, and CIT 
all implement a policy of read-equals and write-equals as 
defined by Bell-LaPadula [Bell75]: a given subject is only 
provided information about subjects and objects at its own 
sensitivity level.  PE's policy is read-down, write-equals 
to allow pasting of lower level information at a higher 
sensitivity level. 

Each instance of an untrusted X server (SLS) is 
supported by two additional untrusted clients: the 
Selection Emulator (SE) and the Window Manager 
(WM).  An untrusted X client interacting with other 
untrusted X clients at its level sees the full X functionality 
and is unaware of the existence of clients at other levels. 

There is no notion of a security policy other than the 
MLS policy – within a single instance of the X server, the 
policy is the standard X policy (i.e., no limits). 

Figure 3 shows the TX subjects and their interactions. 
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Figure 3.  TX Architecture. 

To allow the individual X servers to share the screen, 
each X server maintains a virtual framebuffer, which is a 
memory area set up exactly as a (hardware) framebuffer.  
Thus, the polyinstantiated X server draws in its virtual 
framebuffer in exactly the same way as it would use a 
hardware framebuffer, thus minimizing changes to the 
untrusted software. 

4.3. TCB Minimization and Modularization 

One of the key difficulties in building a high assurance 
X is to minimize and modularize the TCB to conform to 
the architectural requirements of the TCSEC and general 
principles of minimization.  While the MIT provided code 
is generally well-written and well-structured, design 
documents do not exist, and it is far too large (roughly a 
100,000 lines of code in the server alone13) to meet high 
assurance goals. 

By contrast, the TX prototype contains about 30K 
LOCC (or 8K statements) in its TCB.  This compares 
favorably with other high assurance TCBs: the SCOMP 
TCB with about 21K statements14; the XTS 200 TCB 
(SCOMP's successor) with about 20K statements15; and 
the TMach TCB with about 100K statements16.  
Comparable numbers for the GEMSOS TCB were 
unavailable17. 

The individual trusted subjects range from a few 
hundred to a few thousand LOCC.  The encapsulation and 

                                                           
13 By comparison, Microsoft Windows XP is about 40 million lines of 
code, and current versions of Linux are millions of lines of code.  Not all 
of this must be trusted, but the relative size is instructive. 
14 Conversation with Les Fraim, MITRE. 
15 Conversation with Chuck Bonneau, HFSI. 
16 A preliminary estimate by Homayoon Tajalli, TIS. 
17 Conversation with Don Brinkley, GEMINI. 

limited roles18 make their evaluation less difficult than 
comparable portions of an operating system kernel. 

 
Subject Trusted? LOCC Statements 
M Yes 400 150 
IM Yes 1,600 400 
DM Yes 5,500 1,600 
MS Yes 2,300 450 
TSH Yes 2,700 1,000 
SIT Yes 600 150 
CIT Yes 200 50 
PE Yes 400 100 
SLS No 103,000 39,700 
SE No 1,500 500 
WM No 58,000 11,000 

Figure 4.  Approx. Lines of C Code for TX Subjects. 

 
The total LOCC for trusted components (including the 

library) is approximately 18K (5K statements), while the 
untrusted portion of the system contains approximately 
414K LOCC (or 130K statements)19. 

The following sections describe each of the 
components in turn. 

4.4. Master 

The Master (M) synchronizes the initialization of the 
TCB components.  Once the system reaches its initial 
configuration, M does not take an active part in its 
operation.   

M does not communicate with untrusted subjects. 

4.5. Input Manager 

The Input Manager (IM) routes keyboard and pointer 
(typically a mouse) input, checks for the secure attention 
key (SAK) sequence, and for inactivity timeouts.  It can 
also provide information about the input hardware 
configuration, information that is bound at TX 
initialization time and not subsequently changed.  At any 
given time, there is at most one “current” TX server 
which may be a SLS, the MS, or none.  In normal 
operation, the current server receives all input.  In X, 
these are low level operations representing key press and 
release events, pointer motions, etc. rather than ASCII 
characters and pointer coordinates. 

                                                           
18 The TX trusted subjects are trusted in a limited sense.  Each has 
limited interactions with several untrusted clients at different sensitivity 
levels and must be shown not to pass information among them in 
unacceptable ways.  TX trusted subjects do not have unlimited access to 
TMach resources and cannot, for example open arbitrary files, 
manipulate the memory management, etc. 
19 Including 252K LOCC (78K statements) in common libraries shared 
by all clients. 
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The SAK sequence is not necessarily a single key press 
event, but may represent a combination of events that are 
watched for by the IM. 

If the SAK is detected, the current server is set to be 
MS, which then receives all input until it directs 
otherwise.  This is the trusted path. 

If IM does not detect any keyboard or pointer activity 
for a (configurable) period of time, it sets the current 
server to none (even if the server is MS).  In this mode, all 
inputs except the SAK are discarded.  This allows 
implementation of a screen lock facility (described in 
section 5.6).  Once locked, the screen can only be 
unlocked through the trusted path.  The current server is 
also set to none if the receiving server terminates.  
Otherwise, IM changes its current server only when 
instructed to do so by MS. 

IM notifies a SLS when it becomes the current server 
and when it loses this status.  This notification allows the 
SLS to inform the window manager (or any other client), 
which might take actions such as raising all windows to 
the top on activation, or clearing its focus indicator on 
deactivation.  This is an operational consideration, and we 
believe that no covert channel is introduced because the 
notification is the direct result of user action. 

IM uses Mach threads (lightweight processes) to 
achieve parallelism.  One thread constantly monitors the 
keyboard and pointer (sending the data to the current 
server), a second thread responds to requests for hardware 
configuration information, and a third thread watches for 
inactivity timeouts. 

Because TX provides a graphical interface, it might 
appear logical to use a pointer click on an icon (rather 
than a typed sequence of keys) for the SAK.  To 
implement such a facility would require the inclusion of 
pointer handling code as well as substantial portions of 
the graphics display code in the TCB; that is something 
that we wish to avoid. In the present architecture, the 
physical cursor position on the screen is not known by IM 
since each SLS is free to “warp” the cursor position20 as it 
sees fit and IM would be unable to determine when the 
cursor is pointing to the icon. 

4.6. Display Manager 

The Display Manager (DM) controls the physical 
display, composing the displayed image from the pieces 
that are provided by the individual SLSs and the MS in 
their virtual framebuffers.  It also is responsible for 
ensuring that the individual windows on the display have 
proper visual labels.  Figure 5 shows this image merging.  
Windows may overlap each other regardless of level; in 

                                                           
20 Cursor warping is typically used when a dialog window is brought up, 
and the cursor image is automatically moved to the default choice. 

this example, unclassified window C overlaps top secret 
window H, but H overlaps unclassified window D. 

 

Figure 5.  Display Composition from Virtual 
Framebuffers. 

DM also provides a service to draw “helping lines” to 
aid window managers (described below). 

DM maintains general hardware and configuration 
information that can be queried by any SLS.  As with the 
IM, this information is bound at TX initialization time and 
cannot be changed thereafter. 

As is the case with the IM, the DM supports a notion 
of a current server which is none, a SLS or MS.  The 
current server is set by the MS.  The display is divided 
into two regions, a small region for the exclusive use of 
MS, and the large majority for use by all servers including 
MS.  The MS reserved area is used for displaying status 
information such as the visual labels for the current 
operating level and the high water mark level21 and for 
interactions with TSH. 

