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Abstract 
 

Since attackers trust computer systems to tell 
them the truth, it may be effective for those systems 
to lie or mislead.  This could waste the attacker's 
resources while permitting time to organize a bet-
ter defense, and would provide a second line of 
defense when access controls have been breached.  
We propose here a probabilistic model of attacker 
beliefs in each of a set of "generic excuses" (in-
cluding deception) for their inability to accomplish 
their goals.   We show how the model can be up-
dated by evidence presented to the attacker and 
feedback from the attacker's own behavior.  We 
show some preliminary results with human sub-
jects supporting our theory.  We show how this 
analysis permits choosing appropriate times and 
methods to deceive the attacker. 

 
1. Introduction 

 
Access controls are not currently doing a good 

job of protecting computer systems as is witnessed 
by the many attacks that can subvert controls.  Ac-
cess controls have been studied for a long time, 
and significant innovations are now rare.  So it is 
valuable to examine secondary "lines of defense" 
for once access controls have been breached. 
 

Intrusion-detection systems, computer foren-
sics, and honeypots [12] are secondary lines of 
defense, but they are relatively passive and fo-
cused on data collection.  Closing connections, 
ports, and services automatically during attacks 
stops them but tells the attacker we recognize the 
attack and encourages a different attack.  Trying to 
trace connections from an attacker is very difficult 
with most Internet routers and only really success-
ful within a subnetwork with specialized router 
software.  Counterattacks are generally illegal and 
unlikely to find the right target given the difficulty 
of tracing connections. 

 
One second line of defense does avoid these 

disadvantages, however: deception.  Information 
systems could lie, cheat, and mislead attackers to 
prevent them from achieving their goals [19].  
Since people expect computers to tell them the 
truth, such deception can be very effective with 
minimal resources.  Deception is particularly im-
portant with time-critical military-style attacks 
such as those by cyber-terrorists or state-sponsored 
information-warfare teams, where just delaying the 
attack with deceptions could be critical while find-
ing a permanent defense.  Deception also can be 
equally effective with attacks by insiders as well as 
outsiders. 

 
Most attacks on computer systems use some 

form of deception.  Classic methods include mas-
querading as someone or something (like a system 
administrator, an audio file, or an IP address), con-
cealing unexpected components within something 
innocuous (like Trojan horses), and asking for un-
needed resources (like denial-of-service attacks).  
So it seems fair to respond to attackers with similar 
methods.  Deception is a common feature of hu-
man nature and it occurs frequently in animals and 
plants in many visual and behavioral forms [2]. 

 
As a defensive tool for information systems, 

deception has been used in honeypots [5] and 
honeynets as a way to keep the attacker busy.  
Honeypots are systems with no purpose except to 
encourage attacks so data can be collected, and 
honeynets are networks of honeypots.  Deceptions 
like fake files are used in some honeypots to keep 
attackers interested for a while.  But we want to 
explore more sophisticated deceptions, and we 
want deceptions on ordinary computers where they 
could protect those systems – honeypots don't try 
to fend off most attacks. 

 
We have been studying the more general prob-

lem of providing deceptive behavior for the protec-



 

tion of computer systems and networks. Deception 
is a way to foil attacks much like directly fighting 
them off.  Deception may convince an enemy to go 
away without any fight.  Using an intrusion-
detection system, we monitor user behavior for 
suspiciousness.  As suspiciousness increases, we 
first provide minimum deceptive measures, and 
then increase their frequency and severity.  The 
trick is to use deception sparingly and consistently 
to keep the attacker fooled as long as possible, 
tying up their resources while reducing their 
chances of successful attack.  To do this, we need 
some planning.  Deception is only useful when we 
are at least moderately sure we are under attack 
since otherwise we risk hurting legitimate users 
(see section 2.6).  But deception may be useful 
even when we are very sure of an attack, as a de-
laying tactic, although on non-honeypots it may be 
safer to disconnect the attacker.   

 
Some examples of these kinds of deceptions 

that we have implemented are [18, 19]: 
• A Web site that, when under denial-of-

service attack from too many processing requests, 
delays still further in responding to those requests 
to give the impression that it is more affected by 
the attack than it really is. 

• A Web site that provides files of data 
compiled at random from real files to confuse 
spies into seeing nonexistent connections. 

• A file-transfer utility that, when it sees 
a signature of a common attack, pretends to suc-
cumb by responding in the same way an affected 
system would. 

