Secure The Data, Not The Infrastructure
A New Approach to Data Protection

Mark Schertler
Voltage Security

December 2006
Data Protection Is Becoming More Complex

- Wide-ranging set of data protection drivers
 - Specific mandates
 - PCI, contractual obligations
 - Risk-management based
 - SOX, HIPAA, EU Data Protection Directive, PIPEDA
 - Mandatory disclosure
 - 17 states, upcoming Federal law

- Data protection requirements now impact entire enterprise architecture
 - No longer limited to specific business units/IT systems
Defending Networks Is Hard

- Existing networks are architected like the Winchester Mystery House in San Jose, California
 - Grown over time instead of planned
 - Constructed 24 hours a day for 38 years

- This won’t change any time soon

- Networks like these are becoming more and more integrated with those of business partners
Where exactly *is* the network perimeter?

- It’s not always clear where one network ends and another one begins
- Credit card processing
 - Merchants
 - Banks
 - Credit card companies
- Health care
 - Payers
 - Providers
- This makes defending the perimeter of the network even more difficult
Current Data Protection Models

- Focus on “vulnerable” parts of the network
 - But can you really distinguish what’s “vulnerable”?

- Assume a “them and us” mentality
 - But can you still identify “them” and “us”?

- Assume the infrastructure will protect us
 - But do you always have control over the infrastructure?
A New Approach

- Instead of protecting the network, protect the data
 - Make security data-centric instead of network-centric

- The easiest way to do this is to encrypt data, so that only an authorized user can decrypt it

- Can we find a feasible way to protect data by encrypting it?
Identity-Based Encryption

- Basic idea: Public-key encryption where identities & classifications can be used directly as encryption public keys

- Eliminates the need for certificates & certificate infrastructure
 - Removes the usability and manageability problems inherent in PKI-based solutions
 - Simplifies Traditional PKI

- IBE Public Key:
 - \texttt{“alice@corp.com”}
 - \texttt{“Engineering”}
 - \texttt{“Restricted”}

- RSA Public Key:
 - \texttt{Public exponent=0x10001}
 - \texttt{Modulus=13506641086599522334960321627880596993888}
 - \texttt{1475605667027524485143851526510604859533833}
 - \texttt{9402871505719094417982072821644715513736804}
 - \texttt{1970396419174304649658927425623934102086438}
 - \texttt{3202110372958725762358509643110564073501508}
 - \texttt{1875106765946292055636855294752135008528794}
 - \texttt{1637732853390610975054433499981115005697723}
 - \texttt{6890927563}
IBE: Groups and Policies

- IBE is not restricted to using identities as keys

- Encrypt to a group: **Engineering**
 - To retrieve the key, the user/application must authenticate as a member of the Engineering group
 - Leverage existing directory structures (AD, LDAP)
 - As group membership in directory changes, key access rights change dynamically as well

- Encrypt to a policy name/classification: **PCI**
 - To retrieve the key, the user/application must meet the policy defined at the server
 - Example: Asking for “PCI” key might query back-end ERP system and execute business logic

- Extremely difficult to do with PKI
 - Group certificates create major revocation and distribution problems
Is Bob allowed to access PCI data?
Policy Definition

“HIPAA”

- Internal Auth via Directory
- External Auth via Strong Pass
- Machine Must Be HIPAA-Approved
- Delegate Access for HIPAA Admins
- Log HIPAA event
- Notify HIPAA Officer
Policy-Based Encryption

- Define canonical privacy policies
 - e.g. “HIPAA”, “PCI”, “Confidential”, “Classified”, ...

- Define elements of policy on server
 - e.g. “HIPAA” requires delegated access, auditing, etc.

- Encrypting agents specify privacy policy as part of key
 - Do not need to understand individual policy elements

- Privacy policy enforced by server
 - Policy can be modified over time

key = “bob@b.com || HIPAA”
key = “HIPAA”
Policy Based Encryption

1. Define HIPAA enforcement policy on management server

 “HIPAA” =
 - US access only
 - Auth via SecurID
 - Log HIPAA event

2. Identify & classify: Determine document contains HIPAA data

3. Apply “HIPAA” privacy policy

4. Enforce “HIPAA” privacy policy

Define HIPAA enforcement policy on management server

“HIPAA” =
- US access only
- Auth via SecurID
- Log HIPAA event

Identify & classify: Determine document contains HIPAA data

Apply “HIPAA” privacy policy

Enforce “HIPAA” privacy policy
Universal Privacy Enforcement

Privacy Policy Enforced Consistently Regardless of Application or Channel
Data-Centric Security Model

- Focus on the data, not the infrastructure
 - Assume that data can end up anywhere

- Make security travel with the data
 - Data should be protected wherever it lives, inside and outside the network

- Build security into the application layer
 - Don’t rely on surrounding infrastructure to do the right thing
Key Requirements for Data-Centric Security

- **Data discovery & classification**
 - Need to understand where data is created
 - Drive enforcement policies based on classifications

- **Security-integrated application development process**
 - Need to incorporate data protection as part of initial design
 - Remediation strategy for existing applications

- **Centralized key management**
 - Common data protection architecture ensures interoperability across applications
 - Speeds development and deployment
Data privacy is a growing regulatory concern

Technological advancements in PKC and encryption usability now make broad data protection possible

Implementing a comprehensive, policy based data centric approach drastically simplifies compliance and data protection programs
Questions?

www.voltage.com
Building and Administering Applications
What do architects & developers need to think about?

- PKI model (data-centric):
 - Who should have access to the data?
 - How do I map those access rights to a cert?
 - How do applications find the right cert?
 - How do I ensure cert validity?
 - How do you keep the CA & directory synched?
 - …

- IBE model (data-centric):
 - Who should have access to the data?