
Information Security: Science, Pseudoscience, and Flying Pigs

Dr. Roger R. Schell
Aesec Corporation
schellr@ieee.org

Abstract

The state of the science of information security is
astonishingly rich with solutions and tools to
incrementally and selectively solve the hard problems. In
contrast, the state of the actual application of science,
and the general knowledge and understanding of the
existing science, is lamentably poor. Still we face a
dramatically growing dependence on information
technology, e.g., the Internet, that attracts a steadily
emerging threat of well-planned, coordinated hostile
attacks. A series of hard-won scientific advances gives
us the ability to field systems having verifiable protection,
and an understanding of how to powerfully leverage
verifiable protection to meet pressing system security
needs. Yet, we as a community lack the discipline,
tenacity and will to do the hard work to effectively deploy
such systems. Instead, we pursue pseudoscience and
flying pigs. In summary, the state of the science in
computer and network security is strong, but it suffers
unconscionable neglect.

1. Introduction

The scientific underpinnings of computer and
network information security have not changed much in
twenty years. This is not surprising because the
fundamental properties of information theory and the
limits on what is computable are not subject to much
evolution.

The science of computer and network information
security has for some time given us the ability to purchase
an information system from a mortal enemy and then
assess its ability to enforce a well defined security policy,
gaining sufficient assurance to confidently use the system
to protect against massive loss and grave damage, and
this has been actually been put into practice. This
astonishing capability is known as “verified protection”.

On the other hand, the state of the pseudoscience of
computer security has changed primarily in its success as
a growth industry. Much of the same old snake oil is
being peddled, but the manufacturing capacity has

ramped up geometrically. The pursuit of pseudoscience
remains an incredible source of research dollars and
product revenue. To sustain this growth the science of
computer security has, on the other hand, been widely
abandoned and orphaned, summarily declared a failure
and unworkable by a community inclined to ignore
scientific success and worked examples. The result of this
tension between science and pseudoscience was that our
ability to achieve verified protection in fielded computers
and networks peaked somewhere near the mid nineties.
Figures 1 and 2 are notional illustrations of some of the
associated disturbing trends. As many more businesses
become more aware of their needs for secure systems, and
attract more “experts” there is a smaller percentage of
“experts” who actually understand the hard issues, as
illustrated in Figure 1. Figure 2 illustrates that at the
same time, the ability to procure a bulletproof system is

 % of Practitioners Who are
Knowledgeable of the
Science

% of CIOs
Concerned About
Security

1970 1980 1990 2000

Figure 1: Expertise Diminishes as It is Needed

Figure 2: Lack of Evaluated Products

1970 1980 1990 2000

Availability of
Weak Security
Products

Ability to Obtain
Bulletproof
Systems

diminished while the market is thick with products having
weak security. So how did we get to this unfortunate
state? It is hoped that the rest of this essay will help make
that clearer.

2. Critical Areas of Focus

This essay strives to provide a critical examination of
the state of the science in computer and network security
in light of the author’s experiences from nearly the
beginnings of computer security to the present. However,
before we review the scientific advances that preceded the
current decline, it is useful to examine what is meant by
verified protection, acknowledge significant remaining
hard problems, and review what verified protection can
and cannot help us achieve. And, we will review the
ability to leverage verified protection within systems to
divide and conquer seemingly intractable problems.

2.1. Verifiable Protection

Malicious software is the tool of choice for well-
planned professional attacks and is the primary threat
addressed by systems offering verified protection. To
counter malicious software these systems must be
designed and built from the very start to have all of the
following properties:
• Designed to have no exploitable security flaws.
• Enforce security policies on information flow,

thereby bounding the damage of malicious
applications software (e.g., Trojan Horses).

• Built to be subject to third party inspection and
analysis to confirm the protections are correct,
complete and do nothing more than advertised (i.e.,
no trap doors).
Scientific foundations of information security have

provided us with three necessary tools for achieving
verifiable protection:
• An ability to identify situations where verified

protection is both needed and possible. Central to
this is the fundamental distinction between
discretionary and mandatory security policies.

• The tools and techniques to implement and field
heterogeneous systems where some, but not all,
components have verified protection.

• Criteria and methods to independently verify the
protections offered by such systems.
Though sufficient to solve many of today’s serous

challenges, verified protection is not the solution to all
computer security problems. Nor is the state of verified
protection complete and without areas that could benefit
from new research.

2.2. Remaining Hard Problems

Several hard problems remain. These include:
• Verifying the absence of trap doors in hardware,

particularly with the amount of automated design
currently used. It has been estimated that, “A
product designed to cope with subversion could cost
50 to 100 times as much as . . . non-secure products
of similar functionality” [1]. Potential ameliorating
approaches are analogous to NSA’s use of cleared
programmers.

• Verifying the absence of trap doors and other
malicious software in development tools such as
compilers and linkers.

• Covert timing channels remain a problem, however
there are demonstrated methods of significantly
reducing them.

• Covert channels in end-to-end encryption systems
(e.g., VPNs) remain a significant challenge.

• Despite some progress, we lack formal methods for
meaningfully corresponding source code to a formal
specification, and object code to source.

• Denial of service attacks can be reduced but not
effectively eliminated.

2.3. Omniscient Classification of Information

 The inability to omnisciently classify the
confidentiality or integrity of information is perhaps the
single most visible intractable problem in the science of
information security, and is likely to remain so. And thus
malicious e-mail attachments remain a problem. Science
has produced no solution to the problem of rotten apples
in a barrel. Users want the convenience of inhabiting the
same integrity domain as the least conscience and least
informed among them. When some in such a domain
behave badly, everyone suffers. Deciding to inhabit
different domains at different times largely solves the
problem. Otherwise users must live with the vandals, the
graffiti artists and the untrained co-workers who invite in
the riff raff. Compounding this problem is the trend
toward “transportable code”. Ultimately however, there
is no difference between code and data when it comes to
maintaining the integrity of a domain. Many years ago,
this very fact led General Motors to establish two parallel
domains in their operations and network: one for use in
generating and managing engineering data; and one for
everything else. Users consciously decided which
domain they would inhabit at any given time. This use of
closed user groups is a relatively simple solution to an
otherwise intractable problem.

