Dynamic Taint Propagation for Java

Vivek Haldar

Deepak Chandra

Michael Franz

Dept. of Information and Computer Science,
University of California, Irvine, CA 92697, USA
{vhaldar, dchandra, franz} @uci.edu

Abstract

Improperly validated user input is the underlying root
cause for a wide variety of attacks on web-based applica-
tions. Static approaches for detecting this problem help at
the time of development, but require source code and report
a number of false positives. Hence, they are of little use
Jor securing fully deployed and rapidly evolving applica-
tions. We propose a dynamic solution that tags and tracks
user input at runtime and prevents its improper use to mali-
ciously affect the execution of the program. Our implemen-
tation can be transparently applied to Java classfiles, and
does not require source code. Benchmarks show that the
overhead of this runtime enforcement is negligible and can
prevent a number of attacks.

1 Motivation

“The impact of using unvalidated input should not be
underestimated. A huge number of attacks would become
difficult or impossible if developers would simply validate
input before using it. Unless a web application has a strong
centralized mechanism for validating all input... vulnera-
bilities based on malicious input are very likely to exist.”

- The Ten Most Critical Web Application Security Vul-
nerabilities, 2004, Open Web Application Security Project.

In the old internet, machines and services communi-
cated with each other using a variety of protocols that were
processed largely by programs written in C. The full range
of common UNIX remote services falls in this category
mail servers, finger daemons, scheduled job execution ser-
vices etc. The most common way to attack these services
was to exploit buffer-overrun vulnerabilities that stemmed
from the fundamental lack of memory safety in the under-
lying implementation language, C.

The trend now is towards a model of web-based applica-
tions that communicate using the HTTP protocol, that are
implemented in a type- and memory-safe language such as

Java, and executed in a safe runtime such as the Java Virtual
Machine or the .NET Common Language Runtime.

Such code platforms offer several advantages over native
code. The virtual machine performs a number of static and
dynamic checks to ensure a basic level of code safetytype-
safety, and control flow safety. Type safety ensures that op-
erators and functions are applied only to operands and argu-
ments of the correct types. A special case of type safety is
memory safety, which prevents reading and writing to ille-
gal memory locationsfor example, beyond the bounds of an
arrayand thereby also provides separation between differ-
ent processes without the need for hardware-based memory
management. Control flow safety prevents arbitrary jumps
in code (say, into the middle of a procedure, or to an unau-
thorized routine). These basic properties of safe code are
enforced by a combination of static (e.g. bytecode verifica-
tion) and dynamic (e.g. array bounds checks) techniques.
Thus, safe code does away with a major source of errors
and vulnerabilities in current systems that stem from unsafe
memory operations in Csuch as buffer overruns and format
string attacks.

Despite the fact that the safe execution environments in
which web-applications typically execute are not vulnera-
ble to buffer-overrun attacks, a wide variety of new attacks
specifically targeting them have recently surfaced [16]. In-
stead of exploiting the weak-typing of the underlying lan-
guage, attacks now focus on exploiting the presence of er-
rors in the programming logic of the application. Since the
interface web-applications provide to the world is simply
an HTML page', they can be attacked from any client capa-
ble of issuing HTTP requests, and very often the only tool
needed is a browser.

One large class of such errors is using untrusted user in-
put in security-sensitive commands without proper valida-
tion and sanitization. An overly simplistic example of this is
using a user-input string as argument to the System.exec()
call in Java. If this string is not properly checked, it al-

IMore precisely, web-applications provide an HTTP interface. The re-
sult of invoking this interface is HTML that is rendered in a web browser

lows the user to execute arbitrary commands on the hosting
system. User input consists not just of data entered into
HTML forms, but the full range of data that originates from
untrusted sources external to the web-application. This in-
cludes sources such as data read from cookies on the client
and HTTP parameters encoded in a URL. Such untrusted
data is called rainted. Identifying, tracking and preventing
the improper use of such untrusted data is the domain of the
taint problem.