Within DM, certain artifacts of the display state are 
polyinstantiated and maintained on a per level basis.  
These include a list of installed colormaps, the position, 
image, and color of the cursor, the positions, sizes, 
contents, and stacking order of top level windows, and 
size and location of the “helping lines.” 

Each SLS has two TMach ports to DM.  The 
“nonhold'” port can be used by the SLS to update the 
contents of currently mapped top level windows, and to 
query the hardware configuration (which is read-only).  
To update window contents, the SLS provides a 
replacement virtual framebuffer including the new 
window image, which DM clips using the boundaries of 
the given window and any overlapping windows.  The 
“hold” port can be used to map and unmap windows, 

                                                           
21 The “high water mark” is the upper bound of all windows on the 
screen, including both classification levels and categories. 
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change their stacking order, update the cursor position and 
image, draw “helping lines” and perform various other 
administrative functions.  Internally, DM identifies 
windows by both their SLS provided window ID and the 
identity of the SLS which owns them.  Each SLS can only 
refer to windows which it owns. 

DM processes requests from all nonhold ports as they 
are received, but only processes the hold port belonging to 
the current server.  The distinction between the hold and 
nonhold ports is to prevent another SLS from interfering 
with the current server by mapping windows arbitrarily.  
As is the case with input notification, this is an issue of 
functionality rather than security and is a partial solution 
to potential problems that could arise because single level 
window managers are not aware of windows at other 
levels and cannot take action to avoid obscuring them.   

MS can update the contents of the “reserved area” by 
providing a replacement virtual framebuffer with the 
updated image, just as SLSs provide replacement images 
for windows.  SLSs cannot draw in or examine the 
reserved area and are not aware that it exists22. 

When the current server changes, DM installs the 
colormap(s) belonging to it, and displays its last cursor 
image in the proper position.  Polyinstantiation of cursor 
position and colormap values allows complete flexibility 
in colormap and cursor handling without the covert 
channels which would normally exist.  DM also brings up 
the last set of helping lines (if any) provided by the server.  
DM visibly labels each mapped window using a visual 
representation of the sensitivity level of the SLS which 
owns the window.  The labels appear on all four sides of 
the window outside any window manager decorations.  
They are controlled entirely by the DM and are not 
accessible to any SLS.  The visible labels are the only 
graphics performed by DM other than copying virtual 
framebuffer contents to the real framebuffer and drawing 
helping lines. 

Many window managers assist users in placing 
windows on the screen by drawing rectangular boxes 
called “helping lines” directly on the screen background23. 
Unfortunately, there is no way for the X server to 
distinguish between a window manager drawing helping 
lines and a client performing arbitrary drawing on the 
screen background. We extended the X protocol to 
provide an explicit request for the drawing of helping 
lines. A SLS passes this request to DM through its hold 
port.  DM only allows one set of helping lines on the 
screen at any time, namely those belonging to the current 

                                                           
22 For example, as part of startup the SLS is told that the display is 
1024x700 pixels rather than 1024x768, and any attempt to write to pixel 
rows 701-768 is ignored as off the virtual screen. 
23 Helping lines are a dashed outline of a window, used when moving or 
resizing windows on the screen.  They were used to avoid the 
computational cost of moving the actual image around during the resize 
or move operation. 

server.  Each request by a server to draw helping lines 
cancels any previous request it has made.  We do not 
consider helping lines to be information requiring a 
visible label.  Note that helping lines cannot be detected 
by clients or SLSs, so no covert channel is introduced.  

DM also uses Mach threads for parallelism.  One 
thread processes requests from MS, plus requests for 
connections from new SLSs.  A second thread handles all 
nonhold ports from all SLSs, and a third thread handles 
the hold port from the currently selected SLS.  The first 
thread has highest priority, so MS requests will generally 
be processed first. 

The DM is the largest and most complex component of 
the TX TCB.  The majority of the code in this component 
is to handle determination and copying of overlapping 
windows.  This portion could be implemented in a high 
assurance hardware facility, which could increase both 
performance and assurance [Epstein96]. 

4.7. Mini Server 

The Mini Server (MS) coordinates the activities of IM, 
DM, SIT, and TSH.  It also provides a very limited set of 
graphics facilities for use in drawing the screen during 
trusted path interactions and for maintaining the visible 
labels for the current operating level and high water mark 
in the reserved area of the screen.   

Based on its interactions with the TSH, MS directs the 
IM and DM to set the current server and update the 
current operating level, accompanying this with an 
appropriate image (including labels) for the reserved area 
of the screen.  It also directs the SIT to start new single 
level servers as needed. 

X allows arbitrary fonts, and has primitives for 
drawing lines, rectangles, polygons, circles, and other 
shapes using a variety of different styles (e.g., line width, 
mitering algorithms).  By contrast, MS provides 
primitives for TSH to clear an area, draw vertical and 
horizontal lines, and draw text using a single fixed width 
font.  These restrictions allow the size of the MS drawing 
code to be several orders of magnitude smaller than that 
of an X server.  MS draws in a virtual framebuffer, which 
is sent to DM for actual display either in the reserved area 
or on the general screen.  MS also handles input in a very 
restricted fashion.   

Cursor movement is tracked internally, and the cursor 
position is passed to TSH only when a pointer button is 
pressed or released.  Key press and release events are 
converted into text strings for transmission to the TSH. 

4.8. Trusted Shell 

The Trusted Shell (TSH) provides an interface through 
which the user can perform certain administrative and 



security functions necessary for the operation of TX.  
These functions are:  

1. starting a new SLS, 
2. selecting the current operating level, 
3. displaying the level of a window on the screen, 
4. locking the screen, 
5. unlocking the screen after either a manual or 

automatic lock, 
6. changing the user's password24, and 
7. exiting TX. 
TSH uses the drawing primitives provided by MS.  Its 

user interface is based on a simple menu displayed in the 
reserved area of the screen.  Providing this functionality 
via interactions with the TX display and input devices 
avoids the need for a separate trusted interaction facility; 
however, if one wished, all but the third item in the list 
above could be accomplished through interactions with a 
much less complicated device than the bitmapped X 
display.  We believe that there is a firm requirement for 
obtaining the sensitivity level of a displayed window 
through trusted path interactions, and see no way to avoid 
at least some trusted display functionality.  

4.9. Server Initiator/Terminator 

The Server Initiator / Terminator (SIT) performs two 
main tasks: SLS creation and connecting clients to the 
appropriate SLS.  SIT starts a SLS at the request of MS or 
when a client requests a connection to TX at a sensitivity 
level for which no SLS exists.  This avoids a need for 
preconfiguration.  When SIT creates a new SLS, it also 
requests CIT to create a new window manager and 
selection emulator at the sensitivity level of the SLS. 

SIT also connects untrusted clients to the correct SLS.  
It would be preferable for each SLS to make itself known 
to the TMach name server and for clients to connect to the 
appropriate SLS through TMach.  Since TMach does not 
provide polyinstantiation of its name space, each SLS 
would have to pick a unique name, and X clients would 
need to know how the unique names were generated 
(which would also provide a potential covert channel).  
To avoid this, SIT registers as the point of contact for all 
TX connection requests.  When a client asks to connect, 
SIT forwards the request to the appropriate SLS, starting a 
new one if necessary.  Once the connection is established 
between the client and the SLS, SIT is no longer involved 
and TX clients converse directly with their SLS. 

4.10. Client Initiator/Terminator 

The Client Initiator / Terminator (CIT) starts window 
managers and selection emulators as requested by SIT.  