 The key to maintaining separate domains that permit
information to flow in accordance with the desired policy
is the use of security labels to enforce a mandatory [2]

security policy – enforcement that is global and
persistent. Security labels can be viewed as a social
mechanism for understanding the sensitivity of your
current context, be it the processing, the reading or the
writing of information. Some incorrectly claim that the
use of security labels is not a viable solution because it
would require the a priori assignment of classifications to
data, people and processes on a global basis. In fact,
labels can be structured such that their interpretation can
be based on a layering of policies such that local policies
are only interpreted locally. An example of such a
labeling strategy is the distributed dynamic labels for
digital certificates defined by Novell [3] and incorporated
into their flagship NetWare product, and used by others.

2.4. Success Through Divide and Conquer

History has shown that we need not solve all of the
problems at once to have suitably secure systems. The
ability to divide and conquer problems has permitted
great advances. A core innovation in the science of
computer security is to structure systems into those
elements of hardware, firmware and software that enforce
the security policy and those elements that do not. As a
result of such a partitioning, only a subset of the overall
system must offer verified protection, and that subset is
called the “Trusted Computing Base” (TCB) [4]. In
particular, most of what is commonly viewed as operating
system functions and all of the applications software need
not offer verified protection and are therefore external to
the TCB. A basic ability to control access to information
can be extended by partitioning other problems into
manageable pieces and designing systems to fail secure.

As systems get more complex and unmanageable,
you end up with the Internet. There are, however,
positive aspects to the evolution of the Internet
environment that support divide and conquer techniques.
The development and acceptance of line protocols as the
primary systems interface has eliminated many of the past
“compatibility” problems. Where once an application had
to be instruction set compatible with an IBM mainframe,
now a lot can be achieved through compatibility with a
line protocol. This enables heterogeneous systems with
selective use of secure appliances (e.g., Certificate
Authorities) whose interface is the network rather than a
particular operating system.

The Internet can also greatly benefit from the
adoption of the IPSEC standard. Assuming secure
protocols for managing keys become widely adopted,
VPNs based on IPSEC can do a lot towards bringing
strong security to the Internet environment. The use of
PKI for managing IPSEC keys holds much promise,
particularly because PKI can be built to support a variety
of different distributed systems (again permitting a divide
and conquer approach). However PKI introduces a new

set of vulnerabilities that must be countered with more
than emphatic assertion. For example, unless there exists
a strong technical basis for assuming certificates cannot
be forged (e.g., through the use of trap doors planted in
platform operating systems) PKI’s foundations will
remain mired in pseudoscience.

TCB extensions are a powerful technique
demonstrated by Novell [5] to achieve a secure client to
interoperate with their server within a well-defined
network security architecture. While this was done at a
low level of assurance, nothing prevents the same
techniques from being applied at high levels of assurance.

Another approach to securing the client in a network
is to use a “thin client” that does not execute application
software. All application s run on a server and the client
provides only interface functions.

A problem faced by both clients and servers is the
boot process. Many of today’s platforms effectively
accept firmware updates from anywhere, making an
attractive target for subversion. The Trusted Computing
Platform Alliance has define a valuable framework for
addressing this problem, but the solution must incorporate
verifiable protection if it is to counter malicious software
attacks [6].

Cryptographic sealing of objects within directories is
another example of getting around intractable problems.
This technique is analogous to database “guard”
architectures [7] that provided limited solutions to the
problem of building trusted database systems. The near
term potential for a truly secure directory is roughly nil.
However if a trusted system seals the objects it places in
an insecure directory, then many of the problems
associated with insecure directories goes away.

Security engineering on a systems basis is the key to
success without having to solve all of the unsolvable
problems. Enough tools exist today to solve the major
problems that we face today. But these tools are only
useful if we have the basic ability to secure data on a
somewhat routine basis. Any solution requiring
handcrafted solutions is bound to fail largely because
there simply is not enough expertise to apply to every site
requiring strong security. We need commercially
available products, especially appliances that can provide
verifiable demonstrable protection for systems.

2.5. Measuring System Security

How do we know if a system offers verifiable
protection? If we buy a commercial product (e.g., an
Internet Appliance) that offers verified protection, what
metric can be used to measure the strength of its security,
particularly in the context of an overall system? A simple
business metric is whether the use of the appliance to
protect against massive loss can be insured, and the cost
of the premium per million-dollars of transactions

protected by the appliance. A truly meaningful product
evaluation would permit an insurer to quantify the risks
enough to issue such a policy. Such an evaluation must
have a well-defined systems context.

Evaluation of a subsystem does the insurer little good
if protection depends on software outside the target of
evaluation. The Trusted Computer System Evaluation
Criteria (TCSEC) [4], is a system evaluation criteria. Its
Trusted Network Interpretation (TNI) [8] imposes the
context of a “network security architecture” that permits
components of systems to be individually evaluated in a
way that ensures the eventual composition of the overall
system will be secure. On the other hand, the Common
Criteria [9] provides a framework for evaluations which
do not necessarily answer the question “is the system
secure”. Common Criteria evaluations need not provide a
system context and therefore the insurer would have to
perform their own systems evaluation.

2.6. Science and Pseudoscience

"The time has come," the Walrus said, "To
talk of many things: Of shoes and ships and
sealing wax, Of cabbages and kings, And why the
sea is boiling hot, And whether pigs have
wings."[10]
The audience of this essay is intended to include the

student of computer science having an interest in
information security. Such students are likely aware that,
as commonly used, the term “computer science” can often
be closer to “pseudoscience”. In the field of computer
and network information security, the challenge of
separating science from pseudoscience is quite acute. In
some cases, computer security pseudoscience operates
from a flawed theory. In other cases, as in flying pigs,
there is not so much as a working theory to explain a
proposed solution.