Various approaches have been explored to attack the taint
problem (see section 6 for an overview). Broadly, these fall
into two categories statically analyzing code for the pres-
ence of taint vulnerabilities, and dynamic approaches that
track tainted data at runtime. Each has its own advantages
and disadvantages, and is applicable in different scenarios.

Static analysis is useful at the time of application de-
velopment, when potential vulnerabilities found by the
analysis can be fixed by the programmer in source code.
Some human intervention is also needed because static ap-
proaches, in order to be conservative, typically also report a
number of false positives. The programmer must then man-
ually examine the reported errors to determine which are
actual vulnerabilities and which are not.

There are two problems that need to be dealt with.
Firstly, the problem must be specified correctly. This means
getting all the rules and corner cases for validating user in-
put right. Secondly, this specification must be implemented
faithfully. Static approaches can catch implementation er-
rors, but not bugs of specification. If a dynamic approach
independently also performs its own checks, it may be able
to catch more errors than only static checking.

However, static approaches do provide more accurate re-
ports than runtime approaches, enable fixing vulnerabilities
before an application is deployed, and have no runtime per-
formance overhead.

But most web-applications deployed in the real world do
have bugs in them. A study [19] estimates that nearly 60%
of deployed applications are vulnerable. For the large ma-
jority of these applications, the source code is not available.
Moreover, web-applications also rapidly change and evolve.
Here, static approaches fall short.

A dynamic, runtime technique that can be transparently
applied to deployed applications is very useful in such sce-
narios. This explains the popularity of Perls taint mode [21].
It is not guaranteed to prevent attacks, but it significantly
raises the bar for exploiting taint vulnerabilities in Perl CGI
scripts.

In this paper, we present a technique and our implemen-
tation for dynamically tracing tainted user input in the Java
Virtual Machine. Our technique tracks the taintedness of
untrusted input throughout the lifetime of the application.
Taintedness is propagated in the obvious way strings de-
rived from tainted strings are also considered tainted. Our

technique is completely transparent the application is com-
pletely unaware of it. It can be applied to an existing Java
classfile, and does not need source code.

We allow the separate specification of sources of tainted
data, as well as sensitive methods that should not use tainted
data (also called sinks). This separation of mechanism and
policy gives our technique great flexibility. We need spec-
ify these sources and sinks only once per library. For ex-
ample, once we specify the sources and sinks in the J2EE
library, all applications using that can benefit from dynamic
taint propagation. Sources are usually methods that get in-
put from outside the program, and sinks are usually meth-
ods that either write output outside the program, or execute
some form of code (SQL, shell commands). We track taint-
edness from sources to sinks, and prevent tainted data from
being passed into sinks.

Our technique uses a fairly simple policy to untaint
tainted data. This is needed because otherwise all data that
depends on user input would always be considered tainted.
Note that our policy for untainting data is a heuristic, and
trusts that the programmer performed meaningful validation
checks.

The rest of this paper is organized as follows: Section
2 provides an overview of the taint problem, and the var-
ious attacks that can be mounted against web-applications
because of improperly validated input; Section 3 explains
how we dynamically trace taintedness in the Java Virtual
Machine; Section 4 presents implementation details and the
results of some benchmarks; Section 5 discusses avenues
for future work; Section 6 gives an overview of other ap-
proaches for dealing with the taint problem; and Section 7
concludes.

2 The Taint Problem

The taint problem in web applications stems from us-
ing improperly validated user input in commands that are
security-sensitive. This is the underlying cause for a wide
variety of attacks on web-applications. Many authors
[9, 13, 16] have given excellent overviews of attacks on
web-applications, and in particular, how improperly vali-
dated user input can be used to mount these attacks. We
borrow heavily from them and provide a short overview of
these attacks here.