                                                           
24 This function is provided so the user need not exit TX and use the 
TMach TSH.  It adds about 100 LOCC (50 statements) to the TCB. 

CIT and SIT could be folded into one task.  The reason 
for their separation is to maintain the distinction between 
clients (managed by CIT) and servers (managed by SIT).  
This distinction allows CIT and clients to run on a 
different machine from the server tasks, which are usually 
on the same machine as the physical hardware.  

4.11. Property Escalator 

TX supports multilevel cut and paste in accordance 
with the ICCCM selection based protocol.  The operation 
requires interactions between untrusted clients called 
Selection Emulators (see 4.13) and the Property Escalator 
(PE), which can be seen as a primitive MLS database 
allowing read-down.  The Property Escalator (PE) 
provides primitives to SEs to write data (write-equals) and 
to read data provided by other SEs (read-down).  Read 
requests always provide the most recent request which 
meets the format criteria.  The SE which wrote the data is 
not informed that the data has been read, nor can it 
discern that a read took place.  This avoids the covert 
channel inherent in the handshakes that are a part of the X 
protocol operations used in the ICCCM protocol.  This 
assurance comes at the price of support for limited 
conversion formats and multiple conversions.  We feel 
that this is a reasonable price to pay for a high assurance 
system, but we realize that there is only limited 
experience in this area. 

Because the PE is the only trusted subject whose 
purpose is to support interclient communications between 
sensitivity levels, its internal security policy deserves 
discussion. The subjects of the PE security policy are the 
untrusted SE clients with which it communicates.  The 
objects of the PE security policy are the cuttings. The 
access modes are cut and paste.  The objects are 
polyinstantiated at all sensitivity levels at which the PE 
may operate.  Under the policy, all SE's have cut access to 
the selections at their sensitivity level.  This gives them 
the ability to ask the PE to replace the previous value of 
the cutting with a new one.  In addition, SEs have paste 
access to those cuttings whose sensitivity level they 
dominate.  Under the policy, a paster can have paste 
access to numerous cuttings.  From a security standpoint, 
it does not matter which one is pasted; from a 
functionality standpoint, it does and we choose the most 
recent cutting as satisfying the usual model of cut and 
paste interactions.  This policy provides the information 
flow protection desired and is consistent with the TMach 
access control policy. 

A side effect of this policy is that an instance of SE can 
perform a Denial of Service (DoS) attack against other 
instances of SE by periodically sending data to be pasted 
(perhaps once a second).  This would prevent the user 
from pasting any information other than that provided by 
the malicious SE, unless they are operating at a level such 



that they cannot read the data from the malicious SE 
instance25.  

4.12. Single Level Server 

The Single Level Servers (SLS) are modified versions 
of the MIT X server.  Whenever possible, we have 
avoided modifying the MIT code to avoid introducing 
bugs or incompatibilities between TX and X.  Our 
changes involve device handling code which initializes 
input and output devices, input and output specific code to 
replace device specific code, replacing UNIX operating 
system dependent code with TMach code (for receiving 
connections from clients and reading andwriting X 
protocol to and from clients using TMach ports rather 
than UNIX sockets), and disabling requests to change 
global settings such as the keyboard mapping. 

Because the SLS does not have control of the physical 
input and output devices, device initialization code is not 
necessary and these functions have been transferred to the 
IM and DM.  The SLS receives its input from IM via a 
TMach port.  This change has minimal impact on the X 
server.  For output, the SLS allocates a virtual framebuffer 
of the same size as the physical framebuffer (without the 
reserved area, which is unknown to the SLS).  All 
drawing is performed using this virtual framebuffer, 
which is then sent to DM as TMach messages.  Mach and 
TMach send messages copy-on-write, so the virtual 
framebuffer is not actually copied.  Rather, the SLS and 
DM share the same framebuffer, except when it is being 
updated by the SLS.  This minimizes the additional 
memory required, and the overhead of copying. 

Window mapping and unmapping requests result in 
messages to DM.  Rather than adding “move window” 
and “resize window” primitives to DM, the SLS unmaps a 
window and remaps it in its new size and position.  
Cursor and colormap modifications are similarly modified 
to send messages to DM.  Note that the SLS is unaware of 
labels placed on windows by DM. 

All interpretation of input (i.e., determining which 
client(s) receive the keystrokes and/or pointer events) is 
performed by the SLS. 

Each SLS could map the keyboard differently (e.g., the 
secret SLS could use a QWERTY keyboard mapping, 
while the confidential SLS could use a Dvorak keyboard 
mapping).  This is a side-effect of the polyinstantiation of 
the SLSs that may appear at first to be a flaw in the 
system: why would one want to have different keyboard 
mappings for different sensitivity levels?  Consider, 
however, a system which provides specialized function 

                                                           
25 For example, if the malicious SE is running at Secret/A/, then any 
paste operations at Top Secret/A/, Top Secret/A,B/, or Secret/A,B/ will 
use the data from the malicious instance.  Paste operations at 
Unclassified or Secret/B/ or Top Secret/B/ will not see the data from the 
malicious SE, since they cannot read down to Secret/A/. 

keys, some of which may only apply to interactions with 
data at one sensitivity level.  Under TX, these keys would 
automatically be mapped appropriately to the sensitivity 
level of the interaction window because each SLS 
performs its own mapping from the physical keys to the 
logical values.  We feel that any benefit of allowing this 
flexibility are outweighed by potential problems for the 
user.  Thus, our SLS ignores requests to remap the 
keyboard (along with certain other administrative 
requests) not as part of our security policy, but simply to 
avoid confusion. 

4.13. Selection Emulator 

Cut and paste in X is performed according to the 
selection based conventions described in the ICCCM 
[ICCCM89].  Summarized, the cutting client announces 
(by asserting ownership of an X entity called a selection) 
that it has data available and provides (upon request) a list 
of formats in which it can present the data.  The pasting 
client requests the data in one or more of the advertised 
formats which the cutting client then makes available.  
This mechanism allows the cutting and pasting clients to 
negotiate an acceptable format (e.g., text, formatted 
graphics, Postscript).  Because it uses “lazy” evaluation, 
this mechanism avoids using CPU cycles for conversion 
until the data (and format) is to be pasted. 

The disadvantage to this mechanism is that the 
communication between the cutting and pasting clients is 
bidirectional.  Because the bidirectional communication is 
required by the protocol, we hesitate to call it a covert 
channel.  In any event the potential capacity of the 
channel is so large that it cannot be constrained without 
severely limiting functionality. 

In our approach, an untrusted client called the 
Selection Emulator (SE) listens for announcements by 
cutting clients.  When one is received, it immediately asks 
for the data in all of the advertised formats.  SE then 
passes the data to the Property Escalator (PE) which 
retains a database of available data.  SE also listens for 
requests by pasting clients.  When one is received, it 
queries PE for the most recently cut data available in the 
specified format.  PE passes the data to SE, which then 
makes it available to the client.  Thus, an SE is paired 
with each SLS.  A cut and paste operation involves two 
SEs: one at the sensitivity level of the cutting client, and 
one at the sensitivity level of the pasting client. 

Figure 6 shows the interaction of the different 
components in a cut and paste cycle.  The slightly 
simplified26 steps are as follows: 

0. User requests a cut operation via keyboard or 
mouse actions. 

                                                           
26 Omitted steps include negotiation at both the high and low level as to 
available and preferred formats for the cut/paste operation. 