• An operating system that, when it rec-
ognizes an attacker is downloading a rootkit to 
install on it, deletes the rootkit some time after 
download without telling the attacker. 

 
Ethical problems arise in regard to initiating 

deception, but most ethical theories endorse decep-
tion to protect against a serious harm [3, 15].  De-
struction of the functionality of a computer system 
by an attacker can be argued to be such a serious 
harm. 

 
2. Deceptive excuses 

 
Deception planning for information systems 

can benefit from the experience of professionals 
who plan deliberate deceptions on a routine basis.  
The best examples are stage magicians and mili-
tary planners.  Both note that plausibility is the key 

to the effectiveness of a deception [8, 14, 24].  
Plausibility is enhanced when deceptions fit into 
familiar patterns [11].  This says that the good de-
ception planner must anticipate the false theories 
that the deceived could likely believe and try to 
encourage them.  Examples from stage magic are 
"magician can read minds" and "magician can 
teleport objects"; examples from military planning 
are "attack will be at the pass" and "enemy has 
more resources than you do".  Encouraging such 
false theories or "excuses" exploits the tendency of 
the human mind to easily see patterns where none 
exist, an idea supported by the popularity of as-
trology and psychics. 

 
2.1 Generic deceptive excuses 

 
False excuses are a simple and effective form 

of deception [20].  Good generic excuses for an 
information system to refuse to do something that 
an attacker wants include: 

1. "Communications breakdown": Com-
munications problems between the attacker and the 
system cause systematic misinterpretation of at-
tacker commands.  An example is dropping the 
first character of every command line. 

2. "System crash": A computer system 
has stopped working. 

3. "Software broken": Parts of the soft-
ware of a computer system are not working. 

4. "Network down": A network connect-
ing the attacker to the target is not working. 

5. "Buggy system": A system has bugs 
that prevent it from working correctly.  An exam-
ple would be the message "Cannot find executa-
ble" anytime the attacker attempts to execute a 
system command.  

6. "System testing": A system is being 
tested or installed. 

7. "Hacked": A system has been com-
promised and is now controlled by another at-
tacker.  An example indicator would be a welcome 
message to the system that mentions a hacker alias. 

8. "Practical joker": A system is being 
controlled by someone deliberately trying to irri-
tate the attacker.  An example would be the mes-
sage "You lose, stupid!" with failure on attacker 
commands. 

9. "Policy enforcement": Security policy 
prevents the actions from being accomplished.  An 
example would be refusal to download executables 
in general when the real reason is that the particu-
lar executable has a known suspicious name. 



 

Besides these, two other hypotheses can be 
held by an attacker: that deception is being prac-
ticed on them by the information system (the one 
hypothesis we do not want them to have), and the 
"null hypothesis" that the system is in normal op-
eration. 

 
Each of these excuses has specific require-

ments for how they can be used: 
• Communications breakdown: Can 

happen anytime with interactive software, espe-
cially new software.  Should persist to the end of 
the session, and perhaps over other sessions of the 
same user. 

• System crash: Can happen anytime.  
Should persist for a significant duration. 

• Software broken: Can happen after an 
unusual command, to suggest the "you broke it" 
hypothesis which plays on the attacker's sense of 
guilt.  Should persist for a long time but need not 
be very consistent. 

• Network down: Can happen with net-
work commands, and is most convincing for the 
first network command of a session or first net-
work command involving considerable data trans-
fer.  Should persist a while. 

• Buggy system: Can happen with any 
command used for the first time, and must be used 
consistently from then on.  Should persist a while. 

• System testing: Similar to "buggy sys-
tem". 

• Hacked: Can happen with any com-
mand involving basic facilities of the operating 
system.  Should persist a long time. 

• Practical joker: Can happen anytime it 
can be manifested in verbal abuse of the attacker.  
This excuse can be quixotic, appearing and disap-
pearing inconsistently. 

• Policy enforcement: Must happen con-
sistently from the start of a session.  Should persist 
a long time. 

