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Abstract

Comparing the system call sequence of a network appli-
cation against a sandboxing policy is a popular approach
to detecting control-hijacking attack, in which the attacker
exploits such software vulnerabilities as buffer overflow to
take over the control of a victim application and possibly
the underlying machine. The long-standing technical bar-
rier to the acceptance of this system call monitoring ap-
proach is how to derive accurate sandboxing policies for
Windows applications whose source code is unavailable. In
fact, many commercial computer security companies take
advantage of this fact and fashion a business model in which
their users have to pay a subscription fee to receive periodic
updates on the application sandboxing policies, much like
anti-virus signatures. This paper describes the design, im-
plementation and evaluation of a sandboxing system called
BASS1 that can automatically extract a highly accurate
application-specific sandboxing policy from a Win32/X86
binary, and enforce the extracted policy at run time with
low performance overhead. BASS is built on a binary in-
terpretation and analysis infrastructure called BIRD, which
can handle application binaries with dynamically linked li-
braries, exception handlers and multi-threading, and has
been shown to work correctly for a large number of com-
mercially distributed Windows-based network applications,
including IIS and Apache. The throughput and latency
penalty of BASS for all the applications we have tested ex-
cept one is under 8%.

1 Introduction

One popular approach to host-based intrusion detection
is to compare the run-time system call behavior of an ap-
plication program with a pre-defined system call model,
and declare an intrusion when a deviation between the two
arises. This approach has been the linchpin of many re-
search prototypes and commercial products under the name
of sandboxing [20], behavioral blocking [7], restricted ex-
ecution environment [12], etc. While conceptually appeal-
ing, the technology has not been widely adopted in prac-
tice because the number of false positives, which disrupt
legitimate applications, is still too high to be acceptable.

1Binary Application-Specific Sandboxing

Therefore, the main technical barrier of this system call-
based sandboxing approach is how to automatically gener-
ate a system call model (or sandboxing policy) for arbitrary
application programs that minimizes both the false positive
rate and false negative rate. This paper describes the design,
implementation and evaluation of a system call-based sand-
boxing system called BASS that successfully removes this
barrier for commercially distributed Win32 binaries running
on Intel X86 architecture.

BASS’s automated system call model extraction mecha-
nism is an extension of PAID [16], which analyzes an in-
put program’s source code and outputs a system call graph
that specifies the ordering among the program’s system
calls. BASS extends PAID in several important ways. First,
BASS’s system call model records the ”coordinate” of each
system call site, which is defined by the sequence of func-
tion calls from the program’s main function to the function
containing the system call site and the system call site it-
self [2]. Moreover, the run-time system call monitoring en-
gine of BASS features a novel system call graph traversal al-
gorithm that can efficiently map out the trajectory from one
system call site to the next based on their coordinates. Sec-
ond, BASS checks system call arguments in addition to sys-
tem call ordering and coordinates. Finally, BASS supports
load-time random insertion of null system calls to thwart
mimicry attacks (explained later). As a result of these tech-
niques, the false positive rate of BASS is zero, i.e., whatever
intrusions PAID reports are guaranteed to be an intrusion.
In addition, the false negative rate of BASS with respect to
control-hijacking attacks is very small, i.e., the probability
of successful control-hijacking attacks is miniscule, as ex-
plained later in the Attack Analysis section.

Another major difference between BASS and PAID is
BASS is able to derive a system call model for an arbitrary
Windows/X86 executable file and dynamically linked li-
brary (DLL). Because state-of-the-art disassemblers cannot
distinguish between instructions and data in Windows/X86
binaries with 100% accuracy [21], it is not possible to stati-
cally uncover all instructions of a binary image, let alone its
system call model. To solve this problem, BASS is built on
a general binary analysis and instrumentation infrastructure
called BIRD [18], which is specifically designed to facilitate
the development of software security systems by simplify-
ing the analysis and instrumentation of Windows/X86 bina-
ries. Given a binary program, BIRD statically disassembles
it to uncover as many instructions as possible, rewrites it to
allow run-time interception at all indirect jumps and calls,



and dynamically disassembles those binary areas that can-
not be disassembled statically.

The Windows operating environment also introduces
several additional issues that do not exist in PAID, which
was designed for the Linux platform. First, Windows bi-
naries are more difficult to disassemble than Linux bina-
ries, because the former tend to contain more hand-crafted
assembly instruction sequences that violate standard pro-
gramming conventions, such as jumping from one function
into the middle of another function. Second, because the
procedural call convention is not strictly followed, deriving
the coordinate of a system call site is non-trivial as it is not
always possible to accurately infer the locations of the re-
turn addresses currently on the stack. Third, Windows ap-
plications use DLLs extensively, and common DLLs such
as Kernel32.DLL, User32.DLL and NTDLL.DLL are
enormous. So it is essential to share the system call graphs
for these DLLs across applications as well as their code.
BASS successfully solves all these three problems, and
demonstrates for the first time that it not only is feasible
but also can be quite efficient to sandbox Windows binaries
with an automatically generated system call model that pro-
duces zero false positive and close-to-zero false negatives.
As a result, we believe BASS makes a powerful building
block for guarding enterprises against all internet worms
that use control-hijacking attacks such as buffer overflow
attacks.

2 Related Work

To construct a system call model from a binary, we need
to reconstruct the control flow graph (CFG) from the bi-
nary by analyzing and disassembling the binary code. The
implementations of Giffin and Feng et al. [10, 8] relied on
the EEL library [17] to reconstruct the control flow graphs
(CFG) from the binaries. The EEL library is designed to
be a system-independent binary editing tool for analyzing
and modifying executable programs. EEL depends on the
symbol table of a binary to get the starting addresses of
its procedures. If the symbol table was not available, EEL
employs simple static disassembling techniques to discover
the procedure entry points. EEL was implemented for the
SPARC architecture, whose instruction set is much simpler
than the X86 architecture. Therefore, EEL’s simple disas-
sembling techniques are not powerful enough to discover
procedure entry points for applications running on the X86
architecture.