1. Cutting client informs SLS it has something 
available by asserting selection ownership. 

2. SLS notifies SE (which had previously had 
selection ownership) that a client has cut available. 

3. SE asks SLS to get cut data in all possible formats. 
4. SLS passes SE request to cutting client. 
5. Cutting client passes data in all formats to SLS. 
6. SLS passes data in all formats to SE. 
7. SE passes data in all formats to PE. 
8. User switches to the higher level and requests a 

paste operation via keyboard or mouse actions. 
9. Pasting client asks for data to be pasted. 
10. SLS notifies SE that a request for a paste has 

occurred. 
11. SE asks for most recent data in all formats from 

PE. 
12. PE sends cut data to SE. 
13. SE sends data to SLS. 
14. SLS sends data to Pasting client, which performs 

the paste operation and updates the screen (if 
appropriate). 

 

Figure 6.  Cut and Paste Sequence. 

Through this mechanism, compatibility with the 
ICCCM is maintained without covert channels or loss of 
flexibility.  The price paid is lower performance, as we 
use “energetic” evaluation (i.e., the opposite of “lazy” 
evaluation). 

4.14. Window Managers 

Any X window manager can be modified to be a 
Window Manager (WM).  The only change required is in 
the drawing of “helping lines” to assist the user in placing 
windows on the screen.  For the reasons discussed in 
section 4.6, this must be done via the X protocol helping-
lines extension.  Each WM manages windows only at its 
own sensitivity level.  Thus, the secret window manager 
could not be used to move a confidential window, as the 
secret WM would not have any knowledge of the 
confidential window.  An interesting side effect of this 
architecture is that different window managers can be 
used at different sensitivity levels (i.e., run Motif at secret 

and OPEN LOOK at confidential), although the probable 
user confusion makes this undesirable27.  The prototype 
supports three window managers: mwm (the Motif 
window manager), olwm (the OPEN LOOK window 
manager), and twm (the MIT provided window manager). 

5. TX Operation 

This section describes some of the more interesting 
aspects of the TX operations.  The discussions that follow 
emphasize the advantages that both the TMach base and 
the architectural structure of the system provide in 
meeting trust and assurance requirements. 

A fundamental aspect of TX operation is that there is 
at most one current server. In normal operation, all input 
is routed to the current server, a SLS at the current 
operating level, and certain output operations can only be 
performed by the current SLS.  For example, if the current 
sensitivity level is secret then all input is routed to the 
secret SLS, and only the secret SLS can map and unmap 
windows from the screen.  Each SLS can update windows 
that it has mapped, no matter what the currently selected 
server is.  The operating level will not refer to a SLS if the 
active SLS dies, the system is locked, or the user has 
invoked the trusted path.  In these cases, no input crosses 
the TCB boundary and we claim that the notion of an 
operating level is inappropriate. 

5.1. TX Startup 

TX is started from the TMach Trusted Shell.  M starts 
all of the trusted tasks (IM, DM, CIT, SIT, PE, MS, and 
TSH).  Initially, IM and DM have no current level 
because they have no SLS with which to communicate.  
Any input is discarded by IM, and DM has no hold or 
nonhold ports to read from.  When it starts, TSH makes 
drawing requests to MS to display the current operating 
level (which is none) in the reserved area. 

When initialization is complete, the internal 
communications paths shown in Figure 3 have been 
established by giving the trusted subjects the appropriate 
rights to TMach ports.  Because further propagation of 
these rights can be controlled, this pattern of 
communication cannot be changed, even if one of the 
subjects wished to do so.  The SIT registers its connection 
request port with the TMach name server which then 

                                                           
27 At the time of this research, the “UNIX wars” were in full swing, with 
one camp (primarily HP, IBM, and DEC) supporting the Open Software 
Foundation (OSF) which put out Motif (among many other 
technologies), and the second camp (primarily AT&T and Sun) 
supporting their unified effort which included Open Look.  The ability to 
support both options was considered a significant advantage over 
CMWs, which heavily relied on the window managers to provide visible 
window labeling and to enforce other MLS policies, and hence were tied 
to one of the two camps. 
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mediates requests for connections to TX in accordance 
with the TMach MAC and DAC policies.  At this point, 
clients wishing to connect to TX must pass their requests 
through the TMach name server to SIT. 

5.2. Single Level Server Startup 

SLSs are normally started by the user through the 
TSH.  They are also automatically started if a client sends 
a connection request to SIT and there is no SLS at the 
sensitivity level of the client.  To start a single level 
server, SIT creates a new untrusted SLS task at the 
requested sensitivity level and notifies CIT that a new 
SLS has been created.  CIT creates new WM and SE 
clients at the same sensitivity level as the new SLS. The 
WM and SE clients send requests to SIT to be connected 
to the new SLS.  SIT holds the requests. 

The new SLS sends messages to IM and DM asking 
for connections and for the hardware configuration data.  
IM replies to the SLS by providing information about the 
keyboard and pointer and DM replies to the SLS by 
providing information about the display (e.g., the screen 
size, and whether it is color or black and white).  This 
information is considered to be system low allowing the 
request to be honored identically at all sensitivity levels.  
IM and DM inform MS that the new SLS has connected.  
MS in turn informs TSH. 

The new SLS sends a message to SIT that it is ready to 
accept connections.  SIT forwards the client connection 
requests it is holding to the new SLS giving it the send 
rights to the reply port provided by the client.  The new 
SLS replies directly to the clients (e.g., WM and SE) and 
they are then connected. 

At this point, the SIT is effectively out of the loop.  It 
does not retain the ability to communicate with the 
untrusted clients of the SLS and is not in a position to 
compromise them.  It has send rights to the SLS 
connection request port, but that is all. 

5.3. Client Connection 

Clients are typically started by the window manager or 
an existing client.  The client sends a connection request 
to SIT having obtained send rights to its request port from 
the TMach name server. If a SLS at the client's sensitivity 
level is not already running, one is started as described in 
the previous section.  In this case, the client's request is 
passed to the new SLS along with the requests from the 
SE and WM.  Otherwise, SIT forwards the request to the 
appropriate SLS and the SLS responds directly to the 
client.  As noted above, the SIT retains no connection to 
the client. 

5.4. Normal Operation 

Once clients are connected to the SLS, the system is in 
normal operation.  Figure 8 shows the connections used in 
this state, while Figure 7 shows the appearance of the 
screen.  This section describes a few common operations.  

 

Figure 8.  TX Normal Operational State. 

The DM operates on top level windows (children of 
root in the X vernacular). Within such a window, all 
operations are performed by the SLS which is required to 
make its entire contents (bitmap) available to the DM 
unless it is obscured by another top level window of the 
same SLS.  When a client requests mapping of a top level 
window, the SLS sends a message to DM using its “hold” 
port.  If the SLS is the current server, DM will 
immediately process the request and send back an 
acknowledgment to the SLS. 

If the SLS is not the current server, then the message 
will remain queued until the user selects its sensitivity 
level, at which point it will be processed.  Once DM 
acknowledges the request, the SLS may provide contents 
for the window in the form of a bitmap. 
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Figure 7.  Screen in Normal Operation. 
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When the DM maps a window for a SLS, it creates a 
suitable labeled border around the window.  This happens 
for all windows including those claimed to be transient by 
the client. 

Moving, resizing, and unmapping top level windows is 
handled similarly.  Note that mapping, unmapping, 
moving, and resizing of non-top level windows is entirely 
internal to the SLS, except that this may cause the 
contents of a top level window to change. 

Reparenting a window (an operation performed by 
window managers to add “decorations” to the window) is 
simply unmapping the old top level window, followed by 
mapping the new top level window in its place. 