The terms “science” and pseudoscience are used as
per the “Skeptic’s Dictionary” [11] at SkepDic.com:

A pseudoscience is set of ideas based on theories put
forth as scientific when they are not scientific. A
theory is scientific if and only if it explains a range of
empirical phenomena and can be empirically tested
in some meaningful way. Scientific testing usually
involves deducing empirical predictions from the
theory. To be meaningful, such predictions must, at
least in theory, be possible to be false. This quality of
scientific theories was called falsifiability by Karl
Popper. A pseudoscientific theory claims to be
scientific, i.e., be falsifiable, but either the theory is
not really falsifiable or it has been falsified but its
adherents refuse to accept that the theory has been
refuted.
Pseudoscience is evident in what historically has

been called application security, which is often

characterized by not having any clearly defined security
policy. Examples include firewalls, intrusion detection
systems, and virtually all security offered by Microsoft
and similar vendor’s products.

Another application of pseudoscience involves strong
mechanisms on weak foundations: Examples includes
most cryptography products (i.e., PGP, S/MIME, SSL,
VPNs, etc.). It also includes techniques such as layering
type-enforcement on top of weak operating systems and
additions of access control mechanisms to Linux or Free
BSD Unix.

Flying pigs are the goal of too much sponsored
research, and the recommendation of many blue ribbon
panels. For example, a recent pronouncement from the
National Research Council [12] suggested that research
focus on something called the “three axioms of
insecurity” and pursue techniques for making a network
more secure than any of its constituent components. The
striking lack of any credible working theory is enough to
offend the sensibilities of even the pseudoscientist.
Indeed “limitations on new research” was one of the
loudest complaints stimulated by the establishment of
objective criteria and real world tools for handling system
composition. Yes, it would be nice if we could make
systems more secure than their constituent components.
On the other hand, it is hardly new to find a desire to
make a silk purse from sows ears – flying or otherwise.

Verifiable protection has progressed and matured to
the point where products can be built, incrementally
evaluated and used within heterogeneous networks. Some
hard problems remain, however the pressing challenges
of today are amenable to divide and conquer techniques
that leverage the power of verified protection.
Notwithstanding that, these advances have not
vanquished pseudoscience, which today dictates too much
of our allocation of resources for protecting our computer
resources. By examining the history of the advances of
the science we can perhaps better understand the depths
of our decline in the state-of-art of application of science.

2.7. Epochs of Scientific Advances

In the previous section, we described the general
problem of separating science from pseudoscience. The
plethora of pseudoscientific pursuits in this field far
exceeds our scope. Therefore, the remainder of the essay
will largely focus on scientific advances with little
attention paid to contemporaneous pseudoscientific
adventures except where the contrast is instructional.

The following sections provide a historical
perspective on how it is we achieved the capability of
verified protection and why it is that verified protection
provides important solutions to important problems. A
set of historical epochs is presented to provide context to
the accumulation of scientific knowledge and its

engineering application. This is not a history essay and
no claim is made as to its historical completeness.

Figure 3 identifies three epochs in the advancement
of the science of computer security, followed by an epoch
of decline. Next these are reviewed chronologically.

3. Security Kernel

This epoch culminated in the mid-1970s with the
definition, prototyping and fielding of security kernels.
Prior to this, secure systems were defined by vendors and
aerospace companies as being systems purchased with
extra software and functions added to make them secure.
Add-on security and applications-level security was
promoted by vendors, much as it is today. Since some of
the very earliest applications of computers, there has been
a recognized critical need for security. Initially this need
arose in the military context.

3.1. Multilevel Security

Development of early military systems concluded
that some portions of the system require particularly
strong security enforcement. Specifically, this
enforcement was necessary to protect data whose loss
would cause extremely grave damage to the nation.
Systems that handled such data, and simultaneously
included interfaces and users who were not authorized to
access such data, came to be known as “multilevel”. Note
this term was never intended to mean “hierarchical”, it
also applied to non-hierarchical, well-defined user
groups. The security policy enforced by these systems
came to be known as mandatory access controls as
introduced in section 2.1, “Verifiable Protection”.

One of the first examples of a multilevel system was
the SAGE air defense system of the 1950s. Much of the
computer security focus was then within the context of
“nuclear safety” and had to do with the integrity of
guidance data for nuclear-armed anti-aircraft missiles on
American soil. Additionally, the system had to protect
the secrecy of technical aspects of weapons
characteristics, as well as air defense tactics. SAGE
supported unclassified clear-text communication
interfaces, which meant something had to prevent
sensitive information from being disclosed or modified

via the unclassified interfaces. The early sixties saw
these same issues as part of missile defense systems,
which solved some of the problems through use of
encryption to protect communications. These early
“multilevel” systems can be viewed as deploying
applications security with no real allocation of security
policy enforcement to distinct components or subsystems.

One of the earliest computer systems specifically
designed as a secure system for enforcing a mandatory
policy was a Southeast Asia Air Force tactical air control
system with a digital interface to NSA intelligence
systems for sanitization of data. The system was built
with computers specially built in a cleared environment,
rather than commercial equipment, because of security
considerations. Also, cleared programmers developed all
of the software specifically because of the concern of
malicious software (e.g., trap doors). In addition,
programmers enforced software development practices
that were a precursor to the Life-Cycle Assurance
requirement of the TCSEC [4] for verified protection.
This was one of the earliest systems consciously built and
certified as a multilevel system that internally separated
data of dramatically different sensitivities.