 
2.2 A probabilistic model of belief and 
suspicion 

 
Since it is often good to suggest generic ex-

cuses indirectly, and system events may suggest 
more than one generic excuse, it helpful to esti-
mate the probability of an attacker's belief in an 
excuse.  We will use a Bayesian belief-update 
model since Bayesian models are often the sim-
plest for many applications.  This is motivated not 
so much by the belief that people do classical 

Bayesian reasoning as the observation that Bayes-
ian methods are flexible enough to be tailored to 
many situations.  This approach is influenced by 
the theory of trust in [22] which postulates that 
trust is a bet on future contingencies.  Our ap-
proach to deception modeling can be contrasted 
with the more linguistic approach of [7], the sim-
ple set-theoretic one of [16], or the three-valued 
"subjective logic" of [13] which distinguishes be-
lief, disbelief, and uncertainty. 

 
We assume the attacker or information system 

formulates general hypotheses about whom with 
which they interact, from the results of their com-
mands.  The key hypotheses we will label as: 

• etc.: the hypothesis by 
the attacker of each of the generic excuses; 

,,, 321 eee HHH

• , the hypothesis by the attacker that 
deception is being practiced on it by the informa-
tion system; 

dH

• , the hypothesis by the attacker that 
the system is behaving normally; and 

nH

• , the hypothesis by the information 
system that its user is malicious. 

mH

 
Then their probability of belief in the hypothe-

sis H as a function of the previous evidence E and 
the current evidence  can be calculated from its 
odds  in the odds form of 
Bayes' Rule as: 

nE
))E&(|( EHo n

))&(~|(/))&(|()|( EHEpEHEpEHo nn
))(1/()()( XpXpXowhere −= and p is 

probability.  Since all the hypotheses considered 
here are rare occurrences on computer systems, we 
can eliminate the ~H term to get: 

.  
When E is not associated with the hypothesis, such 
as the action of opening a local file normally and 
the hypothesis "network is down", 

)|(/))&(|()|( EEpEHEpEHo nn

)|())&(|( EEpEHEp nn =  and the odds of 
H are not changed by the evidence. 

 
For example, consider the attacker's hypothesis 

that the network is experiencing problems.  If the 
attacker requests something requiring the network 
and it fails to happen, it could be that they did it 
incorrectly or the report of failure is incorrect.  So 
let us suppose the attacker believes with a priori 
probability 0.1 that the network is down, they try 
to download a file, and it fails to appear in the des-
tination directory although no error messages ap-
pear.  Assume that the probability that the file 
failed to appear and no error message appeared 
when the network is down is 0.5, and the probabil-



 

ity of those two things when the network is not 
down is 0.1.  Then the odds of network being 
down is (0.1/(1-0.1)*0.5/0.1 = 0.56, which corre-
sponds to a probability of 0.36, so the probability 
increased significantly. 

 
2.3 Estimating the attacker's hypothesis 
probabilities 

 
To use this model we need to calculate prob-

abilities for three rather different things, each of 
which needs different methods. 

 
First consider the excuse hypotheses.  The evi-

dence we show an attacker for each of them should 
be strong; for instance, the message "The network 
is down" is strong support for the hypothesis that 
the network is down.  However, everyone familiar 
with software knows that messages can be wrong, 
as the software issuing the message may have bugs 
or faulty information.  In reverse, the excuse can 
usually be constructed so that it always occurs in a 
real system having that associated problem; for 
instance, the same "network down" message can 
be used that occurs when the network is actually 
down.  Then we have 1))&(|( =EHEp ekn  
for all uses of the excuse, and 

for the first manifestation of 
the excuse and 1 for uses of the excuse thereafter.  
This gives 

)()|( nn EpEEp =
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But in general, 
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needed to cover cases such as those where "net-
work down" can be manifested by several different 
error messages.  The probability that the system is 
behaving normally can be found as one minus the 
sum of the all generic-excuse probabilities and the 
deception probability. 

 
For the probabilities that the system has for the 

user being malicious , we can also use Bayes' 
Rule.  However, better estimates can be obtained 
from an intrusion-detection system [17] if we have 
one.  We can use reports from a network-based 
system for outsiders and a host-based system for 
insiders.  Anomalies can be mapped to a probabil-
ity of being malicious through expert-systems 
methodology; misuse signatures can be mapped to 
large but not certain probabilities.  However, if we 
have detailed knowledge of the plan of particular 
attacks, we can do better in recognizing when they 

are being used from observing sequences of user 
actions. 