When a client draws in a window, the SLS performs 
the drawing in its virtual framebuffer.  When the drawing 
is complete, the SLS sends its virtual framebuffer to DM 
along with a list of windows and areas changed.  DM 
receives the contents update request on its nonhold port 
from the SLS.  After clipping the new window contents 
relative to other windows on the screen DM updates the 
visual display.  The clipping confines the updating  to the 
unobscured interiors of windows belonging to the SLS in 
question.  This prevents the untrusted SLS from being 
able to affect the display outside of areas surrounded by 
proper visible labels. 

When the user moves the pointer, clicks buttons, or 
types on the keyboard during normal operation, IM sends 
the input to the SLS that is the current server.  The SLS 
performs the ordinary X rules for routing input to its 
clients and is oblivious to other SLSs which might exist. 

5.5. Trusted Path 

Trusted path operations are initiated by the user when 
the secure attention key sequence is invoked.  If the 
current server is a SLS, then IM notifies it that it is now 
deactivated and notifies MS that trusted path was invoked.  
IM begins sending input to MS.  MS notifies DM and 
TSH that trusted path has been invoked.  DM sets its 
current server to none, blocking processing of “hold” port 
requests.  TSH sends commands to MS to draw the menu 
of commands, and to change the current operating label 
displayed in the reserved area to “Trusted Computing 
Base”.  MS performs the drawing operations in its virtual 
framebuffer, and forwards the framebuffer to DM for 
display. 

TSH then waits for the user to click in one of the menu 
boxes.  Note that all pointer motion is interpreted by MS, 
and TSH is only notified (and given pointer coordinates) 
when a click occurs. 

The details of TSH command processing are too 
lengthy to describe here.  As an example, consider the 
case where the user has asked to change the current 
sensitivity level to another one for which a SLS exists.  
TSH updates the current label in the reserved area to be 

the newly selected sensitivity level by sending drawing 
requests to MS.  Again, MS performs the drawing in its 
virtual framebuffer and forwards the virtual framebuffer 
to DM for display. 

TSH notifies MS of the new value for the current 
operating level.  MS notifies IM and DM of the new value 
for the current level.  IM notifies the newly selected SLS 
that it has been selected as the current server and begins 
sending it pointer and keyboard input.  DM begins 
processing requests from the “hold” port belonging to the 
newly selected SLS. 

Figure 9 shows the screen while the trusted path is in 
use.  Additional information can be found in 
[Epstein93b]. 
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5.6. Screen Lock 

Automatic screen locking occurs when IM detects that 
a period of time has elapsed without any input.  The goal 
of automatic locking is to cover the working area (that 
portion of the screen which is not the reserved area) with 
an opaque pattern, and not to remove the cover until the 
user unlocks the screen.  Manual screen locking is 
invoked through the trusted path.  It is initiated when the 
user clicks on the “lock” menu entry in the reserved area, 
and is otherwise identical to automatic locking. 

If IM detects a timeout without any input, it notifies 
MS.  If the current server is an SLS, then IM notifies it 
that it is now deactivated.  MS notifies DM to change its 
current sensitivity level to none, thus causing it to stop 
processing its current “hold” port (if any). 

MS notifies TSH of the timeout.  TSH notifies MS to 
map a window over the entire user portion of the screen.  
TSH then draws a pattern on this window using MS 
drawing primitives.  TSH also sends messages to MS to 
set the current operating label displayed in the reserved 
area to none, and to display a message directing the user 
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Figure 9.  Screen in Trusted Shell Mode. 



to invoke the secure attention key to unlock the screen.  
After drawing the pattern, MS sends the virtual 
framebuffer to DM for display. 

TSH notifies MS to change the current operating level 
to none.  MS notifies IM and DM to change the current 
operating level to none28.  IM discards input, and DM 
ceases to process its “hold” port until the user unlocks the 
screen through the trusted path. 

6. Architecture Limitations and Issues  

The architecture described here takes a very complex 
problem and makes it relatively simple.  Tradeoffs have 
been made to achieve trust and simplicity.  This section 
describes some of the positive and negative aspects of 
these tradeoffs. 

6.1. The Price of Polyinstantiation 

Polyinstantiation of servers has a price.  For example, 
while the TMach security policy allows write-up and 
read-down, the TX policy does not allow either of these 
operations for X resources.  That is, if a low client sends 
an untrusted high client an X resource ID (using TMach 
mechanisms, not TX), that ID will not be useful to the 
high client, because the high client has no means of using 
the resource ID in its low context.  Similarly, the X 
operation to get a list of windows in the system, 
XQueryTree will only return those windows at the label 
of the caller, and none of the windows dominated by the 
caller.  Existing CMW implementations do not 
polyinstantiate servers, so they can allow general read-
down (and some also allowing write-up). 

Our architecture could be extended by adding an 
additional trusted server which would pass information 
between SLSs in accordance with the TMach security 
policy.  Each SLS could pass its resources (windows, 
colormaps, etc.) to that server, which would pass the 
resources to all servers which dominate the sensitivity 
level of the resources.  Because resource IDs are 
polyinstantiated (as part of the server polyinstantiation) 
the X protocol would need to be extended so clients 
would be able to include a level as well as resource ID, or 
there would need to be some form of mapping  between 
the actual and virtual resource IDs. 

Other effects of polyinstantiation include problems 
with managing screen real estate.  A tiling window 
manager29 could successfully tile the windows at each 
level, but windows at different levels would overlap, 
because the window manager at one level has no way of 

                                                           
28 If an automatic lock occurs, IM is already in the none state.  This extra 
notification is required when the user manually locks the screen. 
29 A window manager that arranges windows automatically so they do 
not overlap each other, but rather form a tiled pattern on the screen. 

knowing about operations at other levels.  Each window 
would be correctly labeled, but the effect might not be 
what the user anticipated. 

6.2. DAC and Information Labels 

Many people who work with trusted X systems believe 
that some form of discretionary access control over X 
resources is desirable [Epstein91].  Without making the 
SLSs and window managers trusted (which would vastly 
increase our TCB size), DAC at the X resource level 
cannot be added to this architecture.  Restricting a TX 
server to clients belonging to a single X user (or to users 
that the X user is willing to trust) at one time is a tradeoff 
to minimize the TCB. 

While this project is clearly not aimed at replacing 
CMWs, we rejected adding information labels30.  Once 
again, the SLSs and window managers would have to be 
trusted to provide useful information labels. Whether 
clients that use DAC or information labels also require a 
degree of trust remains an open question. 

Hybrid solutions are possible. TX as a B3 windowing 
system could have less trusted single level servers and 
window managers to provide DAC or somewhat more 
trusted SLSs and WMs to provide information labels (but 
less trusted than the overall system).  This allows a high 
degree of assurance that the system is trusted and enforces 
the overall system security policy, with lesser assurance 
that information labels are properly maintained and that 
the DAC policy is properly enforced. 

6.3. Trusted Graphics 

A major difference between the TX architecture and 
commercial CMW implementations is the question of 
what is trusted.  CMWs provide trusted graphics: the 
CMW evaluation should provide assurance that the 
graphics drawing is correct.  In our architecture, we 
provide no assurance that the SLS drawing code is 
correct, though we have no particular reason to suspect it 
either.  For example, if an application asks to draw a 
circle, existing CMWs guarantee that the circle will be 
drawn in the correct location with the correct attributes.  
In TX, we guarantee that if the SLS draws a circle 
correctly in its framebuffer and correctly passes the 
framebuffer to DM, DM will properly display it in an 
appropriately labeled window.  Thus, we have traded the 
functionality of trusted graphics for a much smaller TCB. 