Figure 1 shows the architecture of a typical web-based
application. It presents an HTML interface to users, and
having got some input from them, queries a database back-
end, formats the result and presents a new HTML page. The
backend need not always be a database, but could also be
any other data source, such as another web application.

An attackers goal is to manipulate user input such that
it can be used to affect the execution of the program mali-
ciously. For example, an attacker could provide input that is

Form input,
cookies,
parameters

Client

SQL queries

Figure 1. Architecture of a web application

then used to construct malicious queries to the backend to
extract data that she was not authorized to see. Another goal
might be to insert information into the database to pollute it,
or plant misinformation in it.

2.1 Examples of attacks

We illustrate with an example from WebGoat [15], a col-
lection of web applications designed to demonstrate attacks
on them. Consider a web form with a textbox where the
user fills in her account number, and after pressing OK, the
resulting page displays her credit card information. The in-
formation is looked up in the database using the following

query:

SELECT » FROM user_data WHERE
userid = <string input by user
in textbox>

Here the string used to construct the SQL query is not
properly checked before being sent to the database backend
and a malicious input string can easily leak sensitive data.
For example, if the user inputs:

101 CrR 1
Then the resulting SQL query becomes:

SELECT * FROM user_data WHERE
userid = 101 OR 1

In this query, the boolean condition evaluates to true al-
ways because of the additional OR 1. Thus the query will
match all records, and the resulting HTML page will dis-
play all credit cards in the database. Such attacks, where
user input is used to affect the execution of a command on
the local host, are called command injection attacks.

For another attack, consider a web forum with a text box
where users enter new messages. A user could enter arbi-
trary JavaScript content between jSCRIPT, and ;/SCRIPT;,

tags in this text box, and the message would then be part of
the webpage. Other users who load the same page would
now be unknowingly executing this inserted JavaScript.
This is an example of a cross-site scripting attack.

2.2 Classes of attacks

Attacks on web-applications can target both the hosting
server, as well as clients that access the application. Some
of the most prevalent attacks on web-based applications are:

e Command injection attacks: user input is manipulated
to insert a maliciously constructed executable com-
mand into the program. The most common case of this
attack, SQL injection, happens when user input is used
in some way to construct an SQL query for the data-
base backend. If this input is not properly validated, it
could be used to construct a malicious SQL query.

e Cross-site scripting (also called output attacks) [2]: a
maliciously crafted URL can insert executable script-
able content into a dynamically generated webpage.
Thus, a user may unknowingly execute scripts when
she visits a URL given to her. This script could leak
local data, or redirect information to a malicious server
rather than the original host of the webpage. Typically,
such malicious URLs are found in spam emails. When
clicked, the malicious script is executed. The underly-
ing problem is that the URL, which is also a form of
untrusted user input, is not properly validated. The ear-
lier example of a malicious message on a web forum
also falls under this category.

e Hidden Field Tampering: websites often use hidden
fields to communicate persistent session data such as
user ID, pricing information etc. The problem is that
very often the value of these hidden fields is not prop-
erly validated at the server end. If these fields are tam-
pered with, they could be used for malicious purposes,

such as buying items for a price other than that pub-
lished, or forging identities.

e Cookie Poisoning: malicious data is inserted into
cookies that are used by the web-application. For ex-
ample, often a website will skip authentication based
on data stored in a cookie. If the cookie is modified, it
could be used to present a forged identity to a website.

Of the above attacks, command injection, field tamper-
ing and cookie poisoning are attacks on the hosting server.
Cross site scripting, on the other hand, targets clients that
use web-applications. Note that though all these attacks use
different avenues of attack, the root cause of all of them is
improperly validated user input.