Vulcan [23] (a binary transformation infrastructure) and
Diablo [5] (a link-time rewriting framework) are designed
to work with X86 binaries. However, Vulcan requires in-
formation from PDB files associated with binaries. The
PDB file is generated by Microsoft Visual C++ using a spe-
cific compiler option and includes procedure name, sym-
bol table, variable name/type information, etc. Diablo only
works with the GCC-based tool chain. Otherwise, it needs
to patch the tool chain to preserve some code and data in-
formation. Neither of them can operate commercially dis-
tributed Win32/X86 binaries.

Dynamo [3] is a binary interpretation and optimization

system running on HP PA-8000 machines under HPUX
10.20 operating system. Its key idea is to use a software-
based architectural emulator to detect so-called hot traces,
i.e. sequences of frequently executed instructions, and opti-
mize them dynamically so that they can run faster. Dynamo
has been ported to the Win32/x86 platform [4]. It turns out
that the Win32/x86 version runs much slower and incurs an
overhead of about 30% to 40%. The reasons behind this are
lack of documentation on Win32 API and additional imple-
mentation complexities that are not present on the UNIX
platform. Like BIRD, Dynamo can serve as a foundation
for security applications. Program shepherding [13] is one
such example. Compared with Dynamo, BIRD uses a disas-
sembler rather than a software-based architectural emulator
to interpret instructions, and thus significantly reduces the
implementation complexity.

Wagner and Dean [28] proposed to use static analy-
sis to extract an application’s system call model from its
source code. They developed and compared three sys-
tem call models: callgraph model, abstract stack model,
and digraph model. The callgraph model is essentially a
non-deterministic finite state automaton (NDFSA) model
since it is generated directly from the control flow graph
(CFG), and cannot resolve non-determinism due to condi-
tional branches and multiple call sites to the same function.
Such non-determinism provides more opportunities for at-
tackers to exploit a class of attacks call mimicry [29] at-
tacks. Therefore, they proposed a more expensive model
called abstract stack model or non-deterministic pushdown
automation model (NPDA) to remove the non-determinism
due to multiple call sites. Since the NPDA incurs too much
runtime and space overhead, they proposed a less accurate
but more efficient model called digraph model, which is
similar to the system call sequence model proposed by For-
rest et al [9]. Giffin et al. [10] extended the NDFSA and the
NPDA models to binaries, and improved the efficiency and
accuracy by using some optimization methods such as null
system call insertion.

To further remove non-determinism, Giffin et al [11] also
proposed a Dyck model, which inserts null system calls be-
fore and after a function call in order to retrieve the appli-
cation context information. However, the Dyck model still
contains non-determinism in the case of recursive functions,
and the performance of the Dyck model is unpredictable
because of the considerable number of inserted null sys-
tem calls. The PAID system developed by Lam and Chi-
ueh [16] employs a different approach to remove the non-
determinism totally from their SCSFG model. PAID uses
graph inlining and system call stub inlining to remove the
non-determinism due to multiple call sites, and it uses null
system call insertion to remove the non-determinism due
to control constructs. Compared with the above models, the
SCSFG model is the most accurate and efficient model since
it can use a deterministic finite state automaton or DFSA
algorithm to implement the graph traversal algorithm. Al-
though the SCSFG model is a deterministic model, it re-
quires substantial modification to the IO library and system
call stubs, which make it more difficult to port it to a new
LIBC. It also requires static linking to analyze where to in-
sert null system calls.



The VPStatic/DPDA model proposed by Feng et al. [8]
is the closest to BASS. Both the VPStatic model and the
BASS model use return addresses to identify each call site
and to remove the non-determinism due to multiple call
sites. However, the VPStatic model does not remove non-
determinism due to functions that contain a system call em-
bedded in an if-else-then construct, and to functions that are
called in a loop. The fact that it does not take into account
the return address of the trap instruction used in system calls
also makes it vulnerable to mimicry attacks. In contrast,
BASS removes all non-determinism in the programs through
a novel system call graph traversal algorithm, and it can op-
erate on Windows binaries directly.

We believe BASS represents one of the most compre-
hensive and efficient host-based intrusion detection systems
against control hijacking attacks and on the Win32/X86
platform. It is able to handle all production-mode Windows
binaries that we have tested so far, including the MS Office
suite, IIS, and IE, as well as well-known third-party bina-
ries including Acrobat Reader, Apache, and FTP daemon.
As for completeness, BASS supports system call monitor-
ing for dynamically linked libraries, multi-threading, and
exception handlers.

3 Application-Specific Sandboxing

3.1 Abstract Model

By preventing applications from issuing system calls in
ways not specified in their system call model, one could
effectively stop all control-hijacking attacks. One way to
automatically derive a network application’s system call
model is to extract its system call graph from its control
flow graph (CFG) by abstracting away everything except the
function call and system call nodes. A system call graph is
a non-deterministic finite state automaton (NDFSA) model,
due to if-then-else statements and functions with multiple
call sites. For example, in Figure 1, because of an if-then-
else statement the control can move to either call r1

or call r2 after getuid r0 t1 is called. The path
{call r1 → Entry(n) → Exit(n) → ret r2} represents
an impossible path [28], which cannot occur in the origi-
nal program’s execution, but is allowed by the model. The
more impossible paths a system call model has, the more
leeway is made available to mimicry attacks [29], which is-
sue system calls exactly in the same order as specified in the
system call graph before reaching the system call that can
damage the victim system (e.g., exec()).