3.2. Penetrate and Patch

During this time, general purpose ADP often
involved aerospace companies wanting to run classified
and unclassified processing on the same system. The late
sixties saw repeated attempts to achieve the needed
security through what became known as “penetrate and
patch”, which posited that a system could be secured by
having experts locate each flaw through penetration
testing. Note however that the defender had to find all of
the flaws, while the attacker only had to find one.
Ultimately the use of a trap door artifice demonstrated the
futility of that approach. It is instructive to observe that
in many of today’s ADP environments, “penetrate and
patch” has become “patch and pray”, in part because
instead of friendly Tiger Teams, many of today’s
penetrators are hostile hackers.

It was later observed that a failure by a Tiger Team to
penetrate a commercial system with add-on security
would be extremely damaging to the security of the
nation’s computer systems [13]. The damage would result
from managers falsely concluding that the exercise
demonstrated a lack of flaws or trap doors, rather than the
proper conclusion that the Tiger Team simply failed to
find vulnerabilities that could well have existed.

3.3. Deliberate Design for Evaluation

What was needed was a scientific basis for
evaluating the protections offered by a system. The
challenge is that you can’t evaluate just any software and

TCB Subsets for
System Composition

and Incremental
Evaluation

Blurring of
Science &

Pseudoscience,
e.g., the Common

Criteria

1980 1990 2000 1970

Security Kernel
Concept &

Kernel
Prototypes

Develop Criteria
and Make
Available

Commercial
Evaluations

Figure 3: Epochs of Advance Followed by Decline

hardware. In the general case, verifying software
behavior, including security, is often non-computable. In
the case of computer security, you must prove a negative,
e.g., that the system does not leak sensitive data. To
succeed, the system must be specifically designed to be
evaluated with the security controls built into the design
from the start is a structured manner. Even the earliest
SAGE system recognized the need for independent
evaluation; in that system, it was driven by the need for
nuclear safety. In latter systems, evaluation requirements
were driven by the threat of subversion. And, it was
recognized that black-box testing for security was useless
because it could demonstrate the existence but not the
absence of flaws. For example, consider a system having
a trap door triggered by a character sequence deliberately
designed to not occur in testing. If this triggering
sequence were simply a 128-bit key, the universe would
die before you finish testing each possibility.

The failure of penetrate and patch to secure ADP
systems in the late sixties helped stimulate the Ware
Report [14], which represented a codification of the state
of understanding, which primarily was a realization of
how difficult the problem was. This was one of those
points where understanding of concepts came together
enough to allow a significant step forward.

The Ware Report [14] clearly identified the problem,
but left it unresolved. That led to the Anderson Panel
[15], which defined the reference monitor concepts and
conceived a program for evaluating and developing
kernels. SCOMP [16] was the first commercial result of
that immediate effort. Another result was security
enhancements to Multics [17]. Both of these had security
built into them, but it was recognized that they responded
to two different levels of threat.

At about this same time frame, the WWMCCS
system was built upon a commercial operating system as
an attempt to add security onto a system that was not
structurally designed to support security. While
WWMCCS had substantial security requirements, it had
no fundamental design requirement for the system to be
designed from the start to be secure, let alone be
evaluatable. It was built by layering applications upon a
commercial operating system, and depending on the weak
commercial OS security controls. This doomed
WWMCCS to a long series of security problems.

AUTODIN, which was the government computerized
messaging system for several decades, had definitive
design requirements to address security. Even though
AUTODIN was built on a commercial machine
executive, the executive itself was quite small and
primitive. The remainder of the system was built by
cleared programmers to a set of security-driven
specifications.

The NSA Southeast Asia sanitization system
identified above was built substantially around the crypto

development model and therefore had development
criteria intended to control insertion of trap doors and
ensure that the result could to some degree be evaluated.

And while not a true security kernel, Multics
incorporated many of the requisite protection mechanisms
and separated secret from top-secret information for
fifteen years in a critical Pentagon facility without an
operational compromise.

3.4. Discretionary and Mandatory Policies

A key scientific underpinning identified during this
first epoch is the distinction between discretionary and
mandatory security policies. Glimpses of this distinction
appeared in the Ware Report [14] of 1969 and in the
ADEPT-50 [18] system of around the same time frame.
The distinction first appeared in general literature in the
mid seventies [19].

By the time of WWMCCS and Multics, there were
clear distinctions being made between mandatory access
control policies (MAC), discretionary access control
policies (DAC) and application policies. And it became
clear that only MAC offered verifiable statements about
information flow, which requires that the information be
assigned global and persistent access classes in the form
of a mathematical lattice [20]. This “labeling” of
information supports both hierarchical and non-
hierarchical relationships between access classes.

3.5. Formal Security Policy Models

As independent parallel efforts, Case Western and
MITRE developed formal security policy models. The
latter became more generally accepted primarily because
its elements more directly mapped to physical computing
components (e.g., memory descriptors). So, while the
mandatory access controls of the Multics system were
built to the Case Western model, an after-the-fact
interpretation of the Bell and LaPadula model was
generated [[21]]. This was possible because both models
were sound math encompassing common security
policies. It was found that these formal models could be
applied to problems of information integrity as well as to
maintaining the secrecy of information [22]. It was later
shown that implementations of these models could bring
verified protection to security policies thought to be
suitable for commercial and other data processing
requirements [23].

It became evident that successfully achieving verified
protection would require sound math. However, two key
security model issues remain a source of
misunderstanding to this day, leading to some failed
attempts to apply formal models to trusted systems. First,
the security model must be a valid representation of the
behavior with respect to information protection of the

entire system. Second, the model must include a proven
security theorem, which establishes that the model’s
behavior always complies with the security requirements
for the policy of interest rather than being a mere
formalization of mechanism [24].

3.6. Key Hardware Platform Properties

Several different hardware platforms were the target
of kernel prototyping efforts. They each had common
properties, however, including memory segmentation and
at least three hardware states for use in implementing
protection rings (as illustrated in Figure 4): One for the
security kernel; one for the operating system; and one for
applications. The primary hardware modification that
enabled SCOMP was the addition of support for four
hardware rings and segmentation.