3 Dynamically tracking taintedness

In order to track tainted user input, we need to specify
the following:

e Sources: A source is a method that returns user input.
Usually these are methods that get HTML form input,
or read cookies stored on the client, or parse HTTP
parameters. All strings emanating from sources must
be marked tainted.

e Propagation: Strings from sources are usually manipu-
lated to form other strings such as queries, or scripts, or
filesystem paths. Strings that are derived from tainted
strings also need to be marked tainted.

e Sinks: A sink is a method that consumes input or deriv-
ative of user input. This includes methods that execute
some form of code (such as a script or SQL query),
or methods that output data (such presenting a new
HTML page). Tainted strings must be prevented from
being used as parameters to sinks.

Sources and sinks need to be specified once per library
or framework that a web application uses. For our bench-
marks, we needed to specify sources and sinks for the J2EE
library.

To track the taintedness of strings, we associated a taint
flag with every string. This taint flag is set when a string
is returned by a source method. We propagate this taint
flag to strings that are derived from tainted strings through
operations such as concatenation, case conversion etc.

3.1 Untainting
Once we have a mechanism to mark strings tainted, we

also need a way to untaint strings. This is needed because
in the absence of a way to untaint strings, all strings that

are derived from tainted strings will still be marked tainted.
This includes strings that have been put through a sanitizing
procedure and should not be marked tainted anymore.

The problem is to determine which procedures are sani-
tizing procedures. Since our technique applies transparently
to existing Java bytecode, we have no programmer input
telling us which methods sanitize and validate user input.
Thus, we have to use a heuristic to determine this. Choos-
ing this heuristic is one of our major design decisions.

We assume that methods of java.lang.String that per-
form checking and matching operations are used to untaint
strings. For example, a tainted string that is passed through
a regular expression match, or been tested for the presence
of a particular character is not tainted anymore. Note that
here we trust the programmer to have performed a mean-
ingful check that accounts for all cases that might be ex-
ploitable in an attack. It is entirely possible that the pro-
grammer wrote a faulty input-validation routine that lets
through user-input strings with malicious content in them.

3.2 Dealing with Taint Errors

A taint error occurs when a tainted string gets used as an
argument for a sink method. When this happens, we could
take one of a number of actions:

e Raise a Java exception indicating a runtime taint error:
Since this is an exception the application is unaware
of, this particular exception will not be caught, but if
the application has a mechanism to deal with unknown
runtime exceptions, it may be able to recover. In any
case, tainted data will not be allowed into a sink.

e Abandon the particular session that caused a taint error.

e The weakest option is to let tainted data be used as
an argument to a sink, but make a full log of the ar-
guments, the sink, and the path the tainted data took
from source to sink. This seems insecure, but is useful
when auditing, doing penetration testing, debugging,
or if used in a honeypot.

4 Implementation and Results

We have implemented our taint propagation scheme for
the Java Virtual Machine, and tested it on a number of ap-
plications. Our implementation is independent of the par-
ticular JVM being used. We use bytecode instrumentation,
and use Javassist [4] for this.

Our implementation needs to do the following:

e Specify sources and sinks.

e Mark strings emanating from sources as tainted.

Unvalidated user-provided string

™~

Tainted flag

“..where NAME=..."”

“some string”

[Concatenated string

String derived from
tainted string is
still tainted

[Result of regex match

Checked string is
considered untainted

Figure 2. Overview of tainting and untainting

e Propagate taintedness of strings.
e Mark strings untainted according to our heuristic.

e Raise an exception when a tainted string is used as an
argument to a sink method.

The way we specify sources and sinks is straightfor-
ward. We simply list out every source method (say
Form.getValue()) in a text file, one per line. We do the same
for sink methods.

We instrument the java.lang.String class to propagate
taintedness information, as well as untaint strings. Some
methods are instrumented to propagate taintedness of
strings, whereas some others make strings untainted. This
instrumentation is done once off-line. This is because the
JVM prohibits the load-time modification of system classes
such as java.lang.String. System classes must be loaded by
the primordial system class loader, while load-time instru-
mentation requires the installation of a custom class-loader.