mH

 
For the probability that the attacker perceives 

that he or she is being deceived, this will depend 
somewhat on the personality of the attacker and 
their experience.  Nonetheless, much of the esti-
mate of the probability can be based on what the 
attacker sees at the time of their attack, since rarely 
do attackers have reason to be suspicious, and ex-
periments have shown that people are poor detec-
tors of deliberate deception [9].  We postulate that 
the attacker will be suspicious proportional to the 
suspiciousness of the systems' responses to them, 
which is a function of the appropriateness and fre-
quency of the response in the circumstances.  So 
for instance, an attacker trying to download a sus-
picious file will be more suspicious after a "router 
error" message than a "network down" message 
because router errors are rarely announced.  We 
also expect an attacker to be suspicious propor-
tional to the likelihood that a defender will use 
deception.  For instance, if it is known that the 
defender uses honeypots, the attacker will be more 
suspicious of an inability to export attacks than 
otherwise.  Finally, we postulate that the attacker 
will be suspicious of the system proportional to the 
attacker's self-perception of their own suspicious-
ness, since the more obvious the attacker's attack, 
the more they expect some retaliation.  For exam-
ple, we expect an attacker to be more suspicious of 
an error message after an attempt to copy the sys-
tem password file than after an attempt to copy one 
of their own text files.  In part this is what psychia-
trists call "projection" of the attacker's own self-
assessment onto other people, and in part this is a 
pragmatic assessment that dishonesty usually is 
found out. 

 
There are also two distinct ways for attackers 

to assess their own suspiciousness for the last fac-
tor above: In what just happened (a local measure), 
or in the cumulative impact of everything that 
happened (a global measure).  Copying the pass-
word file would be a single suspicious action; 
downloading 1000 documents to an external site 
would be a cumulative action.  Attackers will dif-
fer as to how they weight the two measures.  For 
instance, suppose an attacker copies the password 
file, runs a cracker program on it, tries to down-
load it to another computer, and receives the error 
message that "The network is down."  This would 
be much less suspicious to an attacker with a high 
weight on the local measure than copying the 



 

the password file and immediately getting the error 
message.  So if c is the weight on the local meas-
ure, our model of attacker suspiciousness is:   
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The three abovementioned factors for suspi-

ciousness are generally independent, so it makes 
sense to multiply them to get an overall suspi-
ciousness measure.  Then our model is: 

=∆ ))&(|( EEHp nd
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Ewhere  includes both the event of the attacker's 

nth action and the system's nth response. 
n

H

 
We use a delta in the above equation because 

we believe distrust is additive.  Many writers have 
noted that trust and distrust are asymmetric.  Both 
[22], from a qualitative perspective, and [13], from 
a quantitative perspective, model trust as easily 
increasing and decreasing with circumstances, but 
distrust as something that generally only increases 
since incidents creating distrust are remembered 
for a long time as traumatic.  So we should use the 
preceding formula as a positive amount by which 
to increase the probability of deception.  To pre-
vent it exceeding 1.0, we can use the formula for 
disjunctive combination of independent probabili-
ties: 

=))&(|( EEHp nd 1(*))|(1(1 EHp d −−− ))&(|( EEHp nd∆
 

We can compare this value to the probabilities 
estimated for the other hypotheses by the attacker.  
If the "normal behavior" hypothesis is strongest, 
the attacker should stay logged in.  If the total 
strength of the generic excuses is stronger than 
either the "normal behavior" or "deception" hy-
potheses, the attacker should give up and go else-
where, since they mean that attacker goals will 
never be achieved.  But if the deception hypothesis 
is the strongest, that is bad: The attacker will likely 
stay logged in and cause new kinds of mischief.  
We must design our deceptions to prevent this. 

 
2.4 Estimating the parameters 

 
The parameters necessary to apply the above 

formulae can be obtained from human subjects by 
giving them scenarios and asking them to estimate 
the probability of a given hypothesis.  This is es-

pecially useful for our special model of the decep-
tion hypothesis.  We can ask subjects to estimate 
probabilities in the same situation but with differ-
ent responses by the system, or different situations 
with the same responses, to approximate key pa-
rameters easily.  The probabilities for  come 
from an intrusion-detection system, and the a pri-
ori suspiciousness of an action comes from statis-
tics of typical user behavior on the system. 