To reduce the amount of non-determinism in a system
call graph, BASS uses a Call Site Flow Graph (CSFG),
which captures both the ordering among system call sites
and their exact locations. More specifically, a system call
site’s coordinate is uniquely identified by the sequence of
return addresses on the user stack when it is made and the
return address of the system call’s corresponding trap in-
struction. As shown in Figure 1, each system call node
in a CSFG is labeled by the return address of its call
stub and the return address of its trap instruction, such as
getuid r0 t1. In this case, r0 is the return address of

the system call stub getuid, and t1 is the return address
of the actual trap instruction (int 2E).

r2

   Entry(m)
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     call_r2     call_r1

     ret_r1      ret_r2

 read_r3_t2  write_r4_t3

 close_r5_t4

    Exit(m)
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   Entry(n)

    Exit(n)
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Figure 1. The CSFG model uses the return address
chain to uniquely identify each system call site. For
example, the system call site C1 is identified by its re-
turn address r1. After the getuid call, the NDFSA
moves the current state to getuid r0 t1. When
open is called, the NDFSA will move along the path
beginning with C1 only if the stack contains the ad-
dress r1.

In CSFG, each function call is represented by a call
node and a return node, such as call r1, and ret r1.
Each call node or return node is labeled with its return ad-
dress, such as r1 and r2 in Figure 1. The way that BASS
uniquely identifies each system call site removes the non-
determinism due to functions with multiple call sites. De-
spite the assignment of a unique coordinate to each system
call site, CSFG is still an NDFSA, as illustrated by the func-
tions foo6 and foo7 in Figure 2. Because of the if state-
ment, foo6 and foo7 do not always make a system call.
A function that may not always lead to any system call is
referred to as a may function. Because of may functions,
BASS cannot use a DFSA traversal algorithm to traverse the
CSFG.

Because the edges between per-function CSFGs are
uniquely labeled by their return addresses, transitions be-
tween these CSFGs is always deterministic. Consequently,
the CSFG traversal algorithm is a combination of DFSA
traversal, which is for inter-function traversal, and depth-
first traversal, which is for intra-function traversal. Let’s
illustrate the basic concepts of this algorithm using the ex-
ample in Figure 2. For a complete description of the CSFG
traversal algorithm, please refer to [15]. Assume the cur-
rent system call is sys1, which is legitimate, and the cur-
rent CSFG cursor points to sys1 r7 t1. When a new sys-
tem call sys2 is called from the function r9 t2, if the
CSFG traversal algorithm can successfully identify a path
from the node sys1 r7 t1 to the node sys2 r9 t2 that
does not contain any other system calls, sys2 is considered
legitimate and allowed to proceed.

When a new system call comes in, BASS first extracts
the return address chain from the user stack. For exam-
ple, when sys2 is called, the return address chain is {r1,
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Figure 2. For the system call sequence {sys1,
sys2}, when sys2 is called, the saved stack is
{r1, r2, r5}, the new stack is {r1, r4, r6},
and the prefix is {r1}. The run-time verifier needs to
simulate the function returns and function calls to de-
termine whether there is a path from the saved stack
to the new stack.

r4, r6, r9, t2}. The last two return addresses, r9
and t2, are not used for graph traversal because they are
used to identify the corresponding system call site. There-
fore the CSFG traversal algorithm uses only {r1, r4,

r6} as its new stack. The new stack of the last sys-
tem call, sys1 in this case, is called the saved stack,
and is {r1, r2, r5}.

The CSFG traversal algorithm first computes the
prefix of the saved stack and the new stack,
which is {r1}. Since the saved stack is longer than
the prefix, the application must have returned back to
the function foo1 before making the system call sys2.
Each time the algorithm moves the cursor to a new func-
tion, it uses depth-first traversal to look for the exit node of
the current function. This search is deterministic because
every function has one and only one exit node, and works
correctly even when the CSFG contains may functions,
e.g., the call r8 node in foo4. The return address se-
quence after the prefix in the saved stack is {r2,
r5}, based on which the algorithm performs the fol-
lowing operations to simulate function returns: (1) Find
exit(foo4) using depth-first traversal; (2) Consume r5
using DFSA traversal, and move the cursor to ret r5; (3)
Find exit(foo2) using depth-first traversal; (4) Con-
sume r2 using DFSA traversal, and move the cursor to
ret r2.

After the above operations, the cursor is in the func-
tion foo1. Since the new stack is longer than the pre-
fix, the application must have made some function calls
before invoking the system call sys2. Therefore, the al-
gorithm needs to simulate the call operations. Each time
the cursor moves to a new function, the algorithm uses
depth-first traversal to look for the call node that is la-
beled with the current stack symbol. This operation is de-
terministic because each call node is uniquely labeled by

its return address. The return addresses after the prefix
in the new stack is {r4, r6}, based on which the al-
gorithm simulates the call operations using the following
steps: (1) Find the call node labeled by r4 using depth-first
traversal, which is call r4; (2) Consume r4 using DFSA
traversal, and move the cursor to the callee of call r4,
which is entry(foo3); (3) Find the call r6node using
depth-first traversal; (4) Consume r6 using DFSA traver-
sal, and move the cursor to entry(foo5). After com-
pleting the simulation of return and call operations, the
CSFG algorithm uses depth-first traversal to reach the node
sys2 r9 r2, which means the system call in question,
sys2, is indeed legitimate.

Because of indirect calls (i.e. function pointers), even
if an application’s source code is available, it is not always
possible to construct a complete CSFG for that application.
BASS solves this problem by inserting before every indirect
call a notify system call, which informs the sandboxing
engine of the actual target of the indirect call. The sand-
boxing engine uses this information to temporarily connect
two potentially disconnected CSFG components and con-
tinue CSFG traversal. The disadvantage of this approach is
additional system call overhead for every indirect call.