A close analogy can be drawn to an untrusted file 
server encapsulated within a trusted system.  In this case, 

                                                           
30 An information label represents the sensitivity of the information 
contained in a subject or object.  Information labels are required in 
CMWs, and used for labeling information which is believed to be of a 
lower sensitivity than the object (or subject) from which it came.  
Information labels are advisory and are not used for access control. 



the overall trusted system makes no guarantee that the 
data will be stored or retrieved faithfully, only that it will 
be labeled correctly. 

6.4. Graphics Hardware Usage 

Our architecture presumes a “dumb” framebuffer (i.e., 
one where the graphics hardware simply maps bits in 
memory to the screen).  Intelligent graphics hardware now 
perform many functions, such as drawing polygons, 
filling regions, and 3-dimensional operations using 
hardware, rather than using software in the X server.  
However, without special provisions our architecture is 
unable to take advantage of intelligent graphics hardware.  
The problem is that the SLSs cannot be allowed to use the 
graphics hardware directly, and DM only performs simple 
region copying operations.  If graphics hardware can be 
encapsulated so that SLSs can use it with their virtual 
framebuffers, then it could be used in this architecture.  
Unless the encapsulation is reentrant, this probably means 
bringing graphics hardware into the TCB, a questionable 
undertaking.  An approach to using polyinstantiated 
graphics hardware is described in [Epstein96]. 

6.5. Performance 

Performance of the prototype TX server was not 
studied in detail.  Some of the standard benchmarks 
provided with X were run, with a typical result that TX is 
half the speed of ordinary X, when the underlying 
hardware and software base were kept constant.  
Interactive usage was much slower; one user compared it 
to typing on a 300baud dialup terminal.  Performance 
measurement showed that TMach message passing and 
context switching times dominate the system throughput.   

6.6. User Interface 

The TX user interface requires the user to invoke the 
trusted path to change the current operating level.  This 
contrasts with switching between windows at the same 
sensitivity level, where the user typically just moves the 
pointer to place the cursor in the new window, or moves 
the pointer to place the cursor in the new window and 
clicks.  While unsure how users will react to this 
requirement, we were unable to devise any other 
mechanism which would be both unspoofable and not 
require large amounts of trusted code. 

As noted above, colormaps are polyinstantiated, and 
are reinstalled whenever the user changes the current 
level.  One of the side effects of this change can be 
“colormap flicker”: because individual pixels in the 
framebuffer reference a colormap entry, not a particular 

color, switching colormaps may cause the windows 
associated with other levels to change colors. 

For example, consider running two instances of SLS, 
with the colormaps as shown in Figure 10.  Assume the 
foreground of an Unclassified window uses colormap 
entry 2 (i.e., a pixel value of 2) and the background uses 
entry 4, while the foreground of a Secret window uses 
colormap entry 3 and the background uses entries 4 and 5.  
If the current input level is Unclassified, then the first 
window will be a red foreground on a purple background 
and the Secret window will be a green foreground on a 
purple and orange background.  Switching the current 
input level to the Trusted Shell will cause the windows to 
become black, while switching the input level to Secret 
will cause the Secret window to appear in its natural 
pastel colors (lavender foreground with orchid and sky 
blue background) while the Unclassified window will 
appear with a pink foreground and orchid background. 

While this may be a bit shocking to users, we believe 
the color shifts are more desirable than allowing a covert 
channel, as would exist if there were a shared colormap 
among the SLS instances. 

 
Colormap 
Entry # 

Mini 
Server 

Unclass 
SLS 

Secret SLS 

0 (reserved) Black Black Black 
1 (reserved) White White White 
2 Black Red Pink 
3 Black Green Lavender 
4 Black Purple Orchid 
5 Black Orange Sky blue 
  

Figure 10.  Sample Colormap Entries. 

More subtle compromises were made with respect to 
cursors and the screen background.  Cursors were limited 
to 32x32 pixels (a limitation permitted by the X protocol) 
to eliminate any chance of the cursor spoofing a window.  
The screen background (the area not inside any window) 
is only writeable by the SLS with the lowest classification 
(i.e., system low), and is limited to a tiled image no more 
than 32x64 pixels, again to preclude use of the screen 
background as a window spoof. 

6.7. Non-X Implementations 

While the purpose of the TX project was a platform to 
build trusted X, there is no fundamental reason why the 
SLS could not implement a window protocol other than 
X.  For example, a SLS could provide the graphical 
portion of a Microsoft Windows system, rather than an X 
server.  This is a convenient mechanism to allow running 
different windowing systems simultaneously on the same 
display, with minimal modifications to the windowing 



systems.  Such an approach might have utility even in an 
environment where trust is not required [Pascale92].  As 
an example, the Sun version of the prototype supported 
both X and MGR [Uhler88], a freely available windowing 
system from Bellcore.  No changes to the TX TCB were 
required to support MGR, which indicates that our basic 
architecture is flexible enough to support a variety of 
windowing systems. 

6.8. Extensions 

Various extensions have been developed for X, 
including 3-dimensional graphics (PEX) and video 
(VEX).  In the TX architecture, many extensions can be 
added without requiring any trusted code, and hence 
without consideration to the security implications.  For 
example, we expect that PEX could be implemented as 
part of the SLS without any change to the TCB, providing 
it does not use the graphics hardware directly.  This 
ability to extend the SLS (or replace it entirely) without 
changing the TCB is a major advantage of our 
architecture over other architectures. 

7. Contemporaneous Related Work 

Two other contemporaneous approaches for high 
assurance windowing system are a paper design for a 
system without any trusted code by Mayer and Padilla, 
and a patented architecture using hardware for high 
assurance by Sherman, Dinolt, and Hubbard.  This section 
describes some of the advantages and disadvantages of 
each approach relative to the revised TX architecture, as 
well as a comparison to existing CMW implementations. 

7.1. Compartmented Mode Workstations 

All existing CMW implementations have very similar 
architectures, including a monolithic trusted server, a 
trusted window manager, and a few trusted clients to 
assist with visual labeling and cut and paste operations.  
However, there is no reason why other architectures 
(including the one described here) could not be adapted to 
the CMW requirements.  The descriptions of CMWs are 
based on numerous conversations with CMW designers 
and developers. 

The TX TCB is much smaller than that of the existing 
CMWs.  We expect our TCB to be less than 10 percent of 
the size of existing CMW X TCBs.  As previously noted, 
CMWs provide trusted graphics, DAC, and information 
labels which we do not.  While we do not feel these are 
major limitations, the hybrid approach described in 
section 6.2 is a possible solution.  That approach provides 
a high level of assurance on the overall system, with 

assurance equal to that of the CMWs for graphics, DAC, 
and information labels. 

Compatibility with untrusted X is a major goal for both 
TX and CMWs.  Because of our architecture, we are able 
to offer a much higher degree of compatibility with X.  
For example, we are able to run untrusted window 
managers, which is impossible with CMWs.  We require 
no special privilege mechanisms, unlike CMWs.  While 
we constrain what clients can do, our system imposes 
fewer limits than CMWs, which is a counter-intuitive 
result. 

Finally, our architecture allows addition of extensions 
to the X server, or even replacement of the X server (e.g., 
with a new release) without modifying the TCB.  This 
allows TX to keep up with developments in the broader X 
marketplace more easily than CMWs. 