m

 
We administered a questionnaire to 11 subjects 

to do this estimation, 7 students and 4 faculty 
knowledgeable about information security (see the 
Appendix for the questionnaire and results).  We 
gave them six scenarios involving an attacker on a 
computer system, each three or four steps long, 
and asked them to estimate the probability the at-
tacker was being deceived by the system at each 
step.  There were clear individual differences in 
the responses, ranging from an average of 0.10 for 
a tolerant subject to 0.77 for a suspicious one.  
Nonetheless, the average response to each question 
over the subjects was a consistent indicator, and 
was consistent with our theory presented above.  In 
particular, an estimate of c/(1-c) can be obtained 
from the ratio (2b-2a)/(3c-3b), so c was 0.51 for 
our subjects.  Note that the monotonically increas-
ing nature of distrust was substantially confirmed: 
In all but the last two questions (for which a mis-
understanding may have been involved as to 
whether the estimate was cumulative), suspicion 
increased monotonically through the sequences.  

 
2.5 An example 

 
As an example, consider sequence 3 from the 

questionnaire.  An attacker logs into a computer 
system, tries to copy an executable to the system 
binary directory, gets a protection-violation error 
message, tries to transfer the file to another site, 
and gets the last character of their command de-
leted by the system.  Then they try to list their 
home directory and again get the last character of 
their command deleted.  Table 1 shows our esti-
mates of four attacker hypothesis probabilities in 
this situation: the probability of a buggy system 
(pb), the probability that communications defaults 
are set wrong (pc), the probability that the attacker 
is being deceived (pd), and the probability that 
everything is normal (pn, assuming no other hy-
potheses are possible here).  Probabilities are given 
just after the command response. 

 



 

Table 1: Example of hypothesis probabilities. 2.6 Two theorems 
 Command Response pb pc pd pn 

1: Log in Normal .010 .010 .000 .980
2: Copy ex-
ecutable to 
bin directory 

Protection 
error 

.015 .010 .020 .955

3: Transfer 
executable 
externally 

Communi-
cations 
error 

.018 .020 .033 .929

4: List home 
directory 

Communi-
cations 
error 

.035 .091 .033 .841

The model developed above has several impli-
cations for finding the best way to deceive an at-
tacker. 

 
Theorem 1 (Legitimate-user penalty).  Assume 

that the probability of a malicious user at some 
point is , the benefit of preventing a malicious 
user from achieving their ends is , and the cost 
of preventing a nonmalicious user from achieving 
their ends is .  Then prevention of the attack is 
desirable at that point by even partially successful 
means if 

mp

mp

mc

nc

c )/( mnn cc +>

mp

.  Proof: Then the 
expected benefit of preventing an unknown user 
from achieving their ends is 

nc)mmcp 1( −− .  This will be positive when 
)mc/(n cnm cp +>

mc

.  If prevention of the attack 
has only a probability of success (as by a decep-
tion), that probability multiplies a positive number 

and still leaves a positive number.  QED. 

 
Here we assume the a priori probability of the 

first three hypotheses were 0.01, 0.01, and 0.00, 
the ratios of probability of each event given a 
buggy system to its a priori probability were 1.0, 
1.5, 1.2, and 2.0, and the ratios given communica-
tions defaults were wrong were 1.0, 1.0, 2.0, and 
5.0.  That is, protection errors for the "bin" direc-
tory are a little suspicious, and this kind of com-
munications error is also suspicious (especially in 
listing a home directory); but all other actions ap-
pear close to normal system behavior. 

 
An important issue for the defender is when to 

stage deceptions. The following gives a useful 
criterion for delaying them, simplifying the num-
ber of places we need to consider.  

The probability that the user was malicious 
based on their actions was assumed to be 0.00, 
0.20, 0.10, and 0.00 respectively from each action 
alone.  Assume the probability of maliciousness is 
additive (as is often true for low probabilities).  
Then the probability the user is malicious is 0.00 
after step 1, 0.20 after step 2, and 0.30 after steps 3 
and 4; the probability the user thinks that they ap-
pear malicious, using c=0.51, is 0.00 after step 1, 
0.20 after step 2, 0.25 after step 3, and 0.15 after 
step 4. 