3.2 Enhancements

In addition to checking the order of system calls and
where they are invoked, BASS also checks the arguments
of system calls to further reduce a program’s window of
vulnerability. For each system call argument, BASS first
computes a backward slice from it, and then performs sym-
bolic constant propagation on the resulting slice to reduce
it as much as possible. The reduction result could fall into
one of the following three categories. First, the reduction
result is a constant. This means that the value of the corre-
sponding system call argument can be determined statically.
In this case, this system call argument is a static constant.
Second, the reduction result is not a constant but it depends
only on input/configuration files, environment variables, or
command line arguments, all of which are assumed to be
immune from run-time tampering. The values of this type
of system call arguments can be determined after the initial-
ization phase and never change afterward. In this case, this
system call argument is a dynamic constant. Third, the re-
duction result depends on inputs coming from the network
at run time or real-time clocks. In this case, this system call
argument is a dynamic variable.

For system call arguments that are static constants, the
BASS compiler computes their values and includes them in
the system call model. For system call arguments that are
dynamic constants, the BASS compiler determines the point
in the program at which their value is fully determined, and
inserts a notify call there to inform the run-time veri-
fier of the value. For system call arguments that are static
constants or dynamic constants, BASS’s run-time verifier
should have their value before their corresponding system
calls are invoked. For system call arguments that are dy-
namic variables, the BASS compiler tries to derive a partial
constraint on them, e.g., a system call argument must be



prefixed with a constant character string. Due to space con-
straints, the details of deriving system call argument con-
straints are left out and can be found in the second author’s
Ph.D. dissertation [15].

An application’s CSFG produced by BASS could help an
attacker mounting a mimicry attack against the application.
To mitigate this risk, BASS creates different CSFGs for dif-
ferent instances of the same application by randomly insert-
ing null system calls into those functions that sit on the
path between two consecutive system calls but they them-
selves do not lead to any system call. In addition, BASS
inserts these system calls to an application at load time to
eliminate the possibility that attackers correctly guess their
existence. To prevent attackers from identifying these sys-
tem calls through run-time disassembly, they are in the form
of instructions with invalid op code or memory accesses that
cause protection violation, rather than the the usual ”int 2E”
or ”sysenter” instructions.

3.3 Graph Linking

Most previous work [28, 10, 16, 11] either required all
libraries be statically linked or failed to handle dynamically
linked libraries. Because Windows binaries use dynami-
cally linked libraries (DLL) extensively, it is mandatory for
BASS to sandbox DLLs as well. Because DLLs could be re-
located when they are loaded, the return addresses or func-
tion addresses extracted statically must be adjusted accord-
ingly at run time. Toward this end, BASS first calculates
the base address of each DLL after it is loaded, and adds
the base address to the relative addresses statically extracted
from the DLL.

To simplify the process of linking CSFGs, we applied
the same idea used in dynamic linking by introducing a new
type of node called a trampoline node. Statically, all calls
to an import function are linked to its associated trampoline
node, which also records the address of the import func-
tion’s corresponding import address table entry. After all
DLLs are loaded, the import address table entries are filled
with the addresses of their associated functions. Therefore
BASS can fill the trampoline nodes with their corresponding
import address table entries. As in dynamic linking, fixing
the trampoline nodes is all that is needed to link calling CS-
FGs with called CSFGs.

BASS handles Win32 executables and DLLs in nearly the
same way. The only difference is that it takes special care in
separating the read-write part of a DLL’s CSFG to allow as
much sharing of CSFGs as possible. On the Windows OS,
by default the memory image of a DLL is shared by all pro-
cesses that load it. If any process needs to modify a DLL,
the OS will duplicate a copy of the modified pages for the
modifying process according to the ”copy on write” rule.
When an application loads a DLL, it needs to modify the
DLL’s CSFG so that their return nodes point back to the ap-
plication’s call sites. Without special handling, this means
many DLL CSFG pages need to be duplicated. To avoid
this duplication, BASS rearranges the layout for each DLL’s
CSFG such that those nodes that need to be modified during
graph linking, mainly the entry and exit nodes of exported

functions, are stored in separate pages. Consequently, only
these pages need to be duplicated, and the majority of DLL
CSFGs still could be shared among applications.

3.4 Stack Walking

BASS uses the sequence of return addresses on the user
stack as part of a system call site’s coordinate. However, it
is not trivial to identify where these return addresses are in
general, because the use of the frame pointer, typically the
EBP register in the Intel X86 architecture, is not manda-
tory. Modern Windows compilers provide an optimization
option that tries to use EBP as a regular register in order to
improve program performance. For binaries produced by
these compilers, it is no longer possible to pinpoint exactly
the stack entries that contain return addresses. Our experi-
ences show that many Win32 executables and DLLs indeed
do away with the frame pointer, e.g., KERNEL32.DLL.
This issue does not arise for PAID because PAID’s com-
piler is configured to use the frame pointer register when
generating binary code. The Windows OS does provide a
stackwalk() API to facilitate the debugging process. It
could retrieve each frame on the stack by consulting the
symbol information stored in PDB files. Unfortunately,
most production-mode Win32 binaries do not come with a
PDB file. Eventually, BASS chooses to maintain a shadow
stack of return addresses. More specifically, it instruments
each function call site to push the return address before en-
tering the callee, and pop the return address after returning
from the callee. Consequently, BASS’s sandboxing engine
can easily identify the return address sequence associated
with an incoming system call. As a side effect, it also
enhances the application security by detecting any stack
smashing [19].

4 System Implementation

The system architecture of BASS is shown in Figure 3,
and its various components are described in detail in the
following subsections.