Mandatory access control policies are enforced by
the security kernel in the most protected ring.
Discretionary access control policies can also be enforced
by the security kernel, or can be enforced by the OS
depending on assurance requirements. Application
policies are generally enforced by the applications
themselves or by the operating system. In fact, the
separation of the operating system from the application
programs is itself an application policy enforced by the
operating system.

3.7. Advances in the State of the Science

This epoch culminating in the prototyping and
fielding of security kernels contributed the following key
advances to the state of the science of computer and
network security:
• Reference Monitor Concept
• A Simple Security Kernel
• Formal Security Policy Models
• Discretionary vs. Mandatory Access Control Policies

• Hardware Rings and Segmentation

4. Available Commercial Evaluations

The next epoch culminated in an ability to procure a
commercial system that is demonstrably secure with
respect to some security policy. The key to a
“demonstrably secure” system is a scientifically based
evaluation. The need to independently evaluate the
ability of a system to enforce a given security policy was
a recognized problem, even during the previous epoch
when security-critical systems were largely built in
controlled environments by cleared programmers. The
need to evaluate systems becomes more acute when
standard commercial products are used, because there is
no assurance that they do not contain elements obtained
from an outside party who may in fact be hostile.

Note that the focus of this epoch was the ability to
obtain evaluated systems. An ability to obtain evaluated
subsystems is not in and of itself sufficient unless the
attacker is willing to agree to attack only the subsystems
of your choosing – obviously an unreasonable constraint.

4.1. How to Trust What You Don’t Build

Multics was influential in generating interest in
commercial evaluations because Multics was a
commercial product. Before that, attempts to field secure
systems built on commercial security products were
characterized by rounds of penetrate and patch, with
emphatic assertion being the vendor’s argument of choice
to explain a systems basis for security.

Amid the increased interest in an ability to evaluate
commercial products during the mid seventies, the Air
Force and ARPA sponsored MIT to develop auditable
systems [25]. This effort concluded that building
auditable systems required certain forms of hardware
support. Previously, there did not exist many
construction techniques for building systems whose
security could be assessed after-the-fact. There were ad-
hoc techniques and design standards, but little in the way
of reproducible theory on how to architect such a system.

The MIT project recognized this as a hard problem
and identified a number of solutions components. This
effort articulated the notion of layering software modules
previously identified by Parnas [26]. This effort also
solved challenges related to process management,
resulting in the definition of a two-level scheduler. Issues
of information flow associated with inter-process
communication were a serious challenge, with the
contemporary strategies of message passing and P&V
semaphores not suitable for the task. This resulted in the
invention of eventcounts and sequencers [27] for secure
inter-process communication.

Figure 4: Hardware Protection Rings

Security
Kernel

Applications

Operating System

Mandatory
Policies

Discretionary
Policies

Application

Policies

The MIT project succeeded in offering solutions to
all of the hard problems that stood in the way of building
auditable operating systems.

4.2. Formal Methods and Verification

A major step that enables a independent evaluation of
products was the development of formal methods [28].
At one point, there were three tools approved for use by
the NCSC: FDM, HDM, Gypsy. One of the most
significant developments was the Fiertag flow tool [29].
that permitted assessment of implications of design
decisions at the interface to a virtual implementation of
the system

One driver that led to advances in formal methods
was the recognition that Trojan Horses could exploit
covert channels. The risk of malicious software violating
the system security policy was recognized from the very
early secure systems, leading most systems to be
developed by cleared programmers. Development of
systems (e.g., commercial off the shelf products) by
uncontrolled sources (e.g., potential enemies) requires a
level of rigor only available with formal methods.

Also during this time frame, limitations on the use of
cryptography were becoming more widely known. And,
again it is the potential for malicious software that causes
these limitations. An example is an exploitable covert
channel [30] that exists in end-to-end encryption systems.
Trojan Horses can exploit this limitation by modulating
large amounts of data within message headers.

Efforts to ignore this problem represented one of the
earlier examples of people trying to defend their designs
by arbitrarily constraining what an attacker is supposedly
permitted to attack. The crypto designers said their
system was not considered responsible for this problem.
Nor was the operating system subverted to exploit the
problem. Yet it was a system vulnerability a Trojan horse
could exploit.

While covert timing channels remain a challenge to
this day, the GEMSOS security kernel showed that covert
storage channels could be eliminated and that covert
timing channels could be significantly reduced [31].

4.3. Evaluation Classes for Insecure Systems

It is instructive to note that the initial efforts, such as
the MIT project, to construct auditable kernels all focused
on being “secure”, not on being secure with some
variable level of assurance. Initially, the efforts to
develop system evaluation criteria were synonymous with
what latter became called Class A1. The reason is that
initially, no assumptions were made about the methods of
the attacker. Only latter was it asked if there were any
value in defining lesser levels of assurance. Division A
of the TCSEC makes no assumptions about limiting the

attacker. Division B hypothesizes that the attacker can
subvert the applications, but not the operating system.
Division C hypothesizes that the attacker uses no
subversion at all. And, division D assumes that
customers believe that attackers believe the vendor
marketing claims.

4.4. Advances in the State of the Science

The epoch culminating in the availability of
commercial evaluations (based on the TCSEC)
contributed the following key advances to the state of the
science of computer and network security:
• Application of Formal Methods
• Architectural Requirements for Evaluation (e.g.,

layering, least privilege, minimization)
• Covert Channel Reduction and Analysis
• Technically Sound Objective Evaluation Criteria
• Eventcounts for secure synchronization

5. TCB Subset Tools for Composition

Commercial evaluations under the TCSEC made
available trusted systems whose security properties were
independently evaluated. At the time, many inaccurately
claimed that use of the TCSEC was limited because it
could not be applied to a network of computers. The
TCSEC is a complete and reasonable criteria for
evaluating systems, including networks as noted in [32]
and [33]. However, there were two real-world concerns
that motivated published interpretations of the TCSEC:
• The ability to enforce a variety of system security

policies at varying levels of assurance; and,
• The ability to incrementally evaluate networks and

systems based on well defined modifications (e.g.,
the addition of a new sub-network).