 
Theorem 2 (Excuse delay): Assume the model 

of attacker belief in generic excuses and deception 
given in section 2.3.  Assume we can apply a ge-
neric excuse as justification for failure to execute a 
user command at some state S after which the user 
has just done something suspicious, or we could 
apply it at state S2 which follows S and a subse-
quent action A by the user.  It is always preferable 
to apply the excuse to S2 provided A is not suspi-
cious and does not increase damage to the system.  
Proof:  If A is not suspicious, then 

)|(*))&(|( EHpcEEHp mnm −  will be 
less after S2 because the subtracted term will be 
larger.  At the same time, the  term 
will be unchanged because it is a characteristic of 
the defender's general psychology, and the 

 term will be unchanged because the 
deceptive response will be the same.  In addition, 
the longer one can wait, the more accurate can be 
one's assessment of whether a user is malicious, 
and the less likelihood of penalizing an innocent 
user.  QED. 

)|( md HHp

)|( nd EHp

 
Assume the probability of deception given that 

the system observes malicious behavior is 0.5 (the 
attacker could estimate this by recalling how many 
honeypots they have visited).  The probability the 
system is using deception is then 0.00 after step 1, 
0.02 after step 2, 0.02+0.0125=0.033 after step 3, 
and 0.033+0=0.033 after step 4.  So deception by 
the system should not seem likely given the uncer-
tainty of maliciousness and the lack of immediate 
correlation to the attacker's suspicious actions.  So 
normal system operation is the most likely hy-
pothesis, and we expect the user to continue with 
the system for a while. 

 
 
  

 



 

3. Implementation 
 

3.1 The modeling approach 
 
To be most effective in using deceptions 

against attackers, we should anticipate what they 
will do using attack models such as that of [23].  In 
[18] we used a hierarchical-planning approach 
where attackers had goals and subgoals, and knew 
methods that could possibly achieve them. Our 
approach postulates a set of actions (e.g. login, 
copy file across the network, execute buffer over-
flow, decompress, erase system logs), each with a 
set of preconditions and postconditions.  Postcon-
ditions can be random and/or contextual.  In addi-
tion, each action has goals for which they can be 
recommended. 

 
The clearest way to specify this information 

about actions is in predicate calculus.  Then find-
ing a plan can be done with resolution theorem 
proving, or in most cases, logic programming like 
Prolog.  But this is computationally expensive 
since finding such a plan in general is an NP-hard 
problem; we need to be able to quickly foil attack-
ers.  So we instead run the action specifications 
and planning machinery many times to create an 
approximate Markov model of attacks.  This is a 
large graph with nodes labeled with the states 
found in the runs and the transitions representing 
actions; probabilities on the branches are propor-
tional to the observed frequencies.  Such a graph 
simplifies tracking attackers, although they can 
digress temporarily from it. Such a graph is an 
approximation of the plan space since it cannot 
represent variables and quantification, nor most 
rare possibilities.  Nonetheless, it can represent 
most possible attack phenomena. 

 
3.2 Generating an example graph for a 
rootkit attack model 

 
To test the ideas proposed, we used an example 

attack model we built for the main steps of the 
classic hacker strategy of installing a rootkit on a 
computer system.  It has 19 types of actions that 
can be instantiated to 93 distinct actions.  The 
predicate-calculus specifications refer to 115 dis-
tinct facts (and in some cases their negations), and 
permit 13 kinds of random events. 

 
To generate the Markov graph, we ran the 

predicate-calculus planning specifications 500 

times using our planning software written in 
Prolog.  The goals of the plans were to install the 
rootkit and a backdoor and then log out, and the 
system being attacked was considered predictable 
(so no errors or deceptions were considered).  We 
chose random starting states from a set of 3072 
intuitively reasonable ones.  Besides the random-
ness introduced by random events, each action's 
duration was determined by an evenly distributed 
random variable on a specified range.  These three 
kinds of randomness resulted in 21,720 states in 
the 500 runs, of which 10,276 were distinct, for an 
average of 42.4 steps per run.  The latter were used 
to build a Markov model of 10,276 nodes and 
10,103 branches. 

 
3.3 Choosing where to apply generic 
excuses 

 
Each generic excuse of section 2.1 can only be 

begun or used at particular branches in the Markov 
state graph because the excuse must be causally 
related to the preconditions and postconditions of 
the action.  Much of this can be checked automati-
cally with the predicate-calculus specifications of 
the actions.  For instance, the generic excuse "ftp 
software broken" only affects actions of initiating 
and closing FTP connections and making file 
transfers, since they are the only actions with a 
precondition that the ftp software is working.   