Most existing binary analysis and instrumentation tools
are developed on Unix/Linux OS and/or RISC architec-
ture, because it is generally easier to statically disassemble
and analyze binaries on these platforms. However, Win32
binaries on the X86 architecture are much less suscepti-
ble to static disassembly and analysis, because of hand-
crafted assembly routines and intentional obfuscation. To
address this problem, we developed a new binary analy-
sis/instrumentation system called BIRD, which performs
both static and dynamic disassembly to guarantee that ev-
ery instruction in a binary file will be properly examined
before it is executed.

4.1 Binary Disassembly

In general, there are two main approaches to disassem-
bling a binary file: linear sweeping and recursive traversal.
Linear sweeping assumes every byte in the binary file is an
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Figure 3. The system architecture of BASS, which
consists of a static component that statically disas-
sembles a binary file into instructions and extracts
their system call model, a dynamic component that
at run time disassembles those portions of the binary
file that cannot be disassembled statically and extracts
their system call model accordingly, and a sandboxing
engine that compares an application’s dynamic sys-
tem call patterns with its system call model.

instruction and disassembles them one by one until it de-
tects a disassembly error, e.g., when the leading byte of a
supposed instruction does not correspond to any valid op
code. Recursive traversal follows the control flow of an in-
put binary starting from its main entry point, exploring both
directions of each conditional branch instruction. Recursive
traversal is in general more accurate than linear sweeping,
but may suffer from the problem of low coverage due to
indirect call or jump instructions.

Because the instructions that BIRD recovers from an ex-
ecutable binary are meant to be transformed, it is essential
that BIRD’s disassembler be 100% accurate. In contrast,
commercial disassemblers such as IDA Pro are designed for
reverse engineering purposes, and therefore do not have to
be as accurate as BIRD. To overcome the fundamental lim-
itations of static disassemblers with respect to Win32 bina-
ries, BIRD adopts a hybrid architecture that statically disas-
sembles a binary file as much as it can, and defers the rest
to dynamic disassembly at run time. Because most of the
instructions in a binary file are disassembled statically, the
performance overhead of dynamic disassembling is mini-
mal. However, the flexibility of dynamic disassembly offers
a simple and effective fall-back mechanism for cases where
static disassembling fails.

BIRD’s static disassembler starts with a recursive traver-
sal pass from the input binary’s main entry point. Any in-
structions identified in this pass are guaranteed to be instruc-
tions. To improve the coverage of recursive traversal, BIRD
applies data flow analysis to statically determine the target
addresses of as many indirect jumps/calls as possible, and
converts them into their direct counterparts. In addition, it
exploits various PE header information such as export table,
relocation table, etc., to identify places in a binary file that
are known to be instructions.

The portions of a binary file that have been successfully
disassembled are called known regions, whereas the rest are
called unknown regions. Because of recursive traversal, the
only way for a program’s control to go from a known region
to an unknown region is through an indirect control trans-
fer instruction. Therefore, BIRD intercepts every indirect
control transfer instruction at run time, and invokes the dy-
namic disassembler if it jumps to an unknown region. Run-
time interception is through direct binary re-writing. This
check-and-invoke logic forms the run-time engine of BIRD.
The dynamic disassembler works similarly to the static one
in that it also applies recursive traversal until the traversal
encounters a known region or an indirect branch.

Kernel callbacks, including exception handlers, call-
backs, and asynchronous procedure calls (APCs), are indi-
rect calls coming from the kernel. Because they are invoked
through a function pointer from a user-level library routine
in NTDLL.DLL or KERNEL32.DLL, the fact that BIRD
can intercept all indirect calls from these libraries means
that it can intercept all kernel callbacks as well.

4.2 Binary Instrumentation

Because static disassembly cannot achieve 100% cov-
erage, it is difficult to apply the traditional instrumenta-
tion strategy used in well-known binary instrumentation
tools [17, 25], which start with extracting the input pro-
gram’s structure such as procedures and symbol table, and
then merge the new code into it. To support binary in-
strumentation without complete knowledge of the program
being instrumented, BIRD takes a local amendment ap-
proach, and performs both static and dynamic instrumen-
tation. More concretely, BIRD adds a new section to the
input program that contains the instrumentation code, and
replaces the instruction at each instrumentation point with
a jump to the corresponding instrumentation instruction se-
quence. There are two design issues in this approach. First,
is it always possible to put a jump instruction at each instru-
mentation point? Second, how to ensure that the replaced
instructions are executed in their original execution context?

In Intel X86 architecture, a jump instruction takes 5
bytes. If the instruction at the instrumentation point is
shorter, e.g., a 2-byte short indirect branch, then it is nec-
essary to replace multiple instructions. Instructions that are
being replaced cannot be targets of direct branches. But it is
OK if they are targets of indirect branches, because BIRD
intercepts every indirect branch. If the length of the instruc-
tion at the instrumentation point is larger than or equal to 5
bytes, BIRD replaces the instruction directly; otherwise if
none of the instructions following the instrumentation point
are targets of direct branches, then BIRD replaces as many
as possible to make room for the 5-byte jump; otherwise
BIRD replaces the instruction at the instrumentation point
with an int 3 instruction, which is 2 bytes long. The int
3 instruction generates a breakpoint exception, which is
handled by BIRD’s exception handler at run time. If the ex-
ception handler decides that a breakpoint exception occurs
because of an int 3 instruction BIRD inserted, it passes
the control to BIRD’s check-and-invoke logic, as if the con-
trol is passed from the instrumentation point directly. The



int 3 instruction is meant to be a fall-back mechanism
when it is impossible to find enough bytes at the instrumen-
tation point for the 5-byte jump instruction.

The values of registers and stack entries at the time when
the control reaches an instrumentation point are saved away
before the check-and-invoke instrumentation code is called,
and put back afterwards. Consequently, BIRD ensures that
the replaced instructions are executed in the same context
as if the instrumentation logic never takes place.

