MILS Multiple Independent Levels of Security

Carol Taylor & Jim Alves-Foss
University of Idaho
Moscow, Idaho
Outline

- Introduction and Motivation
- MILS History
- MILS Architecture
- Common Criteria (CC) Certification
- MILS Certification Progress
- Conclusion
Introduction

- MILS is an evolving component based high assurance architecture
 - MILS = Multiple Independent Levels of Security
- Under development by industry, government and academia
- Intended for high assurance environments
 - Multi-level data communications
 - Safety critical systems
Introduction

- Current and past practice in CC Certification
 - No methodology for Common Criteria certification of components or much
 - Reuse of certification efforts
- **Common Criteria** focused on certification of single systems or products
 - Not easy to certify composed system
Introduction

- Also, entire certification process is not "open"
 - Access to information on CC process not readily available at higher EAL levels
 - Evaluation methodology is proprietary since labs compete with each other for certification business
Motivation

- Need to do component CC certification for MILS
 - Reuse of certification artifacts
 - Publish findings in order to clarify the process
 - Investigate higher assurance levels for trusted MILS components
Motivation

- Area in need of further work
 - Composing Protection Profiles of certified products
 - Show composition of components will work
- Brian Snow, December 5, 2005 - ACSAC
MILS History

- High assurance systems require proof that system meets critical security requirements
 - **Proof** = formal methods analysis
- Past high assurance systems relied on
 - Security Kernel +
 - Trusted Computing Base (TCB)
MILS History

- As high assurance systems evolved
 - Difficult to separate security functionality from other system functions
 - TCB became very large
 - Impossible to formally verify correctness of system with many 1000’s lines of code
 - Security policy complex
 - High level design also complicated and large
MILS History

- MILS is an alternative *vision* for high assurance systems
 - MILS is a layered approach with lower layers providing security services to higher layers
 - Each layer is responsible for security services in its own domain and nothing else
 - Limits the complexity and scope of security mechanisms
 - Makes evaluation possible
 - Fits in with *small is beautiful* thinking
Conceptual View MILS Layers

- Applications – MLS and Non-MLS
- Middleware Services (Device drivers, File Systems, Network communications)
- Separation Kernel
- Hardware (MMU, Interrupts)
MILS Architecture

- Separation underlies all of MILS
 - Long used in avionics world for safety critical systems
 - **Safety features**
 - Space partitioning
 - Well defined, separate address space
 - Damage Limitation
 - Application errors only affect the application partition
 - Time partitioning
 - Only one application runs in mostly static time allowance
MILS Architecture

- Separation Kernel
 - Simplified to provide partitioning, partition scheduling and secure communication between partitions
 - An EAL 6+ Protection Profile has been written
 - Vendors developing separation kernels
 - Green Hills, LynuxWorks, Wind River
 - Others developing MILS components
 - Lockheed Martin, Objective Interface, University of Idaho, Naval Research Lab
MILS Architecture

- Separation Kernel
 - Security Policy
 - Data isolation – enforces space partitioning
 - Periods Processing – enforces time partitioning
 - Sanitization – clears shared resources, system buffers and micro processor registers
 - Information flow – permits communication between authorized partitions
MILS Architecture

- **Middleware Services**
 - Functionality previously in kernel now in OS Middleware layer
 - File systems, network services, device drivers
 - Added new functionality for security
 - Partitioning Communication System
 - Provides trusted, MLS, network communication
 - MILS Message Router
 - Data switch for partitions, handles multiple classification levels
MILS Architecture

- **Applications**
 - Traditional middleware such as CORBA
 - Guards
 - MLS or Single level
 - Encryption
 - Downgrader or Regrader
The MILS Architecture

U (SL)
Middleware
Application

C (SL)
Middleware
Application

S (SL)
Middleware
Application

TS (SL)
Middleware
Application

TS/S (MLS)
Middleware
Application

MILS SEPARATION KERNEL

Processor
Common Criteria Certification

- **CC v. 2.2**
 - Certification of single products
 - Application, OS, processor
 - Target of Evaluation (TOE)
 - Define or find a Protection Profile (PP)
 - Adapt PP to a Security Target (ST) at a given EAL level
 - ST specifies security functionality of TOE
 - Evaluated according to ST
 - NIAP Lab evaluates products up to EAL 4
 - Beyond EAL 4, NSA evaluates TOE
Common Criteria Certification