 
Other generic excuses apply to all actions but 

are particular about when they are initiated.  For 
instance, "communications breakdown" and "net-
work down" should be used for every applicable 
communications or network command once started 
-- but to be convincing, they should start with suf-
ficiently complex commands that could cause their 
failures, like runs of new executables.  "Communi-
cations breakdown" is most likely when changing 
communications defaults in login or changing ac-
counts; "network down" is most likely in transfer-
ring large files across the network. 

 
Finally, broad generic excuses like "buggy sys-

tem" and "system testing" tend to be long-term 
problems.   Thus, they are not very convincing 
when initiated after a session has started, and 
should only be a last resort.  But they can be used 
effectively if a system has advance knowledge of 
certain kinds of attacks by from warnings by sib-
ling sites about ports and methods of entry. 

 



 

For our specific state graph for rootkit installa-
tion and a buffer overflow, initial suspiciousness of 
the attacker's actions is low until a buffer overflow 
is done.  Thus Theorem 1 rules out deception be-
fore the overflow, a total of 684 branches.  2760 
subsequent attacker actions are ruled out since 
only defender actions can involve deception, and 
116 are ruled out as occurring too late (after the 
rootkit has been installed).  1506 of the remaining 
branches are ruled out by Theorem 2 where they 
are followed by less-suspicious attacker actions.   
(The suspicious actions are overflowing the buffer, 
obtaining root privileges, and installing the root-
kit.) This leaves 5210 branches as suitable starts of 
a generally-applicable excuse, which then would 
be offered consistently at every related attacker 
command during the session.  So we track users on 
the attack graph and initiate deception if a user 
reaches one of these 5210 branches.  Some of 
these commands will be better for certain excuses 
than others, those whose actions are most semanti-
cally related to the excuse.  It would also be a good 
idea to vary the occurrence of the start of the ex-
cuse from session to session to avoid a different 
kind of suspicious consistency, in an unexpected 
event.   

 
4. Related work 

 
Deception plays an important routine role in 

many important sectors of human activity, includ-
ing law, business, entertainment, and the military 
[9].  It is important in military science and cyber-
attacks are a form of warfare.   [8] divides military 
deception into concealment, camouflage, demon-
strations, feints, ruses, disinformation, lies, dis-
plays, and exploitation of insights about the en-
emy.  [19] argues that only the last three work well 
for defense in cyberspace.  Lies can concern sys-
tem resources and status; displays can show the 
enemy things that aren't there; and insights can 
figure how best to foil an attack plan.  This paper 
has focused on lies and insights, while other work 
we have done has focused on false displays. 

 
Stage magic provides many ideas about plan-

ning deceptions [14] and some of these provide 
lessons for computer systems [24].   To perform 
magical feats, at least one deception must occur in 
an act, so the magician's goal is to conceal the nec-
essary deceptions as much as possible.  Tactics 
include creating dramatic structure, using consis-
tency in theme, manner, and characterization, con-

trolling pacing, controlling attention of the audi-
ence, using words and appearances carefully, and 
using special magic devices.  Nelms pays special 
attention to "reducing departures", those things 
necessary to the deception but which can arouse 
suspicion in the audience.  For instance, the magi-
cian may need a subject to choose a particular card 
from a deck; having the magician supply their own 
unshuffled deck would be an implausible depar-
ture, but having the subject inspect and shuffle the 
deck and then substituting a different deck surrep-
titiously would be a lesser departure.  Nelms' 
analysis has inspired our approach of estimating 
the implausibility of deceptions in planning. 

 
For information security, defensive deception 

has first been done for honeypots; [5] and [12] 
provide two approaches to building them.  Honey-
pots can be easy to recognize without deception, 
since attackers can easily see a lack of normal file 
structure and lack of temporary files indicating 
activities like email, Web, and other forms of 
Internet use.  Most hackers today have heard about 
honeypots, and will recognize these symptoms and 
leave if they encounter them.  This prevents de-
fenders from collecting useful data on them. 

 
Because of this, [5] was first to propose delib-

erately deceptive activities on honeypot networks 
to keep attackers busy.  One way is to change the 
router to recognize large numbers of fake IP ad-
dresses so the attacker will waste much time at-
tacking virtual systems.   The virtual systems could 
map to the same storage system, or virtual storage 
could be generated according to a stochastic 
grammar.  Information for hackers to discover can 
also be manually created, and revealed in stages, to 
keep them interested [6].  How long will this fool 
an attacker?  Probably not long, because it is hard 
to simulate an entire busy computer system, but it 
helps for defending critical systems. 