The check-and-invoke logic of BIRD is implemented as
a DLL called dyncheck.dll, and is completely inde-
pendent of the applications being instrumented. Moreover,
once the import table of an instrumented program is mod-
ified, dyncheck.dll is automatically loaded at start-up
time. Because the initialization routine of a DLL always
gets control when the DLL is loaded, this enables BIRD to
read in static information, such as known/unknown areas,
and initialize required data structures before the program’s
main function starts. Because a program’s import table may
be immediately followed by some other data, it is not al-
ways possible to increase its size directly. To solve this
problem, we keep the old import table, create a new im-
port table that contains the original import table entries and
any new entries we want to add, and modify the import ta-
ble address field in the PE header to point to the new import
table.

BASS leverages BIRD’s binary instrumentation mecha-
nism to build up the CSFGs for unknown areas as soon as
they are converted into known areas. That is, once a section
of instructions becomes known at run time, BIRD applies
the same CSFG construction algorithm used statically to it,
and constructs its corresponding CSFG.

4.3 Sandboxing Engine

Part of a program’s CSFG is generated statically, and part
of it is generated dynamically. When a program starts up,
BASS reads in the static portion of its CSFG graph and fixes
up its addresses. Then BASS links in each DLL’s CSFG
into the main CSFG. As new CSFGs are generated for stat-
ically unknown areas, they are also linked into the main
CSFG. Although a program’s CSFG may change at run
time, BASS’s sandboxing engine can still perform system
call monitoring based on it, because BIRD guarantees that
an instruction segment’s CSFG must be available before it
is executed.

4.3.1 Support for Multi-Threading

Supporting multi-threaded applications on the Win32 plat-
form is relatively straightforward because each user thread
corresponds to a kernel thread. On the Windows OS,
there is a per-thread data structure call Thread Environment
Block (TEB) to keep track of per-thread information such
as thread id, thread stack base address and limit. This in-
formation is accessible to the corresponding kernel thread.
To maintain a separate shadow stack for each thread, BASS
allocates a stack on the heap every time a new thread is
created. This is possible because on Windows every time

a thread is created, the initialization routine of every DLL,
including dyncheck.dll, is invoked.

Because the code for pushing and popping return ad-
dresses to the shadow stack is supposed to be the same for
all threads, it requires some address massaging to ensure
that different threads are operating against different shadow
stacks, even though they run the same code. BASS solves
this problem by using thread local storage (TLS), which is
a per-thread storage area. More specifically, a thread’s TEB
contains an array of pointers to its thread local storage re-
gions. BASS reserves one element of this array to store the
pointer to a thread’s shadow stack across the entire appli-
cation. Consequently, every thread can access its shadow
stack using the same syntactic address, TLS[X], where X
is the index of the reserved element, even though they actu-
ally point to different stacks.

4.3.2 System Call Interception and Insertion

BASS intercepts system calls the same way as such tools as
RegMon and FileMon [26], which are designed to monitor
run-time behaviors of application programs. Modern Win-
dows OSs include a kernel executive, which provides core
system services. All user-level API calls such as those fre-
quently used in KERNEL32.DLL, NTDLL.DLL will even-
tually call these system services or Native APIs. The kernel
executive dispatches native API calls through the the sys-
tem service dispatcher table (SSDT). By writing a kernel
device driver, BASS can modify the function pointer entries
in SSDT and intercept all system calls with additional func-
tions. Consequently, each time a system call is invoked,
BASS’s interception function is called first, which performs
the required sandboxing operation and decides whether to
block the system call.

5 Performance Evaluation

5.1 Methodology

The current BASS prototype can successfully run on
Windows 2K, including Windows 2K Advanced Server,
and Windows XP, with or without SP1 or SP2. Because
BIRD needs to instrument known regions of executables
and DLLs, we temporarily disable the Windows File Protec-
tion feature in order to modify the system DLLs and IIS. To
evaluate the performance overhead of BASS, we measured
the throughput and latency penalty of BASS with seven net-
work server applications, which are briefly described in Ta-
ble 1. Although BASS works on IE and Microsft Office pro-
grams, we don’t use them in the performance study because
it is difficult to accurately measure the performance over-
head for interactive applications that require user actions.
We ran each of these applications under the following four
configurations: (1) Native mode, in which applications are
executed without interception or checking, (2) BIRD Mode,
in which applications are executed with BIRD’s intercep-
tion, (3) BIRD/BASS mode, in which applications are ex-
ecuted with BIRD’s interception and BASS’s system call
checking, and (4) BIRD/BASS/Random mode, in which



Application Test BIRD Shadow CSFG
Case Stack Storage

Apache fetch a 2.5% 178.7% 106.3%
1KByte file

BIND query a 2.5% 131.1% 270.0%
name

IIS W3 fetch a 3.47% 107.1% 238.1%
Service file

MTSEmail send a 8.33% 108.34% 234.33%
1KByte email

Cerberus Ftpd fetch a 4.17% 67.4% 161.0%
1KByte file

GuildFTPd fetch a 4.24% 139.09% 120.5%
1KByte file

BFTelnetd login and 6.25% 87.5% 207.8%
list files

Table 1. The network server applications being used
in the performance evaluation study, the test case for
each of them, and the increase in their binary size un-
der BASSdue to BIRD, maintenance of shadow stack,
and storage of CSFG.

null system calls are randomly inserted into applications
at load time and the resulting binaries are executed with
BIRD’s interception and BASS’s system call checking. For
this study, we chose 38 sensitive system calls to monitor
that are related to file system and registry manipulation.