We instrument the java.lang.String class as follows:

e Add a boolean field to the class that indicates whether
it is tainted or not

e Instrument all methods in the class that have some
String parameters and return a String, so that the re-
turn value is tainted if at least one of the parameters is
tainted.

e The above is done for all but a number of string check-
ing and matching methods, which untaint data. For
example, foo.match(regex) will untaint foo.

Strings are immutable in Java. The java compiler com-
piles string operations such as concatenation into opera-
tions on the StringBuffer class, which implements mutable
strings. For example, the expression

stringl + string2

will actually be compiled to

(new StringBuffer(string1)).append(string?) .toString()

Because of this inter-conversion between
Strings and StringBuffers, we also instrument the
javalang.StringBuffer class in much the same way as
the javalang.String class, by adding a tainted flag, and
modifying its methods to propagate taintedness.

The StringBuilder class is also used internally to ma-
nipulate strings. It is like the StringBuffer class, except
its methods are not thread-safe. We instrument the String-
Buffer class too.

All other classes are instrumented at load-time using a
custom class loader, as follows:

e If the method is a source: we mark the returned string
tainted.

e If the method is a sink: we check if any of its argu-
ments is a tainted string. If so, we raise an exception
indicating a taint error.

Note that we only instrument classes that have sources or
sinks in them, and not all classes. Currently, due an incom-
patibility between the class loader hierarchies of Javassist
and Tomcat (the servlet container that executes our bench-
mark web applications), we are unable perform this instru-
mentation at the time of class loading. Instead, we instru-
ment these classes offline.

We wrote a micro benchmark to measure the overhead
of instrumenting the java.lang.String class to handle taint-
ing information. The benchmark consisted of a number
of string operations repeated in a loop, and was run with
strings of length varying from 1 to 10000. It was run on a
PentiumM 1.5 GhZ laptop with 512 MB of RAM, running
Windows XP SP2, using version 1.5 of the Java runtime.
Our measurement showed no noticeable difference in ex-
ecution time of the benchmark between using the original
and instrumented String class.

To test our taint propagation framework, we ran it with
the WebGoat [15] set of web applications. WebGoat is a
collection of applications designed to teach secure program-
ming for web applications, and has a range of vulnerabili-
ties in it by design. One application demonstrates a com-
mand injection attack, where user-supplied command can
be executed on the host by tampering with HTTP parame-
ters. Another demonstrates an SQL injection attack, where
supplying a malicious string in an HTML form results in a
query being executed on the host that reveals secret data.

We specified a list of sources and sinks specific to the
J2EE framework, and ran WebGoat under our taint propa-
gation framework. Our implementation flagged a taint error
for both the applications mentioned above, and prevented
the attack from being successfully carried out.

5 Discussion and Future Work

This work grew out of our broader attempt to bring
strong mandatory access controls (MAC) to the Java Vir-
tual Machine [7]. Our objective in that work was to ex-
plore how MAC can be integrated into a JVM, and at what
granularity it is meaningful to do so, with the aim of pro-
viding greater assurance for applications that require strong
data partitions, and that need to track the permissions and
ownership of data throughout the lifetime of the program.
Current access control mechanisms in Java can only control
initial access to a resource, but fail to track data through-
out execution, or limit how they are used once access was
granted. We implemented a prototype JVM that performed
MAC at the granularity of objects. Every object had a MAC
tag associated with it. Based on the policy in place, this tag
regulated how and if other objects were allowed to access
it. Taint propagation can be seen as a special case of using
MAC in the JVM. Taint tags associated with strings are in
effect a kind of access control tag.

There are a number of avenues for future work:

Currently we have only tested our implementation with
the WebGoat [15] sample applications. This is not a very
realistic benchmark, as it was designed to demonstrate how
web applications can be attacked, and has vulnerabilities
by design. We are currently in the process of finding other
realistic web applications, and would like to test our taint
propagation framework with them.