7.2. Mayer/Padilla Design 

A paper design for a high assurance windowing system 
is proposed in [Mayer92].  Their MLS windowing system 
(henceforth referred to as MP) does not include any 
trusted code.  M argue that the TX architecture is not 
minimal, as their strawman architecture is clearly smaller. 

In the MP architecture, the IM functions of detecting 
trusted path and routing input are presumed to be handled 
by the operating system.  They have a DM equivalent 
which runs at system high, accepting requests from 
window system servers (such as X servers) but never 
acknowledging the operations. 

While this architecture avoids trusted code, the cost is 
usability: 

• Windows are not labeled with sensitivity labels, 
since the Display Manager equivalent is not 
trusted.  We that visible labeling is essential to 
usability of multi-level windowing systems. 

• The trusted path is non-graphical, meaning the 
user's windowing environment is destroyed and 
the user is dumped into terminal mode. We feel 
that users want graphical interfaces as much as 
possible.  CMW implementations have carried 
this to an extreme, providing highly stylized color 
interfaces.  

• The trusted path provides no capability to point to 
a window and determine its sensitivity label.  If 
visible labels are not to be provided, we feel that 
this is a minimal function.  However, the MP 
architecture cannot support this functionality. 

• MP assumes that the operating system trusted 
path facilities are sufficient to start new servers 
and change input levels.  Since this is not typical 
of operating systems, at a minimum it would 
require changing the existing trusted path. 



As Mayer and Padilla have not implemented their 
proposed system, we are unconvinced whether it is 
possible to build a system which works as they describe. 

The issue at the heart of the difference between TX 
and the MP architecture is the definition of the security 
policy.  Because windowing systems exist to provide 
human interfaces, we consider that the security policy 
includes not only the information flows, but also the 
human interface. 

The TX architecture uses trusted code to provide what 
we consider to be those functions which need to be 
trustworthy: input routing, trusted path detection, trusted 
path features, and visible labeling.  As such, we feel that 
TX is minimal when both trust and usability are 
considered.  A trusted windowing system without at least 
trusted visible labeling is a “secure brick.” 

TX is a balance between the high functionality and 
large TCB of the CMW approach, and the low 
functionality and completely untrusted system of the MP 
architecture. 

7.3. Sherman/Dinolt/Hubbard Design 

In [Loral91] Richard Sherman, George Dinolt, and 
Frank Hubbard describe a very high assurance (beyond 
A1) multilevel windowing system using hardware, 
henceforth referred to as SDH. 

The SDH architecture (which predates TX, but was 
unknown to us during our design phase due to the patent 
process) is not predicated around any particular window 
system.  SDH dedicates an untrusted processor to each 
imaging generator, which are analogous to TX single 
level server processes isolated using a high assurance 
operating system.  The SDH display generator uses 
hardware to merge the results of imaging generators 
together and place them on the screen, performing a 
subset of the functions provided by the TX Display 
Manager. 

Because of its reliance on hardware separation, SDH 
provides high assurance and high performance.  However, 
in order to keep the hardware simple, SDH does not allow 
for overlapping windows of varying sensitivity labels.  
Rather, it partitions the screen into horizontal bands, each 
of which has a unique sensitivity label.  Within each band, 
windows can overlap. 

Use of hardware as an isolation mechanism gives 
higher performance than TX, but requires adding 
additional hardware for each new sensitivity label to be 
used.  Additionally, the set of sensitivity labels to be used 
must be predefined in SDH.  This special purpose 
hardware with fixed labels is in contrast to the general 
purpose hardware with a trusted operating system used in 
TX, where servers can be dynamically created and 
destroyed as necessary. 

Because the SDH uses non-overlapping bands, the 
input management and trusted path concepts are much 
simpler than in TX [Dinolt92].  Applications in SDH can 
cause the position of the pointer to move, but only within 
the current band.  When the user moves the pointer to 
another band, the user's input is then labeled at the new 
band's sensitivity label by the RMMI which serves a 
function similar to the TX Input Manager.  That is, the 
RMMI switches the input level by moving the pointer, 
rather than by invoking trusted path as in TX.  The ability 
to switch by a pointer movement was a goal in TX, but 
one was not realized because of the massive covert 
channels present due to overlapping windows and the X 
protocol.   

The size of the window bands can also be adjusted 
using the pointer.  Since bands cannot overlap, spoofing is 
not a concern as it is in TX.  Other trusted path facilities 
necessary in TX, such as creating new window system 
servers, are not necessary, since the set of sensitivity 
labels in use is fixed. 

A concern with using the mouse position for 
determining input classification is human engineering: if 
the user accidentally knocks the mouse so that it points 
into a different window, the input classification may be 
changed without the user noticing. 

One feature present in SDH but not in TX is that SDH 
is designed to allow trusted input (such as video) to be 
routed directly to the screen in a trusted manner. 

In summary, SDH trades off functionality in the areas 
of overlapped windows, the ability to create windows 
which cover the whole screen, and dynamically created 
untrusted window system servers for a high performance 
special-purpose hardware solution which has a simple 
input paradigm. 

8. Later Related Work 

This section describes several projects which were 
influenced by or built on the TX research. 

8.1. Starlight 

Starlight Interactive Link [Anderson96] was built to 
solve many of the same problems as TX, namely to 
provide high assurance windowing.  The relative 
complexity of TX (as seen by the number of servers and 
interactions, plus the requirement for an MLS operating 
system) steered the designers towards a hardware-based 
solution31. 

Starlight’s concept is multiple untrusted X servers, 
each on a physically separate computer system.  The X 
clients can run anywhere so long as they can connect to 

                                                           
31 Private communication with Mark Anderson. 



the appropriate X server32.  The “low” servers are 
replaced by proxy servers that run on the low systems, 
each of which feeds the protocol requests via a one-way 
communication link to a “high” proxy client which 
receives input from all low proxy servers.  The proxy 
servers each maintain sufficient state that they can 
provide responses to the clients at their level, since they 
do not receive any feedback from the high server.  The 
proxy client on the high system simply passes requests to 
the high server, discarding any responses.  The high 
server handles overlapping windows, but does not provide 
any visible window labeling.   

Input is handled by connecting the keyboard and 
mouse to a high assurance n-way switch, with the output 
of the switch physically connected to all of the servers.  
The user selects the input level using a knob on the 
switch, which causes the input to be redirected to the 
appropriate X server. 

As with TX, a separate window manager is used at 
each level. 

The trusted portions of the Starlight architecture are 
the one-way transfer used for low to high transfers, and 
the input switch. 

The advantages of Starlight include: 
• No trusted software, and simple trusted hardware. 
• Allows overlapping windows (unlike [Loral91]). 
• No requirement for an MLS operating system. 
• No modification to the X server, even to use a 

virtual framebuffer. 
The disadvantages of Starlight include: 
• No visible window labeling. 
• Requires one hardware system for each level of 

data to be processed (i.e., no MLS). 
• There must be one “high” system to which all the 

others can send their data. 
The Starlight system is now marketed in the U.S. by 

Tenix America33 as the Interactive Link Data Diode (IL-
DD) Keyboard Switch (IL-KBS), and has been evaluated 
as meeting Common Criteria EAL7 requirements. 

8.2. Eros Window System 

The Eros Window System (EWS) [Shapiro04] takes a 
“clean sheet” approach to designing a trusted windowing 
system, without respect to compatibility with existing 
systems such as X.  Their paradigm is one of isolation by 
default, rather than sharing by default as in X, and which 
much of the TX design is focused on controlling.  The 
focus on isolation also solves a limitation of TX, namely 
that within a given level, TX clients can interfere with 
each other. 