To test the performance of each server program, we used
two client machines that continuously send 2000 requests
to the test server applications. In addition, we modified
the server machine’s kernel to record the creation and ter-
mination time of each process. The throughput of a net-
work server application is calculated by dividing 2000 by
the time interval between creation of the first forked pro-
cess and termination of the last forked process. The latency
is calculated by taking the average of the response times for
each of the 2000 requests. The server machine used in this
experiment is a Windows XP SP1 machine with Pentium4
2.8GHz CPU and 256MB memory. One client machine is
a 300-MHz Pentium2 with 128MB memory and the other
client is a 1.1-GHz Pentium3 machine with 512MB mem-
ory. Both of them run Redhat Linux 7.2. The server and
client machines are connected through a 100Mbps Ethernet
link. To test HTTP and FTP servers, the client machines
continuously fetched a 1-KByte file from the server, and
the two client programs were started simultaneously. In the
case of the mail server, the clients retrieved a 1-KByte mail
from the server. A new request was sent only after the pre-
vious one was completely finished. To speed up the request
sending process, client programs simply discarded the data
returned from the server.

5.2 Performance Overhead

Table 2 shows the throughput penalty of the test ap-
plications under the BIRD mode, BIRD/BASS mode, and
BIRD/BASS/Random mode as compared with the Native
mode. For most applications except GuildFTPd, the ma-
jority of the throughput penalty comes from BASS, which
accounts for 1.8% to 6.4% drop in throughput, whereas
BIRD accounts for between 0.9% to 3.1% throughput loss.
The randomization component of BASS does not contribute
much to throughput loss. With BIRD and BASS combined,
the total throughput degradation is kept within 8%, a gener-

Application BIRD BIRD+ BIRD+BASS
BASS +Random

Apache 99.9% 0.9% 94.2% 5.5% 94.0% 5.6%
BIND 97.8% 3.1% 92.3% 7.7% 91.9% 7.9%

IIS W3 Service 99.1% 1.1% 93.9% 6.3% 93.5% 6.8%
MTSEmail 99.7% 1.4% 97.3% 3.2% 97.3% 3.2%

Cerberus Ftpd 99.2% 1.2% 93.0% 7.6% 93.0% 8.2%
GuildFTPd 79.9% 25.3% 73.3% 32.7% 71.3% 33.2%
BFTelnetd 99.9% 1.5% 97.4% 3.4% 96.9% 3.5%

Table 2. The normalized throughput (left column)
and latency penalty (right column) of the BIRD mode,
the BIRD/BASS mode, and the BIRD/BASS/Random
mode when compared with the Native mode for the
seven test applications.

ally acceptable performance penalty. The overall through-
put penalty of GuildFTPd is about 29%; 20% is due to
BIRD and 9% due to BASS. The reason that GuildFTPd in-
curs a high BIRD-interception overhead is because it uses
heavily dispatching functions and small callback functions,
which correspond to indirect calls. As a result, the check-
and-invoke logic in BIRD is triggered so frequently that
eventually this logic accounts for a significant portion of
GuildFTPd’s overall run time.

The latency penalties for different applications run-
ning under different configurations are pretty similar to
their throughput penalties. Overall, the latency penalty is
also bounded under 8%, except GuildFTPd, whose latency
penalty is more than 30%.

To give a detailed breakdown of BIRD’s performance
cost, Table 3 shows for each test application the coverage
of BIRD’s static disassembler, the static count of indirect
control transfer instructions, the number of times the check-
and-invoke logic is invoked at run time, and the number
of times BIRD’s dynamic disassembler is invoked. Be-
cause executables and DLLs are processed separately on
their own, the reported numbers are for application binaries
themselves, excluding DLLs. The static coverage number is
calculated by dividing the number of bytes that are known
to be data or code statically over the entire binary size. Un-
surprisingly, the check-and-invoke logic is triggered many
more times in GuildFTPd than in other programs. This ex-
plains the high throughput penalty of GuildFTPd. However,
the static disassembly coverage of Cerberus Ftpd is actu-
ally lower than GuildFTPd, even though its BIRD-related
overhead is also much lower, under 1%. This demonstrates
that the BIRD-related overhead is not necessarily deter-
mined by the number of times the dynamic disassembler
is invoked. For example, Cerberus Ftpd invokes 263 times
and GuildFTPd invokes only 89 times, and yet Cerberus
Ftpd incurs lower overhead. Because GuildFTPd invokes
the check-and-invoke logic so many times, its accumula-
tive overhead becomes a significant overhead even though
most of these checks confirm the target addresses point to a
known area and therefore do not result in an invocation of
the dynamic disassembler.

Table 1 shows the increase in binary size due to BIRD,
shadow stack maintenance and storage of CSFG. BIRD’s
contribution comes from the check-and-invoke logic and the
dynamic disassembler, and is generally quite small. The
additional instrumentation required to maintain the shadow
stack however increases the binary size significantly be-



No. of No. of No. of
Application Static Static Dynamic Dynamic

Coverage Indirect Indirect Disassembler
Branches Branches Invocations

Apache 91% 109 3745 31
BIND 98% 390 18962 72

IIS W3 service 91% 125 12847 138
MTSEmail 99% 0 6352 0

Cerberus FTPd 79% 150 58764 263
GuildFTPd 83% 295 406196 89
BFTelnetd 80% 141 4459 136

Table 3. Detailed breakdown of BIRD’s static and
dynamic disassembly overhead

Application Base Load BIRD BIRD/BASS
Time (cycles) Overhead Overhead

Apache 84350072 23.08% 68.09%
BIND 112174792 54.84% 96.83%

IIS W3 service 215194865 45.16% 89.34%
MTSEmail 36329115 16.29% 42.98%

Cerberus Ftpd 47452796 10.76% 32.46%
GuildFTPd 150718358 30.51% 69.50%
BFTelnetd 123278084 10.67% 34.66%

Table 4. The increase in application start-up time in-
troduced by BIRD and BIRD/BASS. The start-up de-
lay is defined as the interval between when a binary is
started and when its main entry point takes control.

cause it is designed to be thread-aware, and thus costs
62 bytes per function call in addition to some relocation
logic. Finally, CSFG storage requires even more space than
shadow stack maintenance, because the data structures are
designed to provide sufficient flexibility to accommodate
DLLs that are unknown statically. If one could assume that
all DLLs are known in advance, it would be possible to de-
velop a more compact representation for CSFGs and thus
significantly reduce their storage space requirements.