Another direction for future work is to use our tool for
logging of attacks and penetration testing. For this, it would
be useful to have additional information carried along with
tainted strings, such as which source method it came from,
and what path (in terms of method calls) it followed from
source to sink.

We would also like to explore a declarative approach to
specifying valid inputs. Valid inputs for the large majority
of web applications follow well-known rules, such as an ex-
pected format and the absence of certain special characters
that could be used in an attack. In spite of this, every appli-
cation developer rewrites these from scratch for a given ap-
plication, often leaving holes and bugs. If these validation
rules could be attached to sources and sinks and executed
at runtime, they would form an additional layer of security,
independent of and in addition to the checks the applica-
tion already has. We do not expect this additional checking
to impose a significant performance overhead as most web
applications are 1/0 bound, and CPU time is usually not a
bottleneck.

Extending this approach even further, we could attach to
sources and sinks an operation that established an invariant.
This may require source code modification, but only of the
library, not the application. It may even be possible to do
this transparently at the bytecode level. The application will
still be unaware of this, and not need to be modified.

Currently we have only two levels of tainting associated
with a string — it is either tainted or not. However, a large
web application deals with a number of data sources other
than just users, such as other web applications, off-site data-
bases etc. Input from these sources may not be untrusted to
the same extent as input from a remote user on a client. Ex-
tending our work on MAC at the object level, we would like
to explore if having a finer granularity of taint levels can im-
prove the security of web applications. With multiple taint
levels, we could also enforce policies and invariants about
how and when data from various taint levels are allowed to
mix, and what level of tainting the resulting data is marked
with. This might be particularly useful in light of recent
regulations [1] that mandate how information from various
departments within an organization, and among organiza-
tions, is allowed to mix.

6 Related Work

The original inspiration for this work is Perl’s taint mode
[21]. When in taint mode, the Perl runtime explicitly marks
data originating from outside a program as tainted. This in-
cludes user input, input from environment variables and and
file input. Tainted data is then prevented from being used as
arguments for certain sensitive functions that affect the local
system such as running local commands, creating and writ-
ing files and sending data over the network. Doing so results
in a runtime exception and termination of the program. Perl
also provides a mechanism to untaint tainted data. Results
of a regular expression match are always considered clean.
Hence, if a tainted string is matched against a regular ex-
pression, the resulting match is clean. The programmer is
trusted to have adequately checked a tainted string if she
wrote a regular expression to filter it. Thus, taint mode is
not a 100% guarantee for catching taint bugs. Its goal is
to catch unintentional programmer errors, such as passing a
user-input string directly to a shell command.

Ruby [20] has finer-grained taint levels than Perl. It has
safe levels ranging from O to 4, each successively more
stringent. Level O has no checks on tainted data, whereas
level 4 partitions program execution into two sandboxes,
one with tainted objects, and one without. Tainting is done
at the level of objects, not just strings. Any object that had
tainted data in it at any point during execution is marked
tainted. This model of tainting objects is very similar to
ours.

Our work essentially brings the idea of taint propagation
to the Java runtime. The important difference is that our
approach is more flexible and extensible because the list of
sources and sinks is not hard-coded into the runtime, but
separately specified. This allows our mechanism to be used
for taint checking applications that use various libraries, af-
ter having specified sources and sinks for each library once.
Moreover, we can run different instances of the same appli-
cation, each with different source and sink specifications.

Nguyen-Tuong et al [13] have implemented taint prop-
agation for the PHP interpreter. PHP is a widely used
web scripting language. Their technique mostly mirrors
Perl’s. However, their technique for sanitizing data is dif-
ferent. Rather than have an operation that untaints strings,
they never untaint strings, and put strings through their own
sanitizing functions before they are passed as arguments to
sensitive functions. Once again, the list of these sensitive
functions is not separately specified, but built into the PHP
interpreter.