5.1. Virtual Machines and the Subsetting Problem

Virtual machines such as IBM VM370 were
developed to permit the strong partitioning of systems
within the same computer, e.g., allow simultaneous
development and testing of new operating systems on the
same physical machines as the production application
environment. These efforts showed that to succeed, the
policies must be layered and there must be a partial
ordering to the policies. For example, outer layer policies
(e.g., discretionary controls on access to data) should not
be able to reach in and affect inner layer policies (e.g.,
separating the production virtual machine from the
development virtual machine).

The short early concept papers on trusted VMs and
trusted databases recognized that there was a ordering to
policies where relatively weak mechanisms could be used

to enforce those policies that have smaller demands
placed upon them. This was clearly evident in the VAX
VMM Security Kernel [34]. This work provided a formal
structure for understanding what previously was not
describable. These lessons were applied in the
development of the TNI [8] and the understanding of
TCB Subsets [35].

5.2. Incremental Evaluation of Distinct Physical
Components

A strong driver to the development of the TNI was
the existence of continually evolving networks composed
of heterogeneous components. It was not practical to
require that an entire system be evaluated at once, so
strategies were investigated for supporting incremental
evaluations. The question was: how to build a system
from a set of individual components that were previously
evaluated? The answer is found in two key concepts: 1)
the concept of a “partitioned TCB”, in which individually
evaluated components interact in a precisely defined
fashion and, 2) a “network security architecture” that
addresses the overall network security policy. These
concepts enable architectures to evolve without having to
go back and reassess the role of each individual
component each time a deployment consistent with the
architecture is changed. This also led to an ability to
recursively “compose” a set of individual components
into a new single logical component that has a well-
defined role within the network security architecture and
a well understood composite security rating.

A litmus test of the practicality of the TNI was
whether it could be applied to the Blacker system – a
NSA developed Virtual Private Network (VPN) for
securing highly sensitive traffic over an insecure Internet
[36]. The ability to use products not custom made for a
specific network was illustrated by having two major
components of Blacker hosted on the commercial
GEMSOS security kernel that met the requirements for
verified protection [31]. It was concluded that Blacker
would be a practical application of the TNI. The notion
of a “guard” based on cryptographic checksums [7] was
another technique for using insecure components in a
secure system.

As another example of the practical use of the TNI,
the system architect for the ICL-developed CHOTS
system for the UK military reported making significant
use of the TNI as an engineering tool in architecting their
network of heterogeneous components, and in allocating
security policies to the various components. Similarly,
Novell confirmed its practicality as a powerful tool in the
design of security for a commercial network [5].

5.3. TCB Subsets Within a Single System

The lessons learned from development of the TNI
and from the SeaView multilevel DBMS security model
[37]were then applied to the initial drafting of the TDI
[38] to address the management of TCB subsets within a
single physical computer.

Trusted Oracle was structured to exploit the
properties of TCB subsetting. It included a mode
whereby the mandatory access controls of the database
were enforced by the mechanisms of the underlying
operating system. This “evaluation by parts” solved the
seemingly difficult problem of achieving a Class A1
database system when neither the database vendor nor the
operating system vendor was willing to provide the other
with the evaluation evidence that would be necessary for
a single system evaluation.

Evaluation of Novell’s commercial NetWare network
under the TNI marks the end of this third epoch. Novell
desired an evaluated system, yet was not in the business
of building clients. They faced the question of how to
specify the role of the client such that other vendors could
produce clients that would be secure within the Novell
network security architecture. They implemented a TCB
extension for their client. Novell completed three distinct
but related evaluations: client; server; and network [5].

5.4. Advances in the State of the Science

The epoch culminating in the ability to use TCB
subsets to compose and incrementally evaluate systems
contributed the following key advances to the state of the
science of computer and network security:
• Partitioned TCB
• TCB Subsets
• Rules for Layering Security Policies
• Rules for Composing Systems
• Balanced Assurance
• Cryptographic Checksum Guards
• Multilevel DBMS Data Model
• Secure Client via TCB Extension

6. Common Criteria

The introduction of the Common Criteria delimits the
end of our final epoch. While this occurred some years
ago, our current situation is dominantly a simple
extrapolation from that point.

Although scientific advances had led to a system
evaluation criteria, worked examples and engineering
tools for composing systems, the building of secure
computing systems remained a challenging endeavor
requiring significant effort by trained practitioners.
Science had provided no way to glom security onto an

existing system. And even though there has been wishful
thinking that it would be nice to discover a means of
“building trustworthy systems from untrustworthy
components” [12], to the current state of science this
appears to be intractable. The blurring of distinctions
reflected in the Common Criteria provided a vehicle for
renewing research into speculative strategies for
achieving trusted systems, and opened the door to our
current epoch of pseudoscience, emphatic assertion and
unconscionable neglect.

A fundamental goal of the TCSEC was that an
evaluation must identify the properties of the overall
system without having to make system-specific
assumptions. There were separate evaluations for “sub-
systems” that were called “sub-system evaluations”.

The Common Criteria has led to a number of
evaluated products, but a dearth of evaluatable systems.
That is because there is no prescribed distinction between
system evaluation and subsystem evaluations. About 20
different network client products were evaluated under
the ITSEC (which similarly lacks a systems context), but
what do any of the evaluations mean with arbitrary
assumptions about the behavior of other parts of the
system? In fact been an entire business was pursued based
on claimed existence of a “Class A1 chip”, apparently
inferred from an “EAL7 chip”, which said virtually
nothing about the security of any system.

We are not in any way saying that this blurring of
distinctions is caused by the Common Criteria. In fact, it
is not clear that it is having much impact at all on security
designs and implementations. We are simply noting that
during this epoch many of the distinctive properties of the
science are not commonly recognized or applied.