To study the complexity of BASS’s graph traversal al-
gorithm for real applications, we measured the number of
nodes visited for each system call invocation when Apache
and GuildFTPd are running under BASS. For Apache, the
largest number of nodes that the graph traversal algorithm
needs to visit when going from one system call to another
is 54; in most cases the number of nodes visited is fewer
than 10. The number of nodes visited per system call is
more evenly distributed for GuildFTPD than for Apache:
the largest number of nodes visited per system call is be-
tween 20 to 30, with most under 10. These results explain
why the additional overhead introduced by BASS is rela-
tively modest in practice, between 535 to 1600 CPU cycles,
and demonstrate that the overhead of BASS’s graph traversal
algorithm is indeed quite close to that of DFSA traversal.

Table 4 shows the increase in application start-up time
introduced by BIRD and BIRD/BASS, respectively. In gen-
eral, BASS adds more start-up latency than BIRD because
the former needs to read in the static portion of the appli-
cation’s CSFG, and link the CSFGs of the DLLs with it to
form the final CSFG, on which run-time system call moni-
toring is based. Although the increase in start-up latency is
substantial, its practical impact is small as it is the sustained
performance rather than the start-up time that matters for
most network applications.

6 Attack Analysis and Limitations

When an attacker hijacks an application and steers the
victim application’s control to a piece of injected code,
BASS could immediately detect the attack because the in-
jected code is in the data area and therefore not in the ap-
plication’s unknown region. If the attacker steers the victim
application’s control to an existing piece of code (e.g., a li-
brary function), BASS could detect the attack if the existing
piece of code eventually makes a system call inconsistent
with the application’s system call model.

The limitations of BASS stem from its system call graph
model and binary interpretation mechanism. Like other
compiler-based system call model extraction tools, BASS
has a zero false positive rate but could not completely elim-
inate all false negatives. A system call-based sandboxing
system such as BASS cannot stop attacks that do not need
to issue any additional system calls. For example, data at-
tacks [6] that modify a sensitive system call’s arguments
through buffer/integer overflowing can evade the detection
of BASS. This problem can be somewhat alleviated through
system call argument checks, as is done in PAID [16].
When an attacker hijacks an application and the next legit-
imate system call is exactly what she needs to inflict dam-
age, BASS is also completely powerless in this case. BASS’s
ability to assign a unique coordinate to each system call site
and check it at run time significantly reduces the possibility
of mimicry attacks. This check makes it difficult to em-
ulate legitimate system calls for a long period of time be-
cause it forces the application’s control to go back to the
application’s code. More concretely, to attack BASS, the
attacker needs to set up the user stack correctly according
to the victim application’s CSFG. Even if the attacker can
do that, after making the first system call, the application’s
control will not return to the attacker’s code since the con-
trol will go to whichever functions specified by the return
addresses on the stack. However, more advanced mimicry
attacks [14] try to apply data attacks to give the application’s
control back to the attacker during the emulation process,
thus opening the possibility of defeating BASS’s coordinate
check. Fortunately, BASS’s load-time randomization could
potentially thwart this type of attacks as they require com-
plete access to the application’s binary.

Binaries do not come with type information, which in
many cases can improve the accuracy of integrity checks.
For example, from the source code of a network applica-
tion, one can assume that all indirect function calls must go
through either function pointers or special system routines
such as signal handlers, and all function pointers should
point to the entry points of some existing functions. From
binaries, however, it is not always safe to equate an indirect
call instruction to a function call using a function pointer.
As a result, all the assumptions that come with function
pointers may not hold for a given indirect call instruction.

Currently, BIRD cannot handle arbitrary self-modifying
code or obfuscated code, although it can successfully exe-
cute self-decompressing programs that are compressed us-
ing tools such as UPX [27]. Although not an immediate
concern, we expect more and more future applications may



include self-modifying code either for performance opti-
mization or for software protection. Therefore, we are cur-
rently investigating ways to enhance BIRD to support gen-
eral self-modifying code.

7 Conclusion

To the best of our knowledge, BASS is the first system
call-based sandboxing system that can automatically sand-
box arbitrary Windows binaries running on the Intel X86
architecture without any human inputs and with low per-
formance overhead, while achieving a zero low false posi-
tive rate and very-close-to-zero false negative rate. Because
BASS operates at the binary level, it is independent of the
source languages and the associated compilers/linkers, and
thus is applicable to a wide range of applications. In ad-
dition, BASS offers users an effective way to protect them-
selves from potential bugs in third-party applications with-
out support from the original application developers or from
special computer security vendors. More concretely, this
work makes the following contributions:

• A highly accurate system call model representation
that checks system call ordering, system call coordi-
nates, and system call arguments that together greatly
minimize the window of vulnerability to mimicry at-
tacks.

• A flexible and efficient Win32/X86 binary interpreta-
tion system that has been shown to to correctly inter-
pret a wide variety of Windows applications, including
Microsoft Office suite and IIS, that state-of-the-art dis-
assemblers fail to disassemble completely.

• One of the most if not the most comprehensive system
call pattern-based host-based intrusion detection sys-
tems that could automatically and accurately sandbox
applications that involve dynamically linked libraries,
multi-threading, and exception handlers.
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