- CC v. 3.0
 - Allows certification of composed products
 - Involves combination of two or more evaluated products
 - Intent is to evaluate components developed by different organizations
 - Proprietary issues
 - Assumption is not all information is available for evaluation
Common Criteria Certification

Composed CC v. 3.0 Certification

- How to do it?
 - Independent evaluation of each component
 - Composed evaluation *base* component and *dependent* component
 - Use new class ACO: Composition - Five families
 - ACO-COR – Composition rationale
 - ACO-DEV – Development evidence
 - ACO-REL – Reliance of dependent component
 - ACO-TBT – Base TOE Testing
 - ACO-VUL – Composition vulnerability analysis
Common Criteria Certification

- Composed CC v. 3.0 Certification
 - Five families say
 - Ensure base component provides at least as high an assurance level as the dependent component
 - Security functionality in support of security requirements of dependent component is adequate
 - Description of interfaces used to support security functions of dependent component is provided
 - May not have been considered during component evaluation
Composed CC v. 3.0 Certification

- Five families say
 - Testing of base component as used in composed TOE is performed
 - Residual vulnerabilities of base component are reported and an analysis of vulnerabilities arising from composition are considered
Common Criteria Certification

- Composed CC v. 3.0 Certification
 - Composition Assurance Packages (CAPs)
 - Replace EAL levels for composed TOE’s
 - Build on results of previously evaluated entities
 - CAP-A Structurally Composed
 - CAP-B Methodically Composed
 - CAP-C Methodically Composed, Tested and Reviewed
Common Criteria Certification

- Composed CC v. 3.0 Certification
 - CAP-A Structurally Composed
 - Developers or users require low to moderate levels of independently assured security
 - Security functional requirements are analyzed just using the outputs from the evaluations of the component TOE’s
 - ST, and guidance documentation
 - No involvement of base TOE developer required
Common Criteria Certification

- Composed CC v. 3.0 Certification
 - CAP-B Methodically Composed
 - Developers or users require moderate levels of independently assured security
 - Security functional requirements are analyzed using outputs from TOE evaluations, specification of interfaces and high level TOE design of the composed TOE
 - Minimal involvement of base TOE developer required
Common Criteria Certification

- Composed CC v. 3.0 Certification
 - CAP-C Methodically Composed, Tested and Reviewed
 - Developers or users require moderate to high levels of independently assured security and are prepared to incur additional security-specific engineering costs
 - Security functional requirements are analyzed using outputs from TOE evaluations, specification of interfaces and the TOE design of the composed TOE
 - Involvement of base TOE developer required
Common Criteria Certification

- MILS Certification
 - MILS is ideally suited to a composed certification effort
 - MILS was designed as a component architecture
 - Components designed by multiple vendors
 - Components certified at multiple EAL levels
 - Components assist with security policy enforcement
Common Criteria Certification

- Composed MILS CC v. 3.0 Certification
 - **Example**: Separation Kernel and MMR
 - Base component
 - Separation Kernel
 - Dependent component
 - MILS Message Router (MMR)
Common Criteria Certification

- Steps for Composing MILS Components
 - Evaluation of Separation Kernel
 - Evaluation of MILS Message Router
 - Evaluation of Composed MILS Components
 - Define an ST for composed system
 - Decide on a Composition Assurance Level (CAP)
MILS Certification Progress

- Separation Kernel evaluation
 - Protection Profile, Security Target - done
 - Currently being evaluated
 - Formal methods artifacts under construction
 - Target EAL 6+

- MILS Message Router
 - No PP, Security Target – being created
 - Constructing artifacts
 - No actual NIAP Lab evaluation – review of artifacts
 - Target EAL 5
MILS Certification Progress

- Composed Certification
 - Next steps
 - Define a composed ST, Evaluation
 - Document all steps and publish results
 - Discuss strategy and methodology
 - Should be repeatable for other MILS components
 - Many certification artifacts should be reusable within MILS systems
 - Standard interfaces, consistent security policies
Conclusion

- MILS architecture provides layered, component-based approach to high assurance systems
 - Components certified at different assurance levels as needed
 - Saves cost, effort since entire system doesn’t need to operate system “high”
Conclusion

- Newest CC version allows composed certification
 - MILS can use composition so that components can be developed by multiple vendors
 - High assurance components designed to work together
 - Re-use of certification results now possible
The End

c_taylor@cs.uidaho.edu