A similar technique is context-sensitive string
evaluation[14], where all untrusted data is marked
with metadata about its origin, and then checked and
updated when various operations are performed on this
data. Finally, when the data is used in a security-sensitive

context, it is checked to ensure usability in that particular
context. For example, a user-provided string that is eventu-
ally used in the construction of an SQL query is checked
for the absense of any syntactic SQL elements.

A great deal of work has been done on static approaches
to analyzing code security [3], and the taint problem in par-
ticular [9, 18, 6].

Taint propagation is an information flow problem [17].
Static checking approaches such as Myer’s JFlow system
[10] type-check source code for secure information flow.
However, the programmer needs to insert source code an-
notations explicitly labeling sensitive data.

The WebSSARI [8] project analyzes information flow
in PHP applications statically. It inserts runtime guards in
potentially insecure regions of code. It differs from ap-
proaches such as JFlow in that it does not require source
annotations.

Static analysis has also been applied to C programs
[18, 6]. Evans’ Split static analyzer [6] takes as input C
source code annotated with “tainted” and “untainted” anno-
tations. This is accompanied by rules for how objects can be
converted from one to the other, and which functions expect
which kinds of arguments. Shankar et al [18] use a similar
approach in which C source code is annotated, but they use
type-qualifiers instead.

The major disadvantage of all these approaches is that
they require source code, and while useful at the time of
development (even though they might report a number of
false positives requiring manual examination to clear), they
cannot be applied transparently to already deployed appli-
cations that are only available as binaries.

Newsome and Song [12] have implemented a system that
performs dynamic taint checking on x86 binaries. Their
goal is to prevent buffer attacks that work by overwriting
certain program values, such as the return address on the
stack. Their tool, called TaintCheck, works on unmodified
x86 binaries and does not need source code, or any spe-
cial recompilation. TaintCheck considers data originating
from the network to be tainted. Also, all data derived from
tainted data is also considered tainted. This is accomplished
by executing the binary in the ValGrind [11] x86 emula-
tor. Every register and memory word has an associated taint
data structure. Also, every arithmetic and data move in-
struction is instrumented to propagate taintedness. Finally,
security sensitive program values, such as return addresses
and function jump pointers, are not allowed to be overwrit-
ten by tainted data. The primary drawback of this approach,
which relies on runtime binary translation and instrumenta-
tion, is performance. In their benchmarks, the authors have
reported slowdowns of up to 37 times compared to native
performance.

The recent TaintBochs system [5] maintains taintedness
information at byte-granularity at a system-wide level. To

achieve this, the Bochs x86 emulator was modified to main-
tain a taintedness-bit for every byte of main memory and
the x86 registers, and propagating this taintedness infor-
mation through instructions. For example, if A and B are
tainted, then the result of AopB (for some opcode op) is
also marked tainted. Pushing taint-propagation down to the
hardware level allows analyzing it at a system-wide level
across abstraction boundaries of applications and kernels.
The authors’ goal was to study the lifetime of sensitive data
and data derived from it, such as passwords and secret keys.
Using TaintBochs they found that several popular applica-
tions such as Mozilla and Emacs maintain sensitive data,
such as passwords, in the clear long after they have been
used. The drawback of TaintBochs, however, is that it im-
poses a steep performance penalty. It is 2 to 10 slower than
Bochs itself, which is an emulator. TaintBochs was de-
signed to be a testing and analysis tool, and is not suitable
for use runtime use with the software it analyzes.

7 Conclusion

The most prevalent attacks on web applications — com-
mand injection, parameter tampering, cookie poisoning,
cross-site scripting — all have the same root cause: improp-
erly validated user input. Static approaches for detecting
the presence of these vulnerabilities require the presence of
source code. But this is unrealistic for deployed applica-
tions that still have bugs in them.

In this paper, we have proposed a framework for tag-
ging, tracking and detecting the improper use of improperly
validated user input (also called tainted input) in web appli-
cations. We mark data originating from the client as tainted,
and this attribute is propagated throughout the execution of
the program. Data derived from tainted data is also marked
tainted. Finally, we prevent tainted data from being used
improperly in security-sensitive contexts.