The current failure to apply the existing science of
information security is largely the result of three
tendencies of pseudoscience:
• A willingness to make baseless assumptions about

the behavior of “other” software subsystems, i.e.,
those falling outside the “target of evaluation”; and,

• A willingness to assume unenforceable prescriptions
on the behavior of attackers.

• The classic logic error of assuming all problems are
the same and then concluding that certain techniques
don’t solve any of the problem because they fail to
solve some of the problems. For example, because
verifiable protection does not fully solve the
problems of denial-of-service, some will overlook the
fact that verifiable protection permits the
procurement of a secure operating system from a
mortal enemy
The Common Criteria tends to remove the

distinctions between pseudoscience and science, because
it has no inherent mechanism for distinguishing system
and subsystem evaluations. This leaves the procurers of

secure systems at the mercy of an increasingly shallow
pool of practitioners of computer security.

This last epoch is not a total loss. Cryptographic
subsystems and related standards and protocols have
undergone considerable advancement.

6.1. Available Cryptography

DES has grown to triple DES. And the Advanced
Cryptography Standard (ACS) holds significant promise.
However where once DES was anointed adequate to
protect sensitive by unclassified information, there is a
troubling lack of such pronouncements for the ACS.
Most troubling however, is that most cryptography
products are built on platforms that lack a basis for
believing their security mechanism cannot be subverted

Today, there is significantly more access to
cryptographic algorithms, hardware and turnkey
encryption systems than there was twenty years ago.
Export restrictions have been greatly relaxed and the
government is not knocking on as many doors to
respectfully request manufactures to pull products from
the market. Almost twenty years ago a large chip vender
was encouraged to stop building a quality key generator,
leading one manufacturer to replace the use of that chip
with the manual rolling of eight sided dice. Since then,
the engineering of security products that incorporate
cryptography has become considerably easier. On the
other hand, the understanding of probing cryptographic
solutions for weaknesses has also advanced considerably,
with techniques like power consumption analysis
threatening many implementations.

Cryptography has become a relatively popular area of
study, and new algorithms are subject to systematic
review – which is good because there is no real science to
cryptography. It has few absolute metrics, relying instead
on assertions of relative strength such as: “it is as difficult
to break as factoring large numbers to their primes”.

The application of cryptography has been greatly
enhanced by standards such as IPSEC which can make
the engineering of VPNs a whole lot more likely to be
sound. Even standards like SSL have usefulness in
environments that don’t require high assurance.

Cryptography advances have indeed been
considerable. However, current products are mostly built
on platforms having weak security. And, the recent
neglect of the science of computer and network security
suggests this won’t be corrected soon. As a result of this
major weakness in cryptographic deployment, it has in
many cases become what has been referred to as the
“opiate of the naive”.

 This is not a unique insight of the author, but has
been noted by others as well. For example, with respect
to security for modern servers and PCs one long-term
expert recently noted [39]:

However, it would appear that we have solved
the wrong problem. While encryption codes might
represent an intellectual challenge to hackers and
criminal decrypters, they invariably choose the more
realistic and achievable approach of attacking servers
and PCs, the Achilles heel of the network
environment.

The irony is that some of our very early PC chips
were designed to provide a higher degree of security,
but this has never been made available.

In the early 1980s, Intel developed a secure chip
called the Intel 286 chip which formed the heart of a
secure system known as GEMSOS, one of the most
highly trusted computer systems ever built and used
by the US Government.

6.2. Advances in the State of the Science

The epoch of decline delimited by the publishing of
the Common Criteria did not include much in the way of
advances in the state of the science of computer and
network security. However, there were considerable
advances in the area of available cryptographic tools,
including:
• Widely Available Crypto Subsystems
• Digital Certificates and PKI
• IPSEC for VPNs

7. Summary

The state of the science of information security is
quite rich with solutions and tools that represent the
accumulated knowledge from research over more than 30
years. The state of our assimilation of that knowledge by
information security practitioners and understanding of
the existing science is very poor. The greatest
achievement in the science of computer and network
security is the ability to build and deploy truly bulletproof
systems having verifiable protection. And this remains
the most powerful solution available for many of today’s
hard problems.

The following list summarizes advances yielding the
state of the science of computer and network security.
• Reference Monitor Concept
• A Simple Security Kernel
• Formal Security Policy Models
• Discretionary vs. Mandatory Access Control Policies
• Hardware Rings and Segmentation
• Application of Formal Methods
• Architectural Requirements for Evaluation (e.g.,

layering, least privilege, minimization)
• Covert Channel Reduction and Analysis
• Technically Sound Objective Evaluation Criteria
• Eventcounts for secure synchronization

• Partitioned TCB
• TCB Subsets
• Rules for Layering Security Policies
• Rules for Composing Systems
• Balanced Assurance
• Cryptographic Checksum Guards
• Multilevel DBMS Data Model
• Secure Client via TCB Extension
• Widely Available Crypto Subsystems
• Digital Certificates and PKI
• IPSEC for VPNs

8. Acknowledgement

The author is deeply grateful to Michael F.
Thompson of Aesec Corporation for his most helpful
research and review during preparation of this essay.

9. References

[1] Jelen, George F., Information Security: An Elusive Goal,
Program on Information Resources Policy, Harvard University,
Cambridge, MA, June 1985.

[2] Brinkley, D.L. and Schell, R.R., “Concepts and
Terminology for Computer Security”, Information Security, M.
Abrams, S.Jajodia, and H.Podell, eds., IEEE Computer Society
Press, Los Alamitos, Calif., 1995

[3] Jueneman, R.R., Novell Certificate Extension Attributes—
Novell Security Attributes, Tutorial and Detailed Design,
Document Version 0.998, Novell Inc., August 1998.