                                                           
32 There is no presumption of separate networks for each level, although 
that is the most common usage. 
33 http://www.tenixamerica.com/images/white_papers/TenixIL_KBS.pdf 

Using the fresh approach, EWS moves all of the 
drawing logic into the window system clients (rather than 
requiring an X server to do so), and uses shared memory 
to provide the image for rendering (similar to TX’s use of 
Mach messaging to share the virtual frame buffer).  EWS 
uses a cut & paste paradigm far simpler than that in X that 
avoids the downgrade problems described above, without 
requiring the “energetic” evaluation described in section 
4.13. 

EWS is designed to allow for multi-level windowing 
support, although this is not part of the prototype 
described in [Shapiro04].  Their design does not provide 
for visible window labeling, which we considered 
important.  Regardless, their ability to reduce the trusted 
portion of the system to only 4500 lines of code is 
impressive. 

Finally, the published work on Eros includes an 
original artwork by a precocious artist using the EWS.  
The author is pleased to offer this first independent 
citation of Wesley Vanderburgh’s artwork. 

8.3. Nitpicker 

Nitpicker [Feske05] is an effort to address many of the 
same issues as TX, although their focus is on preventing 
theft of input by malicious clients, rather than an MLS 
protection architecture.  Their prototype does not provide 
window labeling, but does provide limited trusted path 
capabilities.  The Nitpicker TCB is 1500 lines of code, 
significantly smaller than that of TX. 

There are many similarities between Nitpicker and TX, 
including the use of virtual frame buffers, the effort to 
exclude as much code as possible from the TCB, and 
input processing. 

8.4. IBM cut & paste patent 

Carson et al [IBM96] address the cut and paste issues 
in a Compartmented Mode Workstation, in an effort to 
provide mediation for cross-level operations, including 
limited downgrade actions.  Their focus is on using the 
existing X protocol operations, and to have the user 
decide via pop-up windows whether to allow the 
operation. 

8.5. Other efforts 

An effort to build an MLS version of X for SELinux 
[Kilpatrick03] rejects the concept of server 
polyinstantiation, and focuses on defining permissions 
necessary for each type of object managed by the X 
server, and how to tie those into the SELinux policy 
model. 



Ganapathy et al [Ganapathy05] used semi-automated 
tools to identify where authorization decisions should be 
made in legacy code.  Their test case was the X server, 
and they compare their results to the manual results of 
[Kilpatrick03].   

Both of these approaches are roughly equivalent to that 
of the CMW vendors, in that they do not address 
assurance or TCB minimization.  Neither addresses 
visible window labeling. 

Sun’s Solaris 10 Trusted Extension will include MLS 
extensions to X based on Sun’s CMW effort34.  This is the 
first instance of an MLS windowing system in a general-
purpose commercial product. 

9. Lessons Learned 

Looking back after 15 years, the primary lesson 
learned is that the architectural tradeoffs change with 
time, some of which have made this architecture more 
desirable, and others have made it less feasible. 

Among those that are more feasible: 
• Faster CPUs with significantly more memory 

have made the penalty exacted by 
polyinstantiation less onerous. 

• The availability of virtual machine monitors such 
as VMWare have made MLS itself less important 
than it was.  The TX architecture could be 
implemented in a VMWare environment, with 
the trusted servers running in one VMWare 
partition and other VMWare partitions each 
supporting a single SLS, SE, and clients. 

Among those that have made this approach less 
desirable: 

• The lack of desktop MLS operating systems 
means that the approach is currently infeasible, 
other than using a virtual machine monitor. 

• The reduced cost, size, power, and heat of 
desktops have made multiple hardware 
approaches, such as those in Starlight, more 
feasible (although the management of multiple 
computer systems is no easier than it was). 

• The lack of direct access to graphics hardware in 
the TX architecture is much more limiting than it 
was at the time. 

• Inexpensive KVMs can be used to address the 
requirement in some environments, where there 
is no requirement for simultaneously viewing 
windows of different classifications. 

Another major class of lessons learned is not to focus 
exclusively on the MLS aspects of the system, to the 
extent of ignoring attacks on the X clients.  For example 
flaws in the xterm terminal emulator client [CERT93] 
provide a local user the ability to obtain “root” privilege, 

                                                           
34 Christoph Schuba, personal communication. 

and [CERT97] describes local vulnerabilities in the libXt 
library used by nearly all X clients that can allow a user to 
gain “root” access if the client program is setuid-root.  In 
our architecture, these attacks would be limited to a single 
level and a single SLS, and perhaps further constrained by 
TMach.  However, overlooking this type of flaw missed a 
key aspect of X security. 

The lesson from Eros is that starting with a clean 
design can yield a much simpler system than we achieved 
with our goal of compatibility with X.  In particular, the 
cut & paste mechanism in Eros is far simpler than ours, 
yet maintains the desirable properties of allowing cross-
level cut and paste without covert channels.  Of course, 
this lesson is true for all types of software – considering  
security from the start is far simpler than bolting it on 
afterwards, as we attempted to do with TX. 

A final lesson relates to the selection of TMach: while 
our contract required use of TMach, both TMach and the 
Mach system underneath were quite immature.  
Significant effort went into overcoming the limitations of 
the port model.  Additionally, the lack of shared memory 
forced us to pass virtual frame buffers from SLSs as very 
large messages to the DM, which contributed 
substantially to the performance limitations of the 
prototype.  While our colleagues at TIS who were 
building TMach were quite helpful, building a prototype 
(TX) on top of a prototype (TMach) on top of a prototype 
(Mach) substantially increases risk. 

No research project is complete without a catchy 
acronym.  While we considered several names (e.g., 
TRIX – TRusted Interactive X35), we never settled on one, 
and the project became known just as “Trusted X”.  As 
this is also a generic term, citations of this research 
frequently use the term “TRW Trusted X”.  Had we 
anticipated the emergence of Google, perhaps we would 
have put more energy into selecting a better name, to 
make the project easier to find for future generations of 
researchers. 

10. Conclusions 

When this research started in 1989, the general 
reaction in the security community was that a high 
assurance MLS windowing system (especially X) was 
impossible, and we occasionally had doubts as well.  Our 
design and development has shown that the early 
pessimism was unfounded.  Our minimal, modular TCB 
implementation, combined with a simple security policy 
show that high assurance MLS X is feasible. 

                                                           
35 Perhaps the “fruity flavors – raspberry red, lemony lemon, orangey 
orange, wildberry blue, grapity purple and watermelon” in the breakfast 
cereal could have been used to represent different classifications, a 
welcome change from the steady diet of “Secret/NOFORN/” and similar 
labels used in most MLS papers. 
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13. Glossary 

CIT (TX) Client Initiator Terminator 
CMW Compartmented Mode Workstation 
DM (TX) Display Manager 
ICCCM Inter-Client Communications Conventions 

Manual 
IM (TX) Input Manager 
KVM Keyboard Video Mouse (switch) 
MLS Multi Level Secure 
MS (TX) Mini Server 
PE (TX) Property Escalator 
SAK Secure Attention Key 
SE (TX) Selection Emulator 
SIT (TX) Server Initiator Terminator 
SLS (TX) Single Level Server 
TCSEC Trusted Computer System Evaluation Criteria 
TSH (TX) Trusted Shell 
WM (TX) Window Manager 
 