Our implementation runs on the Java Virtual Machine,
and is able to prevent the improper use of tainted data.
We associate a tainted flag with strings. Data originating
from methods that get user input, called sources, is marked
tainted. Strings derived from tainted strings are also marked
tainted. Certain string checking operations mark data un-
tainted. Here we trust the programmer to have made a
meaningful check. Finally, methods that consume input or
execute some form of code (scripts, SQL), called sinks, are
prevented from taking in tainted arguments.

Our technique applies to Java classfiles and does not re-
quire source code. Hence it can be transparently applied to
deployed web applications and increase their security in the
face of attacks.

Acknowledgements: This material is based on re-
search sponsored by the Air Force Research Laboratory un-
der agreement number FA8750-05-2-0216. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon.

We thank the anonymous reviewers for their comments,
which greatly helped to improve this paper.

References

[1] K. Beaver. Achieving sarbanes-oxley compli-
ance for web applications through security testing.
http://www.spidynamics.com/support/
whitepapers/WI_SOXwhitepaper.pdf.

[2] CERT. Cert advisory ca-2000-02. malicious html tags em-
bedded in client web requests, February 2000.

[3] B. Chess and G. McGraw. Static analysis for security. /EEE
Security and Privacy, 2(6), 2004.

[4] S. Chiba. Javassist: Java bytecode engineering made simple.
Java Developer’s Journa, 9(1), January 2004.

[5]1 J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole sys-
tem simulation. In USENIX Security Symposium, 2004.

[6] D. Evans and D. Larochelle. Improving security using ex-
tensible lightweight static analysis. IEEE Software, Jan/Feb,
2002.

[7]1 V. Haldar, D. Chandra, and M. Franz. Practical, dynamic
information flow for virtual machines. Technical Report TR
05-02, Department of Information and Computer Science,
University of California, Irvine, Feb 2005.

[8] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo. Securing web application code by static analysis
and runtime protection. In Thirteenth International World
Wide Web Conference, May 2004.

[9] V.B. Livshits and M. Lam. Finding security vulnerabilities
in java using statis analysis. In USENIX Technology Sympo-
sium, 2005.

[10] A. C. Myers. JFlow: Practical Mostly-Static Information
Flow Control. In Conference Record of POPL’99: The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 228-241, San Antonio, Texas,
January 20-22, 1999.

[11] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. Electronic Notes in Theoretical Computer
Science, 89(2), 2003.

[12] J. Newsome and D. Song. Dynamic taint analysis: Auto-
matic detection, analysis, and signature generation of exploit
attacks on commodity software. In Network and Distributed
Systems Security Symposium, February 2005.

[13] A. Nguyen-Tuong, S. Guarnieri, D. Green, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting. In IFIP Security Conference, May 2005.

[14] T. Pietraszek and C. V. Berghe. Defending against injection
attacks through context-sensitive string evaluation. Techni-
cal Report RZ 3615, IBM Research Report, June 2005.

[15] O. W. A. S. Project. The webgoat project.
http://www.owasp.org/software/webgoat.html.

[16] O. W. A. S. Project. Top ten most criti-
cal web application security vulnerabilities.
http://www.owasp.org/documentation/topten.html, Jan-
uary 2004.

[17]

(18]

[19]

[20]

(21]

A. Sabelfeld and A. Myers. Language-based information-
flow security. 21(1), 2003.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers. In
USENIX Security Symposium, 2001.

M. Surf and A. Shulman. How safe is it out there?
http://www.imperva.com/application_defense_center/
papers/how _safe_is_it.html, June 2004.

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby:
The Pragmatic Programmers Guide, 2nd ed.

L. Wall, T. Christiansen, and J. Orwant. Programming Perl.
O’Reilly and Associates, 2000.