[4] Department of Defense Trusted Computer Security
Evaluation Criteria , DOD 5200.28-STD, National Computer
Security Center, December 1985.

[5] Final Evaluation Report, Novell, Incorporated Netware
4.1.1 Server , National Computer Security Center, June 1998.
[6] Schell, R.R. and Thompson, M.F., “Platform Security:
What is Lacking?” Information Security Technical Report, Vol
5, No. 1, 2000, Elsevier Advanced Technology

[7] Denning, D.E., “Cryptographic Checksums for Multilevel
Database Security”. Proc. 1984 Symp. on Security and Privacy ,
IEEE Computer Society, 1984, pp. 52-61.

[8] Trusted Network Interpretation of Trusted Computer
System Evaluation Criteria , NCSC-TG-005, National Computer
Security Center Version 1, 31 July 1987.

[9] Common Criteria for Information Technology Security
Evaluation , CCIB-98-026, ISO/IEC, May 1998

[10] Carroll, Lewis , Through the Looking Glass, (1872),
English writer, mathematician.

[11] Carroll, R.T., The Skeptics Dictionary, http://skepdic.com,
1994-2001

[12] Trust In Cyberspace , National Academy Press,
Washington, D.C. 1998, Fred B. Schneider, Editor

[13] R.R. Schell, “Computer Security: the Achilles’ Heel of the
Electronic Air Force”, Air University Review , Vol. 30:2, Jan.-
Feb., 1979

[14] Ware, W. H., ed., Security Controls for Computer Systems:
Report of Defense Science Board Task Force on Computer
Security , AD # A076617/0, Rand Corporation, Santa Monica,
Calif., February 1970, reissued October 1979.

[15] Anderson, J.P. Computer Security Technology Planning
Study. ESD-TR-73-51. Bedford MA: USAF Electronics
Systems Division. October 1972.

[16] Fraim, L.J., “SCOMP: A Solution to the Multilevel
Security Problem,” IEEE Computer, July 1983.

[17] Whitmore, J.C. et. al., “Design for Multics Security
Enhancements,” ESD-TR-74-176, Honeywell Information
Systems, 1974.

[18] Weissman, C., “Security Controls in the ADEPT-50 Time-
Sharing System,” Fall Joint Computer Conference , 1969

[19] J.H. Saltzer and M.R. Schroeder. “The Protection of
Information in Computer Systems,” Proc. IEEE Vol. 63, No. 9,
September 1975.

[20] Denning, D.E. “A Lattice Model of Secure Information
Flow.” Communications of the ACM , Vol 19. No 5, May 1976.

[21] Bell, D.E. and LaPadula, L.J., Computer Security Model:
Unified Exposition and Multics Interpretation , ESD-TR-75-306.
MITRE Corporation, Bedford MA, June 1975.

[22] Biba, K.J., Integrity Considerations for Secure Computer
Systems, ESD-TR-76-372, MITRE Corporation, Bedford, MA,
April 1977.

[23] Shockley, W.R., “Implementing the Clark/Wilson Integrity
Policy Using Current Technology,” Proc. 11 th National
Computer Security Conference, 1988.

[24] Ames, S.R., et al, “Security Kernel Design and
Implementation: An Introduction”, Computer, IEEE, July 1983.

[25] Michael D. Schroeder, David D. Clark, and Jerome H.
Saltzer, “The Multics Kernel Design Project”, Proc. Sixth ACM
Symposium on Operating System Principles, November 1977.

[26] Parnas, D.L., “A Technique for Software Module
Specification with Examples,” Communications of the ACM,
Vol. 13, No. 5 , May, 1972

[27] D.P. Reed, and R.K. Kanodia, “Synchronization with
Eventcounts and Sequencers,” Communications of the ACM ,
Vol.22, No. 2, February 1979.

[28] Millen, J.K. “Security Kernel Validation in Practice.”
Communications of the ACM . Vol 19. No 5, May 1976.

[29] Feirtag, R.J. et al., “Proving Multilevel Security of a
System Design, Proc. Sixth ACM Symposium on Operating
Systems Principles , November 1977.

[30] Padlipsky, M. A., Snow, D. P., and Karger, P. A.,
Limitations of End-to-End Encryption in Secure Computer
Networks, The MITRE Corporation, MTR-3592, Vol. I, May
1978 (ESD TR 78-158, DTIC AD A059221).

[31] Final Evaluation Report, Gemini Network Processor,
Version 1.01 , National Computer Security Center, pp 123-124,
June 1995.

[32] W.R. Shockley, et al. “A Network of Trusted Systems”.
Proc. AIAA/ASIS/IEEE Third Aerospace Computer Security
Conf., 1987.

[33] Fellows J., et al. “The Architecture of a Distributed Trusted
Computing Base.” Proc. 10 th National Computer Security
Conference , September 1987.

[34] Karger, P. A., et al., “A Retrospective of the VAX VMM
Security Kernel,” IEEE Transactions on Software Engineering ,
Vol. 17, No. 11, Nov. 1991.

[35] Shockley, W.R. and Schell, R.R., “TCB Subsets for
Incremental Evaluation”, Proc. of the 3 rd Aerospace Computer
Security Conference, American Institute of Aeronautics and
Astronautics, Washington D.C., 1987.

[36] C. Weissman, “Blacker: Security for the DDN. Examples
of A1 Security Engineering Trades”. Proc. 1992
Symp.Research in Security and Privacy, IEEE Computer
Society, 1992, pp. 286-292.

[37] Lunt, T. F., et al., “The SeaView Security Model,” IEEE
Transaction on Software Engineering , Vol. 16, No. 6, June
1990.

[38] Trusted Database Management System Interpretation of
the Trusted Computer System Evaluation Criteria , NCSC-TG-
021, National Computer Security Center, April 1991.

[39] Bill Caelli, “Bring in E-Trading PIN Pads,” The Australian
newspaper, Sydney, Australia, 24 October 2000.