 
Other projects in information security are be-

ginning to examine deceptive tactics for defense.  
[10] examines automatic methods for creating fake 
documents for spies.   [21] suggests delaying re-
sponses to suspicious commands to an operating 
system.  Planning against an adversary has been 
introduced as "counterplanning" by [4] and applied 
to military settings by [1].  Finally, [7] provides an 
interesting alternative model of deception based on 
ideas from natural-language processing that deals 
more with the reasons why deception works than 
our effects-based model. 



 

5. Conclusions 
 
We have provided a theory for deception plan-

ning in defense of information systems.  Our ap-
proach is to try to convince the attacker of a "ge-
neric excuse" which means that his or her attack 
plan cannot succeed, so they will give up and go 
away.  To be effective, we must carefully plan 
when and how to deceive, while monitoring the 
attacker's beliefs in our proffered excuses.  The 
methodology proposed here is more likely to con-
vince an attacker than broad and unselective de-
ception as with honeypots, and more likely to de-
fend our systems.  But we need to do further work 
to test reactions of people to these deceptions. 
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7. Appendix: Questionnaire and 
average responses 
 
Instructions: Suppose you are a hacker attacking a 
computer system.  At each step of the following 
sequences, estimate the probability (on a scale of 
0.0 to 1.0) that you have been deceived by the 
computer system in some way.  You can take into 
account the previous steps of the sequence, but not 



 

the steps of different sequences. 
 
Sequence 1: You log into a computer system.  It 
says that system testing is occurring and it may not 
work properly.   
(1a) Deception probability: .421 
You edit a text file in your own directory and it 
gives a strange error message. 
(1b) Deception probability: .436 
You try to transfer this file to another site on the 
Intranet and it says the network connection is 
down. 
(1c) Deception probability: .450 
 
Sequence 2: You log into a computer system.  It 
says that the network connection is down.   
(2a) Deception probability: .318 
You try to copy an executable in your own direc-
tory to the system binary directory and the last 
character of your command is ignored. 
(2b) Deception probability:  .546 
You try to transfer this file to another site on the 
intranet and the last character of your command is 
ignored. 
(2c) Deception probability: .580 
 
Sequence 3: You log into a computer system.  
Messages are normal.   
(3a) Deception probability: .187 
You try to copy an executable in your own direc-
tory to the system binary directory and it gives a 
protection violation and says it cannot save it. 
(3b) Deception probability: .318 
You try to transfer this file to another site on the 
Intranet and the last character of your command is 
ignored. 
(3c) Deception probability: .536 
You try to list your home directory and the last 
character of your command is ignored. 
(3d) Deception probability: .568 
 
Sequence 4: You log into a computer system and 
copy a file from a local intranet site to your home 
directory on the computer system.  All messages 
are normal.  
(4a) Deception probability: .182 
You try to copy this file to the system binary direc-
tory and you get a protection-violation message. 
(4b) Deception probability: .296 
You issue a command to a system utility with an 
unusual long argument containing lots of nulls.  
The system gives a protection-violation message. 
(4c) Deception probability: .391 
You try to transfer another file from the other site 

on the Intranet and it says the outgoing network 
connection is down. 
(4d) Deception probability: .694 
 
Sequence 5: You log into a computer system and 
copy an executable file from a local intranet site to 
your home directory on the computer system.  All 
messages are normal.  
(5a) Deception probability: .276 
You do a listing of the directory you copied it to 
and do not see it listed. 
(5b) Deception probability: .513 
You try the file transfer again.  You do a listing of 
the directory and again do not see it listed. 
(5c) Deception probability: .604 
You try to copy the password file to the intranet 
site.  The system says the outgoing network con-
nection is down. 
(5d) Deception probability: .623 
 
Sequence 6: You use a buffer overflow to enter a 
computer system via port 445 with root status.  
You try to list the home directory and get a mes-
sage "System down".  
(6a) Deception probability: .673 
You ask what your login name is and it refuses 
with the message "System down". 
(6b) Deception probability: .723 
You list the main binary directory with no error 
message. 
(6c) Deception probability: .441 
You ping port 80 (HTTP) and it appears to be run-
ning normally. 
(6d) Deception probability: .427 